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HOMOLOGICAL THEORY OF IDEMPOTENT IDEALS

M. AUSLANDER, M. 1. PLATZECK AND G. TODOROV

ABSTRACT. Let A be an artin algebra % and a two-sided ideal of A. Then
A is the trace of a projective A-module P in A. We study how the homo-
logical properties of the categories of finitely generated modules over the three
rings A/2, A and the endomorphism ring of P are related. We give some
applications of the ideas developed in the paper to the study of quasi-hereditary
algebras.

INTRODUCTION

Throughout this paper we assume that A is an artin algebra and all A-
modules are assumed to lie in mod A, the category of finitely generated left
A-modules.

In connection with their definition of quasi-hereditary algebras, Cline, Par-
shall and Scott [CPS] introduced the notion of an heredity ideal which is defined
as follows. An heredity ideal of A is a two-sided ideal A satisfying the follow-
ing conditions: (i) 2 is idempotent (i.e. A> =2A), (i) A is projective as a left
A-module and (iii) End, (%) is semisimple. The results concerning heredity
ideals proven in [CPS, DR1,2, BF] suggested studying the homological proper-
ties of idempotent ideals in a broader context. This paper is a preliminary step
in this direction.

Our starting point is the following easily checked well-known observation.
Let P be a projective A-module. Then 2 = 7p(A), the trace of P in A
which is the ideal generated by the homomorphic images of P in A, is an
idempotent ideal in A and one obtains all the idempotent ideals of A this
way. Moreover if P and Q are projective A-modules, then 7p(A) = 19(A) if
and only if add P = add Q, where add M , for an arbitrary A-module A , is the
full subcategory of mod A consisting of all modules isomorphic to summands
of finite sums (direct) of M . Therefore associated with a projective A-module
P is the idempotent ideal Ap = 7p(A) and the artin algebras A/p and I'p =
End(P)°P . Our basic aim is to study how the homological properties of the three
categories mod A/2p, mod A and modI'p are related. It is worth noting, that
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668 M. AUSLANDER, M. 1. PLATZECK AND G. TODOROV

since A/2p and I'p have fewer simple modules than A, a good understanding
of the relationship between the categories mod A/2p, modA and modIp
should lead to a way of studying mod A in terms of algebras with fewer simple
modules.

One relationship of interest is the inclusion functor mod A/2%p — modA.
Saying that 2p is an idempotent ideal is equivalent to saying that mod A/%p
is a Serre subcategory of mod A . Moreover the exact functor (P, ): modA —
modI'p given by M — Homy(P, M) gives an equivalence of categories be-
tween modI'p and the quotient of mod A by mod A/p . In other words, we
have an exact sequence of categories

modA/%p — mod A — modI'p.

It is this exact sequence which is our main object of study.

We first concentrate on the inclusion mod A/p — modA. For any two-
sided ideal 2 in A, we have a morphism of connected sequences of functors
Extp/o(X, ¥) — Exty(X, Y) forall X and Y in modA/2 induced by the

canonical isomorphism of functors Homy (X, ¥) S Hom, (X, Y) for all X

and Y in modA/«A. It is well known that Ext,l\/z(X, Y) - Ext,l\(X, Y) is
an isomorphism if and only if 2 is an idempotent ideal. This suggests the
following definitions. A two-sided ideal 2 is a k-idempotent for k > 1 if
Extj\/m(X, Y) - Extf\(X, Y) is an isomorphism for all 0 < i < k and all X
and Y in mod A/ . We say that 2 is a strong idempotent if Extj(X,Y) —
Ext) o (X, Y) is an isomorphism for all i >0 and all X and Y in mod A/%.
It is worth noting that if 2 is an heredity ideal, then 2 is a strong idempo-
tent [DR1, Part 2]. We give characterizations of k-idempotents in terms of
projective and injective A-resolutions of A/2-modules.

Next we turn our attention to the functor (P, ): modA — modI’,. Since
(P, ) is exact we obtain a morphism of connected sequences of functors
Exth (X, Y) — Extf—P((P, X),(P,Y)) forall X and Y in modA. In con-
nection with studying when this is an isomorphism we introduce the follow-
ing subcategories of modA. For k > 0, we define I;; to be the full sub-
category of mod A consisting of all ¥ in modA such that Extj(X,Y) —
Extr,((P, X), (P, Y)) is an isomorphism for all 0 < i < k and all X in
mod A. And we define I, to be the full subcategory of mod A consisting of
all Y in mod A such that Exty(X, Y) — Extr,((P, X), (P, Y)) is an isomor-
phism for all i > 0 and all X in mod A. We characterize the subcategories
I, and I, in terms of injective coresolutions of I'-modules. In particular
we consider the problem of when I, = I,,. In this connection we show that
an idempotent ideal A is a projective A-module if and only if 2 is a strong
idempotent and I, =1, .

As an illustration of how these ideas and results can be used to deduce in-
formation about A from the algebras A/ and I'p we prove the following
generalization of a similar theorem about quasi-hereditary algebras proved in
[CPS and DRI1].

Let 2 be an idempotent ideal. Suppose that pd2% =r, gl. dimA/2A =s and
gl.dimI'=1¢. Then gl.dmA<r+s+it+2.

The paper ends with applications of these ideas to the study of quasihered-
itary algebras. In addition to giving proofs of some known results, we give a
new description of quasihereditary algebras in terms of /-hereditary algebras.
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1. STRONG AND k-IDEMPOTENT IDEALS

In this section we study the inclusion functor mod A/% — mod A, where 2
is an idempotent ideal in A. By an idempotent ideal we mean a two-sided ideal
which is idempotent.

Let 2 be a two-sided ideal of A. There is a map between connected se-
quences of functors ¢ = (¢p');>0 With ¢} ,: Exty (X, Y) — Exty(X,Y)
for i > 0 and X,Y in modA/%, induced by the canonical isomorphism
(of",,y: Homy 5(X, Y) — Homa (X, Y). Notice that the ideal 2 is idempo-
tent precisely when the map (o}(,yz Ext,l\/m(X ,Y) — Ext}\(X , Y) 1is an iso-
morphism for all X,Y in modA/%. We say that a two-sided ideal % is
k-idempotent if the maps ‘/’fv,y are isomorphisms for all i = 0,1,..., k%,
and all X, Y in modA/2. We say that 2 is a strong idempotent ideal if the
maps q;f\,,y are isomorphisms for all i > 0 and all X, Y in modA/2. In
this section we give several characterizations of strong and k-idempotent ideals
which are central to the rest of the paper.

We observe that being a k-idempotent is a symmetric condition. That is A2
isa k-idempotent ideal if and only if 2, isa k-idempotent ideal. This follows
by duality, since Extyo.,(DX, DY) ~ Extj(Y, X) for X, Y in modA, where
D: mod A — mod A° denotes the usual duality for artin algebras.

As another consequence of the definition we have that gl. dim A/2% < gl. dim A
when 2 is a strong idempotent.

Now we study the behavior of injective coresolutions in mod A, when we
apply the right adjoint Hom,(A/2, ): modA — mod A/ of the inclusion
mod A/2% — mod A.

We start by recalling some facts about traces of modules. Let M, N be A-
modules. We denote by 74/(N) the trace of M in N. Thatis, T7p(N) is the
submodule of N generated by the images of morphisms from M to N. Let 2
be a two-sided ideal of A. Then there is a natural isomorphism of A/2%-modules
6: Hom,(A/A, X) S Tp/a(X) given by ©(f) = f(1). If I is an injective A-
modfule, then 74/9(I) ~ Hom(A/2, I) is an injective A/2-module. Moreover,
if I is an injective envelope of a A-module X, then 7,,9(I) is an injective
envelope of the A/2-module 74/9(X).

We describe when the above property about injective envelopes can be ex-
tended to a statement about the first & terms, or about all of the terms, of a
minimal injective coresolution of 74/ (X) in mod A/%.

In order to avoid writing separate statements we will sometimes write j <
i < k where k is either a positive integer or co. By j < i < co we mean all
i>j.

Proposition 1.1. Let X be a A-module, let 0 - X — Iy - I —» --- be a
minimal injective coresolution of X and 1 < k < co. Then the following are
equivalent

(i) 0 = taaX — tajalo — -+ — ta/ali is the beginning of a minimal
injective coresolution of t5;9(X) in modA/2.

(ii) Ext\(A/%, X) =0 forall i suchthat 1<i<k.

(iii) Let Y be in mod A/ and let ¢ y: Extj\/m(Y, TaaX) — Ext\ (Y, X)
be the map of connected sequences of functors induced by the canonical isomor-
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670 M. AUSLANDER, M. L. PLATZECK AND G. TODOROV

phism Homy o (Y, to/qX) =~ Homy (Y, X). Then ("fx/m is an isomorphism for
1<i<k.
Proof. We have that Extj(A/2%, X) =0 forall 1 < < k if and only if the
complex obtained after applying Hom,(A/2A, )to 0 - X > -1} - - >
I, is exact. The equivalence of (i) and (ii) follows, since Hom,(A/%, ) and
Ta/a( ) are isomorphic functors.

For a A/9¥-module Y the complex obtained by applying the functor

Hom, (Y, ) to the complex 0 - X — Iy — I; — --- is isomorphic to the
complex obtained by applying Homy (Y, ) t0 0 — 150X — Tpalo —
tpo/2d1--- . So the homologies of the resulting complexes are isomorphic, prov-

ing that (i) = (ii1). Clearly (iii) = (ii), so the proof is complete. O

Dually, we can consider projective resolutions of A-modules and apply the
left adjoint functor A/2A®,: mod A — mod A/ to the inclusion mod A/
— modA. We observe that A/A®, X ~ X/2AX. So we have the following
proposition.

Proposition 1.2. Let X be a A-module, let --- - P - Ph — X — 0 be a
minimal projective resolution of X and 1 < k < oc. Then the following are
equivalent:

(1) P /AP, — --- — Py/APy — X/AUAX — 0 is the beginning of a minimal
projective resolution of X/%X in mod (A/2).

(ii) Tor™ A/, X)=0 forall i suchthat 1<i<k.

(iii) Let Y in mod (A/2A)°° and let y/i"”Y: TorM(Y, X) — Tor?/a(Y, X/UX)
be the map of connected sequences of functors induced by the isomorphism Y @, X
~Y Qp/a X/AX . Then wXY is an isomorphism for i=1,... k.

!

From the above results we have the following characterization of k-idem-
potent ideals in terms of Ext and Tor functors.

Proposition 1.3. Let 2 be a two-sided ideal. Let 1 < k < oco. Then the following
conditions are equivalent:

(i) The ideal 2 is k-idempotent.

(i) @y Exthq(X, Y) — Exty(X, Y) is an isomorphism for all X, Y in
modA/%U andall 0<i<k.

(iii) Exty(A/™, Y) =0 for all A/%-modules Y andall 1 <i<k.

(iv) Exti(A/2, I} =0 for all injective I in modA/A and 1<i<k.

(i) gof\,,y: Tor;.\/m(X, Y) — TonJ,»\(X, Y) is an isomorphism for all X in
mod (A/A)°P and Y in mod A/ andall 0<i<k.

(iii’) Tor®(A/, Y)=0 forall Y in modA/% andall 1<i<k.

(iv') Tor™A/%, A/A)=0 forall 1 <i<k.
Proof. (i) & (ii) is just the definition of k-idempotent ideals. Obviously (ii)
= (iii) = (iv). By Proposition 1.1 it follows that (iii) = (ii). (iv) = (iii)
Let Y bea A/2%-module, I its injective envelope in modA/% and 0 — Y —
I - I/Y — 0 exact. Applying Homy(A/2, ) to this sequence we get a
commutative diagram:
0 — Homy(A/A,Y) — Homy(A/%,1) — Homy(A/%,1/Y) — Exth(A/9,7)

T 1 T
0 — Y - I - 1Y - 0
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Since the vertical maps are isomorphisms we have a long exact sequence:
0 —— Exti(A/%,Y) ——— Ext}(A/2,]) —— Ext(A/%,I/Y) —— -
o ——— Exti TN A/”, 1Y) —— Ext(A/%,Y) ——  Extka/2, ) —— -
Then (iv) = (iii) follows by induction on k. ‘
For the other equivalences observe that D(Exty (X, Y)) ~ Torf\(DY, X),

where D: mod A — mod A°P is the usual duality for artin algebras [CE, Chapter
VL §5]. O

We give a description of k-idempotent ideals where kK = 1 and 2 in terms
of the multiplication map A ®, A — A. We do not have a similar description
for higher k.

Lemma 1.4. Let 2 be a two-sided ideal and let m: A ®, A — A be the multi-
plication map. Then

(a) A is idempotent if and only if m is an epimorphism,

(b) A is 2-idempotent if and only if m is an isomorphism.
Proof. (a) is clear, and (b) follows from the following result from [CE, Exercise
19, p. 126], which we state for ease of reference.

Lemma 1.5. Let 2 be an idempotent ideal. Then there is an exact sequence
0 — Tord (A/U, A/%) > ARAA D A — 0, where m is the multiplication map.

We get the following characterization of k-idempotent ideals in terms of the
projective and injective resolutions of A/2-modules.

Theorem 1.6. The following conditions are equivalent for a two-sided ideal U :

(1) The ideal % is k-idempotent.

(ii) Let X be a A/U-module and 0 — X — Iy — --- a minimal injective
coresolution of X in modA. Then 0 — X — 179y — -+ — Todi is the
beginning of a minimal injective coresolution of X in mod A/2.

(iii) Let Y be a A/U-module and --- — Py — Y — 0 a minimal projective
resolution of Y in modA. Then P /AP, — -+ — Py/UPy — Y — 0 s the
beginning of a minimal projective resolution of Y in mod A/2.

Proof. It was proven in Proposition 1.3 that 2 is k-idempotent is equivalent to
Exty(A/2%, Y) =0 for all A/%-modules Y and 1 <i < k. The condition (ii)
in the theorem is part of the statement of Proposition 1.1 for ¥ in mod A/.
Similarly 2 being k-idempotent is equivalent to Toﬁi\(A/Ql, Y)=0 forall Y
in mod A/2% and 1 < i< k which is equivalent to (iii) by Proposition 1.2. O

Next we give several examples of strong and k-idempotent ideals.

Example 1. Let 2 be an idempotent ideal which is a projective left A-module.
Then 2 is a strong idempotent ideal. To see this, let ¥ be a A/2U-module.
Then Exty(A/«, Y) =0 forall i > 1. This is true for i =1 because 2 is an
idempotent ideal, and for i > 1 because the projective dimension of A/ is
at most 1.

Therefore, if A is a hereditary algebra any idempotent ideal is strong idempo-
tent. It would be nice to know what other algebras A contain nontrivial idem-
potent ideals which are projective left A-modules. Nonsimple quasi-hereditary
algebras do, since heredity ideals are projective left modules, by definition. (See
[CPS, DR1] or §6 for definitions.)
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Example 2. The ideals which occur in a heredity chain in a quasihereditary
algebra are all strong idempotent. More generally, let A be an artin algebra
having a chain of idempotent ideals 0 = Ay C %; C --- C A, C A such that
2A;/A;—y is projective A/, ,-module forall i=1,...,n. Then %; is strong
idempotent for i =1, ..., n.

This can be proven in a straightforward way by induction on # . Since it will
also follow from results in §6 we omit the proof here.

In the above examples the projective dimension of the strong idempotent
ideals was always finite. We give now an example of a strong idempotent ideal
of infinite projective dimension.

Example 3. Let A be the path algebra (over a field) of the quiver

modulo the ideal generated by the relation faf = 0. Let P be the projective
corresponding to the vertex 1. Then 2 = tp(A) is a strong idempotent ideal
and has infinite projective dimension.

The following example shows that for every natural number k& > 1, there are
k-idempotent ideals which are not (k + 1)-idempotent.

Example 4. Let A be the path algebra (over a field) of the quiver
0 1 k k+1

modulo the ideal generated by the paths of length 2. Let P; be the projective
corresponding to the vertex /. Let 2 = tpu..up (A). Then 2 is k-idempotent
and is not (k + 1)-idempotent.

To see this we denote the simple A-modules by S; = P;/rP;, where r is
the radical of A. Then A/ ~ Sy II.S;,; is semisimple. So the only inde-
composable A/2-module which is not an injective A-module is Sp. We have
that Ext) (A/2, Sp) = Exty(Sk,1, So) for i > 1. But Ext)(Si.;, So) =0 for
i <k and Exti*1(Si,,, So) # 0. It follows that 2 is k-idempotent but is not
(k + 1)-idempotent.

Notice that the above algebra A can be given as the (k +2) x (k +2) lower
triangular matrix ring modulo the square of the radical.

2. PROJECTIVE RESOLUTIONS OF k-IDEMPOTENT IDEALS

In the previous section we characterized k-idempotent ideals in terms of
the projective resolutions of all A/2-modules. We show here that knowing the
projective resolution of only one module, namely 52, is enough to determine
for which k the ideal % is k-idempotent. In this section we prove the following
theorem.

Theorem 2.1. Let A = tp(A) for some projective A-module P and | < k <
0. Let -+ - P — .- = Py — A — 0 be a minimal projective resolution
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of A. Then A is (k + l)-idempotent if and only if the P; are in add P for
i=0,...,k.

In the proof of the theorem and throughout the rest of the paper the following
facts and notation will be used. A two-sided ideal 2 is idempotent if and only if
A = 1p(A) for some projective A-module P. Furthermore, tp(A) = 1p/(A) if
and only if add P = add P’. From now on, 2 will always denote an idempotent
ideal, and P a fixed projective A-module such that % = 7p(A). We now recall
some properties of traces of projective modules.

Remark 2.2. Let A =1p(A). Then 1p(X) = 1p(A)X = AX for any A-module
X . The projective cover Py(X) of X isin add P if and only if X = 1p(X) =
AX . We also have add P = add(Py(%)) .

In order to prove the theorem it will be convenient to introduce the following
notation:

Definition 2.3. Let P be a projective A-module. For each 0 < £k < oo we
define P, to be the full subcategory of mod A consisting of the A-modules
X having a projective resolution --- - Py - Pp —» X — 0 with P; in add P
for 0 < i < k. Since P, depends only on add P, it is well defined for the
idempotent ideal A = 7p(A). It would be more precise to write Py p or Py o,
but whenever it is clear which projective or which idempotent ideal we are using,
we will use the above notation Py .
Theorem 2.1 can now be restated.

Theorem 2.1'. An idempotent ideal A = 1p(A) is (k + 1)-idempotent if and only
if A isin Py, for 1 <k <oo.

In the following proposition we give a characterization of the modules in P,
needed in the proof of the above theorem as well as in the rest of the paper.

Proposition 2.4. Let %A = 1p(A) and 1 < k < oco. Then the following conditions
are equivalent for a A-module X .

(i) X isin Pyi.

(i) Exti(X,Y)=0 forall A/UA-modules Y and i =0, ..., k.

(i) Extj\(X, E) =0 for all injective A/A-modules E and i =0, ..., k.
Proof. By inductionon k. 0O

Proof of Theorem 2.1’ (and Theorem 2.1). Let X = 2 in the above proposition.
We only need to observe that Exti''(A/2, Y) ~ Exty (2, Y) forall i >0 and
use that A is (k + 1)-idempotent if and only if Extj\“(A/Qi, Y)=0 forall Y
in modA/ and i=0,..., k. O

Dually, for 0 < k < co we define I; to be the full subcategory of mod A
consisting of the A-modules Y having an injective coresolution 0 — ¥ —
In— I, — --- with I; in add] for 0 < i < k. Here I denotes the injective
envelope of P/rP.

Using Theorem 2.1’ and the duality D, we see again that there is a module
such that its injective resolution determines for which k the ideal A is k-
idempotent.

Theorem 2.5. Let M = E/E', where E is the sum of all nonisomorphic
indecomposable injective A-modules and E’' is the sum of all nonisomorphic
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indecomposable injective A/A-modules. Let 1 < k <oc. Then M isin I, if
and only if A is (k + 1)-idempotent.

Notice that the module M is the dual of 2 considered as a right A-module.
We now write the dual statement of Proposition 2.4, since it will be used in
the rest of the paper.

Proposition 2.6. Let A = tp(A) and 1 < k < cco. Then the following conditions
are equivalent for a A-module Y .

(1) Y isin 1.

(ii) Exty(X,Y)=0 forall X in modA/% andall i =0, ..., k.

(iii) Ext\(A/%, Y)=0 forall i=0, ..., k.

3. EXTENSIONS OVER THE ENDOMORPHISM RING OF P

Let 2 = 7p(A) be an idempotent ideal and I = End,(P). It would be more
precise to write I'p, but we have assumed in §2 that P is a fixed projective
module throughout the rest of the paper, so we just write I".

In §1 we considered the inclusion mod A/2 — mod A, and studied condi-
tions on 2 so that Exty(X, Y) ~ Exty (X, Y) forall i=0,1,..., k. Now
we turn our attention to the functor (P, ): modA — modI'. This functor
induces natural morphisms p} : Exty(X, Y) — Extr((P, X), (P, Y)), for
all i >0 and all X,Y in modA. We will study in this section conditions
under which these morphisms are isomorphims forall i =0, ..., k. And, also
in analogy with what we did for A/2-modules and A-modules, we will explore
the relationship between injective coresolutions in modI” and in mod A .

We start by recalling some well-known properties of the functor (P, ): mod A
—modI".

Let I; and P, be as in §2, for 0 < k < oo. Then P; consists of the
A-modules with a projective presentation in add P, and I, of those with an
injective copresentation in add 7. We will use the following results [A, §§5 and
6].

Lemma 3.1. (1) The functor (P, ) induces equivalences of categories
(P, )lp,: Py —» modI, (P, )ly,: I » modT.

(2) Let px.y: (X, Y)—> ((P,X),(P,Y)) be the map induced by (P, ).
Then

(1) px.y is a monomorphism if either X isin Py or Y isin Iy.

(i1) px,y is an isomorphism if X isin Py and Y is 1.

(iil) pyx.y is an isomorphism if either X isin Py or Y isin I;.

(3) (P, ) induces equivalences of categories between add P and the category
of projective I modules and between addI and the category of injective T-
modules.

Since (P, ): modA — modI is an exact functor, it induces morphisms
Py y: Exty(X,Y) — Exty((P, X),(P,Y)), for X,Y in modA, i >0,
functorial in X and Y. These morphisms are defined as follows. Let 0 —
Y - Iy — I} — --- be an injective copresentation of Y in modA. Then
the exact complex 0 — (P, Y) — (P, Iy) — (P, I}) — --- maps into an exact
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complex 0 — (P,Y) » Ey — E; — ---, with E; injective in modI" for all
i >0. For X in mod A we get maps of complexes

0

(X,Y) _— (X,Io) _ (Xall) JES

J | |

0 —— (P, X), (P, Y)) —— ((P, X), (P, Ip)) —— (P, X), (P, I)) —— -

and

0 —— (P, X), (P, Y)) —— ((P, X), (P, p)) — (P, X), (P, I}) — -~

| 1 J

0 —— (P, X),(P,Y)) —— (P, X),E)) —— ((P,X),E) — -~

The composition of these maps induces a map py y between the homologies
of the involved complexes. This is, a family of maps pj'(,},: Extf\(X ,Y) —
Extr((P, X)(P,Y)), i >0, with p} y = px,v.

The following result relates extensions in modI” and in mod A.

Theorem 3.2. Let n > 0. Then the map
P i Exty(X, Y) — Exti(P, X), (P, Y))

above defined is an isomorphism provided one of the three following conditions
holds:

(@) XisinP;, Y isinIjand n<i+j.

(b) X isin modA, Y in1,,,.

(¢) X isin Puyy, Y in modA.

Proof. In n =0 the theorem states the same as Lemma 3.1,2, (ii) and (iii). So
we assume # > 1 and prove the theorem by induction on n. Let X in Py
and consider an exact sequence 0 - K — Py - X — 0 with Py is addP.
Then 0 - (P, K) — (P, P) — (P, X) — 0 is exact and (P, Py) is projective
in modI". We get a diagram

0 — (X, Y) i (PO’Y) -
lpx,)' lﬂpo,y
0 - (P, X),(P,Y) — ((P,P),(P,Y)) —

(K,Y) — Ext) (X, Y) - 0
lﬂk,y lp}('y
(P,K),(P,Y)) — Exti(P,X),(P,Y) — O

If X isin P, then K isin P, . So it follows from Lemma 3.1, (2) (iii) that
the three left vertical maps are isomorphisms if either X isin P, or Y is in
I,. Thus p/“,’y is an isomorphism for X in P;, Y in I;. Considering an
exact sequence 0 - Y — Iy — I — 0 with I, in add/ one proves that p/‘v, Y
is an isomorphism if either X € P; or Y € I,. Thus the theorem holds for
n=1.
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Assume now that n > 1. First we consider the case when X is in P; and
i>0. Let 0 - K — P — X — 0 be an exact sequence with P, in add P.
Then the sequence 0 — (P, K) — (P, By) — (P, X) — 0 is exact, and since X
is in Py we have that (P, P,) is projective in modI'. We get a commutative
diagram

Ext" (K, Y) _ Exti(X,Y)
A A

Jv/’,'l_)l' J'P},Y
Extl'l—l((P’ K),(P,Y)) —— Extp((P, X), (P, Y))

where the horizontal maps are isomorphisms. Since X isin P; and i > 0,
then K isin P;,_;. Let now Y bein I; with i+ j = n. We can apply the
induction hypothesis to X and Y and conclude that p}’{{, is an isomorphism.
Thus p% y is also an isomorphism. If Y is any A-module and i=n+1 the
same argument holds.

The other cases follow in a similar way, considering an exact sequence 0 —
Y—-Iy— K—0 with Iy in add/. O

We observe that when X 1is in P the theorem states that p% y:
Ext}(X, Y) — Extf((P, X), (P, Y)) is an isomorphism for all » > 0 and
forall Y in modA. Similarly, if ¥ isin I, then p% , is an isomorphism
forall n >0 and all X in modA. Since (P, ): modA — modI is a dense
functor we obtain the following corollaries.

Corollary 3.3. (a) If X isin Py then pdimy X = pdimp(P, X).
(b) If X isin I then injdimy X = injdimp(P, X).

Corollary 34. If P, =P, or I, =1 then gl.dimI < gl.dimA.

We observe that in general it is not true that gl.dimI" < gl. dim A, as the
following example shows.

Example 3.5. Let k& be any field and A the k-algebra associated to the quiver

1 = 2
[ [ ]

B

modulo the relation aff = 0. Let P, be the projective associated to the vertex
1. Then gl.dim(End,(P))°? = o0 and gl.dimA =2.

Assume now that Y isin I, forsome 0 <k < oo andlet 0 > Y — [y —
-+ — I} — --- be a minimal injective coresolution of Y. Then /; is in add/
for j<k,sothat 0 —» (P,Y) — (P, Iy) — --- — (P, I;) is the beginning of
an injective coresolution of (P, Y). In particular, when I; = I, the injective
coresolutions of the I'-modules are all obtained by applying the functor (P, )
to injective coresolutions of A-modules. So we want to know what modules are
in I, and give necessary and sufficient conditions for I, to be equal to I .
We are interested also in dual results about P, to study projective resolutions.
Using the preceding theorem we can give the following characterization of
modules in I .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




HOMOLOGICAL THEORY 677

Theorem 3.6. Let 1 <k <oo. Then _

(a) 4 A-module Y is in i if and only if the above defined map pY y:
Exti (X, Y) — Ext-(P, X), (P, Y)) is an isomorphism, for all 0 < i <k ~ 1
and all X in modA.

(b) A A-module X isin P, if and only if

P v: EXty(X, Y) - Extp((P, X), (P, Y))
is an isomorphism, forall 0< i<k -1 andall Y in modA.
Proof. (a) The fact that Y in I, implies that

Exty (X, Y) ~ Ext-((P, X), (P, Y))

for all X in modA and all 0 < i < k — 1 is the statement (b) of Theorem
3.2. To prove the converse we will use the characterization of modules in I
given in Proposition 2.6, stating that a A-module M is in I; if and only if
Exty(A/%, M)=0 for i=0,..., k.

Let i > 0. We consider the commutative diagram

Exti(A, Y) —_ Ext\ (%, Y)

lp;\‘y l/’;,y
Extp((P, A), (P, Y)) —— Extr((P, %), (P, Y))
induced by the inclusion 2% — A. The lower horizontal map is an isomorphism
because (P, %) — (P, A) is an isomorphism. .

We assume now that pj'(y),: Exty (X, Y) - Extr((P, X), (P, Y)) is an iso-
morphism forall 0 < i<k —1 and all X in modA. Then the vertical maps
in the diagram are isomorphisms and therefore Exty(A, Y) ~ Exty(%, Y), for
0<i<k-1. Hence Extj(%,Y) =0 for 1 <i < k—1. On the other
hand, from the exact sequence 0 — % — A — A/ — 0 we get an exact
sequence 0 — (A/%,Y) — (A,Y) — (%, Y) - Exty(A/%,Y) — 0. We
just proved that (A, Y) — (%, Y) is an isomorphism, so (A/2, Y) =0 and
Exty(A/2,Y) = 0. Thus Ext\(A/?, Y) =0 forall 0 <i <k, thisis, Y is
in Ik .

(b) follows from (a) by duality. O

The following propositions gives another characterization of modules in I, .

Proposition 3.7. (a) Let X bein I and k > 1. Then X isin Iy if and only
if Extp(P*, (P, X))=0 forall 1 <i<k—1, where P* denotes the I'-module
HomA(P , A) .

(b) Let X bein Py and k > 1. Then X isin P, ifand only if

Torl (P, (P, X)) =0
forall 1 <i<k-1, where P is considered as a module over T°° = End, (P)
in the natural way.
Proof. (a) Let X be in I, . Then we know by Proposition 3.6 (a) that
Exti-(P*, (P, X)) = Extp((P, A), (P, X)) ~ Extj(A, X),

for 0 < i<k — 1. This proves that Extr(P*, (P, X)) =0 for 1<i<k-1.
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To prove the converse we assume that Ext}(P* , (P, X))=0for 1t <i<
k — 1. We will prove that X is in I; by induction on k. The result is true
for k=1. Solet k > 1. Then X isin I;, and since 2 is in Py we can
apply Theorem 3.2 and obtain that Ext-((P, 2), (P, X)) ~ Ext}\(ﬂl, X) . Since
(P, ) ~ P* and we are assuming that Ext(P*, (P, X)) =0 for i <k—-1 we
obtain that Exti(A/2, X)~Exti(%, X)=0.So X eI, .

Consider now an exact sequence 0 - X — Iy — L — 0 with Iy in add/.
Then 0 — (P, X) — (P, Iy) —» (P, L) — 0 isexact and (P, Iy) is an injective
I'-module. So Ext~(P*,(P,L)) =0 for 1 <i<k—2. Since X isin I, it
follows that L is in I,, so the induction hypothesis applies to L. Therefore
L isin I;_;,so X isin I;, as we wanted to prove.

(b) follows from (a) by duality, observing that %A = t7p.(A°) as is also
p(A). O

We characterize now when I, =1, and when P, =P, .

Corollary 3.8. (a) I, =1, if and only if the I'-module P* is projective.
(b) P, = Py, if and only if the I'°P-module P is projective.

Proof. (a) follows directly from the Proposition 3.7. To prove (b) we write
2A = 7p.(A°). Since P, = P,, we get that the subcategories I; p. and I p-
of mod A°? are the same. By (a) we obtain that the I°P-module (P*)* =P is
projective. O

We recall now some properties of the functor Homp(P*, )= (P*, ): modID’
- mod A, which is the right adjoint of (P, ): mod A —» modI [A, §5]. The
functor (P*, ) is left exact, fully faithful and its image is the subcategory I,

of modA. The composition modI’ *) mod A #.) modI is the identity

of modI', and (P*, ) preserves injective envelopes. However, (P*, ) does
not preserve injective coresolutions, not even injective copresentations. In fact,

given an injective coresolution 0 — M — Iy — I; — --- of a I'-module M,
then 0 — (P*, M) — (P*, Iy) — --- — (P*, I) is the beginning of an injective
coresolution of (P*, M) if and only if Extp(P*, M) =0 for i=1,... k.

Therefore Proposition 3.7(a) can now be written in the following way.

Proposition 3.9. Let X be a A-module and M = (P, X). Then the following
conditions are equivalent for 1 < k < oo.

(i) X isin Ij.

(i) If 0 - M — Iy — I, — --- is an injective resolution of M in modI
then 0 - X — (P*, Iy) — --- — (P*, I,_,) is the beginning of an injective
coresolution of X = (P*, M) in modA.

It follows that I; = I if and only if the functor (P*, ): modI’ —» mod A
carries injective coresolution of A-modules into injective coresolutions of A-
modules.

On the other hand, (P, ): modA — modI has also a left adjoint, the
functor Por: modI' — mod A [A, §5]. This functor is right exact, fully faithful
and its image is P;. The composition
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modTI P&y mod A &) modI”

is the identity of modI', and PQ®r preserves projective covers. Proposition
3.7(b) can be written as follows.

Proposition 3.10. Let X be a A-module and M = (P, X). Then the following
conditions are equivalent for 1 <k < co.

(i) X isin Py.

I ---— P — - > Php— M — 0 is aprojective resolution of M in
modI" then PQr P, — --- — P®r Py — X — 0 is the beginning of a projective
resolution of X = P®r M in mod A.

4., CONDITIONS FOR I} =1

In this section we give other necessary and sufficient conditions for I, to be
equal to I, and for P, to be equal to P,,. We prove that I, = I, if and
only if AR, A is a projective A-module, and P, = P, if and only if A @, A
1s a projective A°P-module.

We start by recalling some further properties of the functor P®r: modI” —
modA. (See, for example, [A, §5].) Since P®r: modI’ — modA is a left
adjoint of (P, ): mod A — modT, there is a unique isomorphism of functors
f from the composition (P®r )(P, ) to the identity of mod A such that
(P, ) f isanisomorphism. For X in modA, fy: Per(P, X) — X isgiven
by fx(p ® h) = h(p), for h € (P, X), p € P. The following is a well-known
fact.

Lemma 4.1. Let X be in mod A and fx: P®r (P, X) — X be as above. Then
(1) PQr(P, X) isin P, and ker fy, Cokerfy arein mod A/«.
(2) Given an exact sequence 0 — L; — X, Lox - Ly,—0 with X, in Py
and Ly, L, in mod A/ we have:
(a) There is a commutative diagram

Sx

0 Ker fy ——— PQr (P, X) X Cokerfy —— 0
0 —— Ll — Xl ¢ X LZ — 0

where the vertical arrows are isomorphisms.

(b) (P,9): (P, X,)— (P, X) is an isomorphism.

(c) Let Y in Py and 1 < k < oo. The maps Ext\ (Y, ¢): Ext\ (Y, X;) —
Extj\(Y , X) are isomorphisms forall 0 <i<k-1.

Now we state the dual results (see, for example, [A, §5]). Since (P*, ): modT’
— modA is a right adjoint of (P, ): modA — modI" there is a unique
isomorphism of functors g from the identity of mod A to the composition
(P*, (P, )~ (P®rP*, ). For X in modA, gx: X — (P*, (P, X)) is
given by (gx(x)(N)(p) = f(p)x,for x in X, f in P* and p in P.
Lemma 4.2. Let X in modA and gx: X — (P*, (P, X)) be as above. Then

(1) (P*, (P, X)) isin 1, and Ker gy, Coker gx are in modA/Y.

(2) Given an exact sequence 0 — Ly — X AN X1 —L,— 0 with X| in I
and Ly, L, in mod A/, we have:
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(a) There is a commutative diagram

0—— L, x X X —_— L, — 0
| H | |
0 —— kergy X &, (P~ (P, X)) — Cokergy —— 0

where the vertical arrows are isomorphisms.

(b) (P, w): (P, X)— (P, Xy) is an isomorphism.

(c)Let Y in Iy and 1 < k < oo. The maps Ext\(w,Y): Ext)(X;,Y) —
Ext\ (X, Y) are isomorphisms forall 0<i<k—1.

To simplify notation we denote P @r (P, X) by Xp , and (P*, (P, X)) by
X, .
In the following proposition we describe Ap, .

Proposition 4.3. There are isomorphisms of A-modules Ap ~Ap ~ A @\ A.
Proof. To prove the result we will use the following lemma.

Lemma 4.4. Let Py be the projective cover of A. Then Py is also the projective
cover of A, A, and there is an exact sequence

0 — Tory(A/%A, AJA) - C - Py » AR, %A — 0

with C in Py. So A®, 2 isin P;.

Proof. Consider the exact sequence 0 - K — Py — 24 — 0. Tensoring with 2
we obtain the exact sequence

0 Tor! (%, %) - ARK - AR Py — AR, A — 0.

On the other hand, we have a commutative diagram
AR FPo —— AR A

| [

PO _— A

where the vertical maps are the multiplication maps. We know that AP, = B,
because Py is in add P. So, tensoring the exact sequence 0 — A - A —
A/ — 0 with the projective module 5Py we obtain that AR, Py — A®, Py
is an isomorphism. Thus mp, is an isomorphism. From the commutativity of
the diagram it follows that P, is the projective cover of A®, 2A. This ends the
proof of the lemma, since Tor’,\(m, 2A) ~ Tor?(A/Q(, A/),and C =A@, K
is in Py because AC=C. O

Now we prove the proposition. We have that (P, A) ~ (P, 1pA) = (P, ).
Thus (P, Ap) ~ (P, Ap,), as follows from Lemma 4.1.2(b). Since both Ap,
2Ap, are in P; and the restriction of (P, ) to P, is an equivalence we get that
Apl ™~ lel .

Consider the exact sequence 0 — TorQ(A/Qi, A/d) - AR A - A — 0, as
in Lemma 1.5. The module Tor}(A/2, A/21) is in modA/2, and AR, A is
in P, by the lemma. The uniqueness of a sequence 0 — L; — X; - A —
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L, - 0 with X} in P; and L, L, in modA/2% (Lemma 4.1) implies that
Ap AR A. O

We can now describe when A @, 2 is a projective A-module.

Proposition 4.5. The following are equivalent for the idempotent ideal A

(a) I =1,.

(b) AR A is a projective A-module.

(c) AR, A is a projective A-module and Tory(A/A, A/%)=0.
Proof. We proved in Corollary 3.8 that I; = I, if and only if P* is a projective
I’-module. This is the case if and only if P* = (P, Q) for some @ in add P,
as follows from Lemma 3.1,3. On the other hand (P, )|p,: P, — modI is an
equivalence of categories and P* = (P, A) = (P, Ap). So P* is a projective
I'-module if and only if Ap is a projective A-module. Therefore (a) & (b),
since we have proven in Proposition 4.3 that Ap and A ® 2 are isomorphic
A-modules.

Clearly (c) = (b). We prove now (b) = (c). We consider the exact sequence
0 - Tory(A/%,A/%) - C — Py »> A®A — 0 with C in Py and Py =
Py(A®2), as in Lemma 4.4. If A® %Y is projective then Torﬁ\(A/Ql, A/ - C
is an isomorphism. From this it follows that C = 0. Because on one hand
AC = C since C isin Py, and on the other hand C ~ Toré‘(A/Qt, A/) is a
A/ module. O

By the definition of Ap, we know that Ap = P®r(P, A) ~ P®rP*. On the
other hand Proposition 4.3 shows that Ap ~ A ®, 2. Therefore P ®r P* and
AR, A are isomorphic as left A-modules. We show next that they are, in fact,
isomorphic A-A-bimodules by giving a bimodule isomorphism ¢: P ®r P* —
AR, A.

Proposition 4.6. There is a A-A-bimodule isomorphism t: P @r P* — A @, A
such that the diagram

PeorPr 5L Ag

\ Qllmm

commutes where my is the multiplication map, and 0(p® f) = f(p), for p € P,
fepP.

Proof. Let ¢: P* ®) P — I' be defined by ¢(f @ p)(p') = f(p')p, for f €
P*, p,p' € P. Then ¢ is a A-A-bimodule isomorphism and induces an
isomorphism a: P ®r (P* ®, P) ®r P* — P ®r P* of A-A-bimodules. We get
a commutative diagram

(P ®r P*) @, (P or P*) 222, g,

l(] Jvmm
P@rP* N A

We observed just before the proposition that P®rP* and A®,2 are isomorphic
in modA. Thus the epimorphism = (6 ® 6)a™': P®p P* — A ®, A is an
isomorphism and one easily checks that the required diagram commutes. 0O
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Remark. We give an elementwise definition of ¢. Let idp: P — P be the
identity map. Since ¢: P* @, P — I' above defined is an isomorphism, there
are fe P*, p;e P, i=1,...,n,suchthat &3}, fi ® p;) = idp. Then
tp®f)= Z, filp ®fp,) for pe P, feP*.
As immediate consequences of the proposition we obtain the following two
corollaries.

Corollary 4.7. The idempotent ideal A is 2-idempotent if and only if the map
0: P ®r P* — A defined above is an isomorphism.

Corollary 4.8. Let X in modA. Then X; = (AQ, A, X) and Xp = A @,
AR X . If A is a 2-idempotent then X;, = (A, X) and Xp =A@, X .

We know that if 2 is an idempotent ideal then 2A®, 2 is not isomorphic to
A, unless A is 2-idempotent. However, we have the following result.

Corollary 4.9. The map idyg ® My : AR AR, A — AR A is an isomorphism,
where idg : A — A is the identity map and my : AR\A — A is the multiplication
map.

Proof. We have a commutative diagram

ldz ®1

ARQA PR P* ——— AR AR, A

mP®idP. l Jrldg Ry

PorPr —— A,
where mp: A, P — P is the multiplication map. Since both mp and ¢ are

isomorphisms it follows that all the maps in the diagram are isomorphisms,
proving the corollary. O

We give now a list of necessary and sufficient conditions for I, to be equal
to I, summarizing many of the previous results.

Propeosition 4.10. The following are equivalent for an idempotent ideal 2% of A:
( ) Il = Ioo
2 Li=5hL.
(3) P* is a projective T'-module.

(4) A ®, A is a projective A-module.

(5) P®r P* is a projective A moa'ule

(6

) The composition mod A ¥ mod T %5 mod A is exact.

It would be nice to know what modules are in I, and notin I, for a given
idempotent ideal 2A. We observe that I, = I;,, implies I, = I, . It would
also be nice to know which is the smallest & such that I; = I, or, what is
equivalent, such that I = I, . We know that such k is 1 if and only if A®,2
is projective. Moreover, the following result is true

Proposition 4.11. Ler A be an idempotent ideal and assume that
p.dim, (A ®, A) =r.

Then Ir+l = Ir+2 == Ioo .
Proof. Assume X isin I,,,. We know by Proposition 3.7 that this means that
Extp(P*, (P, X)) =0 for i =1,...,r. To prove that X isin L., we will
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prove that Extf™!(P*, (P, X)) = 0. We write P* = (P, A) = (P, Ap,). Since
Ap isin P; and X isin I, it follows from Theorem 3.2 that

Extf ! (P*, (P, X)) ~ Ext}t'(Ap,, X).

And Ext;:"(ApI , X) = 0 because we are assuming that p.dim,(A @, A) =r,
and Ap ~2A®, A, by Proposition 4.3. So I,;; =1,.,. O

Remark. The converse of Proposition 4.11 is not true. Let A, 2, P be as in
Example 3, §1. Then 2 is a strong idempotent, so it is a 2-idempotent and thus
A A=2A. However, I, =1, and p.dim®A = co.

Using that 2 = 7p(A) implies that 2 = 7p. (A°P) we obtain from Proposition
4.10 the following result.

Proposition 4.12. The following conditions are equivalent for the idempoent ideal
A of A,

(2) P =P;.

(3) P is a projective T°P-module.

(4) AR, A is a projective A°P-module.
(5) P®r P* is a projective A°°-module.
(

The following result follows from Proposition 4.11.

Proposition 4.13. Let A be an idempotent ideal and assume that p.dimpe2A ®,
ler- Then Pr+1 :Pl‘+2= “':Poo.

5. PROJECTIVITY OF 2. GLOBAL DIMENSION

In this section we characterize when an idempotent ideal % is a projective
A-module, and when it is a projective A°°-module. We also study relationships
between the global dimensions of the algebras A, A/ and T'.

The following proposition combines results of the preceding sections.

Proposition 5.1. Let A be an idempotent ideal. Then the following are equivalent
(a) A is a projective A-module.
(b) A is a strong idempotent and 1, =1, .
(c) A is a 2-idempotent and 1, =1, .
(d) The multiplication map A®, U — A is an isomorphism and AR\ A isa
projective A-module.

Proof. (a) = (b) Assume that A is a projective A-module. Then p.dimA/2 <
1, so it follows from the definitions that I, = I.,. And we observed in §1,
Example 1, that 2 is a strong idempotent. So (a) = (b). Clearly (b) = (c).
We know by Proposition 1.4 that 2 is a strong idempotent if and only if the
multiplication map A ® A — A is an isomorphism. On the other hand, we
proved in Proposition 4.5 that I, = I, if and only if A ®, ™ is projective in
modA. Then (b)«<(d). O

We have the following characterization of when 2 is a projective A°P-
module.
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Proposition 5.2. Let 2 be an idempotent ideal. Then the following are equiva-
lent:

(a) A is a projective A°P-module.

(b) 2 is a strong idempotent and P = P, .

(c) A is a 2-idempotent and Py = P, .

(d) The multiplication map AR, A — A is an isomorphism and AR\ A is a
projective A°P-module.

When I is semisimple then I, =1, and P, = P, so we get the following
result.

Corollary 5.3. Assume I' is semisimple. Then the following conditions are equiv-
alent:

(a) A is a projective A-module.

(b) A is a 2-idempotent.

(c) A is a projective A°P-module.

The equivalence of (a) and (c) has been proven by Dlab and Ringel in [DR1,
Part II, Statement 7]. We observe that the conditions 2 is a strong idempotent,
I, =1, and P, = P, are independent, as shown in the following examples.

Let A be as in Example 3, §1. That is, A is the path algebra (over a field)
of the quiver

L

B

modulo the ideal generated by the relation faf = 0. Then the ideal A, =
Tp,(A) is a strong idempotent which is not projective. Therefore, I; o, #
Iz, . Let now 2; = tp,(A) be the trace of the projective module P> asso-
ciated to the vertex 2. Then A, is a projective A-module, so 2, is a strong
idempotent and I, o, = I 2, . However Py 4, # Po o, . This example shows
that being projective is not a symmetric condition. One can check that directly
or observe that Py o, # P o, implies that &, is not a projective A°°-module.

On the other hand, any nonprojective idempotent ideal 2% = 7pA such that
I' is semisimple satisfies I} =1, and P; = P, but 2 is not a 2-idempotent
(Corollary 5.3). Such ideals are easy to find. One of them is the ideal % = 7p,(A)
in A = T3(k)/r?, where Ts(k) is the 3 x 3 lower triangular matrix ring with
coefficients in a field k, P, = Aey; and e, is the matrix with 1 in the entry
22, 0 elsewhere.

We now study relationships between the global dimensions of the rings A,
A/ and I". We have seen that if the idempotent ideal 2 is a strong idempotent
then gl.dimA/% < gl.dimA. And if I, = I, then gl.dimI < gl.dimA.

We will prove now the following result.

Theorem 5.4. Let A be an idempotent ideal. Then gl.dim A < p.dim,A/2 +
gldim A/ +gl.dimI+ 1.

We observe that when 2 is projective and I' is semisimple the proposition
states that gl.dim A < gl.dim A/2%+ 2, an inequality proven by Dlab and Ringel
in [DR1, Part 2, Statement 5].

To prove this proposition and the next we consider the full subcategory T
of modA consisting of the modules 7 such that Exty(A/2%, T) = 0 for all
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i>1. Then I, CT,anda A-module T in I, isin T ifand only if 75,97 =
Homy (A/2, T) = 0. Given a A-module X we denote by Q/(X) the image

of the map d; in a minimal injective coresolution 0 — X — I LN I A, ...
of X and we write Q%(X) = X . We need the following lemma.

Lemma 5.5. Let T be as above. Then

(1) p.dimyA/A=r ifand only if Q7" (mod A) C T.

(i) If gl.dim A/ =5 < oo then Q~G+)(T) C 1.
Proof. (i) Follows from the isomorphism

Ext}T"(A/2, X) ~ Exty(A/%, Q7" X),
forall X in modA, i>1.

(ii) Let T in T. Clearly Q%(T) isin T for all i > 1. So we only
have to prove that 75,(Q ¢*)(T)) = 0. Let 0 = T - Iy - I} — -+
be a minimal injective coresolution of 7. Since 7 is in T we have 0 —
Ta/aT — Tamlo — Ta/aly — -+ is a minimal injective coresolution of 75/ T
(Proposition 1.1). Since gl.dim A/ = s it follows that 7,ql; =0 for k > 5.
S0 75/a(QC+(T)) C 7p/a(fs41) = 0, as we want to prove.

We prove now the theorem. Let r = p.dim,A/%A,s = gldimA/2A,t =
gldimI'. Let X be in modA. Using first (i) and then (ii) of Lemma 5.5,
we conclude that Q~-(++(X) isin I, . Then

inj.dim, Q= U+*1(X) = inj.dimp(P, Q- "*++D (X)),
by Corollary 3.3. This number is at most ¢ = gl.dimI". So injdimX <r+s+
t + 1, and the proof of the theorem is complete. 0O
When 2 is a projective A-module we obtain the following result

Corollary 5.6. Assume the idempotent ideal 2 is a projective A-module. Then
the following are equivalent

(a) gl.dimA < oo,

(b) gl.dimA/A < o0 and gl.dimI' < .
Proof. (a)= (b) follows from the fact that 2 is projective if and only if A is
a strong idempotent and I; = I, proven in Proposition 5.1. (b)= (a) is an
immediate consequence of the proposition.

When the ideal 2 is a strong idempotent we can prove a stronger inequality.
Proposition 5.7. Let A be a strong idempotent ideal. Then
gldim A < p.dimy A/ + max{p.dim,A/% + gl.dim A/, gl.dimT}.
Proof. We start by stating the following lemma.

Lemma 5.8. Let A be a two-sided ideal and let X be a A/A-module. Then

(1) p.dimyX < p.dimy o X +p.dimyA/2,

(i) inj.dimy X < inj.dimyuX + p.dimpeA/2.
Proof. (i) follows by induction on n = p.dim, 4 X, and (ii) follows from (i)
by duality. O

Now we prove the proposition. We assume that 2 is a strong idempotent

ideal, and that X is a A-module. We may assume that r = p.dim, A/ < cc.
Then T = Q"X isin T. We consider the exact sequence 0 — 7797 —
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T - T/tamT — 0. Since T isin T, 754/9q7 isa A/¥U-module and 2 is a
strong idempotent, it follows that T/75,9 T isin I . Thus inj.dim T/t /9T <
gldimI". On the other hand we get by (ii) of Lemma 5.8 that inj.dim,(tp/o7)
< gl.dim A/ + p.dimy,A/2%. Combining these results we get

inj.dim, 7" < max{gl.dim A/ + p.dimp, A/, gl.dimI}.

This inequality proves the proposition because 7' = Q"X , so inj.dimX =
r+injdim7. 0O

We observe now that if 2 is a strong idempotent then 2 is in P, so
p.dim, 2 = p.dimp(P, %) < gl.dimI'. Since being a strong idempotent is a
symmetric condition we also have that p.dim,.2 < gl.dimI". Combining the
inequality in Proposition 5.7 with p.dimp,A/2% < gl.dimI + 1, we obtain the
inequality of Theorem 5.4.

As an immediate consequence of Proposition 5.7 we obtain the following
corollary.

Corollary 5.9. Assume that the idempotent ideal 4 is projective in mod A and
in mod A°?. Then

gl.dim A < max{gl.dimA/2A+ 2, gl.dimI" + 1}.

6. QUASIHEREDITARY ALGEBRAS

In this section we apply some of our previous results to quasihereditary alge-
bras. First we show that being quasihereditary is invariant under Morita equiv-
alence. Second, we study the projective resolutions of the ideals in a heredity
chain. We give another proof of the fact that hereditary artin algebras can be
characterized as quasihereditary artin algebras for which each chain of idem-
potent ideals can be refined to a heredity chain, which was shown by Dlab and
Ringel in [DR1]. Finally we give a characterization of quasihereditary algebras
using /-hereditary algebras.

We recall now the definition of quasihereditary algebras [CPS]: An artin
algebra A is quasihereditary if there is a chain of idempotent ideals of A,
0=%% c--- C A, = A satisfying the following conditions

(QHI1) A;/%A;—; is projective in mod(A/U;_,) forall i=1,...,n.

(QH2) I'; = Endpja,_,(Qi/%;—1Q:)°P is semisimple for all i = 1,...,n,
where Q; is a projective A-module such that &%; = 79, (A).

Such chain is called an heredity chain.

Let % = 7pA be an idempotent ideal of A. We proved in Corollary 5.3
that if I' = End(P)°P is a semisimple ring, then 2 is projective in mod A if
and only if 2 is 2-idempotent. So the conditions (QH1) in the definition of
quasihereditary algebra can be replaced by either of the two following conditions

(QH1') ; is 2-idempotent, forail i=1,...,n.

(QH1") «; is strong idempotent, forall i=1,...,n.

We use this observation to prove that being quasihereditary is a Morita in-
variance, result which was proven in [CPS] using highest weight categories.
As we noticed in the introduction giving an idempotent ideal A of A is
equivalent to giving a Serre subcategory of mod A. When 2 = 7p(A) is an
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idempotent ideal of A then S = mod A/ is a Serre subcategory of mod A
and modA/% — mod A — modI is an exact sequence of categories, where
I" = End(P)°P.

Since the properties of being strong idempotent and of being semisimple
are Morita invariances it follows that being quasihereditary is also a Morita
invariance.

In the following proposition we give a characterization of the chains 0 =
Ao C A C --- C A, of idempotent ideals of A such that 2; is projective for
i=1,...,n,in terms of the projective presentations of the ideals 2; in the
chain.

Propeosition 6.1. Let 0 = 2y C A, C --- C A, be a chain of idempotent ide-

als in A. Then there exist projective A-modules Py, ..., P, such that %, =
tpu..up (A) forall k =1, ..., n. Moreover, the following conditions are equiv-
alent:

(a) A /Ap_y is projective forall k=1, ..., n.

(b) Ax has a projective resolution --- — P ; — -+ = Py g — %A — 0,
with Py ; in add(PLO---UP,_;) forall i <k, P, ;=0 for i >k, forall
k=1,...,n.

(c) A has a projective presentation P, | — P o — A — 0, with P in
add( P UO---UP_y), forall k=1,...,n.

Proof. The first statement follows from the following observation. If P, Q are
projective A-modules and tp(A) C 7g(A), then P isin add Q.

To prove the equivalence of (a) and (b) we introduce the following notation.
For k£ > 1, let R, be the full subcategory of mod A consisting of the A-
modules X having a projective resolution --- - Q; = --- - Qg — X — 0,
with Q; in add(P, II---1I P,_;) if i <k -1, Q; =0 otherwise. We observe
that R, is closed under extensions.

We prove that (a) = (b) by induction on n It is clearly true for n = 1. So let
n > 1 and consider the sequence 0 — A, — A, — A, /A, — 0. To prove
(b) we have to prove that 2, is in R,. By the induction hypothesis we know
that 2,_, isin R,_; C R, . Since R, is closed under extensions it is enough
to see that 2, /2, is in R,. We know by (a) that 2,/2,_; is a projective
A/, -module. So A,/Ap—) ~ On/An—10n, where Q, is the projective cover
of A,/A,—) in modA. Since Q, isin addA, then A,_;Q, isin add®,_; C
R, . Thus from the exact sequence 0 — A,_1Q, — Qn — A, /A,_; — 0 with
Qr in add Py(A,) = add(P, 11 --- 11 P,) we get that A,/A,_; is in R,. This
finishes the proof of (a) = (b).

(b) = (c) is clear. So we prove now that (c¢) = (a). Let P, | — P o — % — 0
be a presentation of 2, with P ; in add(PiII--- I P_,), 1 <k <n. We
consider the exact sequence 0 — K, — P o — %A — 0. Tensoring with
A/%;_, we get an exact sequence

Ki /U1K — Po /%o Peo 2 A /Ay — 0.

Then Py(Ky) ~ P, isin add(Py, ..., P_y), by (¢). That is, Ax_ Ky = K .
So P, is an isomorphism and 2, /2 _; is projective in mod(A/,_;). O

The following corollary applies to heredity chains in a quasihereditary alge-
bra.
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Corollary 6.2. Let 0 = %y C --- C U, be a chain of idempotent ideals in A
such that Ay [A,_, is a projective A/%,_, module forall k =1, ...,n. Then
pdim®, < k — 1, A is strong idempotent, and 1y o = 1y o, , for k =
1,...,n.

Proof. The equivalence of (a) and (b) in Proposition 6.1 implies that p.dim 2
<k —1 and that 2, has a projective resolution in add(Py(2)). By Theorem
2.1 we know that this implies that 2, is a strong idempotent. Then 2 is a 2-
idempotent, so A, R, A, ~ A , as proven in Proposition 1.4, Then p.dim A, ®,
A < k,sothat Iy o, = Iy o, (Proposition4.11). O

As a consequence of the above proposition we prove the following result of
Dlab and Ringel.

Proposition 6.3 [DR1, Part 1, Theorem 1]. An artin algebra A is hereditary if
and only if any chain of idempotent ideals in A can be refined to a heredity
chain.

Proof. Assume that any chain of idempotent ideals can be refined to a heredity
chain. We will prove that A is hereditary.

Let Q be an indecomposable projective A-module. To prove that A is
hereditary we prove that rQ is projective. Let P be the sum of all the in-
decomposable nonisomorphic projective modules not isomorphic to Q. Then
A = 7p(A) is a maximal proper idempotent ideal of A, so by hypothesis it is
part of a heredity chain. By the maximality of 2 it follows that it must be the
last proper ideal in the chain, so that the ring A/2 is semisimple. Then Q/AQ
is a simple A-module, so rQ = 20.

The module AQ is in add?2 because @ is in addA. Therefore to prove
that rQ = AQ is projective it is enough to prove that 2 is projective. Let
P, — Py — A — 0 be a minimal projective presentation of 2% in modA. We
will prove that P = 0. Let Q; be an indecomposable direct summand of P.
We write P = Q) I P'. The chain of idempotent ideals 7p:(A) C 7p(A) can
be refined to a heredity chain 0 = %3 C --- € %, = A. Let k be such that
A = tp(A) = 2A. Since @, is indecomposable we must have 2;_; = 7p.(A).
We can apply now Proposition 6.1 to the chain 2y C --- C % = 2 and the
given projective presentation P, — Py — % — 0 of 2. We conclude that
P, is in add P! C add P and therefore has no summand isomorphic to Q.
Therefore we have proven that no indecomposable summand Q; of P is in
add P, Cadd P. So P, = 0. This finishes the proof that A is hereditary.

So we have proven that if any chain of idempotent ideals can be refined
to a heredity chain then A is hereditary. The converse follows from the fact
that any chain of idempotent ideals can be refined to a chain 0 C tp C --- C
Tpu..up, C A, where all the projective A-modules P; are indecomposable. 0

We know by [BF, Proposition 1.6], that /-hereditary algebras are quasi-
hereditary. We give now a characterization of quasihereditary algebras using
I-hereditary algebras.

We recall that an artin algebra A is /-hereditary if the maps between in-
decomposable projective modules are either zero or monomorphisms. If A
is an [-hereditary algebra and P is a projective A-module, then the algebra
I' = End,(P)°P is also /-hereditary.
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Proposition 6.4. Let A be an artin algebra with a chain of idempotent ideals
0=™% C A C--- C A = A such that (1) U;/U;_, is a projective A/Y;_,
module for i = 1,...,n and (2) Endpq, (Qi/%i-1Q;) is I-hereditary for
i=1,...,n, where Q; is a projective A-module such that tg,(A) = ;. Then
A is quasihereditary.

Proof. The proposition follows by induction from the following lemma.

Lemma 6.5. Let P be a projective A-module such that % = tp(A) is a projective
A-module and T = End,(P)°P isan [-hereditary algebra. If T is not semisimple,
then there exists a direct summand Py of P such that %, = tp (A) is a projective
A-module, Enda(Py) is semisimple and Endpq, (P/%P) is an [-hereditary

algebra.
Proof. Let P; be an indecomposable summand of P such that the I'-module
(P, P;) has maximum length. Let P,, ..., P, be the nonisomorphic indecom-

posable summands of P. Since I' is /-hereditary it follows that
((P,P),(P,P)=0 fori=2,...,r.

We will see that P, has the desirec properties.
Since
Ends(P) ~ Endr((P, Py))

and I' is /-hereditary it follows that End,(P;) is a division ring. On the other
hand, Homy(P;, P;) = Homp((P, P,), (P, P)) =0 for i = 2,...,n, so
tp(P) =0 1if i > 2. Thus 7p(X) isin add P, for any X in add P. Now,
7p,(A) = tp(tp(A)), and tp(A) isin add P since it is projective by hypothesis.
So 7p,(A) isin add P, and is thus projective.

Since AP = tp(P) isin add P, it follows that P/, P is in

add(pI.---0IP,) Cadd P.

Therefore End,(P/%,P) = Endr((P, P/%,P)) and (P, P/, P) is in addT .
Since I' is /-hereditary it follows then that End,(P/2, P) is [-hereditary. This
ends the proof of the lemma. O

Using this characterization of quasihereditary algebras we obtain a bound for
the global dimension of a quasihereditary algebra, different from the one given
in [DR1, Statement 9].

Corollary 6.6. Let A be a quasihereditary algebra. Let 0 =%y C---C A, = A
with %; = 1p,(A) be a chain of idempotent ideals such that %;/%;_, is projective
in mod(A/_y) and Endyy, (P;/%;-\P;) is hereditary for i =1, ..., n. Then
gldimA <3n-2.

Proof. We prove the corollary by induction on n. If n =1 then A is heredi-

tary and the formula holds. Let n > 1. We apply Theorem 5.4 to the idempo-
tent ideal A = A; = 7p,(A) and we obtain that

gldim A < p.dim, A/, + gldim A/ + gl.dimDT+ 1,

where I' = End,(P) is hereditary by hypothesis. The induction hypothesis
applied to the chain 0 C %/, C --- C A, /%, = A/, in mod(A/%,) implies
that gl.dimA/%; <3(n—1)-2. Thus gldimA <3(n-1)-2+3=3n-2. O
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7. A CLASS OF QUASIHEREDITARY ALGEBRAS

We define in this section a class of artin algebras which contains several
well-known classes of algebras and prove that the algebras in that class are
quasihereditary.

Definition 7.1. We say that an artin algebra A satisfies the descending Loewy
length condition on projective resolutions if for every A-module M a min-
imal projective resolution — P;(M) — --- — Py(M) - M — 0 satisfies
LL(P;(M)) < LL(P{(M)) forall i> 1. Here LL denotes the Loewy length.

The following are examples of classes of algebras satisfying the descending
Loewy length condition on projective resolutions:

(1) I-hereditary algebras, which were defined in the previous section.

(2) Artin algebras of global dimension two.

(3) The endomorphism algebra I' = Ends(A/r--- 11T A/r"), where A is an
artin algebra and » is the index of nilpotency of the radical » of A [A, Proof
of Proposition 10.2].

By proving that algebras satisfying the descending Loewy length condition on
projective resolutions are quasihereditary, we give, in particular, a unified proof
of the results, proven by V. Dlab and C. M. Ringel in [DR1, DR2], that the
algebras of global dimension 2 and the endomorphism algebra I'" of example
(3) are quasihereditary.

We start by proving the following lemma.

Lemma 7.2. Let A be an artin algebra satisfying the descending Loewy length
condition on projective resolutions. Let X be a submodule of a projective A-
module. Then LL(P,(X)) < LL(Py(X)).

Proof. Follows easily from the definitions.

Theorem 7.3. Let A be an artin algebra satisfying the descending Loewy length
condition on projective resolutions. Then A is quasihereditary.

Proof. To prove this theorem we will use the characterization of quasihereditary
algebras given in Proposition 6.4 which states: A is quasihereditary if and only
if there is a chain of idempotent ideals 0 = %Ay C %, C --- C A, = A such
that (1) 2;/9%,-, is a projective A/;_j-module for i = 1,...,n and (2)
EndA/gn_l(Q,-/Ql,-_lQi) is l-hereditary for i = l,...,n. Here %; = TQ,.(A) ,
and all Q; are projective A-modules.

Let i; < --- < i; be the Loewy lengths of the indecomposable projective A-
modules. Let @, be the sum of the nonisomorphic indecomposable projective
A-modules of Loewy length at most i, and 2, = 19, (A) for k =1,...,¢,
Ao = 0. Since A, is a submodule of A it follows from Lemma 7.2 that
LL(P (%)) < LL(Py(Ay)) < i . So P;(Ay) is in add Q,_; . This proves that
A /A_y 1s projective in mod(A/A;_,).

We will show in the following lemma that Endajm, ,(Qk/2k—Qk) is [-
hereditary for all & . This will end the proof of the theorem. 0O

Lemma 7.4. Let A be an artin algebra satisfying the descending Loewy length
condition on projective resolutions. Let r be the Loewy length of an indecom-
posable projective A-module. Let Q be the sum of the indecomposable non-
isomorphic projective A-modules of Loewy length r. Let P be the sum of the
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indecomposable nonisomorphic projective A-modules of Loewy length smaller
than r, and % = tp(A). Then Endp /o (Q/AQ) is an -hereditary algebra.

Proof. Let f: Q1/AQ; — Q2/2Q, bea A/A-morphism. Then f is induced by

a A-morphism f: Q; — Q,. Let Q; -2 Im f -5 0, be the factorization of
f through the image of f. Then f =7 .p where p: Q;/%Q, — Im f/%AIm f
and j: Im f/%Im f — Q,/UQ, are the maps induced by p and j. We will
show first that if Q; isin add Q then p is an isomorphism. And we will show
that if Q, is in add Q then j is either zero or a monomorphism. Thus if we
assume that both Q; and Q, are in add Q this shows that f = j .7 is either
zero or a monomorphism, proving the lemma.

From the exact sequence 0 — Ker f — Q) - Im f — 0 we get an exact

sequence Ker f/%AKerf — 0,/2Q; - Imf/%Imf — 0. Since Imf is a
submodule of the projective module @, it follows from the above lemma that
LL(FPy(Ker f)) = LL(P(Im f)) < LL(Py(Im f)) = LL(Q;) . If we assume that
QO isin addQ then LL(Q;)=r. So LL(Py(Ker f)) < r. That is, Py(Ker f)
is in add P. Hence 2AKer f = Ker f'. This proves that p is an isomorphism.

To prove that j is either zero or a monomorphism we consider the following
exact sequence:

0— (ImfNAQ,)/AIm f — Im f/AIm f
— (Im f +2AQ,)/%0Q, — 0.

The last module is precisely the image of j: Im f/%Im f — Q,/2Q,. It fol-
lows that j = 0 if (Imf + 2Q;) C A(Im f + AQ,), which is the same as
Po(Im f+2Q,) isin add P. Similarly, j is a monomorphism if Im fNAQ, =
A(Im f NAQ,) which is the same as Py(Im f NAQ,) isin add P.

We now show that either Py(Im f +2AQ,) is in add P or Py(Im £ NAQ,) is
in add P. This is a consequence of the following result applied to X = 120, ,
Y=Imf.

Claim. Let @, be in addQ and let X and Y be submodules of Q.
Suppose Py(X) isin add P and Py(Y) is indecomposable and in add Q. Then
either Po(X +Y) isin addP or P(XNY) isin add P.

To prove this we assume that Py(X + Y) is not in add P, and consider the
diagram:

0 —— Z —— P(XIY) —— X+Y —— 0

| | I

0 —— XnY —— XHOY —— X+Y —— 0
| |
0 0

To prove that Py(X NY) is in add P it is enough to show that Py(Z) is in
add P . Consider now the diagram
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0 0
| |
L v— L
60— V4 — P(XI0Y) — X+Y — 0

The second vertical column splits. Since FPy(X + Y) is not in addP and
Py(X 1Y) has only one indecomposable direct summand not in add P, it
follows that L is in add P. On the other hand, we know from the preceding
lemma that

LL(Py(Qu(X + Y))) = LL(P\(X + Y)) < LL(Py(X + Y))

since X+7Y is a submodule of the projective module Q. But LL(Py(X+Y)) <
LL(Py(X1Y)) <r since Py(X) and Py(Y) arein add Q. So

LL(Py(S(X +Y))) < r.

That is, Py(Q(X +Y)) isin addP. So Py(Z) is in add P. This ends the
proof of the claim and of the lemma. 0O
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