Homological mirror symmetry for the quintic 3-fold

Yuichi Nohara
Kazushi Ueda

Abstract

We prove homological mirror symmetry for the quintic Calabi-Yau 3-fold. The proof follows that for the quartic surface by Seidel [16] closely, and uses a result of Sheridan [23]. In contrast to Sheridan's approach [22], our proof gives the compatibility of homological mirror symmetry for the projective space and its Calabi-Yau hypersurface.

53D37; 14J33

1 Introduction

Ever since the proposal by Kontsevich [9], homological mirror symmetry has been proved for elliptic curves (see Polishchuk and Zaslow [14], Polishchuk [13] and Seidel [19]), Abelian surfaces (see Fukaya [5], Kontsevich and Soibelman [11] and Abouzaid and Smith [1]) and quartic surfaces (see Seidel [16]). It has also been extended to other contexts such as Fano varieties (see Kontsevich [10]), varieties of general type (see Katzarkov [8]), and singularities (see Takahashi [24]), and various evidences have been accumulated in each cases.

The most part of the proof of homological mirror symmetry for the quartic surface by Seidel [16] works in any dimensions. Combined with the results of Sheridan [23], an expert reader will observe that one can prove homological mirror symmetry for the quintic 3-fold if one can show that

- the large complex structure limit monodromy of the pencil of quintic Calabi-Yau 3 -folds is negative in the sense of Seidel [16, Definition 7.1], and
- the vanishing cycles of the pencil of quintic Calabi-Yau 3-folds are isomorphic in the Fukaya category to Lagrangian spheres constructed by Sheridan [23].

We prove these statements, and obtain the following:

Theorem 1.1 Let X_{0} be a smooth quintic Calabi-Yau 3-fold in $\mathbb{P}_{\mathbb{C}}^{4}$ and Z_{q}^{*} be the mirror family. Then there is a continuous automorphism $\psi \in \operatorname{End}\left(\Lambda_{\mathbb{N}}\right)^{\times}$and an equivalence

$$
\begin{equation*}
D^{\pi} \mathcal{F}\left(X_{0}\right) \cong \hat{\psi}^{*} D^{b} \operatorname{coh} Z_{q}^{*} \tag{1}
\end{equation*}
$$

of triangulated categories over $\Lambda_{\mathbb{Q}}$.
Here $\Lambda_{\mathbb{N}}=\mathbb{C} \llbracket q \rrbracket$ is the ring of formal power series in one variable and $\Lambda_{\mathbb{Q}}$ is its algebraic closure. The automorphism $\hat{\psi}$ of $\Lambda_{\mathbb{Q}}$ is any lift of the automorphism ψ of $\Lambda_{\mathbb{N}}$, and the category $\widehat{\psi}^{*} D^{b} \operatorname{coh} Z_{q}^{*}$ is obtained from $D^{b} \operatorname{coh} Z_{q}^{*}$ by changing the $\Lambda_{\mathbb{Q}}$-module structure by $\widehat{\psi}$. The category $D^{\pi} \mathcal{F}\left(X_{0}\right)$ is the split-closed derived Fukaya category of X_{0} consisting of rational Lagrangian branes. The symplectic structure of X_{0} and hence the parameter q come from 5 times the Fubini-Study metric of the ambient projective space $\mathbb{P}_{\mathbb{C}}^{4}$. The mirror family $Z_{q}^{*}=\left[Y_{q}^{*} / \Gamma\right]$ is the quotient of the hypersurface

$$
Y_{q}^{*}=\left\{\left[y_{1}: \ldots: y_{5}\right] \in \mathbb{P}_{\Lambda_{\mathbb{Q}}}^{4} \mid y_{1} \ldots y_{5}+q\left(y_{1}^{5}+\cdots+y_{5}^{5}\right)=0\right\}
$$

by the group

$$
\begin{equation*}
\Gamma=\left\{\left[\operatorname{diag}\left(a_{1}, \ldots, a_{5}\right)\right] \in P S L_{5}(\mathbb{C}) \mid a_{1}^{5}=\cdots=a_{5}^{5}=a_{1} \cdots a_{5}=1\right\} . \tag{2}
\end{equation*}
$$

Let $Z_{q}=\left[Y_{q} / \Gamma\right]$ be the quotient of the hypersurface Y_{q} of $\mathbb{P}_{\Lambda_{\mathbb{N}}}^{4}$ defined by the same equation as Y_{q}^{*} above. The equivalence (1) is obtained by combining the equivalences

$$
D^{\pi} \mathcal{F}\left(X_{0}\right) \cong \hat{\psi}^{*} D^{\pi} \mathcal{S}_{q}^{*} \cong \widehat{\psi}^{*} D^{b} \operatorname{coh} Z_{q}^{*}
$$

for an A_{∞}-algebra $\mathcal{S}_{q}^{*}=\mathcal{S}_{q} \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{Q}}$ as follows:
(1) The derived category $D^{b} \operatorname{coh} Z_{q}^{*}$ of coherent sheaves on Z_{q}^{*} has a split-generator, which extends to an object of $D^{b} \operatorname{coh} Z_{q}$. The quasi-isomorphism class of the endomorphism dg algebra \mathcal{S}_{q} of this object is characterized by its cohomology algebra together with a couple of additional properties up to pull-back by $\operatorname{End}\left(\Lambda_{\mathbb{N}}\right)^{\times}$.
(2) The Fukaya category $\mathcal{F}\left(X_{0}\right)$ contains 625 distinguished Lagrangian spheres. They are vanishing cycles for a pencil of quintic Calabi-Yau 3-folds, and a suitable combination of symplectic Dehn twists along them is isotopic to the large complex structure limit monodromy.
(3) The large complex structure limit monodromy has a crucial property of negativity, which enables one to show that the vanishing cycles split-generate the derived Fukaya category $D^{\pi} \mathcal{F}\left(X_{0}\right)$.
(4) The total morphism A_{∞}-algebra \mathcal{F}_{q} of the vanishing cycles has the same cohomology algebra as \mathcal{S}_{q} and satisfies the additional properties characterizing \mathcal{S}_{q}.

The condition that X_{0} is a 3 -fold is used in the proof that vanishing cycles split-generate the Fukaya category, cf. Remarks 3.6 and 3.9. Sheridan [22] proved homological mirror symmetry for Calabi-Yau hypersurfaces in projective spaces along the lines of Sheridan [23]. In contrast to Sheridan's approach, our proof is based on the relation between Sheridan's immersed Lagrangian sphere in a pair of pants and vanishing cycles on Calabi-Yau hypersurfaces, and gives the compatibility of homological mirror symmetry for the projective space and its Calabi-Yau hypersurface as in Remark 5.11.

This paper is organized as follows: Sections 2 and 3 have little claim in originality, and we include them for the readers' convenience. In Section 2, we recall the description of the derived category of coherent sheaves on Z_{q}^{*} due to Seidel [16]. In Section 3, we extend Seidel's discussion on the Fukaya category of the quartic surface to general projective Calabi-Yau hypersurfaces. Strictly speaking, the work of Fukaya, Oh, Ohta and Ono [6] that we rely on in this section gives not a full-fledged A_{∞}-category but an A_{∞} algebra for a Lagrangian submanifold and an A_{∞}-bimodule for a pair of Lagrangian submanifolds. While there is apparently no essential difficulty in generalizing their work to construct an A_{∞}-category (for transversally intersecting sequence of Lagrangian submanifolds, one can regard it as a single immersed Lagrangian submanifold and use the work of Akaho and Joyce [2]), we do not attempt to settle this foundational issue in this paper. Sections 4 and 5 are at the heart of this paper. In Section 4, we prove the negativity of the large complex structure limit monodromy using ideas of Seidel [16] and Ruan [15]. In Section 5, we use ideas from Seidel [18] and Futaki and Ueda [7] to reduce Floer cohomology computations on vanishing cycles needed in Section 3 to a result of Sheridan [23].

Acknowledgments We thank Akira Ishii, Takeo Nishinou and Nick Sheridan for valuable discussions. We also thank the anonymous referees for helpful suggestions and comments. Y Nohara is supported by Grant-in-Aid for Young Scientists (No.19740025). K Ueda is supported by Grant-in-Aid for Young Scientists (No.20740037).

2 Derived category of coherent sheaves

Let V be an ($n+2$)-dimensional complex vector space spanned by $\left\{v_{i}\right\}_{i=1}^{n+2}$, and $\left\{y_{i}\right\}_{i=1}^{n+2}$ be the dual basis of V^{\vee}. The projective space $\mathbb{P}(V)$ has a full exceptional collection $\left(F_{k}=\Omega_{\mathbb{P}(V)}^{n+2-k}(n+2-k)[n+2-k]\right)_{k=1}^{n+2}$ by Beilinson [3]. The full dg
subcategory of (the dg enhancement of) D^{b} coh $\mathbb{P}(V)$ consisting of $\left(F_{k}\right)_{k=1}^{n+2}$ is quasiisomorphic to the \mathbb{Z}-graded category C_{n+2}^{\rightarrow} with $(n+2)$ objects X_{1}, \ldots, X_{n+2} and morphisms

$$
\operatorname{Hom}_{C_{n+2}}\left(X_{j}, X_{k}\right)= \begin{cases}\Lambda^{k-j} V & j \leq k \\ 0 & \text { otherwise }\end{cases}
$$

The differential is trivial, the composition is given by the wedge product, and the grading is such that V is homogeneous of degree one. One can equip $\left(F_{k}\right)_{k=1}^{n+2}$ with a $G L(V)$-linearization so that this quasi-isomorphism is $G L(V)$-equivariant. Let $\iota_{0}: Y_{0} \hookrightarrow \mathbb{P}(V)$ be the inclusion of the union of coordinate hyperplanes and set $E_{0, k}=\iota_{0}^{*} F_{k}$. The total morphism dg algebra $\bigoplus_{i, j=1}^{n+2} \operatorname{hom}\left(E_{0, i}, E_{0, j}\right)$ of this collection will be denoted by \mathcal{S}_{n+2}.

Let C_{n+2} be the trivial extension category of C_{n+2}^{\rightarrow} of degree n as defined by Seidel [16, Section 10a]. It is a category with the same object as C_{n+2}. The morphisms are given by

$$
\operatorname{Hom}_{C_{n+2}}\left(X_{j}, X_{k}\right)=\operatorname{Hom}_{C_{n+2}}\left(X_{j}, X_{k}\right) \oplus \operatorname{Hom}_{C_{n+2}}\left(X_{k}, X_{j}\right)^{\vee}[-n]
$$

and the compositions are given by

$$
\left(a, a^{\vee}\right)\left(b, b^{\vee}\right)=\left(a b, a^{\vee}(b \cdot)\right)+(-1)^{\operatorname{deg}(a)\left(\operatorname{deg}(b)+\operatorname{deg}\left(b^{\vee}\right)\right)} b^{\vee}(\cdot a)
$$

From this definition, one can easily see that

$$
\operatorname{Hom}_{C_{n+2}}\left(X_{j}, X_{k}\right)= \begin{cases}\Lambda^{k-j} V & j<k \\ \Lambda^{0} V \oplus \Lambda^{n+2} V[2] & j=k \\ \Lambda^{k-j+n+2} V[2] & j>k\end{cases}
$$

The total morphism algebra Q_{n+2} of this category C_{n+2} admits the following description: Set $\gamma=\zeta_{n+2} \operatorname{id}_{V}$ for $\zeta_{n+2}=\exp (2 \pi \sqrt{-1} /(n+2))$ and let $\Gamma_{n+2}=\langle\gamma\rangle \subset S L(V)$ be a cyclic subgroup of order $n+2$. The group algebra $R_{n+2}=\mathbb{C} \Gamma_{n+2}$ is a semisimple algebra of dimension $n+2$, whose primitive idempotents are given by

$$
e_{j}=\frac{1}{n+2}\left(e+\zeta_{n+2}^{-j} \gamma+\cdots+\zeta_{n+2}^{-(n+1) j} \gamma^{n+1}\right) \in \mathbb{C} \Gamma_{n+2}
$$

Let $\Lambda V=\bigoplus_{i=0}^{n+2} \Lambda^{i} V$ be the exterior algebra equipped with the natural \mathbb{Z}-grading and $\widetilde{Q}_{n+2}=\Lambda V \rtimes \Gamma_{n+2}$ be the semidirect product. There is an R_{n+2}-algebra isomorphism between \widetilde{Q}_{n+2} and Q_{n+2} sending $e_{k} \widetilde{Q}_{n+2} e_{j}$ to $\operatorname{Hom}_{C_{n+2}}\left(X_{j}, X_{k}\right)$. This isomorphism does not preserve the \mathbb{Z}-grading; Q_{n+2} is obtained from \widetilde{Q}_{n+2} by assigning degree $\frac{n}{n+2} k$ to $\Lambda^{k} V \otimes \mathbb{C} \Gamma_{n+2}$ and adding $\frac{2}{n+2}(k-j)$ to the piece $e_{k} \tilde{Q} e_{j}$.

Let H be a maximal torus of $S L(V)$ and T be its image in $P S L(V)=S L(V) / \Gamma_{n+2}$. The group T acts on Q_{n+2} by an automorphism of a graded R_{n+2}-algebra so that $\left[\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n+2}\right)\right]$ sends $v \otimes e_{i} \in e_{i+1} Q_{n+2} e_{i}$ to $\left(\operatorname{diag}\left(1, t_{2} / t_{1}, \ldots, t_{n+2} / t_{1}\right) \cdot v\right) \otimes e_{i}$. The dg algebra \mathcal{S}_{n+2} is characterized by the following properties:

Lemma 2.1 (Seidel [16, Lemma 10.2]) Assume that a T-equivariant A_{∞}-algebra \mathcal{Q}_{n+2} over R_{n+2} satisfies the following properties:

- The cohomology algebra $H^{*}\left(\mathcal{Q}_{n+2}\right)$ is T-equivariantly isomorphic to Q_{n+2} as an R_{n+2}-algebra.
- \mathcal{Q}_{n+2} is not quasi-isomorphic to Q_{n+2}.

Then one has a R_{n+2}-linear, T-equivariant quasi-isomorphism $\mathcal{Q}_{n+2} \xrightarrow{\sim} \mathcal{S}_{n+2}$.

Sketch of proof The proof of the fact that these properties are satisfied by \mathcal{S}_{n+2} is identical to Seidel [16, Section 10d]. The uniqueness comes from the Hochschild cohomology computations in [16, Section 10a]: The Hochschild cohomology of \widetilde{Q}_{n+2} is given by

$$
\begin{aligned}
H H^{s+t}\left(\widetilde{Q}_{n+2}, \widetilde{Q}_{n+2}\right)^{t} \cong \\
\bigoplus_{\gamma \in \Gamma_{n+2}}\left(S^{s}\left(V^{\gamma}\right)^{\vee} \otimes \Lambda^{s+t-\operatorname{codim} V^{\gamma}}\left(V^{\gamma}\right) \otimes \Lambda^{\operatorname{codim} V^{\gamma}}\left(V / V^{\gamma}\right)\right)^{\Gamma_{n+2}}
\end{aligned}
$$

where $S V=\bigoplus_{i=0}^{\infty} S^{i} V$ is the symmetric algebra of V (see [16, Proposition 4.2]). By the change of the grading from \widetilde{Q}_{n+2} to Q_{n+2}, one obtains

$$
\begin{aligned}
& H H^{s+t}\left(Q_{n+2}, Q_{n+2}\right)^{t} \cong \\
& \bigoplus_{\gamma \in \Gamma_{n+2}}\left(S^{s}\left(V^{\gamma}\right)^{\vee} \otimes \Lambda^{s+\frac{n+2}{n} t-\operatorname{codim} V^{\gamma}}\left(V^{\gamma}\right) \otimes \Lambda^{\operatorname{codim} V^{\gamma}}\left(V / V^{\gamma}\right)\right)^{\Gamma_{n+2}}
\end{aligned}
$$

By passing to the T-invariant part, one obtains

$$
\begin{align*}
\left(H H^{2}\left(Q_{n+2}, Q_{n+2}\right)^{2-d}\right)^{T} & =\left(S^{d} V^{\vee} \otimes \Lambda^{n+2-d} V\right)^{H} \\
& = \begin{cases}\mathbb{C} \cdot y_{1} \cdots y_{n+2} & d=n+2 \\
0 & \text { for all other } d>2\end{cases} \tag{3}
\end{align*}
$$

so that \mathcal{S}_{n+2} is determined by the above properties up to quasi-isomorphism $[16$, Lemma 3.2].

Let $\mathbb{P}_{\Lambda_{\mathbb{N}}}=\mathbb{P}\left(V \otimes_{\mathbb{C}} \Lambda_{\mathbb{N}}\right)$ be the projective space over $\Lambda_{\mathbb{N}}$ and Y_{q} be the hypersurface defined by $q\left(y_{1}^{n+2}+\cdots+y_{n+2}^{n+2}\right)+y_{1} \ldots y_{n+2}=0$. The geometric generic fiber of the family $Y_{q} \rightarrow \operatorname{Spec} \Lambda_{\mathbb{N}}$ is the smooth Calabi-Yau variety $Y_{q}^{*}=Y_{q} \times \Lambda_{\mathbb{N}} \Lambda_{\mathbb{Q}}$ appearing in Section 1, and the special fiber is Y_{0} above. The collection $E_{0, k}$ is the restriction of the collection $E_{q, k}$ on Y_{q} obtained from the Beilinson collection on $\mathbb{P}_{\Lambda_{\mathbb{N}}}$, and its restriction to Y_{q}^{*} split-generates $D^{b} \operatorname{coh} Y_{q}^{*}$ by [16, Lemma 5.4].
Let Γ be the abelian subgroup of $P S L_{n+2}(\mathbb{C})$ defined in (2). Each $E_{q, k}$ admits $(n+2)^{n} \Gamma$-linearizations, so that one obtains $(n+2)^{n+1}$ objects of D^{b} coh $Z_{q}=$ $D^{b} \operatorname{coh}^{\Gamma} Y_{q}$, whose total morphism dg algebra will be denoted by \mathcal{S}_{q}. It is clear that their restriction to Z_{q}^{*} split-generates $D^{b} \operatorname{coh} Z_{q}^{*}$, so that one has the following:

Lemma 2.2 There is an equivalence

$$
D^{b} \operatorname{coh} Z_{q}^{*} \cong D^{\pi} \mathcal{S}_{q}^{*}
$$

of triangulated categories, where $\mathcal{S}_{q}^{*}=\mathcal{S}_{q} \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{Q}}$.
We write the inverse image of $\Gamma \subset P S L(V)$ by the projection $S L(V) \rightarrow P S L(V)$ as $\widetilde{\Gamma}$, and set $Q=Q_{n+2} \rtimes \Gamma=\Lambda V \rtimes \widetilde{\Gamma}$. Then the cohomology algebra of \mathcal{S}_{q} is given by $Q \otimes \Lambda_{\mathbb{N}}$, and the central fiber is $\mathcal{S}_{0}=\mathcal{S}_{n+2} \rtimes \Gamma$. As explained in [16, Section 3], first order deformations of the dg (or A_{∞}) algebra \mathcal{S}_{0} are parametrized by the truncated Hochschild cohomology $H^{2}\left(\mathcal{S}_{0}, \mathcal{S}_{0}\right)^{\leq 0}$.

Lemma 2.3 (Seidel [16, Lemma 10.5]) The truncated Hochschild cohomology of \mathcal{S}_{0} satisfies

$$
H H^{1}\left(\mathcal{S}_{0}, \mathcal{S}_{0}\right)^{\leq 0}=\mathbb{C}^{n+1}, \quad H H^{2}\left(\mathcal{S}_{0}, \mathcal{S}_{0}\right)^{\leq 0}=\mathbb{C}^{2 n+3}
$$

Sketch of proof There is a spectral sequence leading to $H H^{*}\left(\mathcal{S}_{0}, \mathcal{S}_{0}\right)^{\leq 0}$ such that

$$
E_{2}^{s, t}= \begin{cases}H H^{s+t}(Q, Q)^{t} & t \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

The isomorphism

$$
H H^{s+t}(Q, Q)^{t} \cong \bigoplus_{\gamma \in \tilde{\Gamma}}\left(S^{s}\left(V^{\gamma}\right)^{\vee} \otimes \Lambda^{s+\frac{n+2}{n} t-\operatorname{codim} V^{\gamma}}\left(V^{\gamma}\right) \otimes \Lambda^{\operatorname{codim} V^{\nu}}\left(V / V^{\gamma}\right)\right)^{\tilde{\Gamma}}
$$

implies that $E_{2}^{s, t}=0$ for $s<0$ or $s+\frac{n+2}{n} t<0$, which ensures the convergence of the spectral sequence. One can easily see that $E_{2}^{s, t}$ for $s+t \leq 2$ is non-zero only if

$$
(s, t)=(0,0),(1,0),(2,0), \text { or }(n+2,-n) .
$$

The first nonzero differential is δ_{n+1}, which is the Schouten bracket with the order $n+2$ deformation class $y_{1} \ldots y_{n+2}$ from (3). In total degree $s+t=1$, we have the $\widetilde{\Gamma}$-invariant part of $V^{\vee} \otimes V$, which is spanned by elements $y_{k} \otimes v_{k}$ satisfying

$$
\delta_{n+1}^{1,0}\left(y_{k} \otimes v_{k}\right)=y_{1} \ldots y_{n+2}
$$

for $k=1, \ldots, n+2$. In total degree $s+t=2$, we have

- $\left(S^{2} V^{\vee} \otimes \Lambda^{2} V\right)^{\tilde{\Gamma}}$ generated by $(n+2)(n+1) / 2$ elements $y_{j} y_{k} \otimes v_{j} \wedge v_{k}$ satisfying

$$
\delta_{n+1}^{2,0}\left(y_{j} y_{k} \otimes v_{j} \wedge v_{k}\right)=\left(y_{1} \ldots y_{n+2}\right) y_{k} \otimes v_{k}-\left(y_{1} \ldots y_{n+2}\right) y_{j} \otimes v_{j}
$$

- $\left(S^{n+2} V^{\vee}\right)^{\tilde{\Gamma}}$ spanned by y_{k}^{n+2} together with $y_{1} \ldots y_{n+2}$.

The kernel of $\delta_{n+1}^{1,0}$ is spanned by

$$
y_{1} \otimes v_{1}-y_{2} \otimes v_{2}
$$

and its $n+1$ cyclic permutations, which sum up to zero. The image of $\delta_{n+1}^{1,0}$ is spanned by $y_{1} \ldots y_{n+2}$. The kernel of $\delta_{n+1}^{2,0}$ is spanned by

$$
y_{1} y_{2} \otimes v_{1} \wedge v_{2}+y_{2} y_{3} \otimes v_{2} \wedge v_{3}-y_{1} y_{3} \otimes v_{1} \wedge v_{3}
$$

and its $n+1$ cyclic permutations, which also sum up to zero. Differentials $\delta_{k}^{s, t}$ for $k>n+1$ and $s+t \leq 2$ vanish, and one obtains the desired result.

Unfortunately, the second truncated Hochschild cohomology group $H H^{2}\left(\mathcal{S}_{0}, \mathcal{S}_{0}\right)^{\leq 0}$ has multiple dimensions, so that one needs additional structures to characterize \mathcal{S}_{q} as a deformation of \mathcal{S}_{0}. The strategy adopted by Seidel is to use a $\mathbb{Z} /(n+2) \mathbb{Z}$-action coming from the cyclic permutation of the basis of V : Let U_{n+2} be an automorphism of $Q_{n+2}=\Lambda V \rtimes \Gamma_{n+2}$ as an R_{n+2}-algebra, which acts on the basis of V as $v_{k} \mapsto v_{k+1}$. This lifts to a $\mathbb{Z} /(n+2) \mathbb{Z}$-action on $\mathcal{S}_{0}=\mathcal{S}_{n+2} \rtimes \Gamma$, and \mathcal{S}_{q} is characterized as follows:

Proposition 2.4 (Seidel [16, Proposition 10.8]) Let \mathcal{Q}_{q} be a one-parameter deformation of $\mathcal{S}_{0}=\mathcal{S}_{n+2} \rtimes \Gamma$, which is

- $\mathbb{Z} /(n+2) \mathbb{Z}$-equivariant, and
- non-trivial at first order.

Then \mathcal{Q}_{q} is quasi-isomorphic to $\psi^{*} \mathcal{S}_{q}$ for some $\psi \in \operatorname{End}\left(\Lambda_{\mathbb{N}}\right)^{\times}$.

The proof that these conditions characterize \mathcal{S}_{q} comes from the fact that the invariant part of the second truncated Hochschild cohomology of the central fiber \mathcal{S}_{0} with respect to the cyclic group action induced by \mathcal{U}_{0} is one-dimensional [16, Lemma 10.7];

$$
H H^{2}\left(\mathcal{S}_{0}, \mathcal{S}_{0}\right)^{\leq 0, \mathbb{Z} /(n+2) \mathbb{Z}} \cong \mathbb{C} \cdot\left(y_{1}^{n+2}+\cdots+y_{n+2}^{n+2}\right) .
$$

The proof that these conditions are satisfied by \mathcal{S}_{q} carries over verbatim from [16, Section 10d].

3 Fukaya categories

Let $X=\operatorname{Proj} \mathbb{C}\left[x_{1}, \ldots, x_{n+2}\right]$ be an $(n+1)$-dimensional complex projective space and o_{X} be the anticanonical bundle on X. Let further h be a Hermitian metric on o_{X} such that the compatible unitary connection ∇ has the curvature $-2 \pi \sqrt{-1} \omega_{X}$, where ω_{X} is $n+2$ times the Fubini-Study Kähler form on X. Any complex submanifold of X has a symplectic structure given by the restriction of ω_{X}. The restriction of (o_{X}, ∇) to any Lagrangian submanifold L has a vanishing curvature, and L is said to be rational if the monodromy group of this flat connection is finite. Note that this condition is equivalent to the existence of a flat multi-section λ_{L} of $\left.o_{X}\right|_{L}$ which is of unit length everywhere.
Two sections $\sigma_{X, \infty}=x_{1} \ldots x_{n+2}$ and $\sigma_{X, 0}=x_{1}^{n+2}+\cdots+x_{n+2}^{n+2}$ of o_{X} generate a pencil $\left\{X_{z}\right\}_{z \in \mathbb{P}_{\mathbb{C}}^{1}}$ of hypersurfaces

$$
X_{z}=\left\{x \in X \mid \sigma_{X, 0}(x)+z \sigma_{X, \infty}(x)=0\right\},
$$

such that X_{0} is the Fermat hypersurface and X_{∞} is the union of $n+2$ coordinate hyperplanes. The complement $M=X \backslash X_{\infty}$ is the big torus of X, which can naturally be identified as

$$
M=\left\{x \in \mathbb{C}^{n+2} \mid x_{1} \ldots x_{n+2} \neq 0\right\} / \mathbb{C}^{\times} \cong\left\{x \in \mathbb{C}^{n+2} \mid x_{1} \ldots x_{n+2}=1\right\} / \Gamma_{n+2}^{*},
$$

where $\Gamma_{n+2}^{*}=\left\{\zeta \operatorname{id}_{\mathbb{C}^{n+2}} \mid \zeta^{n+2}=1\right\}$ is the kernel of the natural projection from $S L_{n+2}(\mathbb{C})$ to $P S L_{n+2}(\mathbb{C})$. The map

$$
\pi_{M}=\sigma_{X, 0} / \sigma_{X, \infty}: M \rightarrow \mathbb{C}
$$

is a Lefschetz fibration, which has $n+2$ groups of $(n+2)^{n}$ critical points with identical critical values. The group $\Gamma^{*}=\operatorname{Hom}\left(\Gamma, \mathbb{C}^{\times}\right)$of characters of the group Γ defined in (2) acts freely on M through a non-canonical isomorphism $\Gamma^{*} \cong \Gamma$ and the natural action of $\Gamma \subset P S L_{n+2}(\mathbb{C})$ on X. The quotient

$$
\bar{M}=M / \Gamma^{*}=\left\{u=\left(u_{1}, \ldots, u_{n+2}\right) \in \mathbb{C}^{n+2} \mid u_{1} \ldots u_{n+2}=1\right\}
$$

Figure 1: The distinguished set $\left(\delta_{i}\right)_{i=1}^{n+2}$ of vanishing paths
is another algebraic torus, where the natural projection $M \rightarrow \bar{M}$ is given by $u_{k}=x_{k}^{n+2}$. The map π_{M} is Γ^{*}-invariant and descends to the map $\pi_{\bar{M}}(u)=u_{1}+\cdots+u_{n+2}$ from the quotient

The map $\pi_{\bar{M}}: \bar{M} \rightarrow \mathbb{C}$ is the Landau-Ginzburg potential for the mirror of \mathbb{P}^{n+1}, which has $n+2$ critical points with critical values $\left\{(n+2) \zeta_{n+2}^{-i}\right\}_{i=1}^{n+2}$ where $\zeta_{n+2}=$ $\exp [2 \pi \sqrt{-1} /(n+2)]$. Choose the origin as the base point and take the distinguished set $\left(\delta_{i}\right)_{i=1}^{n+2}$ of vanishing paths $\delta_{i}:[\underline{0,1}] \ni t \mapsto(n+2) \zeta_{n+2}^{-i} t \in \mathbb{C}$ as in Figure 1. The corresponding vanishing cycles in $\bar{M}_{0}=\pi_{\bar{M}}^{-1}(0)$ will be denoted by V_{i}.
Let \mathcal{F}_{n+2} be the A_{∞}-category whose set of objects is $\left\{V_{i}\right\}_{i=1}^{n+2}$ and whose spaces of morphisms are Lagrangian intersection Floer complexes. This is a full A_{∞}-subcategory of the Fukaya category $\mathcal{F}\left(\bar{M}_{0}\right)$ of the exact symplectic manifold \bar{M}_{0}. See Seidel [20] for the Fukaya category of an exact symplectic manifold, and Fukaya, Oh, Ohta and Ono [6] for that of a general symplectic manifold. We often regard the $A_{\infty}-$ category \mathcal{F}_{n+2} with $n+2$ objects as an A_{∞}-algebra over the semisimple ring R_{n+2} of dimension $n+2$.

As explained in Section 5 below, the affine variety \bar{M}_{0} is an $(n+2)$-fold cover of the n-dimensional pair of pants \mathcal{P}^{n}, and contains $n+2$ Lagrangian spheres $\left\{L_{i}\right\}_{i=1}^{n+2}$ whose projection to \mathcal{P}^{n} is the Lagrangian immersion studied by Sheridan [23]. Let
\mathcal{A}_{n+2} be the full A_{∞}-subcategory of $\mathcal{F}\left(\bar{M}_{0}\right)$ consisting of these Lagrangian spheres. The following proposition is proved in Section 5:

Proposition 3.1 The Lagrangian submanifolds L_{i} and V_{i} are isomorphic in $\mathcal{F}\left(\bar{M}_{0}\right)$.
The inclusion $\bar{M}_{0} \subset \bar{M}$ induces an isomorphism $\pi_{1}\left(\bar{M}_{0}\right) \cong \pi_{1}(\bar{M})$ of the fundamental group. Let T be the torus dual to \bar{M} so that $\pi_{1}(\bar{M}) \cong T^{*}:=\operatorname{Hom}\left(T, \mathbb{C}^{\times}\right)$. One can equip \mathcal{F}_{n+2} with a T-action by choosing lifts of V_{i} to the universal cover of \bar{M}_{0}. Let \mathcal{F}_{0} be the Fukaya category of M_{0} consisting of $N=(n+2)^{n+1}$ vanishing cycles $\left\{\widetilde{V}_{i}\right\}_{i=1}^{N}$ of π_{M} obtained by pulling-back $\left\{V_{i}\right\}_{i=1}^{n+2}$. The covering $M_{0} \rightarrow \bar{M}_{0}$ comes from a surjective group homomorphism $\pi_{1}\left(\bar{M}_{0}\right) \rightarrow \Gamma^{*}$, which induces an inclusion $\Gamma \hookrightarrow T$ of the dual group. It follows from Seidel [16, Equation (8.13)] that \mathcal{F}_{0} is quasi-isomorphic to $\mathcal{F}_{n+2} \rtimes \Gamma$, which in turn is quasi-isomorphic to $\mathcal{A}_{n+2} \rtimes \Gamma$ by Proposition 3.1.

The following proposition is due to Sheridan:
Proposition 3.2 (Sheridan [23, Proposition 5.15]) \mathcal{A}_{n+2} is T-equivariantly quasiisomorphic to \mathcal{S}_{n+2}.

Since $\mathcal{S}_{0}=\mathcal{S}_{n+2} \rtimes \Gamma$, one obtains the following:
Corollary 3.3 \mathcal{F}_{0} is quasi-isomorphic to \mathcal{S}_{0}.
The vanishing cycles $\left\{\tilde{V}_{i}\right\}_{i=1}^{N}$ are Lagrangian submanifolds of the projective CalabiYau manifold X_{0}, which are rational since they are contractible in M. To show that they split-generate the Fukaya category of X_{0}, Seidel introduced the notion of negativity of a graded symplectic automorphism. Let $\mathfrak{L}_{X_{0}} \rightarrow X_{0}$ be the bundle of unoriented Lagrangian Grassmannians on the projective Calabi-Yau manifold X_{0}. The phase function $\alpha_{X_{0}}: \mathfrak{L}_{X_{0}} \rightarrow S^{1}$ is defined by

$$
\alpha_{X_{0}}(\Lambda)=\frac{\eta_{X_{0}}\left(e_{1} \wedge \ldots \wedge e_{n}\right)^{2}}{\left|\eta_{X_{0}}\left(e_{1} \wedge \ldots \wedge e_{n}\right)\right|^{2}}
$$

where $\Lambda=\operatorname{span}_{\mathbb{R}}\left\{e_{1}, \ldots, e_{n}\right\} \in \mathfrak{L}_{X_{0}, x}$ is a Lagrangian subspace of $T_{x} X_{0}$ and $\eta_{X_{0}}$ is a holomorphic volume form on X_{0}. The phase function $\alpha_{\phi}: \mathfrak{L}_{X_{0}} \rightarrow S^{1}$ of a symplectic automorphism $\phi: X_{0} \rightarrow X_{0}$ is defined by sending $\Lambda \in \mathfrak{L}_{X_{0}, \chi}$ to $\alpha_{\phi}(\Lambda)=$ $\alpha_{X_{0}}\left(\phi_{*}(\Lambda)\right) / \alpha_{X_{0}}(\Lambda)$, and a graded symplectic automorphism is a pair $\widetilde{\phi}=\left(\phi, \widetilde{\alpha}_{\phi}\right)$ of a symplectic automorphism ϕ and a lift $\widetilde{\alpha}_{\phi}: \mathfrak{L}_{X_{0}} \rightarrow \mathbb{R}$ of the phase function α_{ϕ} to the universal cover \mathbb{R} of S^{1}. The group of graded symplectic automorphisms of X_{0} will
be denoted by $\widetilde{\operatorname{Aut}}\left(X_{0}\right)$. A graded symplectic automorphism $\tilde{\phi} \in \widetilde{\operatorname{Aut}}\left(X_{0}\right)$ is negative if there is a positive integer d_{0} such that $\tilde{\alpha}_{\phi^{d_{0}}}(\Lambda)<0$ for all $\Lambda \in \mathfrak{L}_{X_{0}}$.
The phase function $\alpha_{L}: L \rightarrow S^{1}$ of a Lagrangian submanifold $L \subset X_{0}$ is defined similarly by $\alpha_{L}(x)=\alpha_{X_{0}}\left(T_{x} L\right)$, and a grading of L is a lift $\tilde{\alpha}_{L}: L \rightarrow \mathbb{R}$ of α_{L} to the universal cover of S^{1}. Let Λ_{0} be the local subring of $\Lambda_{\mathbb{Q}}$ containing only non-negative powers of q, and Λ_{+}be the maximal ideal of Λ_{0}. For a quintuple $L^{\sharp}=\left(L, \tilde{\alpha}_{L}, \$_{L}, \lambda_{L}, J_{L}\right)$ consisting of a rational Lagrangian submanifold L, a grading $\tilde{\alpha}_{L}$ on L, a spin structure $\$_{L}$ on L, a multi-section λ_{L} of $\left.o_{X_{0}}\right|_{L}$, and a compatible almost complex structure J_{L}, one can endow the cohomology group $H^{*}\left(L ; \Lambda_{0}\right)$ with the structure $\left\{\mathfrak{m}_{k}\right\}_{k=0}^{\infty}$ of a filtered A_{∞}-algebra (see Fukaya, Oh, Ohta and Ono [6, Definition 3.2.20]), which is well-defined up to isomorphism [6, Theorem A]. The map $\mathfrak{m}_{0}: \Lambda_{0} \rightarrow H^{1}\left(L ; \Lambda_{0}\right)$ comes from holomorphic disks bounded by L, and measures the anomaly or obstruction to the definition of Floer cohomology. A solution $b \in H^{1}\left(L ; \Lambda_{+}\right)$to the Maurer-Cartan equation

$$
\sum_{k=0}^{\infty} \mathfrak{m}_{k}(b, \cdots, b)=0
$$

is called a bounding cochain. A rational Lagrangian brane is a pair $L^{\diamond}=\left(L^{\sharp}, b\right)$ of $L^{\#}$ and a bounding cochain $b \in H^{1}\left(L ; \Lambda_{+}\right)$. For a pair $L_{1}^{\diamond}=\left(L_{1}^{\sharp}, b_{1}\right)$ and $L_{2}^{\diamond}=\left(L_{2}^{\sharp}, b_{2}\right)$ of rational Lagrangian branes, the Floer cohomology $\operatorname{HF}\left(L_{1}^{\diamond}, L_{2}^{\diamond} ; \Lambda_{0}\right)$ is well-defined up to isomorphism. The Fukaya category $\mathcal{F}\left(X_{0}\right)$ is an A_{∞}-category over $\Lambda_{\mathbb{Q}}$ whose objects are rational Lagrangian branes and whose spaces of morphisms are Lagrangian intersection Floer complexes.
Let \mathcal{F}_{q} be the full A_{∞}-subcategory of $\mathcal{F}\left(X_{0}\right)$ consisting of vanishing cycles \tilde{V}_{i} equipped with the trivial complex line bundles, the canonical gradings and zero bounding cochains. Since the restrictions of $\left(o_{X}, \nabla\right)$ to vanishing cycles are trivial flat bundles, the category \mathcal{F}_{q} is defined over $\Lambda_{\mathbb{N}}$.
Let η_{M} be the unique up to scalar holomorphic volume form on M which extends to a rational form on X with a simple pole along X_{∞}. This gives a holomorphic volume form $\eta_{M} / d z$ on each fiber $M_{z}=\pi_{M}^{-1}(z)$, so that $\pi_{M}: M \rightarrow \mathbb{C}$ is a locally trivial fibration of graded symplectic manifolds outside the critical values. Let $\gamma_{\infty}:[0,2 \pi] \rightarrow$ \mathbb{C} be a circle of large radius $R \gg 0$ and $\widetilde{h}_{\gamma_{\infty}} \in \widetilde{\operatorname{Aut}}\left(M_{R}\right)$ be the monodromy along γ_{∞}. Since γ_{∞} is homotopic to a product of paths around each critical values, one sees that $\widetilde{h}_{\gamma_{\infty}}$ is isotopic to a composition of Dehn twists along vanishing cycles. We prove the following in Section 4:

Proposition 3.4 (Seidel [16, Proposition 7.22]) The graded symplectic automorphism $\widetilde{h}_{\gamma_{\infty}} \in \widetilde{\operatorname{Aut}}\left(M_{R}\right)$ is isotopic to a graded symplectic automorphism $\widetilde{\phi} \in \widetilde{\operatorname{Aut}}\left(M_{R}\right)$ whose
extension to X_{R} has the following property: There is an arbitrary small neighborhood $W \subset X_{R}$ of the subset $\operatorname{Sing}\left(X_{\infty}\right) \cap X_{R}$ such that $\phi(W)=W$ and $\left.\widetilde{\phi}\right|_{X_{R} \backslash W}$ is negative.

Here $\operatorname{Sing}\left(X_{\infty}\right)$ is the singular locus of X_{∞}, which is the union of ($n-1$)-dimensional projective spaces.

Lemma 3.5 (Seidel [16, Lemma 9.2]) If $n=3$, then any rational Lagrangian brane is contained in split-closed derived category of $\mathcal{F}_{q}^{*}=\mathcal{F}_{q} \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{Q}}$;

$$
D^{\pi} \mathcal{F}\left(X_{0}\right) \cong D^{\pi} \mathcal{F}_{q}^{*}
$$

The proof is identical to that of Seidel [16, Lemma 9.2], which is based on Seidel's long exact sequence [17] (see also [16, Section 9c] and Oh [12]).

Remark 3.6 (Seidel [16, Remark 9.3]) If $n=3$, then the real dimension of the intersection $\operatorname{Sing}\left(X_{\infty}\right) \cap X_{0}$ is two, so that any Lagrangian submanifold can be made disjoint from a sufficiently small neighborhood W of $\operatorname{Sing}\left(X_{\infty}\right) \cap X_{0}$ by a generic perturbation. This is the only place where we use the condition $n=3$, and one can show the equivalence (1) for any n with $D^{\pi} \mathcal{F}\left(X_{0}\right)$ replaced by the split-closure of Lagrangian branes which can be perturbed away from $\operatorname{Sing}\left(X_{\infty}\right) \cap X_{0}$.

A notable feature of Floer cohomologies over Λ_{0} is their dependence on Hamiltonian isotopy: For a pair $\left(L_{0}^{\sharp}, L_{1}^{\sharp}\right)$ of Lagrangian submanifolds equipped with auxiliary choices, a symplectomorphism $\psi: X_{0} \rightarrow X_{0}$ induces an isomorphism

$$
\psi_{*}:\left(H^{*}\left(L_{i}^{\#} ; \Lambda_{0}\right), \mathfrak{m}_{k}\right) \rightarrow\left(H^{*}\left(\psi\left(L_{i}^{\#}\right) ; \Lambda_{0}\right), \mathfrak{m}_{k}\right)
$$

of filtered A_{∞}-algebras (see Fukaya, Oh, Ohta and Ono [6, Theorem A]), which induces a map ψ_{*} on the set of bounding cochains preserving the Floer cohomology over Λ_{0} [6, Theorem G.3]:

$$
H F\left(\left(L_{0}^{\sharp}, b_{0}\right),\left(L_{1}^{\sharp}, b_{1}\right) ; \Lambda_{0}\right) \cong H F\left(\left(\psi\left(L_{0}^{\sharp}\right), \psi_{*}\left(b_{0}\right)\right),\left(\psi\left(L_{1}^{\sharp}\right), \psi_{*}\left(b_{1}\right)\right) ; \Lambda_{0}\right)
$$

On the other hand, if we move L_{0}^{\sharp} and $L_{1}^{\#}$ by two distinct Hamiltonian isotopies ψ^{0} and ψ^{1}, then the Floer cohomology over $\Lambda_{\mathbb{Q}}$ is preserved [6, Theorem G.4]

$$
H F\left(\left(L_{0}^{\sharp}, b_{0}\right),\left(L_{1}^{\sharp}, b_{1}\right) ; \Lambda_{\mathbb{Q}}\right) \cong H F\left(\left(\psi^{0}\left(L_{0}^{\sharp}\right), \psi_{*}^{0}\left(b_{0}\right)\right),\left(\psi^{1}\left(L_{1}^{\sharp}\right), \psi_{*}^{1}\left(b_{1}\right)\right) ; \Lambda_{\mathbb{Q}}\right)
$$

whereas the Floer cohomology over Λ_{0} may not be preserved;

$$
H F\left(\left(L_{0}^{\#}, b_{0}\right),\left(L_{1}^{\#}, b_{1}\right) ; \Lambda_{0}\right) \nsupseteq H F\left(\left(\psi^{0}\left(L_{0}^{\sharp}\right), \psi_{*}^{0}\left(b_{0}\right)\right),\left(\psi^{1}\left(L_{1}^{\sharp}\right), \psi_{*}^{1}\left(b_{1}\right)\right) ; \Lambda_{0}\right)
$$

See [6, Section 3.7.6] for a simple example where this occurs. This phenomenon is used by Seidel [16, Section 8 g and 11a] to prove the following:

Proposition 3.7 (Seidel [16, Proposition 11.1]) The A_{∞}-algebra $\mathcal{F}_{q} \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{N}} / q^{2} \Lambda_{\mathbb{N}}$ is not quasi-isomorphic to the trivial deformation $\mathcal{F}_{0} \otimes_{\mathbb{C}} \Lambda_{\mathbb{N}} / q^{2} \Lambda_{\mathbb{N}}$.

To show this, Seidel takes a rational Lagrangian submanifold $L_{1 / 2}$ in X_{z} for sufficiently large z as follows:
(1) Consider a pencil $\left\{X_{z}\right\}_{z \in \mathbb{P}_{\mathbb{C}}^{1}}$ generated by two section $\sigma_{X, \infty}=x_{1} \ldots x_{n+2}$ and $\sigma_{X, 0}=x_{1}^{2}\left(x_{2}^{2}+x_{3}^{2}\right) x_{4} \ldots x_{n+1}$, whose general fiber is singular. Let $C=$ $\left\{x_{n+2}=0\right\}$ be an irreducible component of $X_{\infty}=\left\{x_{1} \ldots x_{n+2}=0\right\} \subset X$, and $C_{\infty}=C \cap X_{\infty}$ be the intersection with other components. If we write $C_{0}=X_{0} \cap C$, then the set $C_{0} \backslash C_{\infty}$ is the union of two ($n-1$)-planes $\left\{x_{2}=\right.$ $\left.\pm \sqrt{-1} x_{3}\right\}$.
(2) Let $K_{1 / 2}=\left\{2\left|x_{1}\right|=\left|x_{2}\right|=\cdots=\left|x_{n+2}\right|\right\} \subset C \backslash C_{\infty}$ be a Lagrangian n-torus in C, which is a fiber of the moment map for the torus action. The intersection $K_{1 / 2} \cap C_{0}$ consists of two ($n-1$)-tori.
(3) Take a Hamiltonian function H on C supported on a neighborhood of the two ($n-1$)-tori such that the corresponding Hamiltonian vector field points in opposite directions transversally to two ($n-1$)-tori. By flowing $K_{1 / 2}$ along the Hamiltonian vector field in both negative and positive time directions, one obtains a family $\left(K_{r}\right)_{r \in[0,1]}$ of Lagrangian submanifolds of $C \backslash C_{\infty}$.
(4) The Lagrangian submanifolds K_{r} for $r \neq 1 / 2$ are disjoint from C_{0}. They are exact Lagrangian submanifolds with respect to the one-form $\theta_{C \backslash C_{0}}$ obtained by pulling back the connection on o_{X} via $\left.\sigma_{X, 0}\right|_{C \backslash C_{0}}$.
(5) Now perform a generic perturbation of $\sigma_{X, 0}$ so that a general member X_{z} of the pencil is smooth. One still has a Lagrangian submanifold $K_{1 / 2} \subset C \backslash C_{\infty}$ satisfying the following:

- $K_{1 / 2} \cap C_{0}$ consists of two ($n-1$)-tori.
- By flowing $K_{1 / 2}$ along a Hamiltonian vector field, one obtains a family $\left(K_{r}\right)_{r \in[0,1]}$ of Lagrangian submanifolds of $C \backslash C_{\infty}$.
- K_{r} for $r \neq 1 / 2$ are disjoint from C_{0}. They are exact Lagrangian submanifolds of $C \backslash C_{0}$.
(6) By parallel transport along the graph

$$
\hat{X}=\left\{(y, x) \in \mathbb{C} \times X \mid \sigma_{X, \infty}(x)=y \sigma_{X, 0}(x)\right\} \xrightarrow{y \text {-projection }} \mathbb{C}
$$

of the pencil, one obtains a Lagrangian torus $L_{1 / 2}$ in X_{z} for sufficiently large $z=1 / y$, satisfying the following conditions:

- The intersection $Z=L_{1 / 2} \cap X_{z, \infty}$ of $L_{1 / 2} \cong\left(S^{1}\right)^{n}$ with the divisor $X_{z, \infty}=X_{z} \cap X_{\infty}$ at infinity is a smooth ($n-1$)-dimensional manifold disjoint from $\operatorname{Sing}\left(X_{\infty}\right) \cap X_{z}$. (In fact, it is a disjoint union of two ($n-1$)tori; $Z=\{1 / 4,3 / 4\} \times\left(S^{1}\right)^{n-1}$.)
- By flowing $L_{1 / 2}$ by a Hamiltonian vector field, one obtains a family $\left(L_{r}\right)_{r \in[0,1]}$ of Lagrangian submanifolds of X_{z}.
- L_{r} for any $r \in[0,1]$ admits a grading.
- L_{r} for $r \neq 1 / 2$ are disjoint from $X_{z, \infty}$. They are exact Lagrangian submanifolds in the affine part $M_{z}=X_{z} \backslash X_{z, \infty}$ of X_{z}.

If the perturbation of $\sigma_{X, 0}$ is generic, then there are no non-constant stable holomorphic disks in X_{z} bounded by L_{r} for $r \in[0,1]$ with area less than 2 . Indeed, such a disk cannot have a sphere component since a holomorphic sphere has area at least $n+2$. If a holomorphic disk exists in X_{z} for all sufficiently large z, then Gromov compactness theorem gives a holomorphic disk in X_{∞} bounded by K_{r}. This disk either have sphere components in irreducible components of X_{∞} other than C, or passes through $C_{\infty} \cap C_{0}$. The former is impossible since sphere components have area at least $n+2$, and the latter is impossible for a disk of area less than 2 since such disks have fixed intersection points with C_{∞} by classification (see Cho [4, Theorem 10.1]) of holomorphic disks in C bounded by K_{r}.

The absence of holomorphic disks of area less than 2 shows that the Lagrangian submanifolds $L_{0}^{\diamond}=\left(L_{0}^{\sharp}, 0\right)$ and $L_{1}^{\diamond}=\left(L_{1}^{\sharp}, 0\right)$ equipped with auxiliary data and the zero bounding cochains give objects of the first order Fukaya category $D^{\pi} \mathcal{F}_{q} \otimes_{\Lambda_{\mathbb{N}}}$ $\Lambda_{\mathbb{N}} / q^{2} \Lambda_{\mathbb{N}}$. Now the argument of Seidel [16, Section 8 g$]$ shows the following:
(1) The spaces $H^{0}\left(\operatorname{hom}_{\mathcal{F}_{0}}\left(L_{i}^{\diamond}, L_{j}^{\diamond}\right)\right)$ are one-dimensional for $0 \leq i \leq j \leq 1$.
(2) The product

$$
H^{0}\left(\operatorname{hom}_{\mathcal{F}_{0}}\left(L_{1}^{\diamond}, L_{0}^{\diamond}\right)\right) \otimes H^{0}\left(\operatorname{hom}_{\mathcal{F}_{0}}\left(L_{0}^{\diamond}, L_{1}^{\diamond}\right)\right) \rightarrow H^{0}\left(\operatorname{hom}_{\mathcal{F}_{0}}\left(L_{0}^{\diamond}, L_{0}^{\diamond}\right)\right)
$$ vanishes.

(3) The map

$$
\begin{gathered}
H^{0}\left(\operatorname{hom}_{\mathcal{F}_{q}}\left(L_{1}^{\diamond}, L_{0}^{\diamond}\right) \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{N}} / q^{2} \Lambda_{\mathbb{N}}\right) \otimes_{\mathbb{C}} H^{0}\left(\operatorname{hom}_{\mathcal{F}_{q}}\left(L_{0}^{\diamond}, L_{1}^{\diamond}\right) \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{N}} / q^{2} \Lambda_{\mathbb{N}}\right) \\
\downarrow \\
H^{0}\left(\operatorname{hom}_{\mathcal{F}_{q}}\left(L_{0}^{\diamond}, L_{0}^{\diamond}\right) \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{N}} / q^{2} \Lambda_{\mathbb{N}}\right)
\end{gathered}
$$

induced by $\mathfrak{m}_{2}^{\mathcal{F}_{q}}$ is non-zero.

The point is that L_{0} and L_{1} are exact Lagrangian submanifolds of M_{z}, which are not isomorphic in $\mathcal{F}\left(M_{z}\right)$, but are Hamiltonian isotopic in X_{z}, so that they are isomorphic in $D^{\pi}\left(\mathcal{F}_{q} \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{Z}}\right)$. Now [16, Lemma 3.9] concludes the proof of Proposition 3.7.

The symplectomorphism $\bar{\phi}_{0}: \bar{M}_{0} \rightarrow \bar{M}_{0}$ sending $\left(u_{1}, \ldots, u_{n+2}\right)$ to $\left(u_{2}, \ldots, u_{n+2}, u_{1}\right)$ lifts to a $\mathbb{Z} /(n+2)$-action on \mathcal{F}_{q} just as in [16, Section 11b]. It follows that \mathcal{F}_{q} satisfies all the properties characterizing \mathcal{S}_{q} in Proposition 2.4, and one obtains the following;

Proposition 3.8 \mathcal{F}_{q} is quasi-isomorphic to $\psi^{*} \mathcal{S}_{q}$ for some $\psi \in \operatorname{End}\left(\Lambda_{\mathbb{N}}\right)^{\times}$.
Theorem 1.1 follows from Lemma 2.2, Lemma 3.5, and Proposition 3.8.
Remark 3.9 Since the Lagrangian torus used in the proof of Proposition 3.7 does not intersect with $\operatorname{Sing}\left(X_{\infty}\right)$, the proof of Proposition 3.7 (and hence Proposition 3.8) works for any n. Then the argument of Sheridan [22, Section 8.2], based on a splitgeneration criterion announced by Abouzaid, Fukaya, Oh, Ohta, and Ono, shows that $\left\{L_{i}\right\}_{i=1}^{n+2}$ split-generates $D^{\pi} \mathcal{F}\left(X_{0}\right)$ for any n.

4 Negativity of monodromy

In this section, we prove Proposition 3.4 by using local models of the quasi-Lefschetz pencil $\left\{X_{z}\right\}$ along the lines of Seidel [16, Section 7]. In the case where $\operatorname{dim} X_{z} \geq 3$, we need [16, Assumption 7.8] and a generalization of [16, Assumption 7.5].

Assumption 4.1 (Seidel [16, Assumption 7.8]) Let $n \geq 2$ and $2 \leq k \leq n+1$.

- $Y \subset \mathbb{C}^{n+1}=\mathbb{R}^{2 n+2}$ is an open ball around the origin equipped with the standard symplectic form ω_{Y} and the T^{k}-action

$$
\rho_{s}(y)=\left(e^{\sqrt{-1} s_{1}} y_{1}, \ldots, e^{\sqrt{-1} s_{k}} y_{k}, y_{k+1}, \ldots, y_{n+1}\right)
$$

with moment map $\mu: Y \rightarrow \mathbb{R}^{k}$. For any regular value $r \in \mathbb{R}^{k}$ of μ, the symplectic reduction $Y^{\text {red }}=Y^{\text {red, } r}=\mu^{-1}(r) / T^{k}$ can be identified with an open subset in \mathbb{C}^{n+1-k} equipped with the standard symplectic form.

- J_{Y} is a complex structure on Y which is tamed by ω_{Y}. At the origin, it is ω_{Y}-compatible and T^{k}-invariant.
- $p: Y \rightarrow \mathbb{C}$ is a J_{Y}-holomorphic function with the following properties:
(i) $p\left(\rho_{s}(y)\right)=e^{\sqrt{-1}\left(s_{1}+\cdots+s_{k}\right)} p(y)$.
(ii) $\partial_{y_{1}} \ldots \partial_{y_{k}} p$ is nonzero at $y=0$.
- η_{Y} is a J_{Y}-complex volume form on $Y \backslash p^{-1}(0)$ such that $p(y) \eta_{Y}$ extends smoothly on Y, which is nonzero at $y=0$.

In this situation, the monodromy h_{ζ} satisfy the following:

Proposition 4.2 (Seidel [16, Lemma 7.16]) For every $d>0$ and $\epsilon>0$, there exists $\delta>0$ such that the following holds. For every $y \in Y_{\zeta}=p^{-1}(\zeta)$ with $0<\zeta<\delta$ and $\|y\|<\delta$, and every Lagrangian subspace $\Lambda^{v} \subset T_{y} Y_{\zeta}$, the d-fold monodromy h_{ζ}^{d} is well-defined near y, and satisfies

$$
\tilde{\alpha}_{h_{\zeta}^{d}}\left(\Lambda^{v}\right) \leq-2 d+n+1+\epsilon
$$

The other local model is the following:

Assumption 4.3 Let $n \geq 2$ and $2 \leq k \leq n+1$.

- $Y \subset \mathbb{C}^{n+1}=\mathbb{R}^{2 n+2}$ is an open ball around the origin equipped with the standard symplectic form ω_{Y} and the T^{k}-action

$$
\begin{equation*}
\rho_{s}(y)=\left(e^{\sqrt{-1} s_{1}} y_{1}, \ldots, e^{\sqrt{-1} s_{k}} y_{k}, y_{k+1}, \ldots, y_{n+1}\right) \tag{4}
\end{equation*}
$$

with moment map $\mu: Y \rightarrow \mathbb{R}^{k}$. For any regular value $r \in \mathbb{R}^{k}$ of μ, the symplectic reduction $Y^{\text {red }}=Y^{\text {red, } r}=\mu^{-1}(r) / T^{k}$ can be identified with an open subset in \mathbb{C}^{n+1-k} equipped with the standard symplectic form.

- J_{Y} is a complex structure on Y which is tamed by ω_{Y}. At the origin, it is ω_{Y}-compatible and T^{k}-invariant.
- $\quad p$ is a J_{Y}-meromorphic function on Y satisfying the following two conditions: (i) $p\left(\rho_{s}(y)\right)=e^{\sqrt{-1}\left(-s_{1}+s_{2}+\cdots+s_{k}\right)} p(y)$.

This implies that p can be written as

$$
p(y)=\frac{y_{2} \ldots y_{k}}{y_{1}} q\left(\left|y_{1}\right|^{2} / 2, \ldots,\left|y_{k}\right|^{2} / 2, y_{k+1}, \ldots, y_{n+1}\right)
$$

for some q.
(ii) q is a smooth function defined on $Y, q(0)=1$, and $q(y) \neq 0$ for any $y \in Y$.

- η_{Y} is a J_{Y}-complex volume form on $Y \backslash p^{-1}(0)$ such that $y_{2} \ldots y_{k} \eta_{Y}$ extends smoothly on Y. It is normalized so that $y_{2} \ldots y_{k} \eta_{Y}=d y_{1} \wedge \cdots \wedge d y_{n+1}$ at $y=0$.

In this setting, we will show the negativity of the monodromy in the following sense:

Proposition 4.4 (Seidel [16, Lemma 7.16]) For any $d>0$ and $\epsilon>0$, there is $\delta_{1}>\delta_{2}>0$ such that for $\zeta \in \mathbb{C}$ with $0<|\zeta|<\delta_{1}$ and $y \in Y_{\zeta}$ with $\|y\|<\delta_{1}$ and $\left|y_{1}\right|>\delta_{2}$, the d-fold monodromy h_{ζ}^{d} is well-defined, and

$$
\tilde{\alpha}_{h_{\zeta}^{d}}\left(\Lambda^{v}\right) \leq-2 d \frac{1}{1+|\zeta|^{2} /\left|y_{3}\right|^{2(k-1)}}+n+1+\epsilon
$$

for all $\Lambda^{v} \in Y_{\zeta}$, provided $\left|y_{2}\right| \leq\left|y_{3}\right| \leq \cdots \leq\left|y_{k}\right|$.

Note that

$$
\frac{1}{1+|\zeta|^{2} /\left|y_{3}\right|^{2(k-1)}}
$$

is uniformly bounded from above on the complement of a neighborhood of $y_{2}=y_{3}=0$.
Let J_{Y}^{\prime} be the constant complex structure on Y which coincides with J_{Y} at the origin, and let η_{Y}^{\prime} be the constant J_{Y}^{\prime}-complex volume form given by

$$
\eta_{Y}^{\prime}=d y_{1} \wedge \frac{d y_{2}}{y_{2}} \wedge \cdots \wedge \frac{d y_{k}}{y_{k}} \wedge \eta_{Y \mathrm{red}}^{\prime}
$$

for some $\eta_{Y_{\text {red }}}^{\prime}$. The phase functions corresponding to η_{Y} and η_{Y}^{\prime} are denoted by α_{Y} and α_{Y}^{\prime} respectively. The proof of the following lemma is parallel to that in [16]:

Lemma 4.5 (Seidel [16, Lemma 7.12]) For any $\epsilon>0$, there exists $\delta>0$ such that if $\|y\|<\delta$ and $p(y) \neq 0$ then

$$
\left|\frac{1}{2 \pi} \arg \left(\alpha_{Y}(\Lambda) / \alpha_{Y}^{\prime}(\Lambda)\right)\right|<\epsilon
$$

for all $\Lambda \in \mathfrak{L}_{Y, y}$.

Let $H(y)=-\frac{1}{2}|p(y)|^{2}$ and consider its Hamiltonian vector field X and flow ϕ_{t}. For a regular value r of μ, the induced function, Hamiltonian vector field, and its flow on $Y^{\text {red }}$ are denoted by

$$
H^{\mathrm{red}}\left(y^{\mathrm{red}}\right)=-2^{k-3} \frac{r_{2} \ldots r_{k}}{r_{1}} q\left(r_{1}, \ldots, r_{k}, y_{k+1}, \ldots, y_{n+1}\right),
$$

$X^{\text {red }}$, and $\phi_{t}^{\text {red }}$ respectively. We write the complex structure on $Y^{\text {red }}$ induced from J_{Y}^{\prime} as $J_{Y_{\text {red }}}^{\prime}$. Then $\eta_{Y_{\text {red }}}^{\prime}$ gives a $J_{Y_{\text {red }}}^{\prime}$-complex volume form on $Y^{\text {red }}$. Let $\alpha_{Y_{\text {red }}^{\prime}}^{\prime}$ be the phase function corresponding to $\eta_{Y \text { red }}^{\prime}$. The proof of the following lemma is the same as in [16]:

Lemma 4.6 (Seidel [16, Lemma 7.13]) For any $\epsilon>0$, there is $\delta>0$ such that for $\|r\|<\delta, r_{2} \ldots r_{k} / r_{1}<\delta,\left\|y^{\text {red }}\right\|<\delta$, and $|t|<\delta r_{1} / r_{2} \ldots r_{k}, \phi_{t}^{\text {red }}$ is well-defined and

$$
\left|\widetilde{\alpha}_{\phi_{t}^{\text {red }}}^{\prime}\left(\Lambda^{\mathrm{red}}\right)\right|<\epsilon
$$

for any Lagrangian subspace $\Lambda^{\text {red }}$.
Now we prove the following:
Lemma 4.7 (Seidel [16, Lemma 7.14]) For any $\epsilon>0$, there is $\delta_{1}>\delta_{2}>0$ such that if $\|y\|<\delta_{1},\left|y_{1}\right|>\delta_{2}, 0<|p(y)|<\delta_{1}$ and $|t|<\delta_{1}|p(y)|^{-2}$, then ϕ_{t} is well-defined and satisfies

$$
\left|\tilde{\alpha}_{\phi_{t}}^{\prime}(\Lambda)-\frac{2 t}{2 \pi}\left(1+\frac{\left|y_{1}\right|^{2}}{\left|y_{2}\right|^{2}}+\cdots+\frac{\left|y_{1}\right|^{2}}{\left|y_{k}\right|^{2}}\right)^{-1}\right|<n+1+\epsilon
$$

for any $\Lambda \in \mathfrak{L}_{Y, y}$.
Proof The proof of well-definedness of ϕ_{t} is parallel to [16]. Note that the condition $\left|y_{1}\right|>\delta_{2}$ is preserved under the flow since ϕ_{t} is T^{k}-equivariant. Let $H^{\prime}=$ $-\frac{1}{2}\left|y_{2} \ldots y_{k} / y_{1}\right|^{2}$ and

$$
X^{\prime}=-\sqrt{-1}\left(\frac{1}{\left|y_{1}\right|^{2}}+\cdots+\frac{1}{\left|y_{k}\right|^{2}}\right)^{-1}\left(-\frac{y_{1}}{\left|y_{1}\right|^{2}}, \frac{y_{2}}{\left|y_{2}\right|^{2}}, \ldots, \frac{y_{k}}{\left|y_{k}\right|^{2}}, 0, \ldots, 0\right)
$$

be its Hamiltonian vector field. Then $H(y)=H^{\prime}(y) r(y)$ for some smooth function $r(y)=1+O(\|y\|)$. By direct computation, we have

$$
\begin{aligned}
\left\|d H^{\prime}\right\| & \leq C\left|\frac{y_{2} \ldots y_{k}}{y_{1}}\right|^{2}\left(\frac{1}{\left|y_{1}\right|^{2}}+\cdots+\frac{1}{\left|y_{k}\right|^{2}}\right) \\
& \leq C\left|\frac{y_{2} \ldots y_{k}}{y_{1}}\right|^{2} \frac{k\|y\|^{2(k-1)}}{\left|y_{1} \ldots y_{k}\right|^{2}} \\
& =C \frac{k\|y\|^{2(k-1)}}{\left|y_{1}\right|^{4}}
\end{aligned}
$$

which is bounded if $\|y\|<\delta_{1}$ and $\left|y_{1}\right|>\delta_{2}$. Then

$$
\left\|d H-d H^{\prime}\right\| \leq|r-1|\left\|d H^{\prime}\right\|+\left|H^{\prime}\right|\|d r\| \leq C\left(\|y\|+\left|H^{\prime}\right|\right),
$$

and this implies that $\left\|d H-d H^{\prime}\right\|$ is small if $|H|$ is also sufficiently small. Hence we obtain

$$
\begin{equation*}
\left\|X-X^{\prime}\right\|<\epsilon \tag{5}
\end{equation*}
$$

for small δ_{1}. Take a Lagrangian subspace $\Lambda^{\text {red }}$ in $T_{y^{\text {red }}} Y^{\text {red }}$ and consider a Lagrangian subspace given by

$$
\Lambda=\sqrt{-1} y_{1} \mathbb{R} \oplus \cdots \oplus \sqrt{-1} y_{k} \mathbb{R} \oplus \Lambda^{\mathrm{red}} \subset T_{y} Y
$$

Then we have

$$
\alpha_{Y}^{\prime}(\Lambda)=(-1)^{k} \frac{y_{1}^{2}}{\left|y_{1}\right|^{2}} \cdot \alpha_{Y \mathrm{red}}^{\prime}\left(\Lambda^{\mathrm{red}}\right)
$$

and hence

$$
\begin{aligned}
\tilde{\alpha}_{\phi_{t}}^{\prime}(\Lambda)= & \frac{1}{2 \pi} \int_{0}^{t} X \arg \left(\alpha _ { Y } ^ { \prime } \left(\left(D \phi_{\tau}(\Lambda)\right) d \tau\right.\right. \\
= & \frac{1}{2 \pi} \int_{0}^{t} X^{\prime} \arg \frac{y_{1}^{2}}{\left|y_{1}\right|^{2}} d \tau+\frac{1}{2 \pi} \int_{0}^{t}\left(X-X^{\prime}\right) \arg \frac{y_{1}^{2}}{\left|y_{1}\right|^{2}} d \tau \\
& +\frac{1}{2 \pi} \int_{0}^{t} X^{\mathrm{red}} \arg \left(\alpha _ { Y \text { red } } ^ { \prime } \left(\left(D \phi_{\tau}^{\mathrm{red}}\left(\Lambda^{\mathrm{red}}\right)\right) d \tau .\right.\right.
\end{aligned}
$$

The third term is small from Lemma 4.6. The second term is bounded by

$$
\frac{1}{2 \pi} \int_{0}^{t}\left\|X-X^{\prime}\right\|\left\|D \arg \frac{y_{1}^{2}}{\left|y_{1}\right|^{2}}\right\| d \tau
$$

which is also small from (5) and the fact that

$$
\left\|D \arg \frac{y_{1}^{2}}{\left|y_{1}\right|^{2}}\right\| \leq C\|X\|=C\|d H\|
$$

is uniformly bounded. Since $\left|y_{1}\right|^{2}$ is preserved under the flow, the first term is

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{t} X^{\prime} \arg \frac{y_{1}^{2}}{\left|y_{1}\right|^{2}} d \tau \\
& \quad=\frac{1}{2 \pi}\left(\frac{1}{\left|y_{1}\right|^{2}}+\cdots+\frac{1}{\left|y_{k}\right|^{2}}\right)^{-1} \int_{0}^{t} \frac{1}{\left|y_{1}\right|^{2}} \sqrt{-1} y_{1} \partial_{y_{1}} \arg \frac{y_{1}^{2}}{\left|y_{1}\right|^{2}} d \tau \\
& \quad=\frac{1}{2 \pi}\left(\frac{1}{\left|y_{1}\right|^{2}}+\cdots+\frac{1}{\left|y_{k}\right|^{2}}\right)^{-1} \frac{2 t}{\left|y_{1}\right|^{2}} \\
& \quad=\frac{2 t}{2 \pi}\left(1+\frac{\left|y_{1}\right|^{2}}{\left|y_{1}\right|^{2}}+\cdots+\frac{\left|y_{1}\right|^{2}}{\left|y_{k}\right|^{2}}\right)^{-1} .
\end{aligned}
$$

Then we obtain

$$
\left|\widetilde{\alpha}_{\phi_{t}}^{\prime}(\Lambda)-\frac{2 t}{2 \pi}\left(1+\frac{\left|y_{1}\right|^{2}}{\left|y_{2}\right|^{2}}+\cdots+\frac{\left|y_{1}\right|^{2}}{\left|y_{k}\right|^{2}}\right)^{-1}\right|<\epsilon .
$$

For arbitrary Lagrangian subspace Λ_{1}, the desired bound for $\tilde{\alpha}_{\phi_{t}}^{\prime}\left(\Lambda_{1}\right)$ is obtained from this and the fact that

$$
\left|\widetilde{\alpha}_{\phi_{t}}^{\prime}\left(\Lambda_{1}\right)-\widetilde{\alpha}_{\phi_{i}}^{\prime}(\Lambda)\right|<n+1
$$

(see [16, Lemma 6.11]).

Let Z be the horizontal lift of $-\sqrt{-1} \zeta \partial_{\zeta}$, and ψ_{t} be its flow. Then there is a positive function f such that $Z=f X$, and hence $\psi_{t}(y)=\phi_{g_{t}(y)}(y)$ for

$$
g_{t}(y)=\int_{0}^{t} f\left(\psi_{\tau}(y)\right) d \tau
$$

By the same argument as in [16], we have:

Lemma 4.8 (Seidel [16, Lemma 7.15]) For any $d>0$ and $\epsilon>0$, there is $\delta>0$ such that for $\zeta \in \mathbb{C}$ with $0<|\zeta|<\delta$ and $y \in Y_{\zeta}=p^{-1}(\zeta)$ with $\|y\|<\delta$, the d-fold monodromy h_{ζ}^{d} is well-defined, $\epsilon /|\zeta|^{2}>2 \pi d$, and satisfies

$$
g_{2 \pi d}(y) \leq \epsilon /|\zeta|^{2} .
$$

Proof of Proposition 4.4 Let $\eta_{Y_{\zeta}}=\eta_{Y} /\left(d \zeta / \zeta^{2}\right)$ be a complex volume form on Y_{ζ}, and $\alpha_{Y_{\zeta}}$ be the corresponding phase function. Take $\Lambda \in \mathfrak{L}_{Y, y}$ such that $D p(\Lambda)=a \mathbb{R}$ for $a \in U(1)$, and set $\Lambda^{v}=\Lambda \cap \operatorname{ker} D p \in \mathfrak{L}_{Y_{\zeta}, y}$. Then

$$
\begin{equation*}
\alpha_{Y_{\zeta}}\left(\Lambda^{v}\right)=\frac{\zeta^{4}}{a^{2}|\zeta|^{4}} \alpha_{Y}(\Lambda) . \tag{6}
\end{equation*}
$$

We consider a Lagrangian subspace $\Lambda^{v} \in \mathfrak{L}_{Y_{\zeta}, y}$ such that $D p\left(\Lambda^{v}\right)=\sqrt{-1} \zeta \mathbb{R}$, and containing the tangent space of the torus action on Y_{ζ}. Then Λ^{v} has the form

$$
\Lambda^{v}=\left(\sqrt{-1} y_{1} \mathbb{R} \oplus \cdots \oplus \sqrt{-1} y_{k} \mathbb{R} \oplus \Lambda^{\mathrm{red}}\right) \cap \operatorname{ker} D p
$$

Let $\Lambda=\Lambda^{v} \oplus Z_{y} \mathbb{R} \in \mathfrak{L}_{Y, y}$. Since Z is the horizontal lift of $-\sqrt{-1} \zeta \partial_{\zeta} \in T_{\zeta}(\sqrt{-1} \zeta \mathbb{R})$, $Z_{\psi_{t}(y)}$ is contained in $D \psi_{t}(\Lambda)$, and hence we have

$$
D\left(\left.\psi_{t}\right|_{Y_{\xi}}\right)\left(\Lambda^{v}\right)=D \psi_{t}(\Lambda) \cap \operatorname{ker}(D p)
$$

From this and (6) we have

$$
\alpha_{\left.\psi_{t}\right|_{\zeta}}\left(\Lambda^{v}\right)=e^{-2 t} \alpha_{\psi_{t}}(\Lambda)
$$

Combining this with Lemma 4.5 and 4.7, we obtain

$$
\begin{aligned}
\tilde{\alpha}_{h_{\xi}^{d}}\left(\Lambda^{v}\right) & =\tilde{\alpha}_{g_{2 \pi d}(y)}(\Lambda)-2 d \\
& \leq \widetilde{\alpha}_{g_{2 \pi d}(y)}^{\prime}(\Lambda)-2 d+\epsilon \\
& \leq 2 d\left(\left(1+\frac{\left|y_{1}\right|^{2}}{\left|y_{2}\right|^{2}}+\cdots+\frac{\left|y_{1}\right|^{2}}{\left|y_{k}\right|^{2}}\right)^{-1}-1\right)+\epsilon \\
& =-2 d \frac{\frac{1}{\left|y_{2}\right|^{2}}+\cdots+\frac{1}{\left|y_{k}\right|^{2}}}{\frac{1}{\left|y_{1}\right|^{2}}+\frac{1}{\left|y_{2}\right|^{2}}+\cdots+\frac{1}{\left|y_{k}\right|^{2}}}+\epsilon \\
& \leq-2 d \frac{1}{1+|\zeta|^{2} /\left|y_{3}\right|^{2(k-1)}}+\epsilon
\end{aligned}
$$

if $\left|y_{2}\right| \leq\left|y_{3}\right| \leq \cdots \leq\left|y_{k}\right|$.
Now we discuss gluing of the local models. Let $X=\mathbb{P}_{\mathbb{C}}^{n+1}$ equipped with the standard complex structure J_{X}, the Kähler form ω_{X} and the anticanonical bundle $o_{X}=\mathcal{K}_{X}^{-1}=\mathcal{O}(n+2)$ as in Section 3. For $\sigma_{X, \infty}=x_{1} \cdots x_{n+2}$ and a generic section $\sigma_{X, 0} \in H^{0}\left(\mathbb{P}_{\mathbb{C}}^{n+1}, \mathcal{O}(n+2)\right)$, we consider a pencil of Calabi-Yau hypersurfaces defined by

$$
X_{z}=\left\{\sigma_{X, 0}-z \sigma_{X, \infty}=0\right\}=p_{X}^{-1}(1 / z)
$$

where $p_{X}=\sigma_{X, \infty} / \sigma_{X, 0}$. Let $C_{i}=\left\{x_{i}=0\right\} \cong \mathbb{P}_{\mathbb{C}}^{n}, i=1, \ldots, n+2$ be the irreducible components of X_{∞} and set $C_{0}=X_{0}$. We assume that $\sigma_{X, 0}$ is generic so that the divisor $X_{0} \cup X_{\infty}$ is normal crossing. For $I \subset\{0,1, \ldots, n+2\}$, we write $C_{I}=\bigcap_{i \in I} C_{i}$ and $C_{I}^{\circ}=C_{I} \backslash \bigcup_{J \supsetneq I} C_{J}$. We will deform ω_{X} in such a way that it satisfies Assumption 4.1 (resp. Assumption 4.3) near C_{I} with $0 \notin I$ (resp. $0 \in I$).

Proposition 4.9 For each I, there exists a tubular neighborhood U_{I} of C_{I} in $\mathbb{P}_{\mathbb{C}}^{n+1}$ and a fibration structure $\pi_{I}: U_{I} \rightarrow C_{I}$ such that for each $p \in C_{I}$ the tangent space $T_{p} \pi_{I}^{-1}(p)$ of the fiber is a complex subspaces in $T_{p} X$. Moreover π_{I} and π_{J} are compatible if $I \subset J$.

See Ruan [15, Proposition 7.1] for the definition of the compatibility. This proposition is a weaker version of [15, Proposition 7.1] in the sense that each fiber $\pi_{I}^{-1}(p)$ is required to be holomorphic only at $p \in C_{I}$.

Proof For each I we take a tubular neighborhood U_{I} of C_{I}, and consider an open covering $\left\{V_{\alpha}\right\}_{\alpha \in A}$ of $\bigcup_{I} U_{I}$ satisfying

- for each $\alpha \in A$, there exists a unique subset I_{α} in $\{0,1, \ldots, n+1\}$ such that $V_{\alpha} \cap C_{I_{\alpha}} \neq \varnothing$ and $V_{\alpha} \cap C_{J}=\varnothing$ for all J with $|J|>\left|I_{\alpha}\right|$,
- V_{α} is a tubular neighborhood of $V_{\alpha} \cap C_{I_{\alpha}}$, and
- for each α, there exits a unique $J_{\alpha} \supset I_{\alpha}$ such that if $V_{\alpha^{\prime}}$ intersects V_{α} and $\left|I_{\alpha^{\prime}}\right|>\left|I_{\alpha}\right|$ then $I_{\alpha} \subset I_{\alpha^{\prime}} \subset J_{\alpha}$.

We take holomorphic coordinates $\left(w_{\alpha}, z_{\alpha}\right)=\left(w_{\alpha}^{1} \ldots, w_{\alpha}^{n+1-\left|I_{\alpha}\right|}, z_{\alpha}^{1}, \ldots, z_{\alpha}^{\left|I_{\alpha}\right|}\right)$ on V_{α} such that $C_{I_{\alpha}}$ is given by $z_{\alpha}=0$ and w_{α} gives a coordinate on $C_{I_{\alpha}} \cap V_{\alpha}$, and satisfying the following property: the projection $\pi_{\alpha}: V_{\alpha} \rightarrow C_{I_{\alpha}},\left(w_{\alpha}, z_{\alpha}\right) \mapsto w_{\alpha}$ is compatible with π_{J} for each $J \supset I_{\alpha}$. Let $\left\{\rho_{\alpha}\right\}_{\alpha \in A}$ be a partition of unity associated to $\left\{V_{\alpha}\right\}$.

Fix $p \in C_{I}^{\circ}$, and set $A_{p}:=\left\{\alpha \in A \mid p \in V_{\alpha}\right\}$. Note that $I_{\alpha} \supset I$ for any $\alpha \in A_{p}$. Take $\alpha_{0} \in A$ such that $V_{\alpha_{0}} \cap V_{\alpha} \neq \varnothing$ for $\alpha \in A_{p}$ and $I_{\alpha_{0}}=J_{\alpha}$ is maximal. Rename the coordinates on $V_{\alpha}, \alpha \in A_{p}$ so that the projection $\pi_{\alpha}^{\prime}: V_{\alpha} \rightarrow C_{I}$ is given by $\left(w_{\alpha}^{\prime}, z_{\alpha}^{\prime}\right) \mapsto w_{\alpha}^{\prime}$. Let

$$
\operatorname{pr}:\left.T V_{\alpha_{0}}\right|_{C_{I}}=\operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial w_{\alpha_{0}}^{\prime i}}\right\} \oplus \operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial z_{\alpha_{0}}^{\prime j}}\right\} \longrightarrow \operatorname{Ker} d \pi_{\alpha_{0}}^{\prime}=\operatorname{span}_{\mathbb{C}}\left\{\frac{\partial}{\partial z_{\alpha_{0}}^{\prime j}}\right\}
$$

be the projection. After a coordinate change which is linear in z_{α}^{\prime}, we assume that $\operatorname{pr}\left(\partial / \partial z_{\alpha}^{\prime j}\right)=\partial / \partial z_{\alpha_{0}}^{\prime j}$ for each j. Define

$$
E_{I, p}=\operatorname{span}_{\mathbb{C}}\left\{\sum_{\alpha} \rho_{\alpha}(p) \frac{\partial}{\partial z_{\alpha}^{\prime j}}|j=1, \ldots,|I|\}\right.
$$

Then $E_{I}=\left.\bigcup_{p \in C_{I}} E_{I, p} \subset T X\right|_{C_{I}}$ is a complex subbundle which gives a splitting of $\left.T X\right|_{C_{I}} \rightarrow \mathcal{N}_{C_{I} / X}=\left.T X\right|_{C_{I}} / T C_{I}$. After shrinking U_{I} if necessary, we obtain a fibration $\pi_{I}: U_{I} \rightarrow C_{I}$ such that $T_{p} \pi_{I}^{-1}(p)=E_{I, p}$.

Set $U_{I}^{\circ}=\pi_{I}^{-1}\left(C_{I}^{\circ}\right)$. We prove a weaker version of [15, Theorem 7.1].
Proposition 4.10 There exists a Kähler form ω_{X}^{\prime} in the class $\left[\omega_{X}\right]$ such that
(i) it tames J_{X}, and compatible with J_{X} on $\bigcup_{I} C_{I}$,
(ii) $\omega_{X}^{\prime}=\omega_{X}$ outside a neighborhood of $\operatorname{Sing}\left(X_{0} \cup X_{\infty}\right)=\bigcup_{|I| \geq 2} C_{I}$,
(iii) C_{i} 's intersect orthogonally, and
(iv) each fiber of $\pi_{I}: U_{I} \rightarrow C_{I}$ is orthogonal to C_{I}.

Proof It is shown by Seidel [17, Lemma 1.7] and Ruan [15, Lemma 4.3] that ω_{X} can be modified locally so that it is standard near the lowest dimensional stratum $\bigcup_{|I|=n+1} C_{I}$. We deform the symplectic form inductively to obtain ω_{X}^{\prime}

Fix $I \subset\{0,1, \ldots, n+1\}$ and take a distance function $r: X \rightarrow \mathbb{R}_{\geq 0}$ from C_{I}, i.e., $C_{I}=r^{-1}(0)$. Fix a local trivialization of $\left.o_{X}\right|_{U_{I}}$ by a section which has unit pointwise norm and parallel in the radial direction of the fibers of π_{I}, and let θ_{X} denote the connection 1-form. Then we have $\theta_{X}-\pi_{I}^{*}\left(\left.\theta_{X}\right|_{T C_{I}}\right)=O(r)$.

Let $\pi: N C_{I} \rightarrow C_{I}$ be the symplectic normal bundle, i.e., $N_{p} C_{I} \subset T_{p} X$ is the orthogonal complement of $T_{p} C_{I}$ with respect to the symplectic form. Let ω_{N} be the induced symplectic form on the fibers of $N C_{I}$. From the symplectic neighborhood theorem, a neighborhood of C_{I} is symplectomorphic to a neighborhood of the zero section of $N C_{I}$ equipped with the symplectic form $\pi^{*}\left(\omega_{X} \mid C_{I}\right)+\omega_{N}$. Identifying $N C_{I}$ with E_{I}, we obtain a symplectic form $\omega_{U_{I}}$ on U_{I} satisfying (i) and (iv). Note that $\omega_{U_{I}}$ and ω_{X} coincide only on $T C_{I}$ in general. Let $\theta_{U_{I}}$ be a connection 1-form on $\left.o_{X}\right|_{U_{I}}$ such that $d \theta_{U_{I}}=\omega_{U_{I}}$ and $\theta_{U_{I}}\left|T C_{I}=\theta_{X}\right|_{T C_{I}}$. We define $\eta=\theta_{X}-\theta_{U_{I}}$. Then $\eta=0$ on C_{I}. Fix a constant $\delta>0$ such that $\{r \leq \delta\} \subset U_{I}$ and take $C>0$ satisfying

$$
\left\{\begin{array}{l}
C^{-1} \omega_{X} \leq t \omega_{U_{I}}+(1-t) \omega_{X} \leq C \omega_{X}, \quad t \in[0,1] \\
\|\eta\| \leq C r \\
\|d r\| \leq C
\end{array}\right.
$$

on $\{r \leq \delta\}$. Let $h: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ be a smooth function satisfying

- $\lim _{s \rightarrow-\infty} h(s)=1$,
- $h(s)=0$ for $s \geq \log \delta$, and
- $-1 /\left(2 C^{3}\right) \leq h^{\prime}(s) \leq 0$,
and set $f=h(\log r)$. We define

$$
\theta^{\prime}=\theta_{X}-f \eta=f \theta_{U_{I}}+(1-f) \theta_{X}
$$

and

$$
\begin{aligned}
\omega^{\prime}:=d \theta^{\prime} & =f \omega_{U_{I}}+(1-f) \omega_{X}-d f \wedge \eta \\
& =f \omega_{U_{I}}+(1-f) \omega_{X}-h^{\prime} d r \wedge \frac{\eta}{r} .
\end{aligned}
$$

Then ω^{\prime} is compatible with J_{X} along C_{I} and the fibers of π_{I} intersect C_{I} orthogonally. From the choice of h, we have

$$
\|d f \wedge \eta\| \leq \frac{1}{2 C^{3}} \cdot C \cdot C=\frac{1}{2 C},
$$

which implies that ω^{\prime} tames J_{X}, and hence it is non-degenerate.

By applying the argument in Seidel [17, Lemma 1.7] or Ruan [15, Lemma 4.3] to each fiber of π_{I}, we can modify ω^{\prime} to make $\left.\omega^{\prime}\right|_{\pi_{I}^{1}(p)}$ standard at each $p \in C_{I}$, which means that C_{J} 's intersect orthogonally along C_{I}.

Next we construct local torus actions. Set $\mathcal{L}_{i}=\mathcal{O}(1)=\mathcal{O}\left(C_{i}\right)$ for $i=1, \ldots, n+2$ and $\mathcal{L}_{0}=\mathcal{O}(n+2)=\mathcal{O}\left(C_{0}\right)$. Note that the normal bundle of C_{I} is given by

$$
\mathcal{N}_{C_{I} / X}=\left.\bigoplus_{i \in I} \mathcal{L}_{i}\right|_{C_{I}}
$$

For each $I=\left\{i_{1}<\cdots<i_{k}\right\} \subset\{0,1, \ldots, n+2\}$, we define a T^{k}-action on U_{I}° as follows. First we consider the case $0 \notin I$. We may assume $\left(\prod_{j \notin I \cup\{0\}} x_{j}\right) / \sigma_{X, 0} \neq 0$ on U_{I}° (after making U_{I} smaller if necessary). Then

$$
\bullet \otimes \frac{\prod_{j \notin I \cup\{0\}} x_{j}}{\sigma_{X, 0}}:\left.\left.\left.\mathcal{L}_{i_{k}}\right|_{U_{I}^{\circ}} \longrightarrow \mathcal{L}_{i_{k}} \otimes \mathcal{L}_{0}^{-1} \otimes \bigotimes_{j \notin I \cup\{0\}} \mathcal{L}_{j}\right|_{U_{I}^{\circ}} \cong \mathcal{O}(1-k)\right|_{U_{I}^{\circ}}
$$

is an isomorphism, and thus we have

$$
\left.\left.\mathcal{N}_{C_{I} / X}\right|_{C_{I}^{\circ}} \cong \mathcal{N}_{I}\right|_{C_{I}^{\circ}},
$$

where

$$
\begin{aligned}
& \mathcal{N}_{I}: \\
&=\mathcal{L}_{i_{1}} \oplus \cdots \oplus \mathcal{L}_{i_{k-1}} \oplus\left(\mathcal{L}_{i_{k}} \otimes \mathcal{L}_{0}^{-1} \otimes \bigotimes_{j \notin I \cup\{0\}} \mathcal{L}_{j}\right) \\
& \cong \underbrace{\mathcal{O}(1) \oplus \cdots \oplus \mathcal{O}(1)}_{k-1} \oplus \mathcal{O}(1-k) .
\end{aligned}
$$

We identify U_{I}° with a neighborhood of the zero section of $\left.\mathcal{N}_{I}\right|_{C_{I}^{\circ}}$ by a map $\nu_{I}: U_{I}^{\circ} \rightarrow$ $\left.\mathcal{N}_{I}\right|_{C_{I}^{\circ}}$ obtained by combining

$$
\left(x_{i_{1}}, \ldots, x_{i_{k-1}}, \frac{x_{i_{k}} \prod_{j \notin I \cup\{0\}} x_{j}}{\sigma_{X, 0}}\right): U_{I}^{\circ} \longrightarrow \mathcal{N}_{I}
$$

with parallel transport along the fibers of $\pi_{I}: U_{I}^{\circ} \rightarrow C_{I}^{\circ}$. The torus action on U_{I}° is defined to be the pull back the natural T^{k}-action on $\left.\mathcal{N}_{I}\right|_{C_{I}}$. By construction,

is commutative, where the right arrow is the natural map

$$
\mathcal{N}_{I}=\mathcal{O}(1) \oplus \cdots \oplus \mathcal{O}(1) \oplus \mathcal{O}(1-k) \longrightarrow \mathbb{C}, \quad\left(\zeta_{1}, \ldots, \zeta_{k}\right) \longmapsto \zeta_{1} \ldots \zeta_{k}
$$

Hence $p_{X}=\sigma_{X, \infty} / \sigma_{X, 0}$ is T^{k}-equivalent on U_{I}° :

$$
p_{X}\left(\rho_{I, s}(x)\right)=e^{\sqrt{-1}\left(s_{1}+\cdots+s_{k}\right)} p_{X}(x) .
$$

Next we consider the case where $i_{1}=0 \in I$. In this case we set

$$
\begin{aligned}
& \mathcal{N}_{I}: \\
&=\mathcal{L}_{i_{1}} \oplus \cdots \oplus \mathcal{L}_{i_{k-1}} \oplus\left(\mathcal{L}_{i_{k}} \otimes \bigotimes_{j \notin I} \mathcal{L}_{j}\right) \\
& \cong \mathcal{O}(n+2) \oplus \underbrace{\mathcal{O}(1) \oplus \cdots \oplus \mathcal{O}(1)}_{k-2} \oplus \mathcal{O}(n+4-k) .
\end{aligned}
$$

Assuming $\prod_{j \notin I} x_{j} \neq 0$ on U_{I}°, we have an isomorphism

$$
\left.\left.\bigoplus_{i \in I} \mathcal{L}_{i}\right|_{U_{I}^{\circ}} \longrightarrow \mathcal{N}_{I}\right|_{U_{I}^{\circ}} .
$$

By using

$$
\left(\sigma_{X, 0}, x_{i_{2}}, \ldots, x_{i_{k-1}}, x_{i_{k}} \prod_{j \notin I} x_{j}\right): U_{I}^{\circ} \longrightarrow \mathcal{N}_{I}
$$

we have a map $\nu_{I}:\left.U_{I}^{\circ} \rightarrow \mathcal{N}_{I}\right|_{C_{I}^{\circ}}$ identifying U_{I}° with a neighborhood the zero section, which gives a T^{k}-action on U_{I}° as above. We also have a similar commutative diagram (7) where the right arrow in this case is

$$
\mathcal{O}(n+2) \oplus \mathcal{O}(1) \oplus \cdots \oplus \mathcal{O}(1) \oplus \mathcal{O}(n+4-k) \longrightarrow \mathbb{C}, \quad\left(\zeta_{1}, \ldots, \zeta_{k}\right) \longmapsto \frac{\zeta_{2} \ldots \zeta_{k}}{\zeta_{1}}
$$

This means that p_{X} is T^{k}-equivariant on U_{I}° :

$$
p_{X}\left(\rho_{I, s}(x)\right)=e^{\sqrt{-1}\left(-s_{1}+s_{2}+\cdots+s_{k}\right)} p_{X}(x) .
$$

We can easily check the compatibility of the above torus actions. For example, we consider the case where $I=\{0,1, \ldots, k-1\} \supset J=\{1, \ldots, l\}$. Take coordinates $\left(w_{1}, \ldots, w_{n+1}\right)$ around a point in C_{I} such that $\left(w_{1}, \ldots, w_{k}\right)$ gives fiber coordinates of π_{I} corresponding to

$$
\left(\sigma_{X, 0}, x_{1}, \ldots, x_{k-2}, x_{k-1} \cdots x_{n+2}\right): U_{I} \rightarrow \mathcal{N}_{I}
$$

Then the torus action is given by

$$
\left(w_{1}, \ldots, w_{n}\right) \longmapsto\left(e^{\sqrt{-1} s_{1}} w_{1}, \ldots, e^{\sqrt{-1} s_{k}} w_{k}, w_{k+1}, \ldots, w_{n+1}\right)
$$

On the other hand, since $\nu_{J}:\left.U_{J}^{\circ} \rightarrow \mathcal{N}_{J}\right|_{C_{J}^{\circ}}$ is obtained from

$$
\left(x_{1}, \ldots, x_{l-1}, \frac{x_{l} \ldots x_{n+2}}{\sigma_{X, 0}}\right): U_{J}^{\circ} \longrightarrow \mathcal{N}_{J},
$$

v_{J} restricted to $U_{I}^{\circ} \cap U_{J}^{\circ} \subset U_{J}^{\circ}$ is given by

$$
v_{J}\left(w_{1}, \ldots, w_{n+1}\right)=\left(w_{2}, \ldots, w_{l}, \frac{w_{l+1} \ldots w_{k}}{w_{1}}\right) .
$$

This means that the torus action induced from ρ_{J} is given by

$$
\left(w_{1}, \ldots, w_{n+1}\right) \longmapsto\left(w_{1}, e^{\sqrt{-1} s_{2}} w_{2}, \ldots, e^{\sqrt{-1} s_{l+1}} w_{l+1}, w_{l+2}, \ldots, w_{n+1}\right)
$$

(Note that $\left(w_{1}, w_{l+2}, \ldots, w_{n+1}\right)$ is a coordinate on the base $C_{J} \cap U_{I}$.) Other cases can be checked in similar ways.

By using the same argument as in Seidel [16, Lemma 7.20], we have

Proposition 4.11 There exists a Kähler form $\omega_{X}^{\prime \prime}$ in the class $\left[\omega_{X}\right]$ satisfying the conditions in Proposition 4.10, and $\left.\omega_{X}^{\prime \prime}\right|_{U_{I}^{\circ}}$ is invariant under the torus action ρ_{I} for each I.

We fix $x \in C_{I}^{\circ}$ with $|I|=k$ and take a neighborhood $U_{x} \subset U_{I}^{\circ}$ of x. Let $Y \subset \mathbb{C}^{n+1}$ be a small ball around the origin with the standard symplectic structure ω_{Y} and the T^{k}-action (4). Take a T^{k}-equivariant Darboux coordinate $\varphi:\left(U_{x}, \omega_{X}^{\prime \prime}\right) \rightarrow\left(Y, \omega_{Y}\right)$, and define $J_{Y}=\left(\varphi^{-1}\right)^{*} J_{X}, p=\left(\varphi^{-1}\right)^{*} p_{X}, \eta_{Y}=C\left(\varphi^{-1}\right)^{*} \sigma_{X, \infty}^{-1}$, where C is a constant. Then ($Y, \omega_{Y}, J_{Y}, \eta_{Y}, p$) satisfies Assumption 4.1 if $0 \notin I$, or Assumption 4.3 if $0 \in I$ for a suitable choice of C. Now we can follow the argument of [16, Proposition 7.22] to complete the proof of Proposition 3.4.

5 Sheridan's Lagrangian as a vanishing cycle

An n-dimensional pair of pants is defined by

$$
\mathcal{P}^{n}=\left\{\left[z_{1}: \cdots: z_{n+2}\right] \in \mathbb{P}_{\mathbb{C}}^{n+1} \mid z_{1}+\cdots+z_{n+2}=0, z_{i} \neq 0, i=1, \ldots, n+2\right\},
$$

equipped with the restriction of the Fubini-Study Kähler form on $\mathbb{P}_{\mathbb{C}}^{n+1}$. It is the intersection of the hyperplane $H=\left\{z_{1}+\cdots+z_{n+2}=0\right\}$ with the big torus T of $\mathbb{P}_{\mathbb{C}}^{n+1}$. Sheridan [23] perturbs the standard double cover $S^{n} \rightarrow H_{\mathbb{R}}$ of the real projective space $H_{\mathbb{R}} \cong \mathbb{P}_{\mathbb{R}}^{n}$ by the n-sphere slightly to obtain an exact Lagrangian immersion
$i: S^{n} \rightarrow \mathcal{P}^{n}$. The real part $\mathcal{P}^{n} \cap H_{\mathbb{R}}$ of the pair of pants consists of $2^{n+1}-1$ connected components U_{K} parametrized by proper subsets $K \subset\{1,2, \ldots, n+2\}$ as

$$
U_{K}=\left\{\left[z_{1}: \cdots: z_{n+2}\right] \in \mathcal{P}^{n} \cap H_{\mathbb{R}} \mid z_{i} / z_{j}<0 \text { if and only if } i \in K \text { and } j \in K^{c}\right\}
$$

Note that the set $\{1, \ldots, n+2\}$ has $2^{n+2}-2$ proper subsets, and one has $U_{K}=U_{K^{c}}$. The inverse images of the connected component U_{K} by the double cover $S^{n} \rightarrow$ $H_{\mathbb{R}}$ are the cells $W_{K, K^{c}, \varnothing}$ and $W_{K^{c}, K, \varnothing}$ of the dual cellular decomposition in [23, Definition 2.6].

The map $p_{\bar{M}}: \bar{M} \rightarrow T$ sending $\left(u_{1}, \ldots, u_{n+1}, u_{n+2}=1 / u_{1} \cdots u_{n+1}\right)$ to $\left[z_{1}: \cdots:\right.$ $\left.z_{n+1}: 1\right]$ for $z_{i}=u_{i} \cdot u_{1} \cdots u_{n+1}, i=1, \ldots, n+1$ is a principal Γ_{n+2}^{*}-bundle, where the action of $\zeta \cdot \mathrm{id}_{\mathbb{C}^{n+2}} \in \Gamma_{n+2}^{*}$ sends $\left(u_{1}, \ldots, u_{n+2}\right)$ to $\left(\zeta u_{1}, \ldots, \zeta u_{n+2}\right)$. The inverse map is given by $u_{1}^{n+2}=z_{1}^{n+1} / z_{2} \cdots z_{n+1}$ and $u_{i}=u_{1} \cdot z_{i} / z_{1}$ for $i=2, \ldots, n+1$. The restriction $\bar{M}_{0}: \bar{M}_{0} \rightarrow \mathcal{P}^{n}$ turns \bar{M}_{0} into a principal Γ_{n+2}^{*}-bundle over the pair of pants. One has

$$
z_{1}=-\left(1+z_{2}+\cdots+z_{n+1}\right)
$$

on \mathcal{P}^{n}, so that $u_{1}^{n+2}=(-1)^{n+1} f\left(z_{2}, \ldots, z_{n+1}\right)$ where

$$
\begin{equation*}
f\left(z_{2}, \ldots, z_{n+1}\right)=\frac{\left(1+z_{2}+\cdots+z_{n+1}\right)^{n+1}}{z_{2} \cdots z_{n+1}} \tag{8}
\end{equation*}
$$

The pull-back of Sheridan's Lagrangian immersion by $\bar{M}_{\bar{M}_{0}}$ is the union of $n+2$ embedded Lagrangian spheres $\left\{L_{i}\right\}_{i=1}^{n+2}$ in \bar{M}_{0}.
Recall that the coamoeba of a subset of a torus $\left(\mathbb{C}^{\times}\right)^{n+1}$ is its image by the argument map Arg: $\left(\mathbb{C}^{\times}\right)^{n+1} \rightarrow \mathbb{R}^{n+1} / 2 \pi \mathbb{Z}^{n+1}$. Let Z be the zonotope in \mathbb{R}^{n+1} defined as the Minkowski sum of $\pi e_{1}, \ldots, \pi e_{n+1},-\pi e_{1}-\cdots-\pi e_{n+1}$, where $\left\{e_{i}\right\}_{i=1}^{n+1}$ is the standard basis of \mathbb{R}^{n+1}. The projection \bar{Z} of Z to $\mathbb{R}^{n+1} / 2 \pi \mathbb{Z}^{n+1}$ is the closure of the complement $\left(\mathbb{R}^{n+1} / 2 \pi \mathbb{Z}^{n+1}\right) \backslash \operatorname{Arg}\left(\mathcal{P}^{n}\right)$ of the coamoeba of the pair of pants [23, Proposition 2.1], and the argument projection of the immersed Lagrangian sphere is close to the boundary of the zonotope by construction [23, Section 2.2]. The coamoeba of \bar{M}_{0} and the projections of Lagrangian spheres L_{i} are obtained from those for \mathcal{P}^{n} as the pull-back by the $(n+2)$-fold cover

$$
\begin{array}{ccc}
\mathbb{R}^{n+1} / 2 \pi \mathbb{Z}^{n+1} & \rightarrow & \mathbb{R}^{n+1} / 2 \pi \mathbb{Z}^{n+1} \tag{9}\\
\psi & & \psi \\
e_{i} & \mapsto & e_{i}+\sum_{j=1}^{n+1} e_{j}
\end{array}
$$

induced by $p_{\bar{M}}: \bar{M} \rightarrow T$. It is elementary to see that none of the pull-backs of the zonotope \bar{Z} by the map (9) has self-intersections. It follows that the argument projection of L_{i} does not have self-intersections either, which in turn implies that L_{i} itself does not
have self-intersections, so that L_{i} is not only immersed but embedded. We choose the numbering on these embedded Lagrangian spheres so that the argument projection of L_{i} is close to the boundary of the zonotope centered at $\left[\frac{2 \pi}{n+2}(i, \ldots, i)\right] \in \mathbb{R}^{n+1} / 2 \pi \mathbb{Z}^{n+1}$. When $n=1$, the coamoeba of \bar{M}_{0} is the union of the interiors and the vertices of six triangles shown in Figure 2(a). The projection of L_{3} is also shown as a solid loop in Figure 2(a). The zonotope \bar{Z} in this case is a hexagon, whose pull-backs by the three-to-one map (9) are three hexagons constituting the complement of the coamoeba. Although the zonotope \bar{Z} has self-intersections at its vertices, none of its pull-backs has self-intersections as seen in Figure 2(a). The coamoeba of \bar{M}_{0} for $n=2$ is a four-fold cover of the coamoeba of \mathcal{P}^{2} shown in [23, Figure 2(b)].

Figure 2: (a) The coamoeba

(b) The cut and the thimble

Let $\varpi: \bar{M}_{0} \rightarrow \mathbb{C}^{\times}$be the projection sending $\left(u_{1}, \cdots, u_{n+2}\right)$ to u_{1}.
Lemma 5.1 The critical values of ϖ are given by $(n+2)$ solutions to the equation

$$
\begin{equation*}
u_{1}^{n+2}=(-1)^{n+1}(n+1)^{n+1} . \tag{10}
\end{equation*}
$$

Proof The defining equation of \bar{M}_{0} in $\bar{M}=\operatorname{Spec} \mathbb{C}\left[u_{1}^{ \pm 1}, \ldots, u_{n+1}^{ \pm 1}\right]$ is given by

$$
\begin{equation*}
\sum_{i=1}^{n+1} u_{i} \cdot u_{1} \cdots u_{n+1}+1=0 \tag{11}
\end{equation*}
$$

By equating the partial derivatives by u_{2}, \ldots, u_{n+1} with zero, one obtains the linear equations

$$
u_{i}+\sum_{j=1}^{n+1} u_{j}=0, \quad i=2, \ldots, n+1,
$$

whose solution is given by $u_{2}=\cdots=u_{n+1}=-u_{1} /(n+1)$. By substituting this into (11), one obtains the desired equation (10).

Note that the connected component

$$
U_{1}=U_{\{2, \ldots, n+2\}}=\left\{\left[z_{1}: z_{2}: \cdots: z_{n+1}: 1\right] \in \mathcal{P}^{n} \mid\left(z_{2}, \ldots, z_{n+1}\right) \in\left(\mathbb{R}^{>0}\right)^{n}\right\}
$$

of the real part of the pair of pants can naturally be identified with $\left(\mathbb{R}^{>0}\right)^{n}$.
Lemma 5.2 The function

$$
f\left(z_{2}, \ldots, z_{n+1}\right)=\frac{\left(1+z_{2}+\cdots+z_{n+1}\right)^{n+1}}{z_{2} \cdots z_{n+1}}
$$

has a unique non-degenerate critical point in $U_{1} \cong\left(\mathbb{R}^{>0}\right)^{n}$ with the critical value $(n+1)^{n+1}$.

Proof The partial derivatives are given by

$$
\frac{\partial f}{\partial z_{2}}=\left((n+1) z_{2}-\left(1+z_{2}+\cdots+z_{n+1}\right)\right) \frac{\left(1+z_{2}+\cdots+z_{n+1}\right)^{n}}{z_{2}^{2} z_{3} \cdots z_{n+1}}
$$

and similarly for z_{3}, \ldots, z_{n+1}. By equating them with zero, one obtains the equations

$$
(n+1) z_{i}-\left(1+z_{2}+\cdots+z_{n+1}\right)=1, \quad i=2, \ldots, n+1
$$

whose solution is given by $z_{2}=\cdots=z_{n+1}=1$ with the critical value $(n+1)^{n+1}$.
As an immediate corollary, one has:
Corollary 5.3 The inverse image of $f: U_{1} \rightarrow \mathbb{R}$ at $t \in \mathbb{R}$ is

- empty if $t<(n+1)^{n+1}$,
- one point if $t=(n+1)^{n+1}$, and
- diffeomorphic to S^{n-1} if $t>(n+1)^{n+1}$.

Recall that f is introduced in (8) to study the inverse image of the map $p: \bar{M}_{0} \rightarrow \mathcal{P}^{n}$.
Corollary 5.4 The inverse image $p^{-1}\left(U_{1}\right)$ consists of $n+2$ connected components U_{ζ} indexed by solutions to the equation $\zeta^{n+2}=(-1)^{n+1}(n+1)^{n+1}$ by the condition that $\zeta \in \varpi\left(U_{\zeta}\right)$.

One obtains an explicit description of Lefschetz thimbles:
Lemma 5.5 U_{ζ} is the Lefschetz thimble for $\varpi: \bar{M}_{0} \rightarrow \mathbb{C}^{\times}$above the half line $\ell:[0, \infty) \rightarrow \mathbb{C}^{\times}$on the x_{1}-plane given by $\ell(t)=t \zeta+\zeta$.

Proof The restriction of ϖ to U_{ζ} has a unique critical point at $\left(x_{1}, \ldots, x_{n+1}\right)=$ $\frac{\zeta}{n+1}(n+1,-1, \ldots,-1)$. For $x=\left(x_{1}, \ldots, x_{n+1}\right) \in U_{\zeta}$ outside the critical point, the fiber $\mathcal{V}_{x_{1}}=U_{\zeta} \cap \varpi^{-1}\left(x_{1}\right)$ is diffeomorphic to S^{n-1} by Corollary 5.3, and it suffices to show that the orthogonal complement of $T_{x} \mathcal{V}_{x_{1}}$ in $T_{x} U_{\zeta}$ is orthogonal to $T_{x} \varpi^{-1}\left(x_{1}\right)$ with respect to the Kähler metric g of \bar{M}_{0}. Let $X \in T_{x} U_{\zeta}$ be a tangent vector orthogonal to $T_{x} \mathcal{V}_{x_{1}}$. Then it is also orthogonal to $T_{x} \varpi^{-1}\left(x_{1}\right)$ since any element in $T_{x} \varpi^{-1}\left(x_{1}\right)$ can be written as $z Y$ for $z \in \mathbb{C}$ and $Y \in T_{x} \mathcal{V}_{x_{1}}$, so that $g(z Y, X)=z g(Y, X)=0$.

The following simple lemma is a key to the proof of Proposition 3.1:
Lemma 5.6 U_{ζ} for $\arg \zeta \neq \pm \frac{n+1}{n+2} \pi$ does not intersect L_{n+2}.
Proof The map $\mathbb{R}^{n+1} / 2 \pi \mathbb{Z}^{n+1} \rightarrow \mathbb{R}^{n+1} / 2 \pi \mathbb{Z}^{n+1}$ induced from the map $p: \bar{M} \rightarrow T$ is given on coordinate vectors by $e_{i} \mapsto e_{i}+\sum_{j=1}^{n+1} e_{j}$. The inverse map is given by $e_{i} \mapsto f_{i}=e_{i}-\frac{1}{n+2} \sum_{j=1}^{n+1} e_{j}$, so that the argument projection of L_{n+2} is close to the boundary of the zonotope Z_{n+2} generated by $\pi f_{1}, \ldots, \pi f_{n+1},-\pi f_{1}-\cdots-$ πf_{n+1}. The argument projection of U_{ζ} consists of just one point $(\arg (\zeta), \arg (\zeta)+$ $\pi, \ldots, \arg (\zeta)+\pi)$, which is disjoint from Z_{n+2} if $\arg \zeta \neq \pm \frac{n+1}{n+2} \pi$.

The $n=1$ case is shown in Figure 2(b). Black dots are images of U_{ζ} for $\zeta=$ $\sqrt[3]{4}, \sqrt[3]{4} \exp (2 \pi \sqrt{-1} / 3), \sqrt[3]{4} \exp (4 \pi \sqrt{-1} / 3)$, and white dots are images of $\bar{M}_{0} \backslash E$ defined below. One can see that L_{3} is contained in E and disjoint from $U_{\sqrt[3]{4}}$.
Now we use symplectic Picard-Lefschetz theory developed by Seidel [20]. Put $S=$ $\mathbb{C}^{\times} \backslash(-\infty, 0)$ and let $E=\varpi^{-1}(S)$ be an open submanifold of \bar{M}_{0}. Note that both V_{n+2} and L_{n+2} are contained in E. The restriction $\omega_{E}: E \rightarrow S$ of ω to E is an exact symplectic Lefschetz fibration, in the sense that all the critical points are nondegenerate with distinct critical values. Although ϖ_{E} does not fit in the framework of Seidel [20, Section III] where the total space of a fibration is assumed to be a compact manifold with corners, one can apply the whole machinery of [20] by using the tameness of ϖ_{E} (i.e., the gradient of $\left\|\varpi_{E}\right\|$ is bounded from below outside of a compact set by a positive number) as in Seidel [21, Section 6]. Let $\mathcal{F}\left(\varpi_{E}\right)$ be the Fukaya category of the Lefschetz fibration in the sense of Seidel [20, Definition 18.12]. It is the $\mathbb{Z} / 2 \mathbb{Z}$-invariant part of the Fukaya category of the double cover $\widetilde{E} \rightarrow E$ branched along $\varpi_{E}^{-1}(*)$, where $* \in S$ is a regular value of ϖ_{E}. Different base points $* \in S$ lead to symplectomorphic double covers, so that the quasi-equivalence class of $\mathcal{F}\left(\varpi_{E}\right)$ is independent of this choice. We choose $*$ to be a sufficiently large real number. Let $\left(\gamma_{1}, \ldots, \gamma_{n+2}\right)$ be a distinguished set of vanishing paths chosen as in

Figure 3(a). The pull-backs of the corresponding ${\underset{\sim}{\sim}}^{\text {Lefschetz }}$ thimbles in E by the double cover $\widetilde{E} \rightarrow E$ will be denoted by $\left(\widetilde{\Delta}_{1}, \ldots, \widetilde{\Delta}_{n+2}\right)$, which are called type (B) Lagrangian submanifolds by Seidel [20, Section 18a]. On the other hand, the pull-back of a closed Lagrangian submanifold of E, which is disjoint from the branch locus, is a Lagrangian submanifold of \widetilde{E} consisting of two copies of the original Lagrangian submanifold. It also gives rise to an object of $\mathcal{F}\left(\varpi_{E}\right)$, which is called a type (U) Lagrangian submanifold by Seidel. The letters (B) and (U) stand for 'branched' and 'unbranched' respectively.

Theorem 5.7 (Seidel [20, Propositions 18.13, 18.14, and 18.17])

- $\left(\tilde{\Delta}_{1}, \ldots, \tilde{\Delta}_{n+2}\right)$ is an exceptional collection in $\mathcal{F}\left(\varpi_{E}\right)$.
- There is a cohomologically full and faithful A_{∞}-functor $\mathcal{F}(E) \rightarrow \mathcal{F}\left(\varpi_{E}\right)$.
- The essential image of $\mathcal{F}(E)$ is contained in the full triangulated subcategory generated by $\left(\widetilde{\Delta}_{1}, \ldots, \widetilde{\Delta}_{n+2}\right)$.

We abuse the notation and use the same symbol L_{n+2} for the corresponding object in $\mathcal{F}\left(\varpi_{E}\right)$. The following lemma is a consequence of Lemma 5.6:

Lemma 5.8 One has $\operatorname{Hom}_{\mathcal{F}\left(\varpi_{E}\right)}^{*}\left(\widetilde{\Delta}_{i}, L_{n+2}\right)=0$ for $i \neq 1, n+2$.
Proof For $2 \leq i \leq n+1$, move $* \in S$ continuously from the positive real axis to

$$
*^{\prime}=\exp [(-n-3+2 i) \pi \sqrt{-1} /(n+2)] \cdot *
$$

and move the distinguished set $\left(\gamma_{1}, \ldots, \gamma_{n+2}\right)$ of vanishing paths in Figure 3(a) to $\left(\gamma_{1}^{\prime}, \ldots, \gamma_{n+2}^{\prime}\right)$ in Figure $3(\mathrm{~b})$ accordingly. The corresponding double covers \widetilde{E} and \widetilde{E}^{\prime} are related by a Hamiltonian isotopy sending type (B) Lagrangian submanifolds $\left(\widetilde{\Delta}_{1}, \ldots, \widetilde{\Delta}_{n+2}\right)$ of \widetilde{E} to type (B) Lagrangian submanifolds $\left(\widetilde{\Delta}_{1}^{\prime}, \ldots, \widetilde{\Delta}_{n+2}^{\prime}\right)$ of \widetilde{E}^{\prime}. It follows from Lemma 5.6 that the type (U) Lagrangian submanifold of \widetilde{E}^{\prime} associated with L_{n+2} does not intersect with $\tilde{\Delta}_{i}^{\prime}$. This shows that $\operatorname{Hom}_{\mathcal{F}\left(\varpi_{\left.E^{\prime}\right)}\right.}^{*}\left(\widetilde{\Delta}_{i}^{\prime}, L_{n+2}\right)=0$, which implies $\operatorname{Hom}_{\mathcal{F}\left(\varpi_{E}\right)}^{*}\left(\widetilde{\Delta}_{i}, L_{n+2}\right)=0$ by Hamiltonian isotopy invariance of the Floer cohomology.

It follows that L_{n+2} belongs to the triangulated subcategory generated by the exceptional collection ($\widetilde{\Delta}_{1}, \widetilde{\Delta}_{n+2}$). Since L_{n+2} is exact, the Floer cohomology of L_{n+2} with itself is isomorphic to the classical cohomology of L_{n+2}.

Lemma 5.9 (Seidel [18, Lemma 7]) Let \mathcal{T} be a triangulated category with a full exceptional collection $(\mathcal{E}, \mathcal{F})$ such that $\operatorname{Hom}^{*}(\mathcal{E}, \mathcal{F}) \cong H^{*}\left(S^{n-1} ; \mathbb{C}\right)$, and L be an object of \mathcal{T} such that $\operatorname{Hom}^{*}(L, L) \cong H^{*}\left(S^{n} ; \mathbb{C}\right)$. Then L is isomorphic to the mapping cone $\operatorname{Cone}(\mathcal{E} \rightarrow \mathcal{F})$ over a non-trivial element in $\operatorname{Hom}^{0}(\mathcal{E}, \mathcal{F}) \cong \mathbb{C}$ up to shift.

Figure 3: (a) A distinguished set of vanishing paths.

(b) Another distinguished set of vanishing paths. (c) The matching path

This shows that L_{n+2} is isomorphic to $\operatorname{Cone}\left(\tilde{\Delta}_{1} \rightarrow \tilde{\Delta}_{n+2}\right)$ in $D^{\pi} \mathcal{F}\left(\varpi_{E}\right)$ up to shift. On the other hand, it is shown by Futaki and Ueda [7, Section 5] that V_{n+2} is isomorphic to the matching cycle associated with the matching path μ_{n+2} shown in Figure 3(c) (see [7, Figure 5.2]). Here, a matching path is a path on the base of a Lefschetz fibration between two critical values, together with additional structures which enables one to construct a Lagrangian sphere (called the matching cycle) in the total space by arranging vanishing cycles along the path (see Seidel [20, Section 16 g$]$). Since the matching path μ_{n+2} does not intersect γ_{i} for $i \neq 1, n+2$, the vanishing cycle V_{n+2} is also orthogonal to $\widetilde{\Delta}_{2}, \ldots, \widetilde{\Delta}_{n+1}$ in $D^{\pi} \mathcal{F}\left(\varpi_{E}\right)$. It follows that L_{n+2} equipped with a suitable grading is isomorphic to V_{n+2} in $\mathcal{F}(E)$. Note that any holomorphic disk in \bar{M}_{0} bounded by $L_{n+2} \cup V_{n+2}$ is contained in E, since any such disk projects by ϖ to a disk in S. This shows that the isomorphism $L_{n+2} \xrightarrow{\sim} V_{n+2}$ in $\mathcal{F}(E)$ extends to an isomorphism in $\mathcal{F}\left(\bar{M}_{0}\right)$, and the following proposition is proved:

Proposition 5.10 L_{n+2} and V_{n+2} are isomorphic in $\mathcal{F}\left(\bar{M}_{0}\right)$.
Proposition 3.1 follows from Proposition 5.10 by the Γ_{n+2}^{*}-action, which is simply transitive on both $\left\{V_{i}\right\}_{i=1}^{n+2}$ and $\left\{L_{i}\right\}_{i=1}^{n+2}$.

Remark 5.11 Let $\mathcal{F} \rightarrow$ be the directed subcategory of $\mathcal{F}\left(M_{0}\right)$ consisting of the distinguished basis $\left(\tilde{V}_{i}\right)_{i=1}^{N}$ of vanishing cycles of the exact Lefschetz fibration $\pi_{M}: M \rightarrow$ \mathbb{C};

$$
\operatorname{hom}_{\mathcal{F} \rightarrow}\left(\tilde{V}_{i}, \tilde{V}_{j}\right)= \begin{cases}\mathbb{C} \cdot \operatorname{id}_{\tilde{V}_{i}} & i=j \\ \operatorname{hom}_{\mathcal{F}\left(M_{0}\right)}\left(\tilde{V}_{i}, \tilde{V}_{j}\right) & i<j \\ 0 & \text { otherwise }\end{cases}
$$

It is also isomorphic to the directed subcategory of $\mathcal{F}\left(X_{0}\right)$, since the compositions \mathfrak{m}_{2} are the same on $\mathcal{F}\left(M_{0}\right)$ and $\mathcal{F}\left(X_{0}\right)$, and higher A_{∞}-operations \mathfrak{m}_{k} for $k \geq 3$
vanish on the directed subcategories. Symplectic Picard-Lefschetz theory developed by Seidel [20, Theorem 18.24] gives an equivalence

$$
D^{b} \mathcal{F}^{\rightarrow} \cong D^{b} \mathcal{F}\left(\pi_{M}\right)
$$

with the Fukaya category of the Lefschetz fibration π_{M}. This provides a commutative diagram

$$
\begin{array}{ccc}
\mathcal{F}^{\rightarrow} & \hookrightarrow & \mathcal{F}_{q} \\
\text { 2\| }_{n+2}^{\rightarrow} \rtimes & & \ddots
\end{array}
$$

of A_{∞}-categories, where horizontal arrows are embeddings of directed subcategories. Combined with the equivalences

$$
\begin{aligned}
D^{b} \mathcal{F}^{\rightarrow} & \cong D^{b} \mathcal{F}\left(\pi_{M}\right), & D^{\pi}\left(\mathcal{F}_{q} \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{Q}}\right) & \cong D^{\pi} \mathcal{F}\left(X_{0}\right) \\
D^{b}\left(C_{n+2}^{\rightarrow} \rtimes \Gamma\right) & \cong D^{b} \operatorname{coh}\left[\mathbb{P}_{\mathbb{C}}^{n} / \Gamma\right] & \text { and } & \left.D^{\pi}\left(\mathcal{S}_{q} \otimes_{\Lambda_{\mathbb{N}}} \Lambda_{\mathbb{Q}}\right)\right) \cong D^{b} \operatorname{coh} Z_{q}^{*}
\end{aligned}
$$

this gives the compatibility of homological mirror symmetry

$$
D^{b} \mathcal{F}\left(\pi_{M}\right) \cong D^{b} \operatorname{coh}\left[\mathbb{P}_{\mathbb{C}}^{n} / \Gamma\right]
$$

for the ambient space and homological mirror symmetry

$$
D^{\pi} \mathcal{F}\left(X_{0}\right) \cong \widehat{\psi}^{*} D^{b} \operatorname{coh} Z_{q}^{*}
$$

for its Calabi-Yau hypersurface.

References

[1] M Abouzaid, I Smith, Homological mirror symmetry for the 4-torus, Duke Math. J. 152 (2010) 373-440 MR2654219
[2] M Akaho, D Joyce, Immersed Lagrangian Floer theory, J. Differential Geom. 86 (2010) 381-500 MR2785840
[3] A A Beǐlinson, Coherent sheaves on \mathbb{P}^{n} and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978) 68-69 MR509388
[4] C-H Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 2004 (2004) 1803-1843 MR2057871
[5] K Fukaya, Mirror symmetry of abelian varieties and multi-theta functions, J. Algebraic Geom. 11 (2002) 393-512 MR1894935
[6] K Fukaya, Y-G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: anomaly and obstruction, AMS/IP Studies in Advanced Mathematics 46, American Mathematical Society (2009)
[7] M Futaki, K Ueda, Tropical coamoeba and torus-equivariant homological mirror symmetry for the projective space arXiv:1001.4858
[8] L Katzarkov, Birational geometry and homological mirror symmetry, from: "Real and complex singularities", World Sci. Publ., Hackensack, NJ (2007) 176-206 MR2336686
[9] M Kontsevich, Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)", Birkhäuser, Basel (1995) 120-139 MR1403918
[10] M Kontsevich, Lectures at ENS Paris, Spring 1998 (1998) Notes taken by J Bellaiche, J-F Dat, I Martin, G Rachinet and H Randriambololona
[11] M Kontsevich, Y Soibelman, Homological mirror symmetry and torus fibrations, from: "Symplectic geometry and mirror symmetry (Seoul, 2000)", World Sci. Publ., River Edge, NJ (2001) 203-263 MR1882331
[12] Y-G Oh, Seidel's long exact sequence on Calabi-Yau manifolds arXiv:1002.1648
[13] A Polishchuk, Massey and Fukaya products on elliptic curves, Adv. Theor. Math. Phys. 4 (2000) 1187-1207 MR1894854
[14] A Polishchuk, E Zaslow, Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2 (1998) 443-470 MR1633036
[15] W-D Ruan, Lagrangian torus fibration of quintic Calabi-Yau hypersurfaces II: Technical results on gradient flow construction, J. Symplectic Geom. 1 (2002) 435-521 MR1959057
[16] \mathbf{P} Seidel, Homological mirror symmetry for the quartic surface arXiv: math.AG/0310414
[17] P Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003-1063 MR1978046
[18] P Seidel, Exact Lagrangian submanifolds in $T^{*} S^{n}$ and the graded Kronecker quiver, from: "Different faces of geometry", Int. Math. Ser. (NY) 3 (2004) 349-364
[19] P Seidel, A_{∞}-subalgebras and natural transformations, Homology, Homotopy Appl. 10 (2008) 83-114 MR2426130
[20] P Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich (2008)
[21] P Seidel, Suspending Lefschetz fibrations, with an application to local mirror symmetry, Comm. Math. Phys. 297 (2010) 515-528 MR2651908
[22] N Sheridan, Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space arXiv:1111.0632
[23] N Sheridan, On the homological mirror symmetry conjecture for pairs of pants, J. Differential Geom. 89 (2011) 271-367 MR2863919
[24] A Takahashi, Weighted projective lines associated to regular systems of weights of dual type, from: "New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008)", Adv. Stud. Pure Math. 59, Math. Soc. Japan, Tokyo (2010) 371-388 MR2683215

Faculty of Education, Kagawa University
1-1 Saiwai-cho, Takamatsu 760-8522, Japan
Department of Mathematics, Osaka University
Graduate School of Science, Machikaneyama 1-1, Toyonaka 560-0043, Japan
nohara@ed.kagawa-u.ac.jp, kazushi@math.sci.osaka-u.ac.jp
http://www.math.sci.osaka-u.ac.jp/~kazushi/

Proposed: Jim Bryan
Seconded: Richard Thomas, Simon Donaldson

Received: 21 September 2011
Revised: 9 May 2012

