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Homological mirror symmetry for the quintic 3–fold

YUICHI NOHARA

KAZUSHI UEDA

We prove homological mirror symmetry for the quintic Calabi–Yau 3–fold. The
proof follows that for the quartic surface by Seidel [16] closely, and uses a result of
Sheridan [23]. In contrast to Sheridan’s approach [22], our proof gives the compati-
bility of homological mirror symmetry for the projective space and its Calabi–Yau
hypersurface.

53D37; 14J33

1 Introduction

Ever since the proposal by Kontsevich [9], homological mirror symmetry has been
proved for elliptic curves (see Polishchuk and Zaslow [14], Polishchuk [13] and
Seidel [19]), Abelian surfaces (see Fukaya [5], Kontsevich and Soibelman [11] and
Abouzaid and Smith [1]) and quartic surfaces (see Seidel [16]). It has also been
extended to other contexts such as Fano varieties (see Kontsevich [10]), varieties of
general type (see Katzarkov [8]), and singularities (see Takahashi [24]), and various
evidences have been accumulated in each cases.

The most part of the proof of homological mirror symmetry for the quartic surface by
Seidel [16] works in any dimensions. Combined with the results of Sheridan [23], an
expert reader will observe that one can prove homological mirror symmetry for the
quintic 3–fold if one can show that

� the large complex structure limit monodromy of the pencil of quintic Calabi–Yau
3–folds is negative in the sense of Seidel [16, Definition 7.1], and

� the vanishing cycles of the pencil of quintic Calabi–Yau 3–folds are isomorphic
in the Fukaya category to Lagrangian spheres constructed by Sheridan [23].

We prove these statements, and obtain the following:
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Theorem 1.1 Let X0 be a smooth quintic Calabi–Yau 3–fold in P4
C and Z�q be

the mirror family. Then there is a continuous automorphism  2 End.ƒN/
� and an

equivalence

(1) D�F.X0/Š y �Db coh Z�q
of triangulated categories over ƒQ .

Here ƒN D CJqK is the ring of formal power series in one variable and ƒQ is its
algebraic closure. The automorphism y of ƒQ is any lift of the automorphism  

of ƒN , and the category y �Db coh Z�q is obtained from Db coh Z�q by changing
the ƒQ –module structure by y . The category D�F.X0/ is the split-closed derived
Fukaya category of X0 consisting of rational Lagrangian branes. The symplectic
structure of X0 and hence the parameter q come from 5 times the Fubini–Study metric
of the ambient projective space P4

C . The mirror family Z�q D ŒY �q =�� is the quotient
of the hypersurface

Y �q D
˚
Œy1 W : : : W y5� 2 P4

ƒQ
j y1 : : :y5C q

�
y5

1 C � � �Cy5
5

�D 0
	

by the group

(2) � D ˚Œdiag.a1; : : : ; a5/� 2 PSL5.C/ j a5
1 D � � � D a5

5 D a1 � � � a5 D 1
	
:

Let Zq D ŒYq=�� be the quotient of the hypersurface Yq of P4
ƒN

defined by the same
equation as Y �q above. The equivalence (1) is obtained by combining the equivalences

D�F.X0/Š y �D�S�q Š y �Db coh Z�q
for an A1–algebra S�q D Sq˝ƒN ƒQ as follows:

(1) The derived category Db coh Z�q of coherent sheaves on Z�q has a split-generator,
which extends to an object of Db coh Zq . The quasi-isomorphism class of the
endomorphism dg algebra Sq of this object is characterized by its cohomol-
ogy algebra together with a couple of additional properties up to pull-back by
End.ƒN/

� .

(2) The Fukaya category F.X0/ contains 625 distinguished Lagrangian spheres.
They are vanishing cycles for a pencil of quintic Calabi–Yau 3–folds, and a
suitable combination of symplectic Dehn twists along them is isotopic to the
large complex structure limit monodromy.

(3) The large complex structure limit monodromy has a crucial property of negativity,
which enables one to show that the vanishing cycles split-generate the derived
Fukaya category D�F.X0/.
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Homological mirror symmetry for the quintic 3–fold 1969

(4) The total morphism A1–algebra Fq of the vanishing cycles has the same
cohomology algebra as Sq and satisfies the additional properties characterizing
Sq .

The condition that X0 is a 3–fold is used in the proof that vanishing cycles split-generate
the Fukaya category, cf. Remarks 3.6 and 3.9. Sheridan [22] proved homological
mirror symmetry for Calabi–Yau hypersurfaces in projective spaces along the lines of
Sheridan [23]. In contrast to Sheridan’s approach, our proof is based on the relation
between Sheridan’s immersed Lagrangian sphere in a pair of pants and vanishing
cycles on Calabi–Yau hypersurfaces, and gives the compatibility of homological mirror
symmetry for the projective space and its Calabi–Yau hypersurface as in Remark 5.11.

This paper is organized as follows: Sections 2 and 3 have little claim in originality, and
we include them for the readers’ convenience. In Section 2, we recall the description
of the derived category of coherent sheaves on Z�q due to Seidel [16]. In Section 3, we
extend Seidel’s discussion on the Fukaya category of the quartic surface to general pro-
jective Calabi–Yau hypersurfaces. Strictly speaking, the work of Fukaya, Oh, Ohta and
Ono [6] that we rely on in this section gives not a full-fledged A1–category but an A1–
algebra for a Lagrangian submanifold and an A1–bimodule for a pair of Lagrangian
submanifolds. While there is apparently no essential difficulty in generalizing their work
to construct an A1–category (for transversally intersecting sequence of Lagrangian
submanifolds, one can regard it as a single immersed Lagrangian submanifold and use
the work of Akaho and Joyce [2]), we do not attempt to settle this foundational issue
in this paper. Sections 4 and 5 are at the heart of this paper. In Section 4, we prove the
negativity of the large complex structure limit monodromy using ideas of Seidel [16]
and Ruan [15]. In Section 5, we use ideas from Seidel [18] and Futaki and Ueda [7] to
reduce Floer cohomology computations on vanishing cycles needed in Section 3 to a
result of Sheridan [23].

Acknowledgments We thank Akira Ishii, Takeo Nishinou and Nick Sheridan for
valuable discussions. We also thank the anonymous referees for helpful suggestions and
comments. Y Nohara is supported by Grant-in-Aid for Young Scientists (No.19740025).
K Ueda is supported by Grant-in-Aid for Young Scientists (No.20740037).

2 Derived category of coherent sheaves

Let V be an .nC2/–dimensional complex vector space spanned by
˚
vi

	
nC2
iD1

, and˚
yi

	
nC2
iD1

be the dual basis of V _ . The projective space P .V / has a full exceptional
collection

�
Fk D�nC2�k

P.V / .nC 2� k/ŒnC 2� k�
�
nC2
kD1

by Beilinson [3]. The full dg
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subcategory of (the dg enhancement of) Db coh P .V / consisting of .Fk/
nC2
kD1

is quasi-
isomorphic to the Z–graded category C!

nC2
with .nC 2/ objects X1; : : : ;XnC2 and

morphisms

HomC!
nC2

.Xj ;Xk/D
(
ƒk�j V j � k;

0 otherwise:

The differential is trivial, the composition is given by the wedge product, and the
grading is such that V is homogeneous of degree one. One can equip .Fk/

nC2
kD1

with a GL.V /-linearization so that this quasi-isomorphism is GL.V /–equivariant.
Let �0W Y0 ,! P .V / be the inclusion of the union of coordinate hyperplanes and
set E0;k D ��0Fk . The total morphism dg algebra

LnC2
i;jD1 hom.E0;i ;E0;j / of this

collection will be denoted by SnC2 .

Let CnC2 be the trivial extension category of C!
nC2

of degree n as defined by Seidel [16,
Section 10a]. It is a category with the same object as C!

nC2
. The morphisms are given

by
HomCnC2

.Xj ;Xk/D HomC!
nC2

.Xj ;Xk/˚HomC!
nC2

.Xk ;Xj /
_Œ�n�;

and the compositions are given by

.a; a_/.b; b_/D .ab; a_.b � //C .�1/deg.a/.deg.b/Cdeg.b_//b_. � a/:
From this definition, one can easily see that

HomCnC2
.Xj ;Xk/D

8̂<̂
:
ƒk�j V j < k;

ƒ0V ˚ƒnC2V Œ2� j D k;

ƒk�jCnC2V Œ2� j > k:

The total morphism algebra QnC2 of this category CnC2 admits the following descrip-
tion: Set 
 D �nC2 idV for �nC2Dexp.2�

p�1=.nC2// and let �nC2Dh
 i�SL.V /

be a cyclic subgroup of order nC2. The group algebra RnC2DC�nC2 is a semisimple
algebra of dimension nC 2, whose primitive idempotents are given by

ej D 1

nC 2
.eC ��j

nC2

 C � � �C ��.nC1/j

nC2

 nC1/ 2C�nC2:

Let ƒV DLnC2
iD0ƒ

iV be the exterior algebra equipped with the natural Z–grading
and zQnC2 D ƒV Ì �nC2 be the semidirect product. There is an RnC2 –algebra
isomorphism between zQnC2 and QnC2 sending ek

zQnC2ej to HomCnC2
.Xj ;Xk/.

This isomorphism does not preserve the Z–grading; QnC2 is obtained from zQnC2

by assigning degree n
nC2

k to ƒkV ˝C�nC2 and adding 2
nC2

.k � j / to the piece
ek
zQej .
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Homological mirror symmetry for the quintic 3–fold 1971

Let H be a maximal torus of SL.V / and T be its image in PSL.V /DSL.V /=�nC2 .
The group T acts on QnC2 by an automorphism of a graded RnC2 –algebra so that
Œdiag.t1; t2; : : : ; tnC2/� sends v˝ei 2eiC1QnC2ei to .diag.1; t2=t1; : : : ; tnC2=t1/�v/˝ei .

The dg algebra SnC2 is characterized by the following properties:

Lemma 2.1 (Seidel [16, Lemma 10.2]) Assume that a T –equivariant A1–algebra
QnC2 over RnC2 satisfies the following properties:

� The cohomology algebra H�.QnC2/ is T –equivariantly isomorphic to QnC2

as an RnC2 –algebra.

� QnC2 is not quasi-isomorphic to QnC2 .

Then one has a RnC2 –linear, T –equivariant quasi-isomorphism QnC2
��! SnC2 .

Sketch of proof The proof of the fact that these properties are satisfied by SnC2

is identical to Seidel [16, Section 10d]. The uniqueness comes from the Hochschild
cohomology computations in [16, Section 10a]: The Hochschild cohomology of zQnC2

is given by

HH sCt
� zQnC2; zQnC2

�t ŠM

2�nC2

�
S s.V 
 /_˝ƒsCt�codim V 


.V 
 /˝ƒcodim V 


.V =V 
 /
��nC2 ;

where SV DL1iD0S iV is the symmetric algebra of V (see [16, Proposition 4.2]).
By the change of the grading from zQnC2 to QnC2 , one obtains

HH sCt
�
QnC2;QnC2

�t ŠM

2�nC2

�
S s.V 
 /_˝ƒsCnC2

n
t�codim V 


.V 
 /˝ƒcodim V 


.V =V 
 /
��nC2 :

By passing to the T –invariant part, one obtains

(3)

.HH 2.QnC2;QnC2/
2�d /T D .SdV _˝ƒnC2�dV /H

D
(

C �y1 � � �ynC2 d D nC 2;

0 for all other d > 2;

so that SnC2 is determined by the above properties up to quasi-isomorphism [16,
Lemma 3.2].
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Let PƒN DP .V ˝CƒN/ be the projective space over ƒN and Yq be the hypersurface
defined by q

�
ynC2

1
C � � �CynC2

nC2

�C y1 : : :ynC2 D 0. The geometric generic fiber
of the family Yq ! SpecƒN is the smooth Calabi–Yau variety Y �q D Yq �ƒN ƒQ

appearing in Section 1, and the special fiber is Y0 above. The collection E0;k is the
restriction of the collection Eq;k on Yq obtained from the Beilinson collection on
PƒN , and its restriction to Y �q split-generates Db coh Y �q by [16, Lemma 5.4].

Let � be the abelian subgroup of PSLnC2.C/ defined in (2). Each Eq;k admits
.nC2/n � –linearizations, so that one obtains .nC2/nC1 objects of Db coh Zq D
Db coh� Yq , whose total morphism dg algebra will be denoted by Sq . It is clear that
their restriction to Z�q split-generates Db coh Z�q , so that one has the following:

Lemma 2.2 There is an equivalence

Db coh Z�q ŠD�S�q
of triangulated categories, where S�q D Sq˝ƒN ƒQ .

We write the inverse image of � �PSL.V / by the projection SL.V /!PSL.V / as
z� , and set QDQnC2 Ì� DƒV Ì z� . Then the cohomology algebra of Sq is given by
Q˝ƒN ; and the central fiber is S0D SnC2 Ì� . As explained in [16, Section 3], first
order deformations of the dg (or A1–)algebra S0 are parametrized by the truncated
Hochschild cohomology HH 2.S0;S0/

�0 .

Lemma 2.3 (Seidel [16, Lemma 10.5]) The truncated Hochschild cohomology of
S0 satisfies

HH 1.S0;S0/
�0 DCnC1; HH 2.S0;S0/

�0 DC2nC3:

Sketch of proof There is a spectral sequence leading to HH�.S0;S0/
�0 such that

E
s;t
2
D
(

HH sCt .Q;Q/t t � 0;

0 otherwise:

The isomorphism

HH sCt .Q;Q/t Š
M

2z�

�
S s.V 
 /_˝ƒsCnC2

n
t�codim V 


.V 
 /˝ƒcodim V 


.V =V 
 /
�z�

implies that E
s;t
2
D 0 for s < 0 or sC nC2

n
t < 0, which ensures the convergence of

the spectral sequence. One can easily see that E
s;t
2

for sC t � 2 is non-zero only if

.s; t/D .0; 0/; .1; 0/; .2; 0/; or .nC 2;�n/:
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The first nonzero differential is ınC1 , which is the Schouten bracket with the order
nC 2 deformation class y1 : : :ynC2 from (3). In total degree sC t D 1, we have the
z� –invariant part of V _˝V , which is spanned by elements yk ˝ vk satisfying

ı
1;0
nC1

.yk ˝ vk/D y1 : : :ynC2

for k D 1; : : : ; nC 2. In total degree sC t D 2, we have

� .S2V _ ˝ƒ2V /
z� generated by .nC 2/.nC 1/=2 elements yj yk ˝ vj ^ vk

satisfying

ı
2;0
nC1

.yj yk ˝ vj ^ vk/D .y1 : : :ynC2/yk ˝ vk � .y1 : : :ynC2/yj ˝ vj ;

� .SnC2V _/z� spanned by ynC2
k

together with y1 : : :ynC2 .

The kernel of ı1;0
nC1

is spanned by

y1˝ v1�y2˝ v2

and its nC1 cyclic permutations, which sum up to zero. The image of ı1;0
nC1

is spanned
by y1 : : :ynC2 . The kernel of ı2;0

nC1
is spanned by

y1y2˝ v1 ^ v2Cy2y3˝ v2 ^ v3�y1y3˝ v1 ^ v3

and its nC 1 cyclic permutations, which also sum up to zero. Differentials ıs;t
k

for
k > nC 1 and sC t � 2 vanish, and one obtains the desired result.

Unfortunately, the second truncated Hochschild cohomology group HH 2.S0;S0/
�0

has multiple dimensions, so that one needs additional structures to characterize Sq as
a deformation of S0 . The strategy adopted by Seidel is to use a Z=.nC 2/Z–action
coming from the cyclic permutation of the basis of V : Let UnC2 be an automorphism of
QnC2DƒV Ì�nC2 as an RnC2 –algebra, which acts on the basis of V as vk 7! vkC1 .
This lifts to a Z=.nC 2/Z–action on S0 D SnC2 Ì � , and Sq is characterized as
follows:

Proposition 2.4 (Seidel [16, Proposition 10.8]) Let Qq be a one-parameter deforma-
tion of S0 D SnC2 Ì� , which is

� Z=.nC 2/Z–equivariant, and

� non-trivial at first order.

Then Qq is quasi-isomorphic to  �Sq for some  2 End.ƒN/
� .
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The proof that these conditions characterize Sq comes from the fact that the invariant
part of the second truncated Hochschild cohomology of the central fiber S0 with respect
to the cyclic group action induced by U0 is one-dimensional [16, Lemma 10.7];

HH 2.S0;S0/
�0;Z=.nC2/Z ŠC � �ynC2

1
C � � �CynC2

nC2

�
:

The proof that these conditions are satisfied by Sq carries over verbatim from [16,
Section 10d].

3 Fukaya categories

Let X D Proj CŒx1; : : : ;xnC2� be an .nC1/–dimensional complex projective space
and oX be the anticanonical bundle on X . Let further h be a Hermitian metric on oX

such that the compatible unitary connection r has the curvature �2�
p�1!X , where

!X is nC 2 times the Fubini–Study Kähler form on X . Any complex submanifold
of X has a symplectic structure given by the restriction of !X . The restriction of
.oX ;r/ to any Lagrangian submanifold L has a vanishing curvature, and L is said
to be rational if the monodromy group of this flat connection is finite. Note that this
condition is equivalent to the existence of a flat multi-section �L of oX jL which is of
unit length everywhere.

Two sections �X ;1 D x1 : : :xnC2 and �X ;0 D xnC2
1
C � � � C xnC2

nC2
of oX generate a

pencil fXzgz2P1
C

of hypersurfaces

Xz D fx 2X j �X ;0.x/C z�X ;1.x/D 0g;
such that X0 is the Fermat hypersurface and X1 is the union of nC 2 coordinate
hyperplanes. The complement M DX nX1 is the big torus of X , which can naturally
be identified as

M D fx 2CnC2 j x1 : : :xnC2 ¤ 0g=C� Š fx 2CnC2 j x1 : : :xnC2 D 1g=��nC2;

where ��
nC2
D ˚

� idCnC2 j �nC2 D 1
	

is the kernel of the natural projection from
SLnC2.C/ to PSLnC2.C/. The map

�M D �X ;0=�X ;1W M !C

is a Lefschetz fibration, which has nC2 groups of .nC2/n critical points with identical
critical values. The group �� D Hom.�;C�/ of characters of the group � defined in
(2) acts freely on M through a non-canonical isomorphism �� Š � and the natural
action of � � PSLnC2.C/ on X . The quotient

SM DM=�� D fuD .u1; : : : ;unC2/ 2CnC2 j u1 : : :unC2 D 1g
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ınC2

ı1

ı2

ınC1

ın

Figure 1: The distinguished set .ıi/
nC2
iD1

of vanishing paths

is another algebraic torus, where the natural projection M! SM is given by ukDxnC2
k

.
The map �M is ��–invariant and descends to the map � SM .u/ D u1C � � � C unC2

from the quotient

M

SM
��

M C
�M // C

SM

� SM
��

The map � SM W SM ! C is the Landau–Ginzburg potential for the mirror of PnC1 ,
which has nC 2 critical points with critical values

˚
.nC 2/��i

nC2

	
nC2
iD1

where �nC2 D
exp

�
2�
p�1=.nC2/

�
. Choose the origin as the base point and take the distinguished

set .ıi/nC2
iD1

of vanishing paths ıi W Œ0; 1� 3 t 7! .nC 2/��i
nC2

t 2C as in Figure 1. The
corresponding vanishing cycles in SM0 D ��1

SM .0/ will be denoted by Vi .

Let FnC2 be the A1–category whose set of objects is fVignC2
iD1

and whose spaces of
morphisms are Lagrangian intersection Floer complexes. This is a full A1–subcategory
of the Fukaya category F. SM0/ of the exact symplectic manifold SM0 . See Seidel [20]
for the Fukaya category of an exact symplectic manifold, and Fukaya, Oh, Ohta
and Ono [6] for that of a general symplectic manifold. We often regard the A1–
category FnC2 with nC 2 objects as an A1–algebra over the semisimple ring RnC2

of dimension nC 2.

As explained in Section 5 below, the affine variety SM0 is an .nC2/–fold cover of
the n–dimensional pair of pants Pn , and contains nC 2 Lagrangian spheres fLignC2

iD1

whose projection to Pn is the Lagrangian immersion studied by Sheridan [23]. Let

Geometry & Topology, Volume 16 (2012)
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AnC2 be the full A1–subcategory of F. SM0/ consisting of these Lagrangian spheres.
The following proposition is proved in Section 5:

Proposition 3.1 The Lagrangian submanifolds Li and Vi are isomorphic in F. SM0/.

The inclusion SM0� SM induces an isomorphism �1. SM0/Š�1. SM / of the fundamental
group. Let T be the torus dual to SM so that �1. SM /Š T � WDHom.T;C�/. One can
equip FnC2 with a T –action by choosing lifts of Vi to the universal cover of SM0 . Let
F0 be the Fukaya category of M0 consisting of N D .nC 2/nC1 vanishing cycles
f zVigNiD1

of �M obtained by pulling-back fVignC2
iD1

. The covering M0! SM0 comes
from a surjective group homomorphism �1. SM0/! �� , which induces an inclusion
� ,! T of the dual group. It follows from Seidel [16, Equation (8.13)] that F0 is
quasi-isomorphic to FnC2 Ì � , which in turn is quasi-isomorphic to AnC2 Ì � by
Proposition 3.1.

The following proposition is due to Sheridan:

Proposition 3.2 (Sheridan [23, Proposition 5.15]) AnC2 is T –equivariantly quasi-
isomorphic to SnC2 .

Since S0 D SnC2 Ì� , one obtains the following:

Corollary 3.3 F0 is quasi-isomorphic to S0 .

The vanishing cycles f zVigNiD1
are Lagrangian submanifolds of the projective Calabi–

Yau manifold X0 , which are rational since they are contractible in M . To show that
they split-generate the Fukaya category of X0 , Seidel introduced the notion of negativity
of a graded symplectic automorphism. Let LX0

! X0 be the bundle of unoriented
Lagrangian Grassmannians on the projective Calabi–Yau manifold X0 . The phase
function ˛X0

W LX0
! S1 is defined by

˛X0
.ƒ/D �X0

.e1 ^ : : :^ en/
2

j�X0
.e1 ^ : : :^ en/j2

;

where ƒ D spanRfe1; : : : ; eng 2 LX0;x is a Lagrangian subspace of TxX0 and �X0

is a holomorphic volume form on X0 . The phase function ˛� W LX0
!S1 of a sym-

plectic automorphism �W X0!X0 is defined by sending ƒ 2 LX0;x to ˛�.ƒ/ D
˛X0

.��.ƒ//=˛X0
.ƒ/; and a graded symplectic automorphism is a pair z� D .�; z̨�/ of

a symplectic automorphism � and a lift z̨� W LX0
!R of the phase function ˛� to the

universal cover R of S1 . The group of graded symplectic automorphisms of X0 will

Geometry & Topology, Volume 16 (2012)



Homological mirror symmetry for the quintic 3–fold 1977

be denoted by eAut.X0/. A graded symplectic automorphism z� 2eAut.X0/ is negative
if there is a positive integer d0 such that z̨�d0 .ƒ/ < 0 for all ƒ 2 LX0

.

The phase function ˛LW L! S1 of a Lagrangian submanifold L � X0 is defined
similarly by ˛L.x/ D ˛X0

.TxL/; and a grading of L is a lift z̨LW L! R of ˛L

to the universal cover of S1 . Let ƒ0 be the local subring of ƒQ containing only
non-negative powers of q , and ƒC be the maximal ideal of ƒ0 . For a quintuple
L]D .L; z̨L; $L; �L;JL/ consisting of a rational Lagrangian submanifold L, a grading
z̨L on L, a spin structure $L on L, a multi-section �L of oX0

jL , and a compatible
almost complex structure JL , one can endow the cohomology group H�.LIƒ0/

with the structure fmkg1kD0
of a filtered A1–algebra (see Fukaya, Oh, Ohta and

Ono [6, Definition 3.2.20]), which is well-defined up to isomorphism [6, Theorem A].
The map m0W ƒ0!H 1.LIƒ0/ comes from holomorphic disks bounded by L, and
measures the anomaly or obstruction to the definition of Floer cohomology. A solution
b 2H 1.LIƒC/ to the Maurer–Cartan equation

1X
kD0

mk.b; � � � ; b/D 0

is called a bounding cochain. A rational Lagrangian brane is a pair L˙D .L]; b/ of L]

and a bounding cochain b2H 1.LIƒC/. For a pair L
˙

1
D .L]

1
; b1/ and L

˙

2
D .L]

2
; b2/

of rational Lagrangian branes, the Floer cohomology HF
�
L
˙

1
;L
˙

2
Iƒ0

�
is well-defined

up to isomorphism. The Fukaya category F.X0/ is an A1–category over ƒQ whose
objects are rational Lagrangian branes and whose spaces of morphisms are Lagrangian
intersection Floer complexes.

Let Fq be the full A1–subcategory of F.X0/ consisting of vanishing cycles zVi

equipped with the trivial complex line bundles, the canonical gradings and zero bounding
cochains. Since the restrictions of .oX ;r/ to vanishing cycles are trivial flat bundles,
the category Fq is defined over ƒN .

Let �M be the unique up to scalar holomorphic volume form on M which extends to
a rational form on X with a simple pole along X1 . This gives a holomorphic volume
form �M=dz on each fiber Mz D ��1

M
.z/, so that �M W M ! C is a locally trivial

fibration of graded symplectic manifolds outside the critical values. Let 
1W Œ0; 2��!
C be a circle of large radius R� 0 and zh
1 2eAut.MR/ be the monodromy along

1 . Since 
1 is homotopic to a product of paths around each critical values, one sees
that zh
1 is isotopic to a composition of Dehn twists along vanishing cycles. We prove
the following in Section 4:

Proposition 3.4 (Seidel [16, Proposition 7.22]) The graded symplectic automorphism
zh
1 2eAut.MR/ is isotopic to a graded symplectic automorphism z�2eAut.MR/ whose
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extension to XR has the following property: There is an arbitrary small neighborhood
W �XR of the subset Sing.X1/\XR such that �.W /DW and z�jXRnW is negative.

Here Sing.X1/ is the singular locus of X1 , which is the union of .n�1/–dimensional
projective spaces.

Lemma 3.5 (Seidel [16, Lemma 9.2]) If nD 3, then any rational Lagrangian brane
is contained in split-closed derived category of F�q D Fq˝ƒN ƒQ ;

D�F.X0/ŠD�F�q :

The proof is identical to that of Seidel [16, Lemma 9.2], which is based on Seidel’s
long exact sequence [17] (see also [16, Section 9c] and Oh [12]).

Remark 3.6 (Seidel [16, Remark 9.3]) If n D 3, then the real dimension of the
intersection Sing.X1/\X0 is two, so that any Lagrangian submanifold can be made
disjoint from a sufficiently small neighborhood W of Sing.X1/\X0 by a generic
perturbation. This is the only place where we use the condition nD 3, and one can
show the equivalence (1) for any n with D�F.X0/ replaced by the split-closure of
Lagrangian branes which can be perturbed away from Sing.X1/\X0 .

A notable feature of Floer cohomologies over ƒ0 is their dependence on Hamiltonian
isotopy: For a pair

�
L
]
0
;L

]
1

�
of Lagrangian submanifolds equipped with auxiliary

choices, a symplectomorphism  W X0!X0 induces an isomorphism

 �W
�
H�

�
L
]
i Iƒ0

�
;mk

�! �
H�

�
 
�
L
]
i

�Iƒ0

�
;mk

�
of filtered A1–algebras (see Fukaya, Oh, Ohta and Ono [6, Theorem A]), which
induces a map  � on the set of bounding cochains preserving the Floer cohomology
over ƒ0 [6, Theorem G.3]:

HF
��

L
]
0
; b0

�
;
�
L
]
1
; b1

�Iƒ0

�ŠHF
��
 
�
L
]
0

�
;  �.b0/

�
;
�
 
�
L
]
1

�
;  �.b1/

�Iƒ0

�
:

On the other hand, if we move L
]
0

and L
]
1

by two distinct Hamiltonian isotopies  0

and  1 , then the Floer cohomology over ƒQ is preserved [6, Theorem G.4]

HF
��

L
]
0
; b0

�
;
�
L
]
1
; b1

�IƒQ
�ŠHF

��
 0
�
L
]
0

�
;  0�.b0/

�
;
�
 1
�
L
]
1

�
;  1�.b1/

�IƒQ
�
;

whereas the Floer cohomology over ƒ0 may not be preserved;

HF
��

L
]
0
; b0

�
;
�
L
]
1
; b1

�Iƒ0

� 6ŠHF
��
 0
�
L
]
0

�
;  0�.b0/

�
;
�
 1
�
L
]
1

�
;  1�.b1/

�Iƒ0

�
:

See [6, Section 3.7.6] for a simple example where this occurs. This phenomenon is
used by Seidel [16, Section 8g and 11a] to prove the following:
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Proposition 3.7 (Seidel [16, Proposition 11.1]) The A1–algebra Fq˝ƒNƒN=q
2ƒN

is not quasi-isomorphic to the trivial deformation F0˝C ƒN=q
2ƒN .

To show this, Seidel takes a rational Lagrangian submanifold L1=2 in Xz for sufficiently
large z as follows:

(1) Consider a pencil fXzgz2P1
C

generated by two section �X ;1 D x1 : : :xnC2

and �X ;0 D x2
1

�
x2

2
Cx2

3

�
x4 : : :xnC1 , whose general fiber is singular. Let C D

fxnC2 D 0g be an irreducible component of X1 D fx1 : : :xnC2 D 0g � X ,
and C1 D C \X1 be the intersection with other components. If we write
C0 D X0\C , then the set C0 nC1 is the union of two .n�1/–planes fx2 D
˙p�1x3g.

(2) Let K1=2 D f2jx1j D jx2j D � � � D jxnC2jg � C nC1 be a Lagrangian n–torus
in C , which is a fiber of the moment map for the torus action. The intersection
K1=2\C0 consists of two .n�1/–tori.

(3) Take a Hamiltonian function H on C supported on a neighborhood of the
two .n�1/–tori such that the corresponding Hamiltonian vector field points in
opposite directions transversally to two .n�1/–tori. By flowing K1=2 along
the Hamiltonian vector field in both negative and positive time directions, one
obtains a family .Kr /r2Œ0;1� of Lagrangian submanifolds of C nC1 .

(4) The Lagrangian submanifolds Kr for r ¤ 1=2 are disjoint from C0 . They are
exact Lagrangian submanifolds with respect to the one-form �CnC0

obtained by
pulling back the connection on oX via �X ;0jCnC0

.

(5) Now perform a generic perturbation of �X ;0 so that a general member Xz of
the pencil is smooth. One still has a Lagrangian submanifold K1=2 � C nC1
satisfying the following:
� K1=2\C0 consists of two .n�1/–tori.
� By flowing K1=2 along a Hamiltonian vector field, one obtains a family
.Kr /r2Œ0;1� of Lagrangian submanifolds of C nC1 .

� Kr for r ¤ 1=2 are disjoint from C0 . They are exact Lagrangian submani-
folds of C nC0 .

(6) By parallel transport along the graph

yX D f.y;x/ 2C �X j �X ;1.x/D y�X ;0.x/g
y –projection�������!C

of the pencil, one obtains a Lagrangian torus L1=2 in Xz for sufficiently large
z D 1=y , satisfying the following conditions:
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� The intersection Z D L1=2 \ Xz;1 of L1=2 Š .S1/n with the divisor
Xz;1 D Xz \ X1 at infinity is a smooth .n�1/–dimensional manifold
disjoint from Sing.X1/\Xz . (In fact, it is a disjoint union of two .n�1/–
tori; Z D f1=4; 3=4g � .S1/n�1 .)

� By flowing L1=2 by a Hamiltonian vector field, one obtains a family
.Lr /r2Œ0;1� of Lagrangian submanifolds of Xz .

� Lr for any r 2 Œ0; 1� admits a grading.
� Lr for r ¤ 1=2 are disjoint from Xz;1 . They are exact Lagrangian sub-

manifolds in the affine part Mz DXz nXz;1 of Xz .

If the perturbation of �X ;0 is generic, then there are no non-constant stable holomorphic
disks in Xz bounded by Lr for r 2 Œ0; 1� with area less than 2. Indeed, such a disk
cannot have a sphere component since a holomorphic sphere has area at least nC 2. If
a holomorphic disk exists in Xz for all sufficiently large z , then Gromov compactness
theorem gives a holomorphic disk in X1 bounded by Kr . This disk either have sphere
components in irreducible components of X1 other than C , or passes through C1\C0 .
The former is impossible since sphere components have area at least nC 2, and the
latter is impossible for a disk of area less than 2 since such disks have fixed intersection
points with C1 by classification (see Cho [4, Theorem 10.1]) of holomorphic disks in
C bounded by Kr .

The absence of holomorphic disks of area less than 2 shows that the Lagrangian
submanifolds L

˙

0
D �L]

0
; 0
�

and L
˙

1
D �L]

1
; 0
�

equipped with auxiliary data and the
zero bounding cochains give objects of the first order Fukaya category D�Fq ˝ƒN

ƒN=q
2ƒN : Now the argument of Seidel [16, Section 8g] shows the following:

(1) The spaces H 0
�
homF0

�
L
˙

i ;L
˙

j

��
are one-dimensional for 0� i � j � 1.

(2) The product

H 0
�

homF0

�
L
˙

1
;L
˙

0

��˝H 0
�

homF0

�
L
˙

0
;L
˙

1

��!H 0
�

homF0

�
L
˙

0
;L
˙

0

��
vanishes.

(3) The map

H 0
�

homFq

�
L
˙

1
;L
˙

0

�˝ƒN ƒN=q
2ƒN

�˝CH 0
�

homFq

�
L
˙

0
;L
˙

1

�˝ƒN ƒN=q
2ƒN

�??y
H 0

�
homFq

�
L
˙

0
;L
˙

0

�˝ƒN ƒN=q
2ƒN

�
induced by m

Fq

2
is non-zero.
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The point is that L0 and L1 are exact Lagrangian submanifolds of Mz , which are not
isomorphic in F.Mz/, but are Hamiltonian isotopic in Xz , so that they are isomorphic
in D�.Fq˝ƒN ƒZ/. Now [16, Lemma 3.9] concludes the proof of Proposition 3.7.

The symplectomorphism x�0W SM0! SM0 sending .u1; : : : ;unC2/ to .u2; : : : ;unC2;u1/

lifts to a Z=.nC2/–action on Fq just as in [16, Section 11b]. It follows that Fq satisfies
all the properties characterizing Sq in Proposition 2.4, and one obtains the following;

Proposition 3.8 Fq is quasi-isomorphic to  �Sq for some  2 End.ƒN/
� .

Theorem 1.1 follows from Lemma 2.2, Lemma 3.5, and Proposition 3.8.

Remark 3.9 Since the Lagrangian torus used in the proof of Proposition 3.7 does
not intersect with Sing.X1/, the proof of Proposition 3.7 (and hence Proposition 3.8)
works for any n. Then the argument of Sheridan [22, Section 8.2], based on a split-
generation criterion announced by Abouzaid, Fukaya, Oh, Ohta, and Ono, shows that
fLignC2

iD1
split-generates D�F.X0/ for any n.

4 Negativity of monodromy

In this section, we prove Proposition 3.4 by using local models of the quasi-Lefschetz
pencil fXzg along the lines of Seidel [16, Section 7]. In the case where dim Xz � 3,
we need [16, Assumption 7.8] and a generalization of [16, Assumption 7.5].

Assumption 4.1 (Seidel [16, Assumption 7.8]) Let n� 2 and 2� k � nC 1.

� Y �CnC1DR2nC2 is an open ball around the origin equipped with the standard
symplectic form !Y and the T k –action

�s.y/D
�
e
p�1s1y1; : : : ; e

p�1sk yk ;ykC1; : : : ;ynC1

�
with moment map �W Y ! Rk . For any regular value r 2 Rk of �, the
symplectic reduction Y red D Y red;r D ��1.r/=T k can be identified with an
open subset in CnC1�k equipped with the standard symplectic form.

� JY is a complex structure on Y which is tamed by !Y . At the origin, it is
!Y –compatible and T k –invariant.

� pW Y !C is a JY –holomorphic function with the following properties:
(i) p.�s.y//D e

p�1.s1C���Csk/p.y/.
(ii) @y1

: : : @yk
p is nonzero at y D 0.
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� �Y is a JY –complex volume form on Y np�1.0/ such that p.y/�Y extends
smoothly on Y , which is nonzero at y D 0.

In this situation, the monodromy h� satisfy the following:

Proposition 4.2 (Seidel [16, Lemma 7.16]) For every d > 0 and � > 0, there exists
ı > 0 such that the following holds. For every y 2 Y� D p�1.�/ with 0 < � < ı and
kyk< ı , and every Lagrangian subspace ƒv � TyY� , the d –fold monodromy hd

�
is

well-defined near y , and satisfies

z̨hd
�
.ƒv/� �2d C nC 1C �:

The other local model is the following:

Assumption 4.3 Let n� 2 and 2� k � nC 1.

� Y �CnC1DR2nC2 is an open ball around the origin equipped with the standard
symplectic form !Y and the T k –action

(4) �s.y/D
�
e
p�1s1y1; : : : ; e

p�1sk yk ;ykC1; : : : ;ynC1

�
with moment map �W Y ! Rk . For any regular value r 2 Rk of �, the
symplectic reduction Y red D Y red;r D ��1.r/=T k can be identified with an
open subset in CnC1�k equipped with the standard symplectic form.

� JY is a complex structure on Y which is tamed by !Y . At the origin, it is
!Y –compatible and T k –invariant.

� p is a JY –meromorphic function on Y satisfying the following two conditions:
(i) p.�s.y//D e

p�1.�s1Cs2C���Csk/p.y/.

This implies that p can be written as

p.y/D y2 : : :yk

y1

q.jy1j2=2; : : : ; jyk j2=2;ykC1; : : : ;ynC1/

for some q .
(ii) q is a smooth function defined on Y , q.0/D 1, and q.y/¤ 0 for any y 2Y .

� �Y is a JY –complex volume form on Y np�1.0/ such that y2 : : :yk�Y extends
smoothly on Y . It is normalized so that y2 : : :yk�Y D dy1 ^ � � � ^ dynC1 at
y D 0.

In this setting, we will show the negativity of the monodromy in the following sense:
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Proposition 4.4 (Seidel [16, Lemma 7.16]) For any d > 0 and � > 0, there is
ı1 > ı2 > 0 such that for � 2 C with 0 < j�j < ı1 and y 2 Y� with kyk < ı1 and
jy1j> ı2 , the d –fold monodromy hd

�
is well-defined, and

z̨hd
�
.ƒv/� �2d

1

1Cj�j2=jy3j2.k�1/
C nC 1C �

for all ƒv 2 Y� , provided jy2j � jy3j � � � � � jyk j.

Note that
1

1Cj�j2=jy3j2.k�1/

is uniformly bounded from above on the complement of a neighborhood of y2Dy3D0.

Let J 0
Y

be the constant complex structure on Y which coincides with JY at the origin,
and let �0

Y
be the constant J 0

Y
–complex volume form given by

�0Y D dy1 ^
dy2

y2

^ � � � ^ dyk

yk

^ �0
Y red

for some �0
Y red . The phase functions corresponding to �Y and �0

Y
are denoted by ˛Y

and ˛0
Y

respectively. The proof of the following lemma is parallel to that in [16]:

Lemma 4.5 (Seidel [16, Lemma 7.12]) For any � > 0, there exists ı > 0 such that if
kyk< ı and p.y/¤ 0 thenˇ̌̌̌

1

2�
arg.˛Y .ƒ/=˛

0
Y .ƒ//

ˇ̌̌̌
< �

for all ƒ 2 LY;y .

Let H.y/D�1
2
jp.y/j2 and consider its Hamiltonian vector field X and flow �t . For

a regular value r of �, the induced function, Hamiltonian vector field, and its flow on
Y red are denoted by

H red.yred/D�2k�3 r2 : : : rk

r1

q.r1; : : : ; rk ;ykC1; : : : ;ynC1/;

X red , and �red
t respectively. We write the complex structure on Y red induced from J 0

Y

as J 0
Y red . Then �0

Y red gives a J 0
Y red –complex volume form on Y red . Let ˛0

Y red be the
phase function corresponding to �0

Y red . The proof of the following lemma is the same
as in [16]:
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Lemma 4.6 (Seidel [16, Lemma 7.13]) For any � > 0, there is ı > 0 such that for
krk< ı , r2 : : : rk=r1 < ı , kyredk< ı , and jt j< ır1=r2 : : : rk , �red

t is well-defined andˇ̌̌
z̨0
�red

t

.ƒred/
ˇ̌̌
< �

for any Lagrangian subspace ƒred .

Now we prove the following:

Lemma 4.7 (Seidel [16, Lemma 7.14]) For any � > 0, there is ı1 > ı2 > 0 such that
if kyk< ı1 , jy1j> ı2 , 0< jp.y/j< ı1 and jt j< ı1jp.y/j�2 , then �t is well-defined
and satisfies ˇ̌̌̌

z̨0�t
.ƒ/� 2t

2�

�
1C jy1j2
jy2j2

C � � �C jy1j2
jyk j2

��1 ˇ̌̌̌
< nC 1C �

for any ƒ 2 LY;y .

Proof The proof of well-definedness of �t is parallel to [16]. Note that the condi-
tion jy1j > ı2 is preserved under the flow since �t is T k –equivariant. Let H 0 D
�1

2
jy2 : : :yk=y1j2 and

X 0 D�
p
�1

�
1

jy1j2
C � � �C 1

jyk j2
��1�

� y1

jy1j2
;

y2

jy2j2
; : : : ;

yk

jyk j2
; 0; : : : ; 0

�
be its Hamiltonian vector field. Then H.y/DH 0.y/r.y/ for some smooth function
r.y/D 1CO.kyk/. By direct computation, we have

kdH 0k � C

ˇ̌̌̌
y2 : : :yk

y1

ˇ̌̌̌2�
1

jy1j2
C � � �C 1

jyk j2
�

� C

ˇ̌̌̌
y2 : : :yk

y1

ˇ̌̌̌2
kkyk2.k�1/

jy1 : : :yk j2

D C
kkyk2.k�1/

jy1j4
;

which is bounded if kyk< ı1 and jy1j> ı2 . Then

kdH � dH 0k � jr � 1jkdH 0kC jH 0jkdrk � C.kykC jH 0j/;
and this implies that kdH � dH 0k is small if jH j is also sufficiently small. Hence we
obtain

(5) kX �X 0k< �
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for small ı1 . Take a Lagrangian subspace ƒred in TyredY red and consider a Lagrangian
subspace given by

ƒD
p
�1y1R˚ � � �˚

p
�1ykR˚ƒred � TyY:

Then we have

˛0Y .ƒ/D .�1/k
y2

1

jy1j2
�˛0

Y red.ƒ
red/;

and hence

z̨0�t
.ƒ/D 1

2�

Z t

0

X arg.˛0Y ..D�� .ƒ//d�

D 1

2�

Z t

0

X 0 arg
y2

1

jy1j2
d� C 1

2�

Z t

0

.X �X 0/ arg
y2

1

jy1j2
d�

C 1

2�

Z t

0

X red arg.˛0
Y red..D�

red
� .ƒred//d�:

The third term is small from Lemma 4.6. The second term is bounded by

1

2�

Z t

0

kX �X 0k




D arg

y2
1

jy1j2




d�;

which is also small from (5) and the fact that



D arg
y2

1

jy1j2




� CkXk D CkdHk

is uniformly bounded. Since jy1j2 is preserved under the flow, the first term is

1

2�

Z t

0

X 0 arg
y2

1

jy1j2
d�

D 1

2�

�
1

jy1j2
C � � �C 1

jyk j2
��1 Z t

0

1

jy1j2
p
�1y1@y1

arg
y2

1

jy1j2
d�

D 1

2�

�
1

jy1j2
C � � �C 1

jyk j2
��1

2t

jy1j2

D 2t

2�

�
1C jy1j2
jy1j2

C � � �C jy1j2
jyk j2

��1

:

Then we obtain ˇ̌̌̌
z̨0�t
.ƒ/� 2t

2�

�
1C jy1j2
jy2j2

C � � �C jy1j2
jyk j2

��1 ˇ̌̌̌
< �:
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For arbitrary Lagrangian subspace ƒ1 , the desired bound for z̨0
�t
.ƒ1/ is obtained

from this and the fact that

jz̨0�t
.ƒ1/� z̨0�i

.ƒ/j< nC 1

(see [16, Lemma 6.11]).

Let Z be the horizontal lift of �p�1�@� , and  t be its flow. Then there is a positive
function f such that Z D fX , and hence  t .y/D �gt .y/.y/ for

gt .y/D
Z t

0

f . � .y//d�:

By the same argument as in [16], we have:

Lemma 4.8 (Seidel [16, Lemma 7.15]) For any d > 0 and � > 0, there is ı > 0

such that for � 2C with 0< j�j< ı and y 2 Y� D p�1.�/ with kyk< ı , the d –fold
monodromy hd

�
is well-defined, �=j�j2 > 2�d , and satisfies

g2�d .y/� �=j�j2:

Proof of Proposition 4.4 Let �Y�
D �Y =.d�=�

2/ be a complex volume form on Y� ,
and ˛Y�

be the corresponding phase function. Take ƒ 2 LY;y such that Dp.ƒ/D aR
for a 2 U.1/, and set ƒv Dƒ\ ker Dp 2 LY� ;y . Then

(6) ˛Y�
.ƒv/D �4

a2j�j4˛Y .ƒ/:

We consider a Lagrangian subspace ƒv 2 LY� ;y such that Dp.ƒv/Dp�1�R, and
containing the tangent space of the torus action on Y� . Then ƒv has the form

ƒv D .
p
�1y1R˚ � � �˚

p
�1ykR˚ƒred/\ ker Dp:

Let ƒDƒv˚ZyR2LY;y . Since Z is the horizontal lift of �p�1�@� 2T�.
p�1�R/,

Z t .y/ is contained in D t .ƒ/, and hence we have

D. t jY�
/.ƒv/DD t .ƒ/\ ker.Dp/:

From this and (6) we have

˛ t jY�
.ƒv/D e�2t˛ t

.ƒ/:
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Combining this with Lemma 4.5 and 4.7, we obtain

z̨hd
�
.ƒv/D z̨g2�d .y/.ƒ/� 2d

� z̨0g2�d .y/
.ƒ/� 2d C �

� 2d

��
1C jy1j2
jy2j2

C � � �C jy1j2
jyk j2

��1

� 1

�
C �

D�2d

1
jy2j2 C � � �C

1
jyk j2

1
jy1j2 C

1
jy2j2 C � � �C

1
jyk j2

C �

� �2d
1

1Cj�j2=jy3j2.k�1/
C �

if jy2j � jy3j � � � � � jyk j.

Now we discuss gluing of the local models. Let X D PnC1
C equipped with the

standard complex structure JX , the Kähler form !X and the anticanonical bundle
oX DK�1

X
DO.nC2/ as in Section 3. For �X ;1 D x1 � � �xnC2 and a generic section

�X ;0 2H 0.PnC1
C ;O.nC2//, we consider a pencil of Calabi–Yau hypersurfaces defined

by
Xz D f�X ;0� z�X ;1 D 0g D p�1

X .1=z/;

where pX D �X ;1=�X ;0 . Let Ci Dfxi D 0gŠPn
C , i D 1; : : : ; nC2 be the irreducible

components of X1 and set C0DX0 . We assume that �X ;0 is generic so that the divisor
X0[X1 is normal crossing. For I � f0; 1; : : : ; nC 2g, we write CI D

T
i2I Ci and

C ı
I
D CI n

S
J©I CJ . We will deform !X in such a way that it satisfies Assumption

4.1 (resp. Assumption 4.3) near CI with 0 62 I (resp. 0 2 I ).

Proposition 4.9 For each I , there exists a tubular neighborhood UI of CI in PnC1
C

and a fibration structure �I W UI ! CI such that for each p 2 CI the tangent space
Tp�

�1
I
.p/ of the fiber is a complex subspaces in TpX . Moreover �I and �J are

compatible if I � J .

See Ruan [15, Proposition 7.1] for the definition of the compatibility. This proposition
is a weaker version of [15, Proposition 7.1] in the sense that each fiber ��1

I
.p/ is

required to be holomorphic only at p 2 CI .

Proof For each I we take a tubular neighborhood UI of CI , and consider an open
covering fV˛g˛2A of

S
I UI satisfying

� for each ˛ 2 A, there exists a unique subset I˛ in f0; 1; : : : ; nC 1g such that
V˛ \CI˛

¤∅ and V˛ \CJ D∅ for all J with jJ j> jI˛j,
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� V˛ is a tubular neighborhood of V˛ \CI˛
, and

� for each ˛ , there exits a unique J˛ � I˛ such that if V˛0 intersects V˛ and
jI˛0 j> jI˛j then I˛ � I˛0 � J˛ .

We take holomorphic coordinates .w˛; z˛/ D .w1
˛ : : : ; w

nC1�jI˛ j
˛ ; z1

˛; : : : ; z
jI˛ j
˛ / on

V˛ such that CI˛
is given by z˛ D 0 and w˛ gives a coordinate on CI˛

\ V˛ , and
satisfying the following property: the projection �˛W V˛ ! CI˛

, .w˛; z˛/ 7! w˛ is
compatible with �J for each J � I˛ . Let f�˛g˛2A be a partition of unity associated
to fV˛g.
Fix p 2 C ı

I
, and set Ap WD f˛ 2 A jp 2 V˛g. Note that I˛ � I for any ˛ 2 Ap .

Take ˛0 2A such that V˛0
\V˛ ¤∅ for ˛ 2Ap and I˛0

D J˛ is maximal. Rename
the coordinates on V˛ , ˛ 2 Ap so that the projection � 0̨ W V˛ ! CI is given by
.w 0̨ ; z 0̨ / 7! w 0̨ . Let

prW T V˛0
jCI
D spanC

�
@

@w0i˛0

�
˚ spanC

�
@

@z
0j
˛0

�
�! Ker d� 0̨

0
D spanC

�
@

@z
0j
˛0

�
be the projection. After a coordinate change which is linear in z 0̨ , we assume that
pr.@=@z0j˛ /D @=@z0j˛0

for each j . Define

EI;p D spanC

�X
˛

�˛.p/
@

@z
0j
˛

ˇ̌̌̌
j D 1; : : : ; jI j

�
:

Then EI D
S

p2CI
EI;p � TX jCI

is a complex subbundle which gives a splitting
of TX jCI

!NCI=X D TX jCI
=T CI . After shrinking UI if necessary, we obtain a

fibration �I W UI ! CI such that Tp�
�1
I
.p/DEI;p .

Set U ı
I
D ��1

I
.C ı

I
/. We prove a weaker version of [15, Theorem 7.1].

Proposition 4.10 There exists a Kähler form !0
X

in the class Œ!X � such that

(i) it tames JX , and compatible with JX on
S

I CI ,

(ii) !0
X
D !X outside a neighborhood of Sing.X0[X1/D

S
jI j�2 CI ,

(iii) Ci ’s intersect orthogonally, and

(iv) each fiber of �I W UI ! CI is orthogonal to CI .

Proof It is shown by Seidel [17, Lemma 1.7] and Ruan [15, Lemma 4.3] that !X

can be modified locally so that it is standard near the lowest dimensional stratumS
jI jDnC1 CI . We deform the symplectic form inductively to obtain !0

X
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Fix I � f0; 1; : : : ; nC 1g and take a distance function r W X ! R�0 from CI , i.e.,
CI D r�1.0/. Fix a local trivialization of oX jUI

by a section which has unit pointwise
norm and parallel in the radial direction of the fibers of �I , and let �X denote the
connection 1–form. Then we have �X ���I .�X jT CI

/DO.r/.

Let � W NCI ! CI be the symplectic normal bundle, i.e., NpCI � TpX is the orthog-
onal complement of TpCI with respect to the symplectic form. Let !N be the induced
symplectic form on the fibers of NCI . From the symplectic neighborhood theorem,
a neighborhood of CI is symplectomorphic to a neighborhood of the zero section of
NCI equipped with the symplectic form ��.!X jCI

/C!N . Identifying NCI with
EI , we obtain a symplectic form !UI

on UI satisfying (i) and (iv). Note that !UI

and !X coincide only on T CI in general. Let �UI
be a connection 1–form on oX jUI

such that d�UI
D !UI

and �UI
jT CI

D �X jT CI
. We define �D �X � �UI

. Then �D 0

on CI . Fix a constant ı > 0 such that fr � ıg � UI and take C > 0 satisfying8̂<̂
:

C�1!X � t!UI
C .1� t/!X � C!X ; t 2 Œ0; 1�;

k�k � C r;

kdrk � C

on fr � ıg. Let hW R!R�0 be a smooth function satisfying

� lims!�1 h.s/D 1,

� h.s/D 0 for s � log ı , and

� �1=.2C 3/� h0.s/� 0,

and set f D h.log r/. We define

� 0 D �X �f �D f �UI
C .1�f /�X

and

!0 WD d� 0 D f!UI
C .1�f /!X � df ^ �

D f!UI
C .1�f /!X � h0dr ^ �

r
:

Then !0 is compatible with JX along CI and the fibers of �I intersect CI orthogonally.
From the choice of h, we have

kdf ^ �k � 1

2C 3
�C �C D 1

2C
;

which implies that !0 tames JX , and hence it is non-degenerate.

Geometry & Topology, Volume 16 (2012)



1990 Yuichi Nohara and Kazushi Ueda

By applying the argument in Seidel [17, Lemma 1.7] or Ruan [15, Lemma 4.3] to each
fiber of �I , we can modify !0 to make !0j��1

I
.p/ standard at each p 2 CI , which

means that CJ ’s intersect orthogonally along CI .

Next we construct local torus actions. Set Li DO.1/DO.Ci/ for i D 1; : : : ; nC 2

and L0 DO.nC 2/DO.C0/. Note that the normal bundle of CI is given by

NCI=X D
M
i2I

Li jCI
:

For each I D fi1 < � � � < ikg � f0; 1; : : : ; nC 2g, we define a T k –action on U ı
I

as
follows. First we consider the case 0 62 I . We may assume

�Q
j 62I[f0g xj

�ı
�X ;0 ¤ 0

on U ı
I

(after making UI smaller if necessary). Then

�˝
Q

j 62I[f0g xj

�X ;0

W Lik
jU ı

I
�! Lik

˝L�1
0 ˝

O
j 62I[f0g

Lj

ˇ̌̌̌
ˇ
U ı

I

ŠO.1� k/jU ı
I

is an isomorphism, and thus we have

NCI=X jC ıI ŠNI jC ı
I
;

where

NI WDLi1
˚ � � �˚Lik�1

˚
�
Lik
˝L�1

0 ˝
O

j 62I[f0g
Lj

�
ŠO.1/˚ � � �˚O.1/„ ƒ‚ …

k�1

˚O.1� k/:

We identify U ı
I

with a neighborhood of the zero section of NI jC ı
I

by a map �I W U ıI !
NI jC ı

I
obtained by combining�

xi1
; : : : ;xik�1

;
xik

Q
j 62I[f0g xj

�X ;0

�
W U ıI �!NI

with parallel transport along the fibers of �I W U ıI ! C ı
I

. The torus action on U ı
I

is
defined to be the pull back the natural T k –action on NI jC ı

I
. By construction,

(7)

U ıi

C

pX

��

U ıi NI jC ı
I

�I // NI jC ı
I

C
��
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is commutative, where the right arrow is the natural map

NI DO.1/˚ � � �˚O.1/˚O.1� k/ �!C; .�1; : : : ; �k/ 7�! �1 : : : �k :

Hence pX D �X ;1=�X ;0 is T k –equivalent on U ı
I

:

pX .�I;s.x//D e
p�1.s1C���Csk/pX .x/:

Next we consider the case where i1 D 0 2 I . In this case we set

NI WDLi1
˚ � � �˚Lik�1

˚
�
Lik
˝
O
j 62I

Lj

�
ŠO.nC 2/˚O.1/˚ � � �˚O.1/„ ƒ‚ …

k�2

˚O.nC 4� k/:

Assuming
Q

j 62I xj ¤ 0 on U ı
I

, we have an isomorphismM
i2I

Li jU ı
I
�!NI jU ı

I
:

By using �
�X ;0;xi2

; : : : ;xik�1
;xik

Y
j 62I

xj

�
W U ıI �!NI ;

we have a map �I W U ıI !NI jC ı
I

identifying U ı
I

with a neighborhood the zero section,
which gives a T k –action on U ı

I
as above. We also have a similar commutative diagram

(7) where the right arrow in this case is

O.nC 2/˚O.1/˚ � � �˚O.1/˚O.nC 4� k/ �!C; .�1; : : : ; �k/ 7�!
�2 : : : �k

�1
:

This means that pX is T k –equivariant on U ı
I

:

pX .�I;s.x//D e
p�1.�s1Cs2C���Csk/pX .x/:

We can easily check the compatibility of the above torus actions. For example, we
consider the case where I D f0; 1; : : : ; k � 1g � J D f1; : : : ; lg. Take coordinates
.w1; : : : ; wnC1/ around a point in CI such that .w1; : : : ; wk/ gives fiber coordinates
of �I corresponding to

.�X ;0;x1; : : : ;xk�2;xk�1 � � �xnC2/W UI !NI :

Then the torus action is given by

.w1; : : : ; wn/ 7�!
�
e
p�1s1w1; : : : ; e

p�1skwk ; wkC1; : : : ; wnC1

�
:
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On the other hand, since �J W U ıJ !NJ jC ı
J

is obtained from�
x1; : : : ;xl�1;

xl : : :xnC2

�X ;0

�
W U ıJ �!NJ ;

�J restricted to U ı
I
\U ı

J
� U ı

J
is given by

�J .w1; : : : ; wnC1/D
�
w2; : : : ; wl ;

wlC1 : : : wk

w1

�
:

This means that the torus action induced from �J is given by

.w1; : : : ; wnC1/ 7�!
�
w1; e

p�1s2w2; : : : ; e
p�1slC1wlC1; wlC2; : : : ; wnC1

�
:

(Note that .w1; wlC2; : : : ; wnC1/ is a coordinate on the base CJ \UI .) Other cases
can be checked in similar ways.

By using the same argument as in Seidel [16, Lemma 7.20], we have

Proposition 4.11 There exists a Kähler form !00
X

in the class Œ!X � satisfying the
conditions in Proposition 4.10, and !00

X
jU ı

I
is invariant under the torus action �I for

each I .

We fix x 2 C ı
I

with jI j D k and take a neighborhood Ux � U ı
I

of x . Let Y �CnC1

be a small ball around the origin with the standard symplectic structure !Y and the
T k –action (4). Take a T k –equivariant Darboux coordinate 'W .Ux; !

00
X
/! .Y; !Y /,

and define JY D .'�1/�JX , p D .'�1/�pX , �Y D C.'�1/���1
X ;1 , where C is a

constant. Then .Y; !Y ;JY ; �Y ;p/ satisfies Assumption 4.1 if 0 62 I , or Assumption
4.3 if 0 2 I for a suitable choice of C . Now we can follow the argument of [16,
Proposition 7.22] to complete the proof of Proposition 3.4.

5 Sheridan’s Lagrangian as a vanishing cycle

An n–dimensional pair of pants is defined by

Pn D ˚Œz1 W � � � W znC2� 2 PnC1
C j z1C � � �C znC2 D 0; zi ¤ 0; i D 1; : : : ; nC 2

	
;

equipped with the restriction of the Fubini–Study Kähler form on PnC1
C . It is the

intersection of the hyperplane H D fz1C � � � C znC2 D 0g with the big torus T of
PnC1

C . Sheridan [23] perturbs the standard double cover Sn!HR of the real projective
space HR Š Pn

R by the n–sphere slightly to obtain an exact Lagrangian immersion
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i W Sn!Pn . The real part Pn\HR of the pair of pants consists of 2nC1�1 connected
components UK parametrized by proper subsets K � f1; 2; : : : ; nC 2g as

UK D
˚
Œz1 W � � � W znC2� 2 Pn\HR j zi=zj < 0 if and only if i 2K and j 2Kc

	
:

Note that the set f1; : : : ; nC 2g has 2nC2� 2 proper subsets, and one has UK D UK c .
The inverse images of the connected component UK by the double cover Sn !
HR are the cells WK ;K c ;∅ and WK c ;K ;∅ of the dual cellular decomposition in [23,
Definition 2.6].

The map p SM W SM ! T sending .u1; : : : ;unC1;unC2 D 1=u1 � � �unC1/ to Œz1 W � � � W
znC1 W 1� for zi D ui �u1 � � �unC1; i D 1; : : : ; nC1 is a principal ��

nC2
–bundle, where

the action of � �idCnC2 2��nC2
sends .u1; : : : ;unC2/ to .�u1; : : : ; �unC2/. The inverse

map is given by unC2
1
D znC1

1
=z2 � � � znC1 and ui D u1 � zi=z1 for i D 2; : : : ; nC 1.

The restriction p SM0
W SM0! Pn turns SM0 into a principal ��

nC2
–bundle over the pair

of pants. One has
z1 D�.1C z2C � � �C znC1/

on Pn , so that unC2
1
D .�1/nC1f .z2; : : : ; znC1/ where

f .z2; : : : ; znC1/D
.1C z2C � � �C znC1/

nC1

z2 � � � znC1

:(8)

The pull-back of Sheridan’s Lagrangian immersion by p SM0
is the union of nC 2

embedded Lagrangian spheres fLignC2
iD1

in SM0 .

Recall that the coamoeba of a subset of a torus .C�/nC1 is its image by the argument
map ArgW .C�/nC1! RnC1=2�ZnC1 . Let Z be the zonotope in RnC1 defined as
the Minkowski sum of �e1; : : : ; �enC1;��e1 � � � � � �enC1; where feignC1

iD1
is the

standard basis of RnC1 . The projection SZ of Z to RnC1=2�ZnC1 is the closure of
the complement .RnC1=2�ZnC1/nArg.Pn/ of the coamoeba of the pair of pants [23,
Proposition 2.1], and the argument projection of the immersed Lagrangian sphere is
close to the boundary of the zonotope by construction [23, Section 2.2]. The coamoeba
of SM0 and the projections of Lagrangian spheres Li are obtained from those for Pn

as the pull-back by the .nC2/–fold cover

(9)
RnC1=2�ZnC1 ! RnC1=2�ZnC1

2 2

ei 7! ei C
PnC1

jD1 ej

induced by p SM W SM ! T . It is elementary to see that none of the pull-backs of the
zonotope SZ by the map (9) has self-intersections. It follows that the argument projection
of Li does not have self-intersections either, which in turn implies that Li itself does not
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have self-intersections, so that Li is not only immersed but embedded. We choose the
numbering on these embedded Lagrangian spheres so that the argument projection of Li

is close to the boundary of the zonotope centered at Œ 2�
nC2

.i; : : : ; i/� 2RnC1=2�ZnC1 .

When nD 1, the coamoeba of SM0 is the union of the interiors and the vertices of six
triangles shown in Figure 2(a). The projection of L3 is also shown as a solid loop
in Figure 2(a). The zonotope SZ in this case is a hexagon, whose pull-backs by the
three-to-one map (9) are three hexagons constituting the complement of the coamoeba.
Although the zonotope SZ has self-intersections at its vertices, none of its pull-backs
has self-intersections as seen in Figure 2(a). The coamoeba of SM0 for n D 2 is a
four-fold cover of the coamoeba of P2 shown in [23, Figure 2(b)].

Figure 2: (a) The coamoeba (b) The cut and the thimble

Let $ W SM0!C� be the projection sending .u1; � � � ;unC2/ to u1 .

Lemma 5.1 The critical values of $ are given by .nC 2/ solutions to the equation

(10) unC2
1
D .�1/nC1.nC 1/nC1:

Proof The defining equation of SM0 in SM D Spec CŒu˙1
1
; : : : ;u˙1

nC1
� is given by

(11)
nC1X
iD1

ui �u1 � � �unC1C 1D 0:

By equating the partial derivatives by u2; : : : ;unC1 with zero, one obtains the linear
equations

ui C
nC1X
jD1

uj D 0; i D 2; : : : ; nC 1;

whose solution is given by u2 D � � � D unC1 D�u1=.nC 1/. By substituting this into
(11), one obtains the desired equation (10).

Geometry & Topology, Volume 16 (2012)



Homological mirror symmetry for the quintic 3–fold 1995

Note that the connected component

U1 D Uf2;:::;nC2g D fŒz1 W z2 W � � � W znC1 W 1� 2 Pn j .z2; : : : ; znC1/ 2 .R>0/ng
of the real part of the pair of pants can naturally be identified with .R>0/n .

Lemma 5.2 The function

f .z2; : : : ; znC1/D
.1C z2C � � �C znC1/

nC1

z2 � � � znC1

has a unique non-degenerate critical point in U1 Š .R>0/n with the critical value
.nC 1/nC1 .

Proof The partial derivatives are given by

@f

@z2

D ..nC 1/z2� .1C z2C � � �C znC1//
.1C z2C � � �C znC1/

n

z2
2
z3 � � � znC1

and similarly for z3; : : : ; znC1 . By equating them with zero, one obtains the equations

.nC 1/zi � .1C z2C � � �C znC1/D 1; i D 2; : : : ; nC 1

whose solution is given by z2 D � � � D znC1 D 1 with the critical value .nC 1/nC1 .

As an immediate corollary, one has:

Corollary 5.3 The inverse image of f W U1!R at t 2R is

� empty if t < .nC 1/nC1 ,

� one point if t D .nC 1/nC1 , and

� diffeomorphic to Sn�1 if t > .nC 1/nC1 .

Recall that f is introduced in (8) to study the inverse image of the map pW SM0! Pn .

Corollary 5.4 The inverse image p�1.U1/ consists of nC 2 connected components
U� indexed by solutions to the equation �nC2 D .�1/nC1.nC 1/nC1 by the condition
that � 2$.U�/.

One obtains an explicit description of Lefschetz thimbles:

Lemma 5.5 U� is the Lefschetz thimble for $ W SM0 ! C� above the half line
`W Œ0;1/!C� on the x1 –plane given by `.t/D t�C � .
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Proof The restriction of $ to U� has a unique critical point at .x1; : : : ;xnC1/ D
�

nC1
.nC 1;�1; : : : ;�1/. For x D .x1; : : : ;xnC1/ 2 U� outside the critical point,

the fiber Vx1
D U� \$�1.x1/ is diffeomorphic to Sn�1 by Corollary 5.3, and it

suffices to show that the orthogonal complement of TxVx1
in TxU� is orthogonal

to Tx$
�1.x1/ with respect to the Kähler metric g of SM0 . Let X 2 TxU� be a

tangent vector orthogonal to TxVx1
. Then it is also orthogonal to Tx$

�1.x1/ since
any element in Tx$

�1.x1/ can be written as zY for z 2C and Y 2 TxVx1
, so that

g.zY;X /D zg.Y;X /D 0.

The following simple lemma is a key to the proof of Proposition 3.1:

Lemma 5.6 U� for arg � ¤˙nC1
nC2

� does not intersect LnC2 .

Proof The map RnC1=2�ZnC1!RnC1=2�ZnC1 induced from the map pW SM!T

is given on coordinate vectors by ei 7! ei C
PnC1

jD1 ej . The inverse map is given by
ei 7! fi D ei � 1

nC2

PnC1
jD1 ej , so that the argument projection of LnC2 is close to

the boundary of the zonotope ZnC2 generated by �f1; : : : ; �fnC1;��f1 � � � � �
�fnC1 . The argument projection of U� consists of just one point .arg.�/; arg.�/C
�; : : : ; arg.�/C�/; which is disjoint from ZnC2 if arg � ¤˙nC1

nC2
� .

The n D 1 case is shown in Figure 2(b). Black dots are images of U� for � D
3
p

4;
3
p

4 exp.2�
p�1=3/;

3
p

4 exp.4�
p�1=3/; and white dots are images of SM0 nE

defined below. One can see that L3 is contained in E and disjoint from U 3
p

4
.

Now we use symplectic Picard–Lefschetz theory developed by Seidel [20]. Put S D
C� n .�1; 0/ and let E D$�1.S/ be an open submanifold of SM0 . Note that both
VnC2 and LnC2 are contained in E . The restriction $E W E! S of $ to E is an
exact symplectic Lefschetz fibration, in the sense that all the critical points are non-
degenerate with distinct critical values. Although $E does not fit in the framework
of Seidel [20, Section III] where the total space of a fibration is assumed to be a
compact manifold with corners, one can apply the whole machinery of [20] by using
the tameness of $E (i.e., the gradient of k$Ek is bounded from below outside of a
compact set by a positive number) as in Seidel [21, Section 6]. Let F.$E/ be the
Fukaya category of the Lefschetz fibration in the sense of Seidel [20, Definition 18.12].
It is the Z=2Z–invariant part of the Fukaya category of the double cover zE ! E

branched along $�1
E
.�/, where � 2 S is a regular value of $E . Different base points

� 2 S lead to symplectomorphic double covers, so that the quasi-equivalence class
of F.$E/ is independent of this choice. We choose � to be a sufficiently large real
number. Let .
1; : : : ; 
nC2/ be a distinguished set of vanishing paths chosen as in
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Figure 3(a). The pull-backs of the corresponding Lefschetz thimbles in E by the
double cover zE!E will be denoted by .z�1; : : : ; z�nC2/, which are called type (B)
Lagrangian submanifolds by Seidel [20, Section 18a]. On the other hand, the pull-back
of a closed Lagrangian submanifold of E , which is disjoint from the branch locus, is
a Lagrangian submanifold of zE consisting of two copies of the original Lagrangian
submanifold. It also gives rise to an object of F.$E/, which is called a type (U)
Lagrangian submanifold by Seidel. The letters (B) and (U) stand for ‘branched’ and
‘unbranched’ respectively.

Theorem 5.7 (Seidel [20, Propositions 18.13, 18.14, and 18.17])
� .z�1; : : : ; z�nC2/ is an exceptional collection in F.$E/.
� There is a cohomologically full and faithful A1–functor F.E/! F.$E/.
� The essential image of F.E/ is contained in the full triangulated subcategory

generated by .z�1; : : : ; z�nC2/.

We abuse the notation and use the same symbol LnC2 for the corresponding object in
F.$E/. The following lemma is a consequence of Lemma 5.6:

Lemma 5.8 One has Hom�F.$E/
.z�i ;LnC2/D 0 for i ¤ 1; nC 2.

Proof For 2� i � nC 1, move � 2 S continuously from the positive real axis to

�0 D expŒ.�n� 3C 2i/�
p
�1=.nC 2/� � �

and move the distinguished set
�

1; : : : ; 
nC2

�
of vanishing paths in Figure 3(a) to�


 0
1
; : : : ; 
 0

nC2

�
in Figure 3(b) accordingly. The corresponding double covers zE and

zE0 are related by a Hamiltonian isotopy sending type (B) Lagrangian submanifolds�z�1; : : : ; z�nC2

�
of zE to type (B) Lagrangian submanifolds

�z�0
1
; : : : ; z�0

nC2

�
of zE0 .

It follows from Lemma 5.6 that the type (U) Lagrangian submanifold of zE0 associated
with LnC2 does not intersect with z�0i . This shows that Hom�F.$E0 /

�z�0i ;LnC2

�D 0;

which implies Hom�F.$E/

�z�i ;LnC2

�D 0 by Hamiltonian isotopy invariance of the
Floer cohomology.

It follows that LnC2 belongs to the triangulated subcategory generated by the excep-
tional collection .z�1; z�nC2/. Since LnC2 is exact, the Floer cohomology of LnC2

with itself is isomorphic to the classical cohomology of LnC2 .

Lemma 5.9 (Seidel [18, Lemma 7]) Let T be a triangulated category with a full
exceptional collection .E ;F/ such that Hom�.E ;F/ Š H�.Sn�1IC/; and L be an
object of T such that Hom�.L;L/ Š H�.SnIC/. Then L is isomorphic to the
mapping cone Cone.E ! F/ over a non-trivial element in Hom0.E ;F/ Š C up to
shift.
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1


2


i


nC2


 0
1


 0
2


 0
i


 0
nC2

1

2

n C 2

i

�nC2

Figure 3: (a) A distinguished set of vanishing paths. (b) Another distin-
guished set of vanishing paths. (c) The matching path

This shows that LnC2 is isomorphic to Cone.z�1 ! z�nC2/ in D�F.$E/ up to
shift. On the other hand, it is shown by Futaki and Ueda [7, Section 5] that VnC2

is isomorphic to the matching cycle associated with the matching path �nC2 shown
in Figure 3(c) (see [7, Figure 5.2]). Here, a matching path is a path on the base of
a Lefschetz fibration between two critical values, together with additional structures
which enables one to construct a Lagrangian sphere (called the matching cycle) in the
total space by arranging vanishing cycles along the path (see Seidel [20, Section 16g]).
Since the matching path �nC2 does not intersect 
i for i ¤ 1; nC 2, the vanishing
cycle VnC2 is also orthogonal to z�2; : : : ; z�nC1 in D�F.$E/. It follows that LnC2

equipped with a suitable grading is isomorphic to VnC2 in F.E/. Note that any
holomorphic disk in SM0 bounded by LnC2[VnC2 is contained in E , since any such
disk projects by $ to a disk in S . This shows that the isomorphism LnC2

��! VnC2 in
F.E/ extends to an isomorphism in F. SM0/, and the following proposition is proved:

Proposition 5.10 LnC2 and VnC2 are isomorphic in F. SM0/.

Proposition 3.1 follows from Proposition 5.10 by the ��
nC2

–action, which is simply
transitive on both fVignC2

iD1
and fLignC2

iD1
.

Remark 5.11 Let F! be the directed subcategory of F.M0/ consisting of the distin-
guished basis . zVi/

N
iD1

of vanishing cycles of the exact Lefschetz fibration �M W M !
C ;

homF!. zVi ; zVj /D

8̂<̂
:

C � id zVi
i D j ;

homF.M0/.
zVi ; zVj / i < j ;

0 otherwise:

It is also isomorphic to the directed subcategory of F.X0/, since the compositions
m2 are the same on F.M0/ and F.X0/, and higher A1–operations mk for k � 3
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vanish on the directed subcategories. Symplectic Picard–Lefschetz theory developed
by Seidel [20, Theorem 18.24] gives an equivalence

DbF! ŠDbF.�M /

with the Fukaya category of the Lefschetz fibration �M . This provides a commutative
diagram

F! ,! Fq

Š Š

C!
nC2

Ì� ,!  �Sq

of A1–categories, where horizontal arrows are embeddings of directed subcategories.
Combined with the equivalences

DbF! ŠDbF.�M /; D�.Fq˝ƒN ƒQ/ŠD�F.X0/;

Db.C!nC2 Ì�/ŠDb cohŒPn
C=�� and D�.Sq˝ƒN ƒQ//ŠDb coh Z�q ;

this gives the compatibility of homological mirror symmetry

DbF.�M /ŠDb cohŒPn
C=��

for the ambient space and homological mirror symmetry

D�F.X0/Š y �Db coh Z�q
for its Calabi–Yau hypersurface.
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