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HOMOLOGICAL DIMENSION AND CARDINALITY

BY

B. L. OSOFSKY

Abstract.    Let {e(¡) \ieS) be an infinite set of commuting idempotents in a ring

R with 1 such that

n«o«) n a-«*«)*o

for {/„ | 0 g a g ri) r\{iß \ n +1 á ß ¿ m) = 0. Let / be the right ideal generated by these

idempotents. We show that the projective dimension of / is n < co if and only if the

cardinality of /= X„. As a consequence, a countable direct product of fields has global

dimension k +1 if and only if 2«o = xfc. The same is true for a full linear ring on a

countable dimensional vector space over a field of cardinality at most 2«o. On the

other hand, if 2«o > N„, then any right and left self-injective ring which is not semi-

perfect, any ring containing an infinite direct product of subrings, any ring containing

the endomorphism ring of a countable direct sum of modules, and many quotient

rings of such rings must all have infinite global dimension.

This paper continues the investigation of the relationship between homological

dimension and cardinality questions started in [4] and [5], combining the tech-

niques of §7 of [5] with a modification of a projective resolution in Pierce [7].

Employing a result of Hausdorff and Tarski, we show that the X corresponding to

2No plays an important role in the global dimension of rings where one can find

analogues of characteristic functions of subsets of a set of orthogonal idempotents.

1.   Homological dimension of an ideal generated by commuting idempotents.

We first calculate the homological dimension of a right ideal of a ring R (with 1)

generated by a "nice" set of idempotents, and then show that several types of

rings possess such idempotents.

A family 9Í = {e(i) | ie J} of idempotents of R is called nice if

& tmj)-4Mí)>/i,jeS.
(¡j) re., <q n?-+i o -<b)) #oif

{4 | 1 ^ a ^ n} n {iB | n +1 é ß Ú m} = 0.

For any nice family of idempotents 9Í, define h = 2ee» eR. Assume 21 is indexed

by a linearly ordered set J. Let

i0<ii<"-<in
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642 B. L. OSOFSKY [October

where <z'0,..., /„> represents that function in Rjn which takes the value 0 every-

where except at (i0,..., /„) eJn where it takes the value nS=o «('«)■ We observe

that
n

<io, • • • » 'n> YX e{ia) = </'o, • • •, 4>,
or = 0

and for any i e J,

(*)    ¿>n(2I) = [   0    </«,, - • •, i»M0*l 0 [   ©    <'o, • ■ •, ¿n>(l - e(i))*l.
Lio<-<i>i J      L«o<—«« J

We call the first summand e(/)P„(9l) and the second (1 -e(i))PnÇH). We rewrite

the boundary operator of [7] to avoid using characteristic 2 ; namely, define

d0: P0(K)-> h, d0<i0> = e(i0),

dn: P„(«) -* Pn_!(«),    </B<i0, ...,/„>= J (- l)a</0, • •. A, ■ ■ ■ ,0(e(ij)
a = 0

where îa means delete ia.

Proposition 1.

^(21): • • • ̂ ^Pn(%) -^-^W) ~^> /«-► 0

is a projective resolution of I-&.

Proof. Pn(3l) is projective since it is isomorphic to a direct sum of projective

right ideals.

That ^(31) is a complex is a standard computation. Every term in

dn-idn{i0,. ..,/'„>

appears twice with opposite signs.

d0di(i0,h> = ^o«'i>e(/0)eO'i)-<io>eO'oM'i)) = eO'oM'i) - e('o)eO'i) = 0.

Let dnp = 0, /? = 2?=i <Jo,a> • ■ •> '7i,«>'V Let / be the largest in¡a such that

</o,a,..., in,ayra ^ 0, and let e{i)p and (1 — e{i))p be the projections of/? on the

appropriate summands of (*). Since

dn{e(i)Pm) s e(i)Pn . x(«)   and   4(0 - «W»(«)) S 0 - e(i))Pn - ¿K),

dne(i)p=dn(l—e(i))p=0. A straightforward calculation shows that

,..., *'„_!, i}R.dn+i( 2   <,'o,a» • • •» k.«> *>('>«] -(- l)n+1eO> = q e © </0

Since dnq=0, looking at terms of rfn<¡r not involving i shows that <? must =0. We

observe that (1 — e(i))p has fewer than m nonzero terms since / is actually equal to

some in¡a in a nonzero term of p, and then use induction on m to get

(\-e{i))pedn+1Pn+1{%).

Hence ^(91) is exact.
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1970] HOMOLOGICAL DIMENSION AND CARDINALITY 643

Let hd (/«) denote the homological dimension of Ja, that is, the smallest k

such that dkPkCä) is projective, or oo if no such k exists.

Proposition 2. Let card {J) = Xn, hd (fa)^k<oo. Then ifk<Q., there exists a

set ß^J such that card (,/) = Xfc and dkPk({e(i) | i e /}) is a direct summand of

Proof. This is identical with the proof of Proposition 5.2(c) of [5].

Proposition 3. Let J be an ordinal such that for some new, no ordinal of

cardinality < Xn is cofinal in J. Then hd (h)^n.

Proof. If « = 0, then there is nothing to prove, so we may assume n£l. Assume

hd (h) = k<n. We will use induction on k.

If k = 0, /at is projective. By Proposition 2 (which uses the snaking argument

of Kaplansky [3]), there exists a countable set f^J such that

h = 2 e{j)R © I'-

Let /" e J-ß. Then e(i') = a + b, a e 2i6af e(j)R, b e /'. Let a = 2?=i e(Ja)ra. Since

91 is a nice set of idempotents, for any/ e ß—{ja | Ua^»¡},

m

ä=«(W) no -</■»*°-
But

(a+¿>)a = e(i")ö = S = äe(z') = ä(a-l-2>)

= âè £ eO')^ n e0")^ £ aR.

Hence bä=0. But â2 = â = (âè)(âè)=0, a contradiction.

Now assume £^ 1 and k<n. By Proposition 2, there exists ,/ç y with card (f)

= Xn_! and dkPk({e(i) \ i e/}) is a direct summand of dkPk(?&). Since &<n,

by hypothesis t = sup (,/) +l<Jr. Now

¿Vi(«)=    ©    <J0,--;jtc-Mr)R

©  ©  <&...,A-iXi-**»*
tí«) s ./

=    ©   40o, ...,À_i, T>^

©   ©   </o,-...À-iXl-«(r))u
</a> E f

©    ©    (i». UÄ

and

*!»»(■)-4P»(M/)I's/})e*
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644 B. L. OSOFSKY [October

Then

e(r)dkPk(<ä) = e(r)dkPk({e(i) | i e /}) © e(r)K n K

where premultiplication by e(r) indicates as before the appropriate projection in

(*). Now e(T)dkPk({e(i) | i e ß}) is a direct summand of e{r)dkPk(^i) and M=

®{ja)&jdk(j0,...,jk_1,T)>R is a direct summand of Pfc_!(9l) and indeed of

e(T)Pfc_1(9t). Moreover, M^e(T)dkPk({e(i) \ i e ^f}) by the proof used for exactness

of ^(21). Hence e(r)dkPk({e(i) | i e /}) is actually a direct summand of e^iV^S!)

since a direct summand of a direct summand of a module is a direct summand of

the entire module.

Define 93={e(Y)e(/) \ i e /}. Then 33 is a nice set of idempotents of R since 9Í

is and since 1— e(r)e(i)=\ — e(T) + e(T)(l — e(i)). Moreover, the complex ^(93) is

naturally isomorphic to e(r)P({e(i) \ i e f}) in an obvious manner. In particular,

kernel plS8)dk _ x is a direct summand of Pk _ i(93), so hd (fo) ̂  k -1. By the induction

hypothesis, n — 1 ̂  hd (/is) ̂  A: — 1, contradicting A: < n.

Proposition 4.IfJ is a set such that card (./) = Nn, then hd (fa)^n.

Proof. If / is countable, order it by a>. Then

h = e(0)R ® e(l)(l-e(0))R ® e(2)(l -e(0))(l -e(l))R

®- ■ -® e(n)Yl(l-e(a))R ®- ■ ■
a = i

is projective.

Assume the proposition for all nice sets of idempotents of cardinality less than

XB, n^ 1. Index 9Í by the first ordinal of cardinality X„. Then /a is a well-ordered

ascending union of subideals of homological dimension 5= n — 1, so hd (1%) ̂ n as

in [1].

Propositions 3 and 4 combined with some obvious set theoretic computations

such as those in [4] show

Theorem A. If % is a nice set of idempotents, then hd (/at) = n if and only if

card(9l) = Xn.

2. Rings possessing nice sets of idempotents. Theorem A is of interest mainly

because several "natural" rings possess rather "large" nice sets of idempotents.

Of course, Pierce's free Boolean rings, or indeed the analogous free algebra

generated by commuting idempotents over any ring will have nice sets of idem-

potents. In this section we use a result in [8] to get a method of constructing nice

sets of idempotents in other kinds of rings.

Proposition 5. Let {e(k) | k e Jf} be an infinite set of orthogonal idempotents of

R with card (AT) = N. Assume for each !£<=, Jf there exists an idempotent e(^) e R

such that

(i) e{k)e{&) = e(J?)e(k) = e(k)XL(k)
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1970] HOMOLOGICAL DIMENSION AND CARDINALITY 645

where %l denotes the characteristic function ofL.

(ii) e{Se)e{Jt) = e(Jt)e{ß)   for all Se, JÍ g Of.

Then there exists a nice set of idempotents 91 ̂R such that card (9l) = 2x.

Proof. Hausdorff and Tarski have shown that there exists a family g of subsets

of JT such that card (¡5) = 2N and for any disjoint finite subsets U and V of 3f,

fl^i;^^n^y(^-^)#0- (For a proof see Sikorski [8, p. 45].) Then

{e{S/?) | Se e g} is a nice set of idempotents of R, for if U and V are disjoint finite

subsets of g and & € H^et/ -^ n fWev (JT-^0, then

e(k) n «(-so n o -e(^o) = «w ?* o.

What kinds of rings satisfy the hypotheses of Proposition 5 ? Clearly Ylkejr R¡c

or Homs (©ksJr Mk, @kex Mk) do, where the Rk are rings and the Mk are modules

over a ring 5. In these cases the e{k) and e(if) are appropriate projections. Also, if

S satisfies the hypotheses of Proposition 5, so does any over-ring of S.

Proposition 6. Let R be a ring such that for some set £/£ {eR \ e2 = e e R}, the

elements of U form a complete, complemented lattice under join = + and meet = n.

Let {e'(k) | k e ¿f} be an infinite set of orthogonal idempotents of R such that

e'(k)R e U for all k e Jf. Then there exists {e{S£) \S£<=,$f} satisfying the hypotheses

of Proposition 5, where e(k) = e({k}).

Proof. By hypothesis, sup {e'(k)R \keJf} = eR for some e = e2 e R. Let JSP s Jf.

Then

eR = sup {e'(k)R | k e SC} © sup {e'(k)R \ k $ S?}

since eR contains each supremum on the right, their sum contains {e'(k)R \ k e Jf},

and their intersection is an idempotent generated right ideal in U containing no

e\k) îorksct. Let e(SC) be the projection of e on sup {e'(k)R \ k e SC} with respect

to this decomposition. One readily verifies that e(S£)e{Jt) = e(J?)e(Sf) = e(S£ n J¡f)

by looking at the decomposition

eR = sup {e'(k)R | k e SC n JT} © sup {e'(k)R \keSe-J?}

© sup {e'(k)R I k e Je-Sf} © sup {e'(k)R I k £ Jf -Se U JÍ}

and the result follows.

Proposition 7. Lei Rbe a right self-injective ring such that either R is regular in

the sense of von Neumann or R is left self-injective ornoxe R annihilates ©ksJr e{k)R

on the left, where {e(k) \ k e Jf} is some set of orthogonal idempotents. Then R

satisfies the hypotheses of Proposition 5 for any right ideal generated by orthogonal

idempotents in the first two cases, and for the right ideal generated by the given set in

the third case.
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Proof. We will reduce the first two cases to the third. Let {e'(k) \ k e Jf} be a

set of orthogonal idempotents of R, eR = an injective hull of 0 e'(k)R. Let e(k)

= e'(k)e. Then e(k)R = E'(k)R and {e(k) \ keJf}u{l-e} is a set of orthogonal

idempotents. Since I=@ s(k)R ® (1 — e)R is essential in RR, if R is regular it is

well known that the left annihilator of / is zero. If R is left self-injective, let Rfbe

an injective hull of 0 Re(k) ® R(l -e),f=f2. Then the map

nr:P^n£(/c)Pvx(l-e)P
JceJT

given by nr(x) = «£(Â;)x>, (1 — e)x) must be monic since its kernel has zero inter-

section with an essential submodule of R. Since 11(1 —/)=0, f=\. Then the left

analogue of ITr has kernel zero, which is precisely the third situation.

Now let {e(k) | k e Jf} be a set of orthogonal idempotents in R such that the

left annihilator of 0 e(k)R = 0. Let E-y and E2 be two injective hulls of @kEs> e(k)R

for ifçjf Then R = Ey ©F1 = E2 ® F2 where each Ft is an injective hull of

©/cejr-j?' e(k)R since R must be the injective hull of @keJr s(k)R=I (no idempotent

1 —/annihilates /). Let 1 —et+ft, i= 1, 2, be the corresponding representations of 1.

Then (e1 — e2)e(k) = 0 for all ke JT, so e1 = e2 and E1 = E2. Hence the set of (idem-

potent generated) injective hulls of ideals (¡£)ke& e(k)R, ¿tf^$r, forms a complete

complemented lattice and we may apply Proposition 5.

3. Conclusions. In this section we list some corollaries to the results in §§1 and

2, and insert a few remarks on the results.

3.1. Let R be a ring possessing a nice set of idempotents of cardinality èXr

Then R has infinite global dimension. Examples of such rings are endomorphism

rings of direct sums of at least Sm modules, direct products of at least Km rings,

any nonzero quotient of a full linear ring on an X ^ Sra dimensional vector space,

and two-sided self-injective rings containing sets of orthogonal idempotents of

cardinality Xfc for each k e w.

3.2. If 2*o > X^, then any infinite direct product of rings, endomorphism ring of

an infinite direct sum of modules, or nonsemiperfect two-sided injective ring must

have infinite global dimension. Moreover, if/is an ideal of P = one of the above

types of rings, and if there exists an infinite set of orthogonal idempotents of R

none of which is in /, then R/I has infinite global dimension. We note that if R is

regular or if R is self-injective, then if 7?// is not semiperfect, it will have a countable

set of orthogonal idempotents generating a right ideal /', and the preimage / of/'

in R will contain a countable set of orthogonal idempotents {et | i e w} such that

^=2i™ o etR+I. Thus R/I will have global dimension =oo.

3.3. If the Xfc corresponding to 2xo is less than Ka, the global dimension of a

countable direct product of fields is equal to k+l. We thus have a homological

dimension statement equivalent to the continuum hypothesis similar to that found

in [5].

3.4. By looking at quotients of injective modules in [6], we showed that the

kinds of rings mentioned in the above remarks could not be hereditary. The main
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1970] HOMOLOGICAL DIMENSION AND CARDINALITY 647

theorem of that note had hypotheses requiring that for a given set of orthogonal

idempotents {e¡ | ieJ} and si^J, there exist m^ £ R such that e¡7í2^ = 0 for all

/ $ si, and m^et = e¡ for all i e si. If, in addition, we require that {m^} be com-

muting idempotents, these hypotheses will give rise to nice sets of orthogonal

idempotents as in §2 and thus show that such rings cannot be hereditary by looking

at projective resolutions.

3.5. It is an open question whether the hypotheses of Proposition 6 can be

weakened to R is one-sided self-injective. Commutativity of nice sets of idem-

potents was used strongly in getting the projective resolution of §1, and just

selecting any injective hull in a ring will not guarantee commutativity without some

kind of uniqueness property. Perhaps there is some way to select injective hulls

corresponding to subsets of a set of orthogonal idempotents in such a way that

commutativity is assured, but such a technique seems rather elusive at the moment.

3.6. If 2Ko = X1; the results in §§1 and 2 give a lower bound of 2 on the global

dimension of a countable dimensional full linear ring. If the field is suitably small,

this is the global dimension. However, if the field has cardinality >X1; an upper

bound on the global dimension is not as easy to obtain. It appears to be an open

question whether the global dimension of a full linear ring is indeed dependent on

the cardinality of the field as well as the dimension of the vector space if one

assumes the generalized continuum hypothesis. The problem is illustrated by the

following:

Let F be an X-dimensional right vector space over a division ring F of cardinality

b>2*, and let R = \iomF(V, V). Then R has cardinality eK = Xa, and the global

dimension of R is at most a +1. We will show that R has a right ideal generated by

Xa but no fewer elements. All we can say about the homological dimension of this

ideal is that it is á a. We also show that R has a right ideal of homological dimen-

sion 1 generated by b but no fewer elements, so ideals requiring many generators

may still have low dimensions.

We use the following two known results (see [2, pp. 67-68]).

Lemma 1 (Erdös-Kaplansky). There exists a set of sequences {(¿»J") | j e w, y e T}

such that the cardinality of F is band every n x n matrix (¿/"Oiai.iSn is nonsingular.

Lemma 2. dim*. F*=b*.

Proposition. R has a right ideal generated by b* but no fewer elements.

Proof. Since F is a right vector space, right ideals of R are completely deter-

mined by the lattice of ranges of elements in the ideal. Hence, we need only con-

struct a set of ès subspaces of V such that no one of them is contained in a finite

sum of others in the set.

Let {bM | y £ T} be a basis for F*, where bM = (b(J)}, a e si, si a set of cardinality

X. By Lemma 2, T has cardinality 6N. Also, let {ea | a e si} be a basis for V.
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Since X" = K for all n e m and S0X = X, we may express stf as a disjoint union of

subsets si\ indexed by the set g of all finite subsets of s/, where si\ has the same

cardinality as f. We may also assume that each si\ is indexed by f, that is,

^ = {a(ß)\ße\).

Let Wy be the subspace of V generated by

fief J

Assume Wô^Wyi +-1- WYn.

For each f £ g, every Wy contains precisely one vector in 2ae^f eaF. Hence

dim (£?=! Wy) n 2ae^f eaF^n. Let

(î »0 n 2fc = dim   >   WAr\  >   e„P

be the maximum dimension possible for g e 5, and assume

{2 e««>è(/" | /S 6 g, 1 á j ^ A:}

are linearly independent. Let

2 e«*J>T = 2 (2 ««tf^'Vi-

Then for all ß e q, bf=2t-i fyW
Let ß' e sf- g, h = g u {jS'}. Then

2  (2 eautâù)xt-2 eambf = eaiJj^b^Xi-vA,

«03') e4
By the maximality of k and the independence of {2g eamb^° \ \fkiuk),

2 w*,-^
le

2¡=i
must be zero. But then 6W) = 2f=i 6(',<>jc1, a contradiction.

Proposition. R has a right ideal of homological dimension 1 generated by b but

no fewer elements.

Proof. Let {<^rt> \ jew, ye T} be a set of sequences satisfying the properties

asserted in Proposition 1. Let {e¡ |/e<u} be any linearly independent set of elements

of V. Let Wy be the subspace spanned by

{2»-l

2  er+jVp \ne,
1 = 0
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By the nonsingularity of nxn submatrices formed from {<&}>}, Wy n 2i"=i Wyi

s2í=Y ejF> where 21 is the largest power of 2 which is less than or equal to m. In

particular, a set of projections Ey onto Wy are independent modulo the socle S

of R. Then

0 -> s n 2 EyR -> 2 £r^ -► © (ErR + S/S) ->• 0
r

is exact, 5 0 2 £,/? is projective, EyR + S/SxEyR/(S n £yÄ) has dimension 1, so

2 £yÄ has dimension at most 1. 2 £yÄ cannot be projective since it needs too many

generators to be a direct sum of principal ideals (see [3]). Hence 2 EyR has dimen-

sion precisely 1.

3.7. Editorial. In this paper as well as in [5], statements on homolgical dimen-

sion were found to be equivalent to the continuum hypothesis. In these works, if

2*0 /X^ then ^ appears in the role of a stumbling block in getting from X0 to

2Ko. The "natural" structures all have cardinality X0 or 2K<> (or greater). There

is no way in these papers to get one's hands on Xj. Such a situation is aesthetically

(or intuitively if you prefer) repugnant to me. In addition, a finite full linear ring

has global dimension =0. When one goes from finite to X0, of course this changes,

and in any case the global dimension goes up to at least 2. However, a jump from

zero to infinity is quite a jump and appears rather unintuitive. Moreover, infinite

global dimension for nonsemiperfect two-sided injective rings is also very surprising.

For those reasons, the hypothesis 2N<> = Xx appears to me to be the natural one

applying to the axiom system in which homological algebra is done, and 2*0 > Xm

has somewhat upsetting consequences.
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