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HOMOLOGICAL THEORY OF IDEMPOTENT IDEALS

M. AUSLANDER, M. I. PLATZECK AND G. TODOROV

Abstract. Let A be an artin algebra 21 and a two-sided ideal of A. Then
21 is the trace of a projective A-module P in A . We study how the homo-
logical properties of the categories of finitely generated modules over the three
rings A/21, A and the endomorphism ring of P are related. We give some
applications of the ideas developed in the paper to the study of quasi-hereditary
algebras.

Introduction

Throughout this paper we assume that A is an artin algebra and all A-
modules are assumed to lie in mod A, the category of finitely generated left
A-modules.

In connection with their definition of quasi-hereditary algebras, Cline, Par-
shall and Scott [CPS] introduced the notion of an heredity ideal which is defined
as follows. An heredity ideal of A is a two-sided ideal 21 satisfying the follow-
ing conditions: (i) 21 is idempotent (i.e. 2l2 = 21), (ii) 21 is projective as a left
A-module and (iii) End^Sl) is semisimple. The results concerning heredity
ideals proven in [CPS, DR 1,2, BF] suggested studying the homological proper-
ties of idempotent ideals in a broader context. This paper is a preliminary step
in this direction.

Our starting point is the following easily checked well-known observation.
Let F be a projective A-module. Then 2t = i>(A) ■ the trace of F in A
which is the ideal generated by the homomorphic images of F in A, is an
idempotent ideal in A and one obtains all the idempotent ideals of A this
way. Moreover if F and Q are projective A-modules, then x>(A) = tq(A) if
and only if add F = add Q, where add Af, for an arbitrary A-module Af, is the
full subcategory of mod A consisting of all modules isomorphic to summands
of finite sums (direct) of M. Therefore associated with a projective A-module
F is the idempotent ideal 2l/> = T/>(A) and the artin algebras A/QLP and YP =
End(F)op . Our basic aim is to study how the homological properties of the three
categories mod A/Qlp , mod A and mod Yp are related. It is worth noting, that
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since A/2t/> and Tp have fewer simple modules than A, a good understanding
of the relationship between the categories mod A/2l/>, mod A and mod Tp
should lead to a way of studying mod A in terms of algebras with fewer simple
modules.

One relationship of interest is the inclusion functor modA/2t/> —> mod A.
Saying that 2lp is an idempotent ideal is equivalent to saying that modA/2l/>
is a Serre subcategory of mod A. Moreover the exact functor (P, ) : mod A —>
modTp given by Af .-> HomA(F, Af) gives an equivalence of categories be-
tween modYp and the quotient of mod A by modA/2l/>. In other words, we
have an exact sequence of categories

modA/2tp —> mod A —> modT/>.
It is this exact sequence which is our main object of study.

We first concentrate on the inclusion mod A/2l/> —> mod A. For any two-
sided ideal 21 in A, we have a morphism of connected sequences of functors
ExtA/a(A, Y) -» ExtA(A, Y) for all X and Y in mod A/21 induced by the
canonical isomorphism of functors HomA/a(X, Y) ^ HomA(A, Y) for all X
and Y in mod A/21. It is well known that ExtA/a(A, Y) -> ExtA(A, Y) is
an isomorphism if and only if 21 is an idempotent ideal. This suggests the
following definitions. A two-sided ideal 2t is a A:-idempotent for k > 1 if
ExtA/a(A, Y) -> ExtA(A, Y) is an isomorphism for all 0 < i < k and all X
and Y in mod A/21. We say that 21 is a strong idempotent if ExtA(A, Y) -*
ExtA/a(A, Y) is an isomorphism for all />0 and all X and Y in mod A/21.
It is worth noting that if 21 is an heredity ideal, then 21 is a strong idempo-
tent [DR1, Part 2]. We give characterizations of fc-idempotents in terms of
projective and injective A-resolutions of A/2l-modules.

Next we turn our attention to the functor (F, ): mod A —> modT^ . Since
(F, ) is exact we obtain a morphism of connected sequences of functors
ExtA(A, Y) -» Extj-f((F, X), (P, Y)) for all X and Y in mod A. In con-
nection with studying when this is an isomorphism we introduce the follow-
ing subcategories of modA. For k > 0, we define I¿t+i to be the full sub-
category of modA consisting of all Y in modA such that ExtA(X, Y) —»
Extfp((F, X), (P, Y)) is an isomorphism for all 0 < /' < k and all X in
mod A. And we define I^ to be the full subcategory of mod A consisting of
all Y in modA suchthat ExtA(A, Y) -> Extf-^F, X), (P, Y)) is an isomor-
phism for all /' > 0 and all X in modA. We characterize the subcategories
lk and loo in terms of injective coresolutions of T-modules. In particular
we consider the problem of when I^ = I^ . In this connection we show that
an idempotent ideal 21 is a projective A-module if and only if 21 is a strong
idempotent and I» = Lo •

As an illustration of how these ideas and results can be used to deduce in-
formation about A from the algebras A/21 and Tp we prove the following
generalization of a similar theorem about quasi-hereditary algebras proved in
[CPS and DR1].

Let 21 be an idempotent ideal. Suppose that pd 21 = r, gl. dim A/21 = s and
gl.dimr = í. Then gl.dimA< r + s + t + 2.

The paper ends with applications of these ideas to the study of quasihered-
itary algebras. In addition to giving proofs of some known results, we give a
new description of quasihereditary algebras in terms of /-hereditary algebras.
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1. Strong and A-idempotent ideals

In this section we study the inclusion functor mod A/21 —> modA, where 21
is an idempotent ideal in A. By an idempotent ideal we mean a two-sided ideal
which is idempotent.

Let 21 be a two-sided ideal of A. There is a map between connected se-
quences of functors <p = (ç»')/>o with <p'x Y: ExtA/a(A, Y) -* ExtA(A, Y)
for /' > 0 and X, Y in mod A/21, induced by the canonical isomorphism
<px Y: HomA/a(A, Y) -* HomA(A, Y). Notice that the ideal 21 is idempo-
tent precisely when the map <pxXyY: ExtA/a(X, Y) —> ExtA(A, Y) is an iso-
morphism for all X,Y in mod A/21. We say that a two-sided ideal 21 is
A-idempotent if the maps tp'x Y are isomorphisms for all i = 0, I, ... , k,
and all X, Y in mod A/21. We say that 21 is a strong idempotent ideal if the
maps (p'x y are isomorphisms for all / > 0 and all X, Y in mod A/21. In
this section we give several characterizations of strong and A:-idempotent ideals
which are central to the rest of the paper.

We observe that being a A;-idempotent is a symmetric condition. That is A2l
is a A:-idempotent ideal if and only if 2lA is a A>idempotent ideal. This follows
by duality, since ExtA„P(F>A, DY) ~ ExtA(F, X) for X, Y in modA, where
D: modA —► modAop denotes the usual duality for artin algebras.

As another consequence of the definition we have that gl. dim A/21 < gl. dim A
when 21 is a strong idempotent.

Now we study the behavior of injective coresolutions in modA, when we
apply the right adjoint HomA(A/2t, ): modA —► mod A/21 of the inclusion
mod A/21 —> mod A.

We start by recalling some facts about traces of modules. Let M, N be A-
modules. We denote by tm(N) the trace of Af in A. That is, tj^(A) is the
submodule of A generated by the images of morphisms from Af to A. Let 21
be a two-sided ideal of A. Then there is a natural isomorphism of A/2l-modules
0: HomA(A/2l, X) ■=♦ TA/a(A) given by 0(F) = /(I). If I is an injective A-
modfule, then TA/a(7) ~Hom(A/2l, I) is an injective A/2l-module. Moreover,
if I is an injective envelope of a A-module X, then rA/a(7) is an injective
envelope of the A/2l-module TA/a (X).

We describe when the above property about injective envelopes can be ex-
tended to a statement about the first k terms, or about all of the terms, of a
minimal injective coresolution of TA/a (X) in mod A/21.

In order to avoid writing separate statements we will sometimes write j <
i < k where k is either a positive integer or oo. By j < i < oo we mean all
i>j.

Proposition 1.1. Let X be a A-module, let 0 -> X —> lo -» h -* • • • be a
minimal injective coresolution of X and 1 < k < oo. Then the following are
equivalent

(i) 0 —> TA/aA —> TA/a/o -+•••—► TA/a4 w the beginning of a minimal
injective coresolution of tA/a(A) in mod A/21.

(ii) ExtA(A/2l, X) = 0 for all i such that 1 < / < k.
(iii)L<?í Y be in mod A/21 and let <p'XyY: ExtA/a(F, rA/aA) -> ExtA(7, X)

be the map of connected sequences of functors induced by the canonical isomor-
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670 M. AUSLANDER, M. I. PLATZECK AND G. TODOROV

phism HomA/a(F, rA/aA) ~ HomA(7, X). Then ç>A,a is an isomorphism for
1 < / < k.
Proof. We have that ExtA(A/2l, X) = 0 for all 1 < i < k if and only if the
complex obtained after applying HomA(A/2l, ) to 0 —> X -* lo -> h -* • • • —>
Ik is exact. The equivalence of (i) and (ii) follows, since HomA(A/2l, ) and
TA/a( ) are isomorphic functors.

For a A/2l-module Y the complex obtained by applying the functor
HomA(F, ) to the complex 0 —> X —> Iq —> I\ —> • •• is isomorphic to the
complex obtained by applying HomA/a(F, ) to 0 —> rA/aA -* TA/a/o —►
TA/a^i • • • . So the homologies of the resulting complexes are isomorphic, prov-
ing that (i) =->• (iii). Clearly (iii) =>■ (ii), so the proof is complete.   D

Dually, we can consider projective resolutions of A-modules and apply the
left adjoint functor A/2l<g)A: modA —> mod A/21 to the inclusion mod A/21
—► mod A. We observe that A/21 ®A X ~ X/VLX. So we have the following
proposition.

Proposition 1.2. Let X be a A-module, let • • • —> Px -* F0 -» X -» 0 be a
minimal projective resolution of X and 1 < k < oo . Then the following are
equivalent:

(i) Pk/%Pk -+..•-> Fn/2lFb -+ A/21A -> 0 w the beginning of a minimal
projective resolution of X/QtX in mod (A/21).

(ii) Toif (A/21, X) = 0 for all i such that 1 < /' < k .
(iii) Let Y in mod(A/2t)°P and let ipf'Y: Toif(F, X) -» Torf/a ( Y, A/21A)

be the map of connected sequences of functors induced by the isomorphism F®A X
— Y ®A/a A/21A. Then \pf 'Y is an isomorphism for i = I, ... , k.

From the above results we have the following characterization of A:-idem-
potent ideals in terms of Ext and Tor functors.

Proposition 1.3. Let 21 be a two-sided ideal. Let 1 < k < 00. Then the following
conditions are equivalent:

(i) The ideal 21 is k-idempotent.
(ii) (p'XiY: ExtA/a(A, Y) —» ExtA(A, Y) is an isomorphism for all X, Y in

mod A/21 and all 0 < i < k.
(iii) ExtA(A/2l, Y) = 0 for all A/%-modules Y and all 1 < /' < k.
(iv) ExtA(A/2t, 7) = 0 for all injective I in mod A/21 and I < i < k.
(ii') <p'x Y: Torf/<¡í(X, Y) —> Torf (A, Y) is an isomorphism for all X in

mod(A/2l)°p and Y in mod A/21 and all 0 < i < k .
(iii') Toif (A/21, Y) = 0 for all Y in mod A/21 and all l<i<k.
(iv') Toif (A/21, A/21) = 0 for all l<i<k.

Proof, (i) «• (ii) is just the definition of A:-idempotent ideals. Obviously (ii)
=*■ (iii) => (iv). By Proposition 1.1 it follows that (iii) => (ii). (iv) => (iii)
Let F be a A/2l-module, I its injective envelope in mod A/21 and 0 —► Y —►
/ -» I ¡Y —* 0 exact. Applying HomA(A/2t, ) to this sequence we get a
commutative diagram:
0    -♦    HomA(A/2t, Y)    -»    HomA(A/2l,/)    -+    HomA(A/2l, I/Y)    -t    ExtA(A/a, Y)

T î Î
0^ Y -» / — I/Y -» 0
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Since the vertical maps are isomorphisms we have a long exact sequence:
0   -►     ExtA(A/2l, Y)     -► ExtA(A/a,7)  -> ExtA(A/a, I/Y) -► •■■

••■ -> ExtA_1(A/2l,//y) -► ExtA(A/a, Y) -»    ExtA(A/a, 7)    -►••■

Then (iv) =>• (iii) follows by induction on k .
For the other equivalences observe that F>(ExtA(A, Y)) ~ Torf (DY, X),

where D : mod A —> mod Aop is the usual duality for artin algebras [CE, Chapter
VI, §5].    D

We give a description of A:-idempotent ideals where k = 1 and 2 in terms
of the multiplication map 21 ®A 21 —> 21. We do not have a similar description
for higher k.
Lemma 1.4. Let 21 be a two-sided ideal and let m: 21 ®A 21 —> 21 be the multi-
plication map. Then

(a) 21 is idempotent if and only if m is an epimorphism,
(b) 21 is 2-idempotent if and only if m is an isomorphism.

Proof, (a) is clear, and (b) follows from the following result from [CE, Exercise
19, p. 126], which we state for ease of reference.

Lemma 1.5. Let 21 be an idempotent ideal. Then there is an exact sequence
0 -> Torf (A/21, A/21) -> 21 ®A 21 -^ .4 —► 0, where m is the multiplication map.

We get the following characterization of A:-idempotent ideals in terms of the
projective and injective resolutions of A/2l-modules.

Theorem 1.6. The following conditions are equivalent for a two-sided ideal 21:
(i) The ideal 21 is k-idempotent.
(ii) Let X be a A/Qi-module and 0 —► X —> 7o —> • • • a minimal injective

coresolution of X in modA. Then 0-»!-» tA/a^o —>■••--> TA/a7¿. is the
beginning of a minimal injective coresolution of X in mod A/21.

(iii) Let Y be a A/W-module and ■ ■ ■ —> Po —> Y —► 0 a minimal projective
resolution of Y in modA. Then Pkj%Pk ->■••-* F0/21F0 -» Y -> 0 is the
beginning of a minimal projective resolution of Y in mod A/21.
Proof. It was proven in Proposition 1.3 that 2t is A;-idempotent is equivalent to
ExtA(A/2l, Y) = 0 for all A/2l-modules Y and I <i <k. The condition (ii)
in the theorem is part of the statement of Proposition 1.1 for Y in mod A/21.
Similarly 21 being A:-idempotent is equivalent to Torf (A/21, Y) = 0 for all Y
in mod A/21 and 1 < /' < A which is equivalent to (iii) by Proposition 1.2.   D

Next we give several examples of strong and A-idempotent ideals.

Example 1. Let 21 be an idempotent ideal which is a projective left A-module.
Then 21 is a strong idempotent ideal. To see this, let F be a A/2l-module.
Then ExtA(A/2t, Y) — 0 for all /' > 1 . This is true for /' = 1 because 21 is an
idempotent ideal, and for /' > 1 because the projective dimension of A/21 is
at most 1.

Therefore, if A is a hereditary algebra any idempotent ideal is strong idempo-
tent. It would be nice to know what other algebras A contain nontrivial idem-
potent ideals which are projective left A-modules. Nonsimple quasi-hereditary
algebras do, since heredity ideals are projective left modules, by definition. (See
[CPS, DR 1] or §6 for definitions.)
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Example 2. The ideals which occur in a heredity chain in a quasihereditary
algebra are all strong idempotent. More generally, let A be an artin algebra
having a chain of idempotent ideals 0 = 2toC2liC-c2l„cA such that
2li/2l;_i is projective A/2l(_.-module for all / = 1, ... , n . Then 21, is strong
idempotent for /' = 1, ... , n .

This can be proven in a straightforward way by induction on n . Since it will
also follow from results in §6 we omit the proof here.

In the above examples the projective dimension of the strong idempotent
ideals was always finite. We give now an example of a strong idempotent ideal
of infinite projective dimension.

Example 3. Let A be the path algebra (over a field) of the quiver
a

1    • .2

ß
modulo the ideal generated by the relation ßaß = 0. Let P be the projective
corresponding to the vertex 1. Then 21 = tP(A) is a strong idempotent ideal
and has infinite projective dimension.

The following example shows that for every natural number k > 1, there are
A>idempotent ideals which are not (k + 1 )-idempotent.

Example 4. Let A be the path algebra (over a field) of the quiver

0 1 A k+l
• <- • <- • ■ ■ <- • <-     •

modulo the ideal generated by the paths of length 2. Let F, be the projective
corresponding to the vertex /'. Let 21 = Tp2u-upk(A). Then 21 is A:-idempotent
and is not (k + 1 )-idempotent.

To see this we denote the simple A-modules by Sj = Pj/rPj, where r is
the radical of A. Then A/21 ~ So II -Sfc+i is semisimple. So the only inde-
composable A/2l-module which is not an injective A-module is So . We have
that ExtA(A/2t, So) = ExtA(5'fc+1, S0) for / > 1. But ExtA(Sfc+i - S0) = 0 for
/' < k and ExtA+1(5'fc+1, So) ?-= 0. It follows that 21 is A-idempotent but is not
(k + 1)-idempotent.

Notice that the above algebra A can be given as the (k + 2) x (k + 2) lower
triangular matrix ring modulo the square of the radical.

2. Projective resolutions of A:-idempotent ideals
In the previous section we characterized A-idempotent ideals in terms of

the projective resolutions of all A/2l-modules. We show here that knowing the
projective resolution of only one module, namely A2l, is enough to determine
for which k the ideal 21 is A>idempotent. In this section we prove the following
theorem.

Theorem 2.1. Let 21 = x>(A) for some projective A-module P and I < k <
oo.   Let •••—► F, —>•••—► F0 -> 21 —> 0 be a minimal projective resolution
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of 21. Then 21 is (k + l)-idempotent if and only if the F, are in add F for
i = 0,...,k.

In the proof of the theorem and throughout the rest of the paper the following
facts and notation will be used. A two-sided ideal 21 is idempotent if and only if
21 = xp(A) for some projective A-module P. Furthermore, t>(A) — Tp>(A) if
and only if add F = add F'. From now on, 21 will always denote an idempotent
ideal, and F a fixed projective A-module such that 21 = t>(A) . We now recall
some properties of traces of projective modules.

Remark 2.2. Let 21 = t^(A) . Then xP(X) = xP(A)X = 2tA for any A-module
X. The projective cover F0(A) of X is in addF if and only if X = xP(X) =
21A. We also have addF = add(F0(2t)).

In order to prove the theorem it will be convenient to introduce the following
notation:

Definition 2.3. Let F be a projective A-module. For each 0 < k < oo we
define Pk to be the full subcategory of modA consisting of the A-modules
X having a projective resolution • • • —» F» —> Pq —► X —» 0 with F, in add F
for 0 < /' < k. Since Pk depends only on addF, it is well defined for the
idempotent ideal 21 = t>(A). It would be more precise to write Pkyp or Pky% ,
but whenever it is clear which projective or which idempotent ideal we are using,
we will use the above notation Pk .

Theorem 2.1 can now be restated.

Theorem 2.1'. An idempotent ideal 21 = xP(A) is (k + l)-idempotent if and only
if 21 is in Pk , for 1 < k < oo.

In the following proposition we give a characterization of the modules in P^
needed in the proof of the above theorem as well as in the rest of the paper.

Proposition 2.4. Let 21 = xp(A) and 1 < k < oo. Then the following conditions
are equivalent for a A-module X.

(i) X is in Pk .
(ii) ExtA(A, Y) = 0 for all A/Qt-modules Y and i = 0, ... ,k.
(iii) ExtA(A, E) = 0 for all injective A/Ql-modules E and i = 0, ... , k.

Proof. By induction on A .    D

Proof of Theorem 2.1' (and Theorem 2.1). Let X = 21 in the above proposition.
We only need to observe that ExtA+1(A/2l, Y) ~ Exr4(2l, Y) for all /' > 0 and
use that 21 is (A: + 1 )-idempotent if and only if ExtA+1(A/2l, Y) = 0 for all Y
in mod A/21 and i = 0, ... , k .    D

Dually, for 0 < A: < oo we define Ik to be the full subcategory of modA
consisting of the A-modules Y having an injective coresolution 0 -> Y ->
lo —> I\ -* ••• with lj in add/ for 0 < / < A. Here I denotes the injective
envelope of P/rP.

Using Theorem 2.1' and the duality D, we see again that there is a module
such that its injective resolution determines for which k the ideal 21 is A>
idempotent.

Theorem 2.5. Let M = E/E', where E is the sum of all nonisomorphic
indecomposable injective A-modules and E'  is the sum of all nonisomorphic
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indecomposable injective A /^.-modules. Let 1 < k < oo. Then M is in Ik if
and only if 2t is (k + l)-idempotent.

Notice that the module Af is the dual of 21 considered as a right A-module.
We now write the dual statement of Proposition 2.4, since it will be used in

the rest of the paper.

Proposition 2.6. Let 21 = i>(A) and 1 < k < oo. Then the following conditions
are equivalent for a A-module Y :

(i) Y is in Ik .
(ii) ExtA(A, Y) = 0 for all X in mod A/21 and all i = 0,...,k.
(iii) ExtA(A/2t, F) = 0 for all i = 0,...,k.

3. Extensions over the endomorphism ring of F
Let 21 = xp(A) be an idempotent ideal and T = EndA(F). It would be more

precise to write Tp, but we have assumed in §2 that F is a fixed projective
module throughout the rest of the paper, so we just write T.

In §1 we considered the inclusion mod A/21 —► modA, and studied condi-
tions on 21 so that ExtA(A, Y) ~ ExtA/a(X, Y) for all i = 0, I, ... , k . Now
we turn our attention to the functor (P, ): modA -> modT. This functor
induces natural morphisms p'x Y: ExtA(A, Y) -> Extp((F, X), (P, Y)), for
all /' > 0 and all X,Y in modA. We will study in this section conditions
under which these morphisms are isomorphims for all i = 0, ... , k . And, also
in analogy with what we did for A/2l-modules and A-modules, we will explore
the relationship between injective coresolutions in modT and in modA.

We start by recalling some well-known properties of the functor (F, ) : mod A
—> mod T.

Let Ik and Pk be as in §2, for 0 < k < oo. Then P- consists of the
A-modules with a projective presentation in addF, and I» of those with an
injective copresentation in add I. We will use the following results [A, §§5 and
6].
Lemma 3.1. (1) The functor (P,  ) induces equivalences of categories

(P,  )|p,:P1-modr,        (F,  )|Il:I1-modr.

(2) Let px,Y- (X, Y) -> ((F, X), (P, Y)) be the map induced by (P, ).
Then

(i) px,Y is a monomorphism if either X is in Po or Y is in Iq.
(ii) px, y is an isomorphism if X is in Po and Y is Iq .
(iii) px,Y is an isomorphism if either X is in Pi or F is in I» .
(3) (F, ) induces equivalences of categories between addF and the category

of projective T modules and between add I and the category of injective T-
modules.

Since (P, ): modA —> modT is an exact functor, it induces morphisms
px Y: ExtA(A, Y) -> ExtA((F, X), (P, Y)), for X, Y in modA, / > 0,
functorial in X and Y. These morphisms are defined as follows. Let 0 —►
Y —> /o —* Ix -* •■• be an injective copresentation of Y in modA. Then
the exact complex 0 —> (P, Y) —> (P, lo) —* (P, Ix) —* ■ ■ ■  maps into an exact
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complex 0 —► (F, Y) —> E0 —> Ex ->•••, with F, injective in modT for ail
/' > 0. For X in modA we get maps of complexes

0 -► (X,Y) -► (X,IQ) -► (X,IX) -► •••

0 -► ((P,X),(P,Y)) -► ((P,X),(P,I0)) -► ((P,X),(P,IX)) -► ■•■

and

0 -► ((P,X),(P,Y)) -► ((P,X),(P,I0)) -► ((P,X),(P,IX) -► ••■

0 ->((P,X),(P,Y)) -►     ((P,X),E0)     -►     ((P,X),EX)    -

The composition of these maps induces a map px, y between the homologies
of the involved complexes. This is, a family of maps p'x Y: ExtA(A, Y) —>
Extr((F,A)(F,F)),  />0,with p\,Y = Px,Y.

The following result relates extensions in modT and in modA.

Theorem 3.2. Let « > 0. Then the map

pnxy. ExtA(X, Y) - Extf((P,X),(P,Y))

above defined is an isomorphism provided one of the three following conditions
holds:

(a) X 15 in P., Y is in lj and n < i + j.
(b) X is in modA,  Y in l„+x.
(c) X is in P„+i,  Y in modA.

Proof. In n = 0 the theorem states the same as Lemma 3.1,2, (ii) and (iii). So
we assume n > 1 and prove the theorem by induction on n. Let X in Po
and consider an exact sequence O^A—>Fo—* X —>0 with Fo is add P.
Then 0 -► (F, K) -► (P, F0) -> (F, X) -> 0 is exact and (F, F0) is projective
in mod F. We get a diagram

0    - (X,Y) -» (P0,Y)
I PX.Y I PP0 , Y

0    -     {{P,X),{P,Y))    -     ((/>, P0), (P, Y))    -,

(K,Y) -» ExtA(*,r) -»     0

((p,x), (P, Y))   -   Eöi((j»,jr),(p,y))   -   o.

If A is in P2 then A is in Pi. So it follows from Lemma 3.1, (2) (iii) that
the three left vertical maps are isomorphisms if either X is in P2 or Y is in
Ii . Thus px Y is an isomorphism for X in P2, Y in L . Considering an
exact sequence 0-»F—>70—>7->0 with lo in add I one proves that px Y
is an isomorphism if either A € Pi or Y e I2. Thus the theorem holds for
n = 1.
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Assume now that n > 1. First we consider the case when X is in P, and
/' > 0. Let 0—>K—>Po—>X—>0 be an exact sequence with Fo in add F.
Then the sequence 0 —> (F, K) —> (F, F0) —> (F, X) —► 0 is exact, and since X
is in Po we have that (P, Po) is projective in modT. We get a commutative
diagram

ExtA-'(A,F) -► ExtA(A,F)

i-1 n
L.Y "X,Y

Ext[l-l((P,K),(P,Y)) -► Extï((P, X), (P, Y))

where the horizontal maps are isomorphisms. Since X is in P, and /' > 0,
then K is in P,_» . Let now Y be in I7 with i + j = n . We can apply the
induction hypothesis to K and Y and conclude that pK~\ is an isomorphism.
Thus px y is also an isomorphism. If Y is any A-module and i = n + l the
same argument holds.

The other cases follow in a similar way, considering an exact sequence 0 —►
Y -> lo -» K -> 0 with 70 in addf.   □

We observe that when   X   is in   P^   the theorem states that   px Y:
ExtA(A, Y) -* Extf((F, X), (P, Y)) is an isomorphism for all n > 0 and
for all Y in modA. Similarly, if Y is in I^ then px Y is an isomorphism
for all n > 0 and all X in modA. Since (F,  ): modA —> modT is a dense
functor we obtain the following corollaries.

Corollary 3.3. (a) If X is in PM then p dimA X = p dimr(F, X).
(b) If X is in loo then inj dimA X = inj dimr(F, X).

Corollary 3.4. If Px = PM or Ix = I^ then gl. dimT < gl. dimA.

We observe that in general it is not true that gl. dim Y < gl. dim A, as the
following example shows.

Example 3.5. Let A be any field and A the A:-algebra associated to the quiver

1    -£♦    2

modulo the relation aß = 0. Let Fi be the projective associated to the vertex
1. Then gl.dim(EndA(Fi))°P = oo and gl.dimA = 2.

Assume now that Y is in 1^ for some 0 < A < oo and let 0 —> Y —> 7o —►
■ • ■ —> Ik —► • ■ • be a minimal injective coresolution of Y. Then I¡ is in addf
for j < k , so that 0 -> (P, Y) -► (F, I0) ->-* (P, h) is the beginning of
an injective coresolution of (F, F). In particular, when L = loo the injective
coresolutions of the T-modules are all obtained by applying the functor (P, )
to injective coresolutions of A-modules. So we want to know what modules are
in L;, and give necessary and sufficient conditions for Ii to be equal to loo •
We are interested also in dual results about Pk to study projective resolutions.

Using the preceding theorem we can give the following characterization of
modules in \k .
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Theorem 3.6. Let 1 < k < oo. Then
(a) A A-module Y is in \k if and only if the above defined map px Y :

ExtA(A, Y) -> Extf((F, X), (F, Y)) is an isomorphism, for all 0 < i < k - 1
and all X in mod A.

(b) A A-module X is in Pk if and only if

pxy. ExtA(A, Y) -, Extf((P, X), (P, Y))
is an isomorphism, for all 0 < / < k - 1 and all Y in mod A.
Proof, (a) The fact that Y in \k implies that

ExtA(A,F)~ExtH(F,A),(F,F))
for all X in modA and all 0 < i < k — 1 is the statement (b) of Theorem
3.2. To prove the converse we will use the characterization of modules in 1^
given in Proposition 2.6, stating that a A-module Af is in I^ if and only if
ExtA(A/2l, M) = 0 for /' = 0,..., k.

Let / > 0. We consider the commutative diagram

ExtA(A,F) -► ExtA(2t, Y)

P\.y P*,Y

Extr((F, A), (F, Y)) -► ExtH(F,2t), (P, Y))
induced by the inclusion 21 —> A. The lower horizontal map is an isomorphism
because (P, 2t) —» (P, A) is an isomorphism.

We assume now that px Y: ExtA(A, Y) -> Extf((F, X), (P, Y)) is an iso-
morphism for all 0 < /' < A: - 1 and all X in mod A. Then the vertical maps
in the diagram are isomorphisms and therefore ExtA(A, Y) ~ ExtA(2l, Y), for
0 < i < k - I. Hence ExtA(2t, Y) = 0 for 1 < /' < k - 1 . On the other
hand, from the exact sequence 0 —> 2t —► A —► A/21 -> 0 we get an exact
sequence 0 --> (A/21, r) -> (A, 7) -> (», 7) -> ExtA(A/2l, Y) -* 0. We
just proved that (A, Y) -» (21, Y) is an isomorphism, so (A/2t, Y) = 0 and
ExtA(A/2l, Y) = 0. Thus ExtA(A/2l, Y) = 0 for all 0 < i < k, this is, Y is
in Ifc.

(b) follows from (a) by duality.   □
The following propositions gives another characterization of modules in lk .

Proposition 3.7. (a) Let X be in lx and k > 1. Then X is in lk if and only
if Ext[-(F*, (P, X)) = 0 for all 1 < /' < k - 1, where P* denotes the Y-module
HomA(F, A).

(b) Lei X be in Pi and k>l. Then X is in Pk if and only if

Torf(F,(F,A)) = 0
for all I < i < k - I, where P is considered as a module over T°p = EndA(F)
in the natural way.
Proof, (a) Let X be in lk . Then we know by Proposition 3.6 (a) that

Extf (P* , (P, X)) = Ext{-((F, A), (P, X)) ~ ExtA(A, X),
for 0 < /' < k - 1. This proves that Extr(F* ,(P,X)) = 0 for I <i<k-l.
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To prove the converse we assume that Extr(F*, (F, X)) — 0 for 1 < / <
k - 1. We will prove that X is in 1^ by induction on k. The result is true
for k = 1 . So let k > 1. Then X is in lx , and since 21 is in Po we can
apply Theorem 3.2 and obtain that Ext[((F, 21), (F, X)) ~ ExtA(2t, X). Since
(P, 21) ~ P* and we are assuming that Extf (F*, (F, X)) = 0 for /' < k - 1 we
obtain that ExtA(A/2l, X) ~ ExtA(2t, X) = 0. So X e I2 .

Consider now an exact sequence 0—>A—>7o—>L —>0 with 70 in add I.
Then 0 —> (F, X) —> (F, 70) —> (F, L) -> 0 is exact and (F, 70) is an injective
T-module. So Ext^(F*, (F, L)) = 0 for 1 < / < k - 2. Since X is in I2 it
follows that L is in L , so the induction hypothesis applies to L. Therefore
L is in lk_x, so X is in 1^ , as we wanted to prove.

(b) follows from (a) by duality, observing that 21 = xp- (Aop) as is also
MA).   D

We characterize now when \x = F» , and when Pi = Poo »

Corollary 3.8. (a) Ii = L» if and only if the T-module P* is projective.
(b) Pi -= Poo if and only if the T°p-module P is projective.

Proof, (a) follows directly from the Proposition 3.7. To prove (b) we write
21 = T>.(Aop). Since Pi = P^o we get that the subcategories IXyP. and I«-,/"
of modAop are the same. By (a) we obtain that the r°p-module (P*)* = P is
projective.   D

We recall now some properties of the functor Homr(F*, ) = (P*, ): modT
-+ modA, which is the right adjoint of (F, ): modA —> modT [A, §5]. The
functor (P*, ) is left exact, fully faithful and its image is the subcategory Ii

tp'   ) (p  )of mod A.  The composition mod T   —-+   mod A —U mod T is the identity
of mod T, and (P*,  ) preserves injective envelopes. However, (P*,  ) does
not preserve injective coresolutions, not even injective copresentations. In fact,
given an injective coresolution 0 —► Af —> 7o —► 7i —> • • •   of a T-module Af,
then 0 -» (F*, Af) -> (P*, 70) -> • ■ ■ -> (P*, Ik) is the beginning of an injective
coresolution of (P*, M) if and only if Ext'r(P*, M) = 0 for i = 1, ... , k .
Therefore Proposition 3.7(a) can now be written in the following way.

Proposition 3.9. Let X be a A-module and M - (P, X). Then the following
conditions are equivalent for 1 < k < oo.

(i) X is in lk .
(ii) If 0 —> M -> 70 -> Ix —» • • • is an injective resolution of M in mod T

then 0 —► X —► (P*, /n) -» ••• -» (P*, Ik-x) is the beginning of an injective
coresolution of X = (P*, M) in modA.

It follows that Ii = loo if and only if the functor (P*, ): modT —> modA
carries injective coresolution of A-modules into injective coresolutions of A-
modules.

On the other hand, (F, ): modA —► modT has also a left adjoint, the
functor F®r: modT —> modA [A, §5]. This functor is right exact, fully faithful
and its image is Pi . The composition
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modr -^î modA -^ modT
is the identity of modT, and F<S>r- preserves projective covers.  Proposition
3.7(b) can be written as follows.

Proposition 3.10. Let X be a A-module and M = (P, X). Then the following
conditions are equivalent for 1 < k < oo.

(i) X is in Pk .
(ii) If ■ ■ ■ —> Pk —> • • • -> Fo —► Af —► 0 is a projective resolution of M in

mod T then P ®r Pk —> • • • —> P ®r Fb —► A -> 0 is ///<? beginning of a projective
resolution of X = P ®r Af /'« mod A.

4. Conditions for L = loo

In this section we give other necessary and sufficient conditions for L to be
equal to loo - and for Pi to be equal to P^ . We prove that L = I^ if and
only if 21 <g>A 21 is a projective A-module, and Pi = P«, if and only if 21 ®A 21
is a projective Aop-module.

We start by recalling some further properties of the functor F®r-: modT —>
modA. (See, for example, [A, §5].) Since F®r» modT —> modA is a left
adjoint of (F, ) : modA —> modT, there is a unique isomorphism of functors
/ from the composition (F®r )(F, ) to the identity of modA such that
(P, ) / is an isomorphism. For X in modA, fix'. F<g>r(F, X) —> X is given
by fx(p ® h) = h(p), for h e (P, X), p e P. The following is a well-known
fact.
Lemma 4.1. Let X be in modA and fix'. F<g>r(F, X) —> X be as above. Then

(1) P®r(P,X) is in Pi and kerfx, Coker/x are in mod A/21.
(2) Given an exact sequence 0 —> Lx -> Xx -^-> X -» L2 —> 0 with Xx in Px

and Lx, L2 in mod A/21 we have:
(a) There is a commutative diagram

0 -• Ker/y -► P®r{P, X)      fx    ■ ̂  -► Coker/^ -► 0

0 -»     L,     -► Xx —v-—► X -►      L2      -► 0

where the vertical arrows are isomorphisms.
(b) (P, tp): (P, Xx) —» (F, X) is an isomorphism.
(c) Let Y in Pk and 1 < k < oo. The maps ExtA(Y, tp): ExtA(F, Xx) -»

ExtA(7, X) are isomorphisms for all 0 < i < k - 1.

Now we state the dual results (see, for example, [A, §5]). Since (P*, ) : mod T
—» modA is a right adjoint of (P, ): modA -> modT there is a unique
isomorphism of functors g from the identity of modA to the composition
(P*,  )(P,  ) ~ (P®rP*,  )■  For A in modA, gx: X -» (F',(F,A)) is
given by (#*(*)(./))■» = fip)x, for x in A, / in F* and p in F.
Lemma 4.2. L«?i X in modA and gx: X -» (F*, (F, A)) è<? as aôove. F//i?n

(1) (P*,(P, X)) is in \\ and Yjer gx , Cdker gx are in mod A/21.
(2) Given an exact sequence 0 —► Li —> X -^-> Ai —» L2 —> 0 w/'/A Ai /'« \x

and Lx, L2 in mod A/21, we have:
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(a) There ¿s a commutative diagram

0 -►     Li     -> X -> Xx -►       L2       -► 0

1 II I I
0 -► kergx-► X -SU (P*,(P, X)) -> Cokergx -► 0

where the vertical arrows are isomorphisms.
(b) (P, ip): (P, X) -> (P, Xx) is an isomorphism.
(c) Let Y in lk and 1 < k < oo. The maps Ext'A(tp, Y): ExtA(Ai, Y) -»

ExtA(A, Y) are isomorphisms for all 0 < i < k - 1.
To simplify notation we denote P ®r (F, X) by XP¡ , and (P*, (P, X)) by

Xh.
In the following proposition we describe APl .

Proposition 4.3. There are isomorphisms of A-modules AP¡ ~ 2t?, ~ 21 <8>A 21.
Proof. To prove the result we will use the following lemma.

Lemma 4.4. Let F0 be the projective cover of 21. Then F0 is also the projective
cover of 21 ®A 21, and there is an exact sequence

0 -> Torf (A/21, A/21) -> C ^ P0 -»a ®A 21 -+ 0
with C in P0. So 21 ®A 2t is in Px.
Proof. Consider the exact sequence 0 -> K —► F0 —> 21 —> 0. Tensoring with 21
we obtain the exact sequence

0 -> Torf (21, 2f)-*2t®A-^2t®F0^2l®A2l — 0.
On the other hand, we have a commutative diagram

2t®AF0 -—-> 2l<8)A2l

F0       -»      2t

where the vertical maps are the multiplication maps. We know that 2lFn = F0
because Fn is in add F. So, tensoring the exact sequence 0 —► 21 —> A —>
A/21 —» 0 with the projective module aPq we obtain that 21 ®A Fb -^ A <8A F0
is an isomorphism. Thus mp0 is an isomorphism. From the commutativity of
the diagram it follows that F0 is the projective cover of 21 <g>A 21. This ends the
proof of the lemma, since Torf (21, 21) ~ Torf (A/21, A/21), and C = 21 <g>A K
is in P0 because 21C = C .   D

Now we prove the proposition. We have that (F, A) ~ (F, xpA) = (P, 2t).
Thus (P, A/>,) ~ (F, 2tp,), as follows from Lemma 4.1.2(b). Since both A/>,
2l/>, are in Pi and the restriction of (F, ) to Pi is an equivalence we get that
A/., ~ 2t/>, .

Consider the exact sequence 0 —> Torf (A/21, A/21) ->2l®A2l-*2l-»0,as
in Lemma 1.5. The module Torf (A/21, A/21) is in mod A/21, and 2l®A2l is
in Pi , by the lemma. The uniqueness of a sequence 0 —► Li —> Xx —> 21 —►
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L2 —> 0 with Ai in Pi and Lx, L2 in mod A/21 (Lemma 4.1) implies that
2tp, ~ 21 ® A 21.   D

We can now describe when 21 ®A 21 is a projective A-module.

Proposition 4.5. The following are equivalent for the idempotent ideal 21
(a) Ii = loo
(b) 21 ®A 21 is a projective A-module.
(c) 2t ®A 21 is a projective A-module and Torf (A/21, A/21) = 0.

Proof. We proved in Corollary 3.8 that Ix = Lo if and only if P* is a projective
T-module. This is the case if and only if P* = (P, Q) for some Q in add F,
as follows from Lemma 3.1,3. On the other hand (F, )|p, : Pi —> modT is an
equivalence of categories and P* = (P, A) = (P, APl). So P* is a projective
T-module if and only if A/>, is a projective A-module. Therefore (a) ■& (b),
since we have proven in Proposition 4.3 that A/>, and 21 ® 21 are isomorphic
A-modules.

Clearly (c) => (b). We prove now (b) =>• (c). We consider the exact sequence
0 -» Torf (A/21, A/a) -> C ^ P0 -^ 21 ® 21 ̂  0 with C in P0 and F0 =
F0(2l®2l), as in Lemma 4.4. If 21® 21 is projective then Torf (A/21, A/21) -» C
is an isomorphism. From this it follows that C = 0. Because on one hand
21C = C since C is in P0, and on the other hand C ~ Torf (A/21, A/21) is a
A/21 module.   D

By the definition of APi we know that AP¡ = F®r (F, A) ~ F®rF*. On the
other hand Proposition 4.3 shows that APi ~ 2t ®A 21. Therefore F ®r P* and
21 ®A 21 are isomorphic as left A-modules. We show next that they are, in fact,
isomorphic A-A-bimodules by giving a bimodule isomorphism t: P ®r P* —►
2t®A2l.

Proposition 4.6. There is a A-A-bimodule isomorphism i:f®rF* -* 2t ®A 21
such that the diagram

P ®r P*    -*-»   21 <g>A 21

21
commutes where m<& is the multiplication map, and 6(p®f) = f(p), for p e P,
feP*.
Proof. Let e: P* ®A F -> T be defined by e(/®p)(p') = f(p')p, for / e
P*, p, p' e P. Then e is a A- A-bimodule isomorphism and induces an
isomorphism a : P ®r (P* ®a P) ®r P* -► F ®r F* of A-A-bimodules. We get
a commutative diagram

(F®rF*)®A(F®rF*) -^^ 2t®A2t

ma

F ®r F* —?—+      21
We observed just before the proposition that P®yP* and 2l®A2l are isomorphic
in mod A. Thus the epimorphism / = (6 ® 6)a~x : P ®r P* -> 21 ®A 21 is an
isomorphism and one easily checks that the required diagram commutes.   D
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Remark. We give an elementwise definition of /. Let id/>: F —> F be the
identity map. Since e : F* ®A F —> T above defined is an isomorphism, there
are /• e P*, p¡ e P, i = I, ... , n, such that e(£"=, fi ® Pi) = tdP . Then
'(P ® /) = £/=. fi(P) ® /(P.), for p e F, / e F*.

As immediate consequences of the proposition we obtain the following two
corollaries.
Corollary 4.7. The idempotent ideal 21 is 2-idempotent if and only if the map
6 : P ®r P* -> 21 defined above is an isomorphism.

Corollary 4.8. Let X in mod A. Then XIt = (2l®A2l, X) and XP¡ = 21 ®A
21 ®A A. 7/21 is a 2-idempotent then Xh = (21, X) and XP¡ = 21 ®A X.

We know that if 21 is an idempotent ideal then 21 ®A 21 is not isomorphic to
21, unless 21 is 2-idempotent. However, we have the following result.

Corollary 4.9. The map ida ® ma : 21 ®A 2t ®A 2t —> 2t ®A 21 is an isomorphism,
where ida : 21 —> 2t is the identity map and m% : 2l®A2l —> 21 is the multiplication
map.
Proof. We have a commutative diagram

21 ®AP®rF* -^-^ 2l®A2l®A2l

mp®\á¡>. ida 8ii

2t®A2t,
where mp : 21 ® A F —> F is the multiplication map. Since both mp and t are
isomorphisms it follows that all the maps in the diagram are isomorphisms,
proving the corollary.   D

We give now a list of necessary and sufficient conditions for L to be equal
to loo • summarizing many of the previous results.

Proposition 4.10. The following are equivalent for an idempotent ideal 21 of A:
(1) Il  = loo
(2) I, = I2
(3) P* is a projective T-module.
(4) 21 ®A 21 is a projective A-module.
(5) F ®r P* is a projective A-module.

(p  ) tp')(6) The composition mod A —'-> modT —* mod A is exact.

It would be nice to know what modules are in lk and not in lk+i for a given
idempotent ideal 21. We observe that 1^ = lk+x implies I^ = L^. It would
also be nice to know which is the smallest A such that I*; = I^, or, what is
equivalent, such that lk = lk+x . We know that such k is 1 if and only if 2l®A2t
is projective. Moreover, the following result is true

Proposition 4.11. Let 21 be an idempotent ideal and assume that
p.dimA(2l®A2l) = r.

Then lr+x = Ir+2 = • • • = loo •
Proof. Assume X is in If+i . We know by Proposition 3.7 that this means that
Extf (P*, (P, X)) = 0 for /' = 1, ... , r. To prove that X is in Ir+2 we will
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prove that Extr+1 (P*, (P, X)) = 0. We write P* = (F, A) = (P, APl ). Since
A/>, is in P] and X is in L+i it follows from Theorem 3.2 that

Extrr+l(P* ,(P,X))~ ExtA+1 (APl, X).

And ExtA+1(A/>,, X) = 0 because we are assuming that p.dimA(2l ®A 21) = r,
and AP¡ ~ 21 ®A 21, by Proposition 4.3. So L+i = Ir+2 .   D

Remark. The converse of Proposition 4.11 is not true. Let A, 21, F be as in
Example 3, §1. Then 21 is a strong idempotent, so it is a 2-idempotent and thus
21 ® 21 = 21. However, I2 = I^ and p.dim 21 = oo .

Using that 21 = xp(A) implies that 21 = T/>. (Aop) we obtain from Proposition
4.10 the following result.

Proposition 4.12. The following conditions are equivalent for the idempoent ideal
21 of A,

(1) Pi  = Poo
(2) Pi = P2
(3) F is a projective T°p-module.
(4) 21 ®A 21 is a projective Aop-module.
(5) F ®r P* is a projective Aop-module.
(6) The composition mod A •—--» modT —> mod A is exact.

The following result follows from Proposition 4.11.

Proposition 4.13. Let 21 be an idempotent ideal and assume that p.dimA„P2l®A
a = r. Then Pr+X = Pr+2 =      = P^ .

5. Projectivity of 2t. Global dimension

In this section we characterize when an idempotent ideal a is a projective
A-module, and when it is a projective Aop-module. We also study relationships
between the global dimensions of the algebras A, A/a and T.

The following proposition combines results of the preceding sections.

Proposition 5.1. Let a be an idempotent ideal. Then the following are equivalent
(a) a is a projective A-module.
(b) a is a strong idempotent and lx = loo ■
(c) a is a 2-idempotent and lx = I^ .
(d) The multiplication map a ®A a --> a is an isomorphism and a ®A a is a

projective A-module.
Proof, (a) => (b) Assume that a is a projective A-module. Then p.dim A/a <
1, so it follows from the definitions that lx = loo . And we observed in §1,
Example 1, that a is a strong idempotent. So (a)=>(b). Clearly (b) =>• (c).
We know by Proposition 1.4 that a is a strong idempotent if and only if the
multiplication map a ® a —> a is an isomorphism. On the other hand, we
proved in Proposition 4.5 that Ix = Lo if and only if a ®A a is projective in
mod A. Then (b) •» (d).   D

We have the following characterization of when a is a projective Aop-
module.
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Proposition 5.2. Let a be an idempotent ideal. Then the following are equiva-
lent:

(a) a is a projective Aop-module.
(b) a is a strong idempotent and Px = Poo •
(c) a is a 2-idempotent and Px = P^ .
(d) The multiplication map a ®A a —> a is an isomorphism and a ®A a is a

projective Aop-module.

When T is semisimple then Ii = loo and Pi = P^ , so we get the following
result.

Corollary 5.3. Assume T is semisimple. Then the following conditions are equiv-
alent:

(a) a is a projective A-module.
(b) a is a 2-idempotent.
(c) a is a projective Aop-module.

The equivalence of (a) and (c) has been proven by Dlab and Ringel in [DR1,
Part II, Statement 7]. We observe that the conditions a is a strong idempotent,
Ii = loo and Pi = Poo are independent, as shown in the following examples.

Let A be as in Example 3, §1. That is, A is the path algebra (over a field)
of the quiver

1    -^    2• •
ß

modulo the ideal generated by the relation ßaß = 0. Then the ideal ai =
T/>,(A) is a strong idempotent which is not projective. Therefore, Iia, ^
loo,a, • Let now a2 = t>2(A) be the trace of the projective module P2 asso-
ciated to the vertex 2. Then a2 is a projective A-module, so a2 is a strong
idempotent and Ii,a2 = Ioo,a2 • However Pi,a2 7^Poo,a2 • This example shows
that being projective is not a symmetric condition. One can check that directly
or observe that Pi,a2 7^Poo,a2 implies that a2 is not a projective Aop-module.

On the other hand, any nonprojective idempotent ideal a = t>A such that
T is semisimple satisfies Ii = loo and Pi = Poo , but a is not a 2-idempotent
(Corollary 5.3). Such ideals are easy to find. One of them is the ideal a = t>2(A)
in A = Ti(k)/r2 , where Fj(A;) is the 3x3 lower triangular matrix ring with
coefficients in a field k, P2 = Ae22 and <?22 is the matrix with 1 in the entry
22, 0 elsewhere.

We now study relationships between the global dimensions of the rings A,
A/a and T. We have seen that if the idempotent ideal a is a strong idempotent
then gl.dimA/a < gl.dimA. And if Ii = loo then gl.dimT < gl.dimA.

We will prove now the following result.

Theorem 5.4. Let a be an idempotent ideal.   Then gl.dim A < p.dimAA/a +
gl.dim A/a + gl.dim T + 1.

We observe that when a is projective and T is semisimple the proposition
states that gl.dimA < gl.dim A/a +2, an inequality proven by Dlab and Ringel
in [DR1, Part 2, Statement 5].

To prove this proposition and the next we consider the full subcategory T
of mod A consisting of the modules F such that ExtA(A/a, T) — 0 for all
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/' > 1. Then F» ç T, and a A-module F in loo is in T if and only if rA/a F =
HomA(A/a, T) -0. Given a A-module X we denote by Q~'(X) the image
of the map d¡ in a minimal injective coresolution 0 —► X —♦ Iq —l-* 7i —-U ■ • •
of A and we write Q°(A) = A. We need the following lemma.
Lemma 5.5. Let T be as above. Then

(i) p.dimAA/a = r if and only if Qrr (mod A) ç T.
(ii) If gl.dim A/a = j < oo *A«i fr<*+1>(T) ç loo ■

Proof, (i) Follows from the isomorphism

ExtA+r(A/a, X) ~ ExtA(A/a, Qrrx),
for all X in mod A, / > 1.

(ii) Let F in T. Clearly Q-'(F) is in T for all / > 1. So we only
have to prove that TA/a(Q-(J+1>(F)) = 0. Let 0 -> F -► 70 - 7i --> • ••
be a minimal injective coresolution of F. Since F is in T we have 0 —>
fA/aF —> TA/ia7o -» TA/afi —> • • ■ is a minimal injective coresolution of rA/aF
(Proposition 1.1). Since gl.dim A/a = s it follows that TA/a7fc = 0 for k > s.
So TA/a(fí-(í+1)(F)) ç TA/a(7J+i) = 0, as we want to prove.

We prove now the theorem. Let r = p.dimAA/a,s = gl.dim A/a, t —
gl.dim T. Let X be in mod A. Using first (i) and then (ii) of Lemma 5.5,
we conclude that fi"(r+î+1)(A) is in loo • Then

inj.dimAQ-(r+i+1>(A) = inj.dimr(F, Çï^r+s+X)(X)),

by Corollary 3.3. This number is at most t = gl.dim T. So inj.dim X <r + s +
t + I, and the proof of the theorem is complete.   D

When a is a projective A-module we obtain the following result

Corollary 5.6. Assume the idempotent ideal a is a projective A-module. Then
the following are equivalent

(a) gl.dim A < oo,
(b) gl.dim A/a < oo and gl.dim T < oo.

Proof, (a) =-> (b) follows from the fact that a is projective if and only if a is
a strong idempotent and lx = loo , proven in Proposition 5.1. (b) => (a) is an
immediate consequence of the proposition.

When the ideal a is a strong idempotent we can prove a stronger inequality.

Proposition 5.7. Let a be a strong idempotent ideal. Then
gl.dimA < p.dimAA/a + max{p.dimAopA/a + gl.dim A/a, gl.dim T}.

Proof. We start by stating the following lemma.

Lemma 5.8. Let a be a two-sided ideal and let X be a A/VL-module. Then
(i) p.dimAA < p.dimA/aA + p.dimAA/a,
(ii) inj.dimAA < inj.dimA/,aA + p.dimA0PA/a.

Proof, (i) follows by induction on « — p.dimA/aA, and (ii) follows from (i)
by duality.   D

Now we prove the proposition. We assume that a is a strong idempotent
ideal, and that A is a A-module. We may assume that r — p.dimAA/a < oo .
Then F = OrrX is in T.  We consider the exact sequence 0 —> tA/aF ->
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F —> F/rA/a F -> 0. Since F is in T, rA/a F is a A/a-module and a is a
strong idempotent, it follows that F/t^F is in loo. Thus inj.dimF/TA/aF <
gl.dim T. On the other hand we get by (ii) of Lemma 5.8 that inj.dimA(TA/a F)
< gl.dim A/a + p.dimAopA/a. Combining these results we get

inj.dimAF < max{gl.dim A/a + p.dimAopA/a, gl.dimT} .

This inequality proves the proposition because F = Çl~rX, so inj.dimA =
r + inj.dimF.   D

We observe now that if a is a strong idempotent then a is in P«,, so
p.dimAa = p.dimr(P, a) < gl.dim T. Since being a strong idempotent is a
symmetric condition we also have that p.dimAopa < gl.dim T. Combining the
inequality in Proposition 5.7 with p.dimAopA/a < gl.dim T + 1, we obtain the
inequality of Theorem 5.4.

As an immediate consequence of Proposition 5.7 we obtain the following
corollary.

Corollary 5.9. Assume that the idempotent ideal a is projective in mod A and
in mod Aop. Then

gl.dim A < max{gl.dim A/a + 2, gl.dim T + 1} .

6. QUASIHEREDITARY ALGEBRAS

In this section we apply some of our previous results to quasihereditary alge-
bras. First we show that being quasihereditary is invariant under Morita equiv-
alence. Second, we study the projective resolutions of the ideals in a heredity
chain. We give another proof of the fact that hereditary artin algebras can be
characterized as quasihereditary artin algebras for which each chain of idem-
potent ideals can be refined to a heredity chain, which was shown by Dlab and
Ringel in [DR1]. Finally we give a characterization of quasihereditary algebras
using /-hereditary algebras.

We recall now the definition of quasihereditary algebras [CPS]: An artin
algebra A is quasihereditary if there is a chain of idempotent ideals of A,
0 = ao C •■ • C a„ = A satisfying the following conditions

(QH1) a,/a,_i is projective in mod(A/a(_,) for all / = 1, ... , n .
(QH2) T, = EndA/ai_l(ß;7a,_if2/)op is semisimple for all /' = 1, ... , n,

where Q¡ is a projective A-module such that a, = xq,(A) .
Such chain is called an heredity chain.

Let a = xpA be an idempotent ideal of A. We proved in Corollary 5.3
that if T = End(F)op is a semisimple ring, then a is projective in mod A if
and only if a is 2-idempotent. So the conditions (QH1) in the definition of
quasihereditary algebra can be replaced by either of the two following conditions

(QHF) a, is 2-idempotent, for all i = I, ... , n .
(QH1") a, is strong idempotent, for all i = I, ... , n.
We use this observation to prove that being quasihereditary is a Morita in-

variance, result which was proven in [CPS] using highest weight categories.
As we noticed in the introduction giving an idempotent ideal a of A is
equivalent to giving a Serre subcategory of mod A.  When a = xp(A) is an
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idempotent ideal of A then S = mod A/a is a Serre subcategory of mod A
and mod A/a —► mod A —» mod T is an exact sequence of categories, where
r = End(F)op.

Since the properties of being strong idempotent and of being semisimple
are Morita invariances it follows that being quasihereditary is also a Morita
invariance.

In the following proposition we give a characterization of the chains 0 =
ao c ai c • • • c a„ of idempotent ideals of A such that a, is projective for
/' = 1, ... , n , in terms of the projective presentations of the ideals a, in the
chain.

Proposition 6.1. Let 0 = 2lo C 2li c ••■ C 2l„ be a chain of idempotent ide-
als in A. Then there exist projective A-modules Px, ... , P„ such that %k =
TPiii-iLP* (A) for all k = 1, ... , n . Moreover, the following conditions are equiv-
alent:

(a) a^/ai:_i is projective for all k — 1, ... , n .
(b) a*, has a projective resolution ■■■ —> Pki —> ••• —► Pk0 -> a^ —> 0,

with Pkyi in add(Px II • • • II Pk-¡) for all i < k, Pkyi = 0 for i > k, for all
k = 1, ... , n .

(c) Qlk has a projective presentation Pk x —> Pk >0 —> a& —► 0, vv/íA F¿ i /'«
add(F, U • • • II Pk_x), for all k = l,...,n.
Proof. The first statement follows from the following observation. If P, Q are
projective A-modules and î>(A) c xQ(A), then F is in addß.

To prove the equivalence of (a) and (b) we introduce the following notation.
For k > 1, let R*. be the full subcategory of mod A consisting of the A-
modules X having a projective resolution • • • -» Q¡• -> • • • —> Q0 —► X -> 0,
with Q; in add(Fi II • • • II Pk_¡) if / < k - 1, Q, = 0 otherwise. We observe
that Rk is closed under extensions.

We prove that (a) => (b) by induction on n It is clearly true for n = 1. So let
n > 1 and consider the sequence 0 —> a„_i —> a„ —> a„/a„_i -» 0. To prove
(b) we have to prove that a„ is in R„ . By the induction hypothesis we know
that a„_i is in R„_i c R„ . Since R„ is closed under extensions it is enough
to see that a„/a„_i is in R„ . We know by (a) that a„/a„_i is a projective
^/a„_i-module. So a„/a„_i ~ Qn/W-n-iQn , where Q„ is the projective cover
of a„/a„_i in modA. Since Q„ is in addA,then a„_iQ„ is in adda„_i ç
R„ . Thus from the exact sequence 0 —» a„_iö„ —> Q„ -> a„/a„_i —* 0 with
Q„ in addF0(a„) = add(F, C • •• n P„) we get that a„/a„_i is in R„ . This
finishes the proof of (a) ---> (b).

(b) => (c) is clear. So we prove now that (c) =*• (a). Let Pk y i —> Pk 0 -» a^ -» 0
be a presentation of QLk with Pkl in add(Fi II • • ■ II Pk-x), I < k < n . We
consider the exact sequence 0 —> Kk —> Pk 0 —» a^ —» 0. Tensoring with
A/a^.i we get an exact sequence

Kkl*k-xKk -* P0yk/%-xPk,o -^ a,/afc_, - o.

Then F0(Afc) ~ FfcJ is in add(F,, ... , Pk_x), by (c). That is, a*_,Afc = AÄ .
So <pk is an isomorphism and ^lk/<äk_x is projective in mod(A/afc_i).   D

The following corollary applies to heredity chains in a quasihereditary alge-
bra.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



688 M. AUSLANDER, M. I. PLATZECK AND G. TODOROV

Corollary 6.2. Let 0 = a0 c • • • c a„ be a chain of idempotent ideals in A
such that a^/a^-i is a projective A/a¿_i module for all k = 1, ... , n . Then
p.dima^ < k — I, afc is strong idempotent, and Iky%k = loo,a,. » for k =
I, ... , n.
Proof. The equivalence of (a) and (b) in Proposition 6.1 implies that p-din^a*.
< k - 1 and that Qlk has a projective resolution in add(F0(afc)). By Theorem
2.1 we know that this implies that %k is a strong idempotent. Then %k is a 2-
idempotent, so ^k®tf^k ~ Qlk , as proven in Proposition 1.4. Then p.dim afc®A
a*; < k, so that Iky<nk = F»,a*  (Proposition 4.11).   D

As a consequence of the above proposition we prove the following result of
Dlab and Ringel.

Proposition 6.3 [DR1, Part 1, Theorem 1]. An artin algebra A is hereditary if
and only if any chain of idempotent ideals in A can be refined to a heredity
chain.
Proof. Assume that any chain of idempotent ideals can be refined to a heredity
chain. We will prove that A is hereditary.

Let Q be an indecomposable projective A-module. To prove that A is
hereditary we prove that rQ is projective. Let F be the sum of all the in-
decomposable nonisomorphic projective modules not isomorphic to Q. Then
a = xp(A) is a maximal proper idempotent ideal of A, so by hypothesis it is
part of a heredity chain. By the maximality of a it follows that it must be the
last proper ideal in the chain, so that the ring A/a is semisimple. Then ß/aß
is a simple A-module, so rQ = %Q.

The module aß is in add a because ß is in add A. Therefore to prove
that rQ = aß is projective it is enough to prove that a is projective. Let
Fi —> Po —► a —> 0 be a minimal projective presentation of a in mod A. We
will prove that Fi = 0. Let ßi be an indecomposable direct summand of F.
We write F = ßi II F'. The chain of idempotent ideals Tp>(A) c xp(A) can
be refined to a heredity chain 0 = 2loC-can=A. Let k be such that
21* = i>(A) = a. Since ßi is indecomposable we must have a¿._i = t>(A) .
We can apply now Proposition 6.1 to the chain 2lo C • • • C %k = a and the
given projective presentation Px —► F0 —> a —> 0 of a. We conclude that
Pi is in addP' ç add F and therefore has no summand isomorphic to ßi .
Therefore we have proven that no indecomposable summand ßi of P is in
add Pi ç add F. So Px = 0. This finishes the proof that A is hereditary.

So we have proven that if any chain of idempotent ideals can be refined
to a heredity chain then A is hereditary. The converse follows from the fact
that any chain of idempotent ideals can be refined to a chain 0 c rpt c • • • c
tp,u■ up„ c A, where all the projective A-modules F, are indecomposable.   D

We know by [BF, Proposition 1.6], that /-hereditary algebras are quasi-
hereditary. We give now a characterization of quasihereditary algebras using
/-hereditary algebras.

We recall that an artin algebra A is /-hereditary if the maps between in-
decomposable projective modules are either zero or monomorphisms. If A
is an /-hereditary algebra and F is a projective A-module, then the algebra
r = EndA(F)op is also /-hereditary.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOMOLOGICAL THEORY 689

Proposition 6.4. Let A be an artin algebra with a chain of idempotent ideals
0 = a0 C ai c ••• C a„ = A such that (1) a,7a,_i is a projective A/a;_i
module for i = l,...,n and (2) EndAi^it(Qil%-xQi) is ¡-hereditary for
i = 1, ... , n, where Q¡ is a projective A-module such that xQi (A) = a,. Then
A is quasihereditary.
Proof. The proposition follows by induction from the following lemma.

Lemma 6.5. Let P be a projective A-module such that a = t>(A) is a projective
A-module and T = EndA(F)op is an l-hereditary algebra. If Y is not semisimple,
then there exists a direct summand Px of P such that ai = xPi (A) is a projective
A-module, EndA(Fi) is semisimple and EndA/a, (P/%XP) is an l-hereditary
algebra.
Proof. Let Px be an indecomposable summand of F such that the T-module
(F, Pi) has maximum length. Let Px, ... , Pn be the nonisomorphic indecom-
posable summands of F. Since T is /-hereditary it follows that

((P,P,),(P,P,)) = 0   fori = 2,...,r.

We will see that Pi has the desired properties.
Since

EndA(P,)~Endr((P,P,))
and T is /-hereditary it follows that EndA(Pi) is a division ring. On the other
hand, HomA(Fi, P¡) = Homr((P, Pj), (P, F,)) = 0 for i = 2, ... , n, so
T/»»(P/) = 0 if i >2. Thus xPi(X) is in add Pi, for any X in add P. Now,
Xpt (A) = Tp, (xp(K)), and t>(A) is in addP since it is projective by hypothesis.
So Xpx (A) is in add Pi and is thus projective.

Since aiF = xP¡(P) is in addP) it follows that P/%P is in

add(Pin--nF„)çaddP.

Therefore EndA(F/aiF) = Endr((P, P/a,P)) and (F, P/a,P) is in addT.
Since T is /-hereditary it follows then that EndA(P/aiP) is /-hereditary. This
ends the proof of the lemma.    G

Using this characterization of quasihereditary algebras we obtain a bound for
the global dimension of a quasihereditary algebra, different from the one given
in [DR1, Statement 9].

Corollary 6.6. Let A be a quasihereditary algebra. Let 0 = 2loC---ca„ = A
with a, = xpfA) be a chain of idempotent ideals such that a,/a,_i is projective
in mod(A/a,_i) and EndA/ai(P,7a,-iP,) is hereditary for i = 1, ... , n. Then
gl.dimA < 3« - 2.
Proof. We prove the corollary by induction on n . If n = 1 then A is heredi-
tary and the formula holds. Let n > 1. We apply Theorem 5.4 to the idempo-
tent ideal a = ai = T/>, (A) and we obtain that

gl.dimA < p.dimAA/ai + gl.dimA/ai + gl.dimT+ 1,

where T = EndA(Pi) is hereditary by hypothesis. The induction hypothesis
applied to the chain 0 c a2/a, c • • • c a„/a, = A/ai in mod(A/a,) implies
that gl.dim A/a, < 3(« — 1) — 2 . Thus gl.dimA < 3(«- 1) — 2 + 3 = 3n-2.   D
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7. A CLASS OF QUASIHEREDITARY ALGEBRAS

We define in this section a class of artin algebras which contains several
well-known classes of algebras and prove that the algebras in that class are
quasihereditary.

Definition 7.1. We say that an artin algebra A satisfies the descending Loewy
length condition on projective resolutions if for every A-module Af a min-
imal projective resolution —> F,(Af) —►...—» Pq(M) —► A7 —► 0 satisfies
LL(Pi+l(M)) < LL(Pi(M)) for all /' > 1. Here LL denotes the Loewy length.

The following are examples of classes of algebras satisfying the descending
Loewy length condition on projective resolutions:

( 1 ) /-hereditary algebras, which were defined in the previous section.
(2) Artin algebras of global dimension two.
(3) The endomorphism algebra T = EndA(A/r II • • • II A/r"), where A is an

artin algebra and n is the index of nilpotency of the radical r of A [A, Proof
of Proposition 10.2].

By proving that algebras satisfying the descending Loewy length condition on
projective resolutions are quasihereditary, we give, in particular, a unified proof
of the results, proven by V. Dlab and C. M. Ringel in [DR1, DR2], that the
algebras of global dimension 2 and the endomorphism algebra T of example
(3) are quasihereditary.

We start by proving the following lemma.

Lemma 7.2. Let A be an artin algebra satisfying the descending Loewy length
condition on projective resolutions. Let X be a submodule of a projective A-
module. Then LL(PX(X)) < LL(P0(X)).
Proof. Follows easily from the definitions.

Theorem 7.3. Let A be an artin algebra satisfying the descending Loewy length
condition on projective resolutions. Then A is quasihereditary.
Proof. To prove this theorem we will use the characterization of quasihereditary
algebras given in Proposition 6.4 which states: A is quasihereditary if and only
if there is a chain of idempotent ideals 0 = 2lo c ai c • • ■ c a„ = A such
that (1) a,/a,_i is a projective A/a,_i-module for /' = 1, ... , n and (2)
EndA/<nn_,(Qi/%-xQi) is /-hereditary for /' = I, ... ,n. Here a, = tÖj.(A),
and all ß, are projective A-modules.

Let z'i < • • • < /'• be the Loewy lengths of the indecomposable projective A-
modules. Let Qk be the sum of the nonisomorphic indecomposable projective
A-modules of Loewy length at most ik , and QLk — xQk(A) for k = I, ... , t,
ao = 0. Since Qlk is a submodule of A it follows from Lemma 7.2 that
LL(F,(afe)) < LL(Fb(a*)) < ik . So Pi(at) is in addß*_i. This proves that
a^/ajt_i is projective in mod(A/ai:_i).

We will show in the following lemma that End\/<ak_l(Qk/Qik-xQk) is /-
hereditary for all A . This will end the proof of the theorem.   D

Lemma 7.4. Let A be an artin algebra satisfying the descending Loewy length
condition on projective resolutions. Let r be the Loewy length of an indecom-
posable projective A-module. Let Q be the sum of the indecomposable non-
isomorphic projective A-modules of Loewy length r. Let P be the sum of the
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indecomposable nonisomorphic projective A-modules of Loewy length smaller
than r, and a = T/>(A). Then EndA/a(ß/aß) is an l-hereditary algebra.

Proof. Let /: ßi/aßi -> ß2/aß2 be a A/a-morphism. Then / is induced by
a A-morphism /: ßi -> Q2. Let ßi -^ Im / -^-> ß2 be the factorization of
/ through the image of /. Then / = j •/? where p: ßi/aßi —> Im//a Im/
and j: Im//a Im/ —> ß2/aß2 are the maps induced by p and 7. We will
show first that if ßi is in add ß then p is an isomorphism. And we will show
that if ß2 is in add ß then j is either zero or a monomorphism. Thus if we
assume that both ßi and ß2 are in add ß this shows that / = j • p is either
zero or a monomorphism, proving the lemma.

From the exact sequence 0 -» Ker/ —► ßi -^-> Im/ -> 0 we get an exact
sequence Ker//a Ker/ -» ßi/aßi -^ Im//aim/ -> 0. Since Im/ is a
submodule of the projective module ß2 it follows from the above lemma that
LL(P0(Ker/)) = LL(Pi(Im/)) < LL(P0(Im/)) = LL(QX). If we assume that
ß» is in addß then LL(QX) = r. So LL(F0(Ker/)) < r. That is, P0(Ker/)
is in addP. Hence a Ker/ = Ker/. This proves that p is an isomorphism.

To prove that j is either zero or a monomorphism we consider the following
exact sequence:

0-^(Im/naß2)/aim/^Im//aim/
^(im/ + aß2)/aß2^o.

The last module is precisely the image of ;': Im //a Im/ —> ß2/aß2. It fol-
lows that 7 = 0 if (Im/ + aß2) c a(Im/ + aß2), which is the same as
Fb(Im/-i-aß2) is in addP. Similarly, j is a monomorphism if Im/naß2 =
a(Im/n aß2) which is the same as P0(Im/n aß2) is in add F.

We now show that either F0(Im/ + aß2) is in addP or P0(Im/naß2) is
in addP. This is a consequence of the following result applied to X = xpQ2,
Y = Imf.

Claim. Let ß2 be in add ß and let X and Y be submodules of ß2.
Suppose Po(X) is in addP and Po(F) is indecomposable and in addß. Then
either P0(X + Y) is in addP or P0(AnF) is in add P.

To prove this we assume that Po(A + Y) is not in addP, and consider the
diagram:

0 ->     Z      -► PQ(X II 7) -► X + Y -> 0

I I «
o-—any-►   Any   -► x + y->o

! 1
0 0

To prove that Po(A n Y) is in addP it is enough to show that Po(Z) is in
add P. Consider now the diagram
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0 0

I i
L = L

I i
0 -► Z -► P0(X H Y) -► X + Y ——-> 0

I        i       II
0 -► QX(X + Y) -► P0(X + Y) -» X + Y -> 0

1 1
0 0

The second vertical column splits. Since Fo(A + Y) is not in addP and
Fo(X U Y) has only one indecomposable direct summand not in add F, it
follows that L is in add F. On the other hand, we know from the preceding
lemma that

LL(P0(Qi(A + Y))) = LL(PX(X + Y)) < LL(P0(X + Y))

since X+Y is a submodule of the projective module ß2 . But LL(P0(X+Y)) <
LL(P0(XUY)) < r since P0(X) and P0(Y) are in addß. So

LL(P0(ax(X + Y)))<r.
That is, P0(Clx(X + Y)) is in addP. So P0(Z) is in addP. This ends the
proof of the claim and of the lemma.   D
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