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Homologous recombination (HR) is a major pathway for the repair of DNA double-strand
breaks in mammalian cells, the defining step of which is homologous strand exchange
directed by the RAD51 protein. The physiological importance of HR is underscored by the
observation of genomic instability in HR-deficient cells and, importantly, the association of
cancer predisposition and developmental defects with mutations in HR genes. The tumor
suppressors BRCA1 and BRCA2, key players at different stages of HR, are frequently mutated
in familial breast and ovarian cancers. Other HR proteins, including PALB2 and RAD51
paralogs, have also been identified as tumor suppressors. This review summarizes recent
findings on BRCA1, BRCA2, and associated proteins involved in human disease with an
emphasis on their molecular roles and interactions.

S
oon after homologous recombination (HR)
was discovered to be an important DNA re-

pair mechanism in mammalian cells, an associ-

ation between HR deficiency and human dis-
ease was uncovered when the hereditary breast

cancer suppressors BRCA1 and BRCA2 were

found to be required for HR (Moynahan and
Jasin 2010; King 2014). Subsequently, germline

mutations in a number of other HR genes have

been linked to tumorpredisposition.Congenital
defects have also been associated with impaired

HR. Tumorigenesis can result from ongoing ge-

nomic instability fromdiminishedrepair,where-
as developmental defects can arise from cell

death/senescence.ThatHRgenes act asgenomic
caretakers has generated widespread interest in

both the scientific and medical communities.

Because HR defects confer sensitivity to certain
DNA-damaging agents, they are being exploited

in cancer therapies. Drugs that cause synthetic

lethality in the context of HR defects also hold
promise for treatment (Bryant et al. 2005; Far-

mer et al. 2005). This review provides a brief

overview of HR in mammalian cells and sum-
marizes the molecular roles of BRCA1, BRCA2,

and associated HR proteins involved in human

disease. Extensive discussion of HR pathways
can be found in Mehta and Haber (2014).
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THE IMPORTANCE OF HR IN
MAMMALIAN CELLS

DNA lesions, such as double-strand breaks

(DSBs), threaten the integrity of the genome,
but HR provides a mechanism to precisely re-

pair the damage. DSBs repaired by HR are first

end resected to generate 30 single-strandedDNA
(ssDNA) (Fig. 1) (see Symington 2014). ADNA

strand-exchange protein—RAD51 in mamma-

lian cells—binds to the ssDNA to form a nucle-
oprotein filament, which promotes strand inva-

sion into a homologous duplex to initiate repair

synthesis (see Morrical 2015). In the synthesis-
dependent strand-annealing (SDSA) pathwayof

HR, the newly synthesized DNA dissociates to

anneal to the other DNA end, and the HR event

is completed by ligation (see Zelensky et al. 2014

and Daley et al. 2014). More complex path-
ways involve Holliday junction resolution or

dissolution (Jasin and Rothstein 2013; see also

Bizard and Hickson 2014; Wyatt and West
2014). DSB repair can also occur by a second

major mechanism, nonhomologous end join-

ing (NHEJ) (Chapman et al. 2012b). NHEJ dif-
fers fromHR in that theDNAends are protected

from resection before being rejoined; never-

theless, deletions and insertions can arise dur-
ing NHEJ. The preferred template for HR is the

identical sister chromatid, although the homo-

log can be used at lower frequency (Johnson and
Jasin 2001). The use of the sister chromatid leads

to precise repair, restoring the original sequence

that was present before damage, but it is limited

DSB
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RAD51 loading

Strand invasion

NHEJ

Repair synthesis

HR

∆, +

End protection

Figure 1. Simplified schemes of double-strand break (DSB) repair by homologous recombination (HR) and
nonhomologous end joining (NHEJ). Once a DSB is generated, it can be processed for HR by end resection
proteins, leading to ssDNA. The RAD51 strand-exchange protein forms a nucleoprotein filament with ssDNA
that invades an unbroken homologous DNA, typically the sister chromatid, as shown. The 30 end primes DNA
synthesis from the homologous DNA; using the sister chromatid, the repair can be precise to restore the original
sequence before damage. To completeHR, the newly synthesized strand can dissociate to anneal to the other end.
Other outcomes are also possible, for example, in which Holliday junctions are formed and either dissolved or
resolved. Alternatively, DNA ends are protected from end resection byNHEJ proteins; subsequent steps in NHEJ
can result in mutagenic repair with deletions and insertions (D, þ).
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to the S/G2 phases of the cell cycle, whereas

NHEJ is operational throughout the cell cycle
(Rothkamm et al. 2003).

Although HR has long been known to be a

major DNA repair mechanism in bacteria and
yeast (see Mehta and Haber 2014; Reams and

Roth 2015), the importance of HR in the main-

tenance of mammalian genome integrity has
only emerged in the last two decades. Direct

evidence came from molecular analysis of DSB

repair, in which HR and NHEJ are both found
to be robust repair mechanisms (Fig. 1) (Rouet

et al. 1994; Liang et al. 1998; Johnson and Jasin

2000). This finding forms the basis of current
genome-editing approaches inmammalian cells

(Cong et al. 2013; Mali et al. 2013).

Strong genetic evidence for the importance
of HR comes from the study of mice deficient

in the RAD51 strand-exchange protein. Rad51

disruption is lethal early in embryogenesis and

Rad51 null cells cannot be propagated (Lim
andHasty 1996; Tsuzuki et al. 1996). The lethal-

ity is attributed to the impaired repair of lesions

that arise during DNA replication in the rapidly
cycling cells of the embryo. Thus, a critical func-

tion of HR is likely to be the repair of replica-

tion-associated damage (see Syeda et al. 2014),
as is the case in bacteria (Cox et al. 2000). HR is

also critical for the repair of interstrand cross-

links (Long et al. 2011).
HR and NHEJ can “compete” for the re-

pair of the same lesion but also “collaborate”

in the repair of distinct lesions (Fig. 2A) (Kass
and Jasin 2010). Competition is evidenced in a

standard HR reporter assay in which a DSB is

induced by the I-SceI endonuclease: HR, mea-
sured as GFPþ cells, is elevated in NHEJmutant

cell lines relative to wild-type cells (Fig. 2B)
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Figure 2.Competition and collaboration between double-strand break (DSB) repair pathways. (A) Schematic of
the interactions between the homologous recombination (HR) and nonhomologous end joining (NHEJ)
pathways for DSB repair. (B) Competition for repair of a DSB. In the direct repeat green fluorescent protein
(DR-GFP) reporter assay, a DSB repaired through HR restores a functional GFP gene, as detected by flow
cytometry. NHEJ-deficient Ku702/2 cells show substantially elevated HR, showing how HR and NHEJ can
act on the sameDSB, such that NHEJ suppresses HR (modified from Pierce et al. 2001). TheDSB is generated by
I-SceI endonuclease. (C) Collaboration between HR and NHEJ, as illustrated in the embryonic brain. (i,ii)
Apoptosis is rare in the wild-type embryonic brain (E13.5), as indicated by the lack of TdT-mediated dUTP-
biotin nick end labeling (TUNEL) staining in either the proliferating ventricular zone (VZ) or the postmitotic
subventricular (SV) zone (markedwithTuj1). (iii)HR-deficientXrcc22/2 cells show substantial apoptosis in the
VZ. (iv) In contrast, NHEJ-deficient Lig42/2 cells predominantly have elevated apoptosis in the SV. Therefore,
HR and NHEJ both contribute to the integrity of the embryonic brain (modified from Orii et al. 2006).
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(Pierce et al. 2001). The rescue of certain HR

mutants with combined NHEJ deficiency also
speaks to the competition between pathways

(see below) (Bouwman et al. 2010; Bunting

et al. 2010). Collaboration between HR and
NHEJ is illustrated in the different cell layers

of the embryonic brain. HR is required in the

proliferating cell layer and NHEJ is required in
the postmitotic cell layer, such that mutation of

either an HR or NHEJ pathway component

leads to high levels of apoptosis but in a distinct
cell layer (Fig. 2C) (Orii et al. 2006). Collabora-

tion between pathways is also observed in some

HR/NHEJ double mutant mice, which show
more severe phenotypes than either single mu-

tant (Couedel et al. 2004; Mills et al. 2004). HR

and NHEJ can even be used to repair the same
lesion through a break-induced replication-

type event, which is initiated by HR and com-

pleted by NHEJ (Richardson and Jasin 2000).
Special cases are the programmed DSBs, which

are channeled into defined repair pathways, for

example, HR for SPO11-generatedDSBs during
meiosis (see Lam and Keeney 2015) and NHEJ

for RAG-induced DSBs in the immune system

(Chapman et al. 2012b).
Early studies of mammalian homologs of

yeast HR genes did not link HR to tumor sup-

pression. Mouse knockouts showed embryonic
lethality (Rad51, Lim and Hasty 1996; Tsuzuki

et al. 1996) or, at the other extreme, little or no

phenotype (Rad52, Rijkers et al. 1998; Rad54,
Essers et al. 1997). However, characterization of

BRCA1 and BRCA2 led to the discovery of the

link between HR and human health, in partic-
ular, tumor suppression (Moynahan and Jasin

2010). Subsequent work has implicated a num-

ber of other HR proteins, including PALB2 and
the RAD51 paralogs.

BRCA1

BRCA1 Mutations in Patients

Breast cancer early onset gene 1 (BRCA1) was
identified in the early 1990s as one of the major

hereditary breast cancer susceptibility genes

(Futreal et al. 1994; Miki et al. 1994; King
2014). Germline mutations in BRCA1 confer a

high lifetime risk for breast (�60%) and ovar-

ian (�40%) cancer (average cumulative risks by

age 70), as well as a lesser increase in risk for
pancreatic, prostate, and other cancers (King

et al. 2003; Metcalfe et al. 2010). Mutation car-

riers are heterozygous, whereas tumors often
show loss of the wild-type allele (see below)

(Futreal et al. 1994). BRCA1-mutated breast

cancers are typically basal-like rather than lumi-
nal, and negative for estrogen and progesterone

receptors and human epidermal growth factor

receptor 2 (HER2) amplification (i.e., “triple
negative”); thus, they do not respond to hor-

monal therapies or therapies that target HER2,

making them particularly difficult to treat
(Foulkes et al. 2003).

BRCA1 mutant allele frequencies are suffi-

ciently high that individuals with biallelic mu-
tations could be expected in the population;

however, until recently, only one individual

with bona fide deleterious mutations in both
BRCA1 alleles has thus far been reported (Dom-

chek et al. 2013), consistent with the embryonic

lethality associated with BRCA1 loss in mice
(Moynahan 2002). This individual likely sur-

vived to adulthood because one of her BRCA1

alleles is hypomorphic. However, she had de-
velopmental issues, early onset ovarian cancer,

and toxicity from carboplatin and paclitaxel

therapy (Domchek et al. 2013). The identifica-
tion of an individual with biallelic BRCA1 mu-

tations has important implications because the

combination of congenital issues, cancer, and
sensitivity to interstrand cross-linking agents

like platinum-based drugs is associated with a

broadly defined syndrome called Fanconi ane-
mia (D’Andrea 2013). More recently, a second

individual with biallelic BRCA1 mutations has

been identified, in this case, with breast cancer
as well as congenital abnormalities (Sawyer et al.

2015). Thus, biallelic mutations in BRCA1 are

now considered to cause a distinct subtype of
Fanconi anemia (FA-S).

BRCA1 Domains and Interactions

Human BRCA1 encodes an 1863 amino acid

protein that can be divided into three regions,
the amino terminal Really InterestingNewGene

(RING) domain, a central part with a large un-
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structured region encoded by exon 11 followed

by a coiled-coil domain, and tandem BRCA1

carboxy-terminal repeats (BRCTs) (Fig. 3) (Li
and Greenberg 2012). Through these domains,

BRCA1 forms complexes with several proteins,

implicating BRCA1 in multiple cellular func-
tions, such as transcription regulation, cell-cycle

checkpoint activation, and DNA repair (Venki-

taraman 2014). Importantly, the role of BRCA1
in DNA repair, in particular in HR repair (Moy-

nahan et al. 1999), has thus far been one of its

most well-recognized functions thought to be
critical for its tumor suppressor activity.

RING Domain Interactions with BARD1

BRCA1 forms a heterodimer with BARD1, an-

other RING and BRCT-containing protein,
through helices flanking the core RING motif

(Fig. 3) (Wu et al. 1996; Brzovic et al. 2001).

BARD1 appears to be an obligate partner of
BRCA1 because BRCA1-BARD1 interaction is

essential for their mutual stability in vivo, and

Brca1 and Bard1 knockout mice show identical

phenotypes (McCarthy et al. 2003; Shakya et al.

2008). Although not nearly as prevalent as
BRCA1mutations, germline BARD1mutations

have also been reported in breast and ovarian

cancer families (De Brakeleer et al. 2010; Saba-
tier et al. 2010; Ratajska et al. 2012).

As a RING domain is a common protein

structure for E3 ubiquitin ligases, the E3 ligase
activity of the BRCA1-BARD1 heterodimer has

been a focus of interest. BRCA1-BARD1 can

direct both mono- and polyubiquitylation de-
pending on the E2 conjugating enzyme (Chris-

tensen et al. 2007). In addition tomore standard

linkages, BRCA1-BARD1 catalyzes the forma-
tion of noncanonical lysine6-linked ubiquitin

chains (K6-polyUb), which likely serve as a sig-

nal for complex assembly and/or protein stabi-
lization rather than degradation (Wu-Baer et al.

2003; Nishikawa et al. 2004). In vivo, BRCA1-

BARD1 appears to play a critical role in the
accumulation of K6-polyUb conjugates at

DSBs (Morris and Solomon 2004). Substrates

BRCA1

BARD1

PALB2 RAD51

RAD51 paralogs

B C

C

D X2

X3

BRCA2

DSS1

RING BRCT

WD40

BRC repeats

DNA-binding

domain

C-ter

BRCT

pSXXF pSXXF BRCA1

complexprotein

Abraxas

BRIP1

CtIP

A

B

C

Coiled-coil

Coiled-coil

RING

Figure 3. Protein interactions for a functional homologous recombination (HR) pathway. BRCA1 executes its
various functions using the RING, coiled-coil, and BRCT domains. BRCA1 and BARD1 interact at their
respective RING domains. BRCA1 BRCT motif mediates interaction through a pSXXF motif in Abraxas,
BRIP1, and CtIP in the A, B, and C complexes, respectively. The coiled-coil domain of BRCA1 recognizes the
coiled-coil domain of PALB2, which, in turn, binds BRCA2 through its WD40 domain. BRCA2 has mediator
activity for loading RAD51 onto replication protein A (RPA)-coated ssDNA (BRC repeats) and for the stabi-
lization of the RAD51 presynaptic filament carboxy terminal (C-ter) domain. RAD51 paralog complexes also
interact with RAD51 and may promote/stabilize RAD51 filaments. BRCA2 also has a DSS1 and DNA-binding
domain that, although not required forHR, likely is required for optimalHR levels. This domain consists of four
globular domains and a helical tower domain with a three-helix bundle at its apex.
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for BRCA1-BARD1-mediated polyubiquityla-

tion include BRCA1 itself and the end resection
factor CtIP (Yu et al. 2006), and, for mono-

ubiquitylation, include histone H2A, which

has been implicated in the maintenance of si-
lenced heterochromatin (Zhu et al. 2011).

The in vivo significance of the BRCA1 E3

ligase activity to tumor suppression has been
challenged by recent reports showing that the

BARD1-interaction-proficient but E3 ligase-

deficient BRCA1 I26Amouse mutant is compe-
tent for HR and is not tumor prone (Reid et al.

2008; Shakya et al. 2011). In contrast, the can-

cer-associated C61G RING domain mutant,
which disrupts the interaction with BARD1

rather than specifically impairing interaction

with E2 enzymes, causes tumor susceptibility
in mice as well as in patients (Wu et al. 1996;

Drost et al. 2011). Another deleterious mutant,

BRCA1 C64R, also has impaired interaction
with BARD1 (Caleca et al. 2014). Thus, whereas

the integrity of the BRCA1 RING domain re-

gion is critical for tumor suppression, appar-
ently because of its interaction with BARD1,

the physiological role of the E3 ligase activity

itself is uncertain. One possibility is that auto-
ubiquitylation of BRCA1 increases its stabil-

ity because the BRCA1 I26A mutant protein is

present at lower levels in cells (Reid et al. 2008).
These cells have elevated DNA-damage-in-

duced genomic instability, suggesting the pos-

sibility that wild-type levels of BRCA1 are re-
quired for maintenance of genomic integrity.

Coiled-Coil Domain Interaction with PALB2

Through its coiled-coil domain, BRCA1 inter-

acts with the bridging protein PALB2, which
connects BRCA1 with the other major heredi-

tary breast cancer suppressor BRCA2 (Fig. 3)

(Xia et al. 2006; Sy et al. 2009; Zhang et al.
2009a,b). BRCA1-PALB2-BRCA2 interaction

plays an important role in RAD51 cellular dy-

namics and will be discussed further below.

BRCT Interactions with Several Proteins

The BRCTrepeats mediate interactions between

BRCA1 and several proteins involved in the

DNA-damage response, including Abraxas/
FAM175A, BRIP1/BACH1, and CtIP/RBBP8,
which are part of the BRCA1-A, -B, -C complex-

es, respectively (Moynahan and Jasin 2010; Li

andGreenberg 2012). The BRCA1BRCTrepeats
recognize a phosphorylated serine in a pSXXF

motif (Yu et al. 2003b), which exists in each of

Abraxas, BRIP1, and CtIP (Fig. 3). Importantly,
BRCT repeats on one BRCA1 molecule can be

occupied by only one pSXXF motif, implying

the mutually exclusive composition of the
BRCA1-A, -B, and -C complexes. The impor-

tance of the interaction between BRCA1 and

phosphorylated proteins at the BRCT repeats
is emphasized by the findings that disruption

of this interaction is associated with tumor

susceptibility in mice and humans as well as
with reduced HR (Shakya et al. 2011). A chal-

lenge is to determine which of the multiple pro-

tein interactions is/are critical for tumor sup-
pression.

The BRCA1-A complex targets BRCA1 to

ubiquitin conjugates at DSBs, which are critical
for DNA-damage signaling and repair (Huen

et al. 2007; Doil et al. 2009). Deficiency of

UBC13, the E2 enzyme required for these ubiq-
uitin conjugates, causes severe defects in DNA-

damage signaling and HR (Wang and Elledge

2007; Zhao et al. 2007). In addition to BRCA1,
Abraxas binds to another component of the

BRCA1-A complex RAP80, which recognizes

polyubiquitylated histones like H2AX to recruit
the BRCA1-A complex to DNA-damage sites

(Kim et al. 2007; Sobhian et al. 2007; Wang

et al. 2007). The BRCA1-A complex consists
of other proteins with ubiquitin-binding do-

mains and also with deubiquitylation activity,

which can provide complex regulation of pro-
teindynamics atdamage sites (Huen et al. 2010).

Notably, BRCA1-A and -C complexes appear to

have opposite roles in an early step of HR, DNA
end resection (discussed below).

The BRIP1 component of the BRCA1-B

complex is a helicase that unwinds secondary
DNA structures, such as four-stranded struc-

tures (G4 DNA), which may impede DNA rep-

lication (Cantor et al. 2004; London et al.
2008; Wu et al. 2008). BRCA1 recruits phos-

phorylated BRIP1 to chromatin during S phase,

R. Prakash et al.
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and the BRCA1-B complex is required for

S-phase checkpoint activation when replica-
tion forks are stalled or collapsed (Cantor

et al. 2001; Litman et al. 2005; Greenberg et al.

2006). Biallelic BRIP1 mutations, which cause
cellular sensitivity to cross-linking agents, have

been identified in patients with developmen-

tal issues and cancer predisposition, such that
BRIP1 is considered to be a Fanconi anemia

gene subtype (FA-J); monoallelic mutations

are associated with breast and ovarian cancer
predisposition (Cantor et al. 2001; Levitus

et al. 2005; Levran et al. 2005; Litman et al.

2005; Seal et al. 2006; Rafnar et al. 2011).

BRCA1 Function in HR

A link between BRCA1 and RAD51 came from

the observation of their subcellular colocaliza-

tion in nuclear foci (Scully et al. 1997). An es-
sential role for BRCA1 in HR was established by

the direct demonstration of substantially re-

duced HR in BRCA1 mutant cells (Moynahan
et al. 1999, 2001a). These studies further showed

that BRCA1mutant cells follow the paradigm of

other HR mutant mammalian cells identified
around the same time, in terms of having spon-

taneous chromosome instability and high sen-

sitivity to cross-linking agents (Moynahan et al.
2001a). Multiple breast cancer and engineered

mutations in BRCA1 have been shown to confer

defects in HR, connecting the HR and cancer
suppressor roles of BRCA1 (Ruffner et al. 2001;

Sy et al. 2009; Drost et al. 2011; Towler et al.

2013). BARD1 has also been shown to be im-
portant for HR (Westermark et al. 2003; Laufer

et al. 2007). BRCA1-deficient cells are exquisite-

ly sensitive to inhibitors of poly(ADP-ribose)
polymerases (PARP) (Bryant et al. 2005; Farmer

et al. 2005; McCabe et al. 2006), which function

in DNA single-strand break repair. Synthetic
lethality between PARP inhibition and HR de-

ficiency is currently being explored as an ap-

proach to cancer therapy.
The molecular mechanism by which

BRCA1 contributes to HR has been extensively

studied in the past decade. Compelling evi-
dence suggests that BRCA1 functions in two

distinct steps: (1) 50 to 30 resection of DSBs to

generate 30 ssDNAoverhangs, and (2) loading of

the RAD51 recombinase onto the ssDNA.

BRCA1 and End Resection

The involvement in resectionwas first suggested

by the observation that BRCA1 mutant cells are
defective in a second homology-based DSB re-

pair pathway, single-strand annealing (SSA),

which, like HR, relies on a resection intermedi-
ate but diverges at later steps (Fig. 4) (Stark et al.

2004). End resection is a key step in DSB repair

pathway choice, promoting pathways that use
homology while suppressing canonical NHEJ

(Kass and Jasin 2010). Consistent with a role

in resection, BRCA1 colocalizes with the resec-
tion complexMRE11-RAD50-NBS1 (MRN) af-

ter DNA damage and directly interacts with the

resection factor CtIP (Wong et al. 1998; Yu et al.
1998; Zhong et al. 1999; Sartori et al. 2007).

Onemodel isthatBRCA1interactswithphos-

phorylated CtIP (BRCA1-C complex) through
its carboxy-terminal BRCT domain to cooperate

with the MRN nuclease to catalyze resection

(Wong et al. 1998; Yu et al. 1998; Sartori et al.
2007; Chen et al. 2008). As CDK-dependent

phosphorylation of CtIP is required for CtIP ac-

tivation andBRCA1-CtIP interaction, it has been
proposed that BRCA1 promotes resection by

recruiting CDK-phosphorylated/activated CtIP

to DSB sites (Yu et al. 2003b; Yu and Chen 2004;
Yun and Hiom 2009; Buis et al. 2012). Surpris-

ingly, however, aCtIPmousemutantdefective for

BRCA1 interaction has recently been reported to
support HR to a similar extent as wild-type CtIP

(Reczek et al. 2013), questioning the biological

significance of the BRCA1-phospho-CtIP inter-
action. Possibly, other proteins target CtIP to

damage sites (Daugaard et al. 2012).

In addition to specifically promoting resec-
tion, BRCA1 also appears to act as an antago-

nizer of the resection suppressor 53BP1 (Fig. 4)

(Bouwman et al. 2010; Bunting et al. 2010).
In the absence of BRCA1, 53BP1 accumulates

at DSBs to block resection and HR, ultimately

leading to chromosomal aberrations and cell
death; deletion of 53BP1, however, rescues the

viability of BRCA1 mutant cells and mice, as

HR Proteins Linked to Human Disease
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well as the HR defects of BRCA1-deficient cells.
Analysis of BRCA1 and 53BP1 in DNA-dam-

age-induced foci by superresolution micro-

scopy suggests that BRCA1 spatially excludes
53BP1 from the proximity of DSBs during S

phase (Chapman et al. 2012a).

As CtIP-dependent resection is proficient
with the combined absence of BRCA1 and

53BP1 (Bunting et al. 2010), it appears that the

role of BRCA1 in relieving 53BP1 is upstream
of recruiting CtIP at DSBs. The balance be-

tween BRCA1 and 53BP1 at DSBs has been

shown to be regulated by acetylation of histone
H4K20me2, which interferes with 53BP1 bind-

ing (Tang et al. 2013) and also involves RIF1,

which binds ATM-phosphorylated 53BP1
(Chapman et al. 2013; Escribano-Diaz et al.

2013; Feng et al. 2013; Zimmermann et al.

2013). The BRCA1-RIF1 antagonism in human
cells has been reported to involve BRCA1 inter-

action with phosphorylated CtIP (Escribano-

Diaz et al. 2013), although it is uncertain as yet
how to reconcile this finding with the lack of an

HR phenotype in the phosphor-CtIP mutant

mouse cells (Reczek et al. 2013).
Surprisingly, an antiresection activity of

BRCA1-A complex members has also been re-

ported (Fig. 4). Depleting members like RAP80
results in a hyperrecombination phenotype as-

sociated with increased CtIP-dependent resec-

tion (Coleman and Greenberg 2011; Dever
et al. 2011; Hu et al. 2011; Kakarougkas et al.

2013). The RAP80 subunit of the BRCA1-A

complex has been suggested to inhibit resection
by binding to ubiquitin chains at DSBs (Biswas

et al. 2011; Coleman and Greenberg 2011); its

inhibitory effect can be relieved by the de-
ubiquitylating factor POH1 (Kakarougkas et al.

2013). Based on the mutual exclusiveness of

the BRCA1 complexes, a model has been pro-
posed to explain this observation, in which the

absence of the BRCA1-A complex allows more

DSB

End

resection
53BP1

BRCA1

BRCA1-A

PALB2
BRCA2

RAD51

HR

SSA

Strand

annealing

Repeats present

BRCA1-C

BRCA1

Figure 4. BRCA1 and BRCA2 have distinct roles inHR. BRCA1 acts at an early HR step to promote end resection
and at a later step to recruit PALB2 and, hence, promote BRCA2 chromatin localization. BRCA1 acts by antag-
onizing the resection inhibitor 53BP1. It may further regulate resection by recruiting CtIP (gold ball) in the
BRCA1-C complex, while inhibiting end resection in the BRCA1-A complex containing Abraxas and RAP80
(black and gray balls); alternatively, Abraxas-RAP80 may act independently of BRCA1 to suppress resection.
BRCA2 promotes loading of RAD51 recombinase onto the resection product to form an RAD51-ssDNA fila-
ment, which is essential for HR and prevents the engagement of the 30-ssDNA into the deleterious single-strand
annealing (SSA) pathway. SSA acts when homologous repeats are present and leads to a deletion of sequences
between the repeats.
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BRCA1 to functionally interact in other com-

plexes that promote resection (Coleman and
Greenberg 2011; Hu et al. 2011). Physiological-

ly, the promotion and inhibition of end resec-

tion by different complexes can act to fine tune
the response. The opposing roles of BRCA1

complexes may help to explain the different de-

grees of resection defects upon BRCA1 disrup-
tion reported in the literature (Chen et al. 2008;

Kakarougkas et al. 2013; Zhou et al. 2013).

BRCA1 and RAD51 Loading

In addition to its role in end resection, BRCA1
appears to have a downstream role in HR by

promoting the localization of downstream HR

factors (Fig. 4). Resected DNA is a substrate for
RAD51 binding, but it is initially bound by the

ssDNA-binding replication protein A (RPA), re-

quiring mediator proteins like BRCA2 to assist
RAD51 loading onto ssDNA concomitant with

RPA eviction (see Zelensky et al. 2014). BRCA1

promotes the recruitment of BRCA2 to DSBs
through the bridging protein PALB2 (Fig. 3)

(Xia et al. 2006; Sy et al. 2009; Zhang et al.

2009a,b). The anchor role of BRCA1 is indi-
cated by the hierarchy of the DNA-damage-

induced focus formation: BRCA1 disruption

diminishes PALB2, BRCA2, and RAD51 foci;
PALB2 disruption reduces BRCA2 and RAD51

foci but not BRCA1 foci; BRCA2 disruption

only impairs RAD51 foci. Consistent with
the idea that BRCA1 facilitates RAD51-depen-

dent HR through PALB2, clinical BRCA1 mu-

tations, which abrogate BRCA1-PALB2 inter-
actions, cause HR defects. The role of BRCA1

in RAD51 loading appears to be dispensable

when 53BP1 is absent, at least in mouse cells,
however, as eliminating 53BP1 rescues the HR

deficiency of BRCA1 null cells (Bouwman et al.

2010; Bunting et al. 2010,2012). It seems possi-
ble that 53BP1 loss creates a favorable condition

for RAD51 loading (e.g., creating hyperresected

ends), which bypasses a downstream role for
BRCA1 in HR.

The BRCA1 coiled-coil domain, which

binds PALB2, is distinct from the BRCT domain
(Fig. 3). However, mutations in the BRCT do-

main often result in destabilization of the mu-

tant BRCA1 protein (Williams andGlover 2003;

Williams et al. 2003; Lee et al. 2010) and thus
impair RAD51 loading despite an intact PALB2-

interaction domain (Johnson et al. 2013). Inter-

estingly, therapy-resistant human breast cancer
cells have been isolated in which HSP90 stabili-

zation of the mutant BRCA1 protein, combined

with reduced 53BP1 levels, restores RAD51 fo-
cus formation (Johnson et al. 2013). These re-

sults emphasize the complexity of acquired re-

sistance involving BRCA1.

BRCA2

BRCA2 Mutations in Patients

BRCA2 is the second major hereditary breast

cancer susceptibility gene (Wooster et al. 1995;
Tavtigian et al. 1996). BRCA2 breast cancers are

distinct from those with BRCA1 mutations in

that they are generally of the luminal subtype,
rather than basal-like, and so are often estro-

gen-receptor positive (Jonsson et al. 2010;Wad-

dell et al. 2010). The difference in breast cancer
type may be related to the observation that

BRCA1 mutations alter mammary progenitor

cell fate commitment (see Proia et al. 2011,
and references therein). Like BRCA1, BRCA2

mutation carriers are also predisposed to ovari-

an cancer as well as other tumors at a lower pen-
etrance, such as that of the prostate and pancreas

(Ozcelik et al. 1997; Consortium 1999; Anto-

niou et al. 2003; Edwards et al. 2003; King et al.
2003; van Asperen et al. 2005). Deleterious

BRCA2 mutations, as with BRCA1, have been

reported throughout the length of the protein,
mostly truncating mutations but also point

mutations (Breast Cancer Information Core,

research.nhgri.nih.gov/bic/). Mutations of un-
certain clinical significance have also been iden-

tified such that several approaches have been de-

vised to evaluate their functional significance
(Hucl et al. 2008; Kuznetsov et al. 2008; Chang

et al. 2009; Biswas et al. 2011, 2012; Bouwman

et al. 2013). These and other approaches have
also been used to evaluate the importance of

rationally designed mutations.

Tumors fromBRCA2mutation carriers were
initially reported to have lost the wild-type

BRCA2 allele in most cases (Collins et al. 1995;

HR Proteins Linked to Human Disease
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Gudmundsson et al. 1995).However, these find-

ingswere recently questionedbya studyshowing
that BRCA1 or BRCA2 loss of heterozygosity

(LOH) does not always occur in breast tumors,

and, when it does occur, LOH can involve the
mutant rather than the wild-type BRCA allele

(King et al. 2007). In the mouse, germline

Brca2 heterozygous mutation promotes tumor
formation in a Kras-driven mouse pancreatic

cancer model, and loss of wild-type Brca2 allele

is not observed in some tumors (Skoulidis et al.
2010). These studies open the possibilityof hap-

loinsufficiencyofBRCA genes, although the dif-

ferent approaches used in these studies and epi-
genetic silencing of the remaining wild-type

allele could potentially account for some of the

observations.
Patients with biallelic BRCA2 mutations

are classified as having a Fanconi anemia sub-

type (FA-D1), which is associated with brain,
kidney, and hematological tumor types very

early in life as well as with developmental issues

(Howlett et al. 2002; Meyer et al. 2014). In these
cases, at least one of the BRCA2 alleles is expect-

ed to be hypomorphic, given the requirement of

Brca2 during embryogenesis in mice (Moyna-
han 2002).

BRCA2 Domains and Interactions

Human BRCA2 is a 3418 amino acid protein,

which consists of multiple domains (Fig. 3). In

addition to binding PALB2 (discussed below),
BRCA2 binds RAD51 at motifs repeated in the

middle of the protein (BRC repeats) and at a

distinct domain in the carboxyl terminus
(Sharan et al. 1997; Wong et al. 1997). In addi-

tion, BRCA2 binds DNA and the DSS1 protein

at a conserved region following the BRC repeats
(Yang et al. 2002).

RAD51: Binding at the BRC Repeats and
Carboxyl Terminus

Mammalian BRCA2 has eight BRC repeats,

which are conserved among vertebrates in

both sequence and spacing, but not in the in-
tervening sequences (Bignell et al. 1997). BRC

repeats appear to regulate RAD51 filament for-

mation in a complex manner. An individual

BRC peptide, when present in excess, disrupts
RAD51 filament formation in vitro (Davies

et al. 2001) and interferes with damage-induced

RAD51 foci formation and HR in vivo (Chen
et al. 1999; Xia et al. 2001; Stark et al. 2002; Saeki

et al. 2006), presumably by mimicking the in-

terface between RAD51 monomers within the
RAD51 filament (Pellegrini et al. 2002). In con-

trast, the full-length BRCA2 protein or the pep-

tide containing all eight BRC repeats promotes
RAD51-mediated strand exchange by stimu-

lating assembly of RAD51 onto ssDNA, while

preventing nucleation of RAD51 on dsDNA
(Carreira et al. 2009; Jensen et al. 2010; Liu

et al. 2010; Thorslund et al. 2010). Even a single

BRC4motif has been shown to exhibit these ac-
tivities under the appropriate experimental con-

ditions (Carreira et al. 2009). The underlying

mechanism is thought to be through blocking
RAD51-mediated ATP hydrolysis and, thus, sta-

bilizing the active ATP-bound RAD51-ssDNA

filament. Evidence from Rad51mutant chicken
cells indicates that Rad51 is sequestrated under

normal conditions by interaction with the BRC

repeats, but in response to damage, this seques-
tered fraction undergoes mobilization, suggest-

ing dynamic regulation of Rad51 through in-

teraction with the BRC repeat region (Yu et al.
2003a).

Genetic studies further established the im-

portance of BRC repeats for BRCA2 function.
Mice deleted for the BRC-encoding exon 11 in

the germline are inviable, whereas somatic exon

11 deletion causes tumor development (Jonkers
et al. 2001). Conversely, a mouse mutant that

maintains the amino terminus of BRCA2 in-

cluding just three BRC repeats can survive em-
bryogenesis, albeit at low frequency (Friedman

et al. 1998). On the cellular level, the essentiality

of BRC repeats for BRCA2 function is support-
ed by proliferation defects observed in exon

11-deleted embryonic fibroblasts (Bouwman

et al. 2010) and the failure to rescue defects in
BRCA2-deficient cells with constructs devoid of

BRC repeats (Chen et al. 1998b). Point muta-

tions in BRC repeats that impair RAD51 inter-
action are found in breast cancer patients (Pel-

legrini et al. 2002), although functional studies
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are required to determine the effects of these

mutations in full-length BRCA2.
Both functional redundancy and divergence

may exist among BRC repeats in the context of

full-length BRCA2 protein. Redundancy among
BRC repeats is supported by the sufficiency of

an individual BRC repeat for HR functionwith-

in the BRC-RPA fusion protein (see below;
Saeki et al. 2006). A divergence of function is

suggested by the poor sequence identity be-

tween BRC repeats within a species, in contrast
to high interspecies conservation of individual

repeats (Bignell et al. 1997). Consistent with this

notion, electron microscopy shows that differ-
ent BRC repeats bind to different regions of

RAD51 in filaments (Galkin et al. 2005). Bio-

chemical studies led to the proposal of the ex-
istence of two classes of BRC repeats: BRC1, 2, 3,

and 4 bind to RAD51 monomers at high affin-

ity and reduce the ATPase activity of RAD51,
effectively targeting RAD51 onto ssDNA over

dsDNA and stimulating RAD51-mediated

strand exchange, whereas BRC5, 6, 7, and 8
bind to the RAD51-ssDNA filament at high af-

finity (Carreira and Kowalczykowski 2011).

These results have led to a model whereby the
first class of repeats facilitates nucleation of

RAD51 onto ssDNA and the second class stabi-

lizes the nascent RAD51 nucleoprotein filament
(Carreira and Kowalczykowski 2011).

The carboxy-terminal RAD51-binding site

of BRCA2 shares no homology with the BRC
repeats (Mizuta et al. 1997; Sharan et al.

1997). RAD51 binding to this region is regulat-

ed: it is abrogated by CDK phosphorylation at
S3291 at G2/M, leading to the hypothesis that

it coordinates BRCA2 activity with cell-cycle

progression (Esashi et al. 2005). BRCA2 S3291
is a key site for RAD51 binding, as both phos-

phomimic (S3291E) and phosphodefective

(S3291A) mutations block RAD51 interaction
(Esashi et al. 2005). Unlike the BRC repeats, a

BRCA2 carboxy-terminal peptide selectively

binds RAD51 filaments at the interface region
between two RAD51 protomers, such that

carboxy-terminal-binding functions to stabilize

RAD51-ssDNAfilaments (Davies and Pellegrini
2007; Esashi et al. 2007). Surprisingly, however,

S3291 mutation confers little or no DNA-dam-

age sensitivity and does not compromise HR in

the context of full-length protein (Hucl et al.
2008; Ayoub et al. 2009; Schlacher et al. 2011),

although the mutation does compromise HR

in crippled BRCA2 peptides that have defects in
other functional domains (Siaud et al. 2011),

implying that carboxy-terminal RAD51binding

is not essential for HR but can promote HR un-
der somecircumstances.However,RAD51bind-

ing by the BRCA2 carboxyl terminus has been

implicated in the protection of nascent DNA
strands at stalled replication forks (Schlacher

et al. 2011).

DMC1, the meiosis-specific RAD51 homo-
log, has been shown to have a distinct binding

site on BRCA2 from the BRC repeats and car-

boxyl terminus (a PheProPro motif ) (Thors-
lund et al. 2007). However, disrupting the motif

in the mouse does not have a discernible effect

on DMC1 function and meiosis (Biswas et al.
2012), suggesting that DMC1 binds elsewhere,

perhaps at sites also bound by RAD51.

DNA and DSS1 Binding

That BRCA2 is a DNA-binding protein was re-
vealed in structural studies (Yang et al. 2002).

The DNA-binding domain (DBD) consists of

five components: a helical domain, three oli-
gonucleotide-binding (OB) folds that bind

ssDNA, and a tower domain with a three-helix

bundle (3HB) at its end (Fig. 3). The 3HB is
similar to the DNA-binding domain of Hin re-

combinase, suggesting dsDNA-binding activity.

The helical domain, OB1 and OB2, interacts
with the small, highly conserved DSS1 protein

(Marston et al. 1999; Yang et al. 2002), which

has been shown to promote HR in human cells
(Gudmundsdottir et al. 2004; Li et al. 2006;

Kristensen et al. 2010).

BRCA2 peptide mutants abrogated for
DSS1 binding have impaired HR (Siaud et al.

2011), indicating that at least part of the HR

function of DSS1 is through interaction with
BRCA2. Biochemical studies have shown that

DSS1 promotes the RAD51-loading activity of

BRCA2 (Liu et al. 2010). DSS1 also appears to
maintain the stability of BRCA2 protein in cells

(Li et al. 2006), although an effect is not always
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observed (Gudmundsdottir et al. 2004). In the

fungus Ustilago maydis, the ortholog of DSS1 is
also required for HR by regulating Brh2, the

U. maydis ortholog of BRCA2 (Kojic et al.

2003, 2005). In budding yeast, which does not
have a BRCA2 homolog, the DSS1 homolog lo-

calizes to DSB break sites and promotes HR-

and NHEJ-mediated DSB repair, suggesting a
BRCA2-independent function of DSS1 in DSB

repair (Krogan et al. 2004). DSS1 is also found

to interact with the 19S proteasome, the rele-
vance of which to BRCA2 function remains to

be clarified.

Patient missense mutations are found
throughout BRCA2 DBD domain (Yang et al.

2002). Mutations predicted to compromise ei-

ther the structural integrity of the DBD domain
and/or DSS1/DNA-binding affect function

(Kuznetsov et al. 2008; Biswas et al. 2011, 2012;

Siaud et al. 2011).Moreover,mutationof ssDNA
contact residues or deletion of the 3HB has det-

rimental effects on HR in reporter-based assays

measuring BRCA2 peptide activity (Siaud et al.
2011). Surprisingly, a BRCA2 peptide deleted

for the entire DBD is still functional in HR

(Siaud et al. 2011); in fact, deletion of the DBD
is one type of reversion mutation identified for

BRCA2 (Edwards et al. 2008). These findings

emphasize the plasticity of BRCA2 function in
HR.An intactDBD is required if it is present, but

loss of the entire DBD can be tolerated for sub-

stantial HR function, as long as PALB2 interac-
tion is intact (Siaud et al. 2011).

BRCA2 Function and HR

The earliest clues about the importance of

BRCA2 in maintaining genome integrity came
from observations that Brca2 mutant mice

show early embryonic lethality and DNA repair

defects (Connor et al. 1997; Ludwig et al. 1997;
Sharan et al. 1997; Suzuki et al. 1997) similar to

Rad51mutant mice (Lim and Hasty 1996; Tsu-

zuki et al. 1996). At the same time, BRCA2 in-
teraction with RAD51 was uncovered (Sharan

et al. 1997; Wong et al. 1997) and BRCA2 was

found to colocalize with RAD51 in damage-
induced nuclear foci (Chen et al. 1998a). The

requirement of BRCA2 in HRwas directly dem-

onstrated using HR reporters (Fig. 2B) (Moy-

nahan et al. 2001b).
BRCA2 clearly acts at a distinct step in HR

from that of BRCA1 (Stark et al. 2004). Al-

though BRCA1-BARD1 promotes repair by
both HR and SSA, BRCA2 promotes HR while

suppressing SSA (Fig. 4) (Tutt et al. 2001; Stark

et al. 2004). End resection presumably initiates
normally in BRCA2 mutant cells, but ssDNA

overhangs cannot be channeled into HR; in-

stead, where present, complementary ssDNA
overhangs anneal to each other. RAD51 disrup-

tion results in the same phenotype as BRCA2

loss, indicating that genetically BRCA2 acts at
the same step in HR as RAD51 (Stark et al.

2004). Not surprisingly then, loss of 53BP1

does not rescue the viability of BRCA2-deficient
cells, as it does with BRCA1-deficient cells

(Bouwman et al. 2010).

Genetic and biochemical studies have also
pointed to a RAD51 mediator activity of

BRCA2. Remarkably, HR activity and genomic

integrity are restored to BRCA2-deficient ham-
ster cells by fusing a single BRC motif to the

ssDNA-binding protein RPA (Saeki et al.

2006), suggesting that the main role of BRCA2
is to load RAD51 onto ssDNA. Purified Brh2

protein, the BRCA2 ortholog in the fungus U.

maydis, stimulates Rad51-mediated strand ex-
change at an ssDNA-dsDNA junction by load-

ing Rad51 onto DNA and displacing RPA (Yang

et al. 2005). Recently, this RAD51-mediator
function was further confirmed with purified

human BRCA2, which specifically promotes

RAD51 filament assembly on ssDNA over
dsDNA(Jensenetal. 2010;Liuet al. 2010;Thors-

lund et al. 2010), leading to displacement ofRPA

to stimulate strand exchange (Jensen et al. 2010;
Liu et al. 2010). Stabilization of RAD51-ssDNA

complexes byBRCA2occurs by inhibition of the

DNA-dependent ATPase activity of RAD51. Al-
though challenges exist studying this very large

protein involved in multiple protein interac-

tions, these studies are promising for under-
standing the biochemistry of BRCA2.

Consistent with its major role in HR,

BRCA2-deficient cells are sensitive to DNA-
damaging agents that lead to lesions normally

repaired by HR, including cross-linking agents
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(Kraakman-van der Zwet et al. 2002) and to

PARP inhibitors (Bryant et al. 2005; Farmer
et al. 2005). BRCA2 has also been implicated

in processes other than HR repair per se. Earlier

studies suggested that stalled replication forks
are stabilized by BRCA2 (Lomonosov et al.

2003). Recent work has provided evidence that

this function is achieved through a RAD51-de-
pendent, but HR-repair-independent mecha-

nism, such that BRCA2 protects nascent DNA

strand from degradation by stabilizing the
RAD51 filament to maintain genomic integrity

under replication stress (Schlacher et al. 2011).

Roles for BRCA1 and canonical Fanconi anemia
proteins have also been shown in nascent strand

protection (Schlacher et al. 2012). The link be-

tween BRCA1, BRCA2, and Fanconi anemia
proteins in replication fork protection is nota-

ble because loss of canonical Fanconi anemia

proteins results in only mild HR defects in
mammalian cells (Nakanishi et al. 2005), except

for HR repair of cross links coupled to replica-

tion (Nakanishi et al. 2011).

PALB2

PALB2 Mutations in Patients

As with BRCA2, monoallelic PALB2 mutations
are associated with breast cancer susceptibility

(Erkko et al. 2007; Rahman et al. 2007; Tisch-

kowitz et al. 2007). The breast cancer risk asso-
ciated with PALB2 mutation has recently been

estimated to overlap with that of BRCA2muta-

tion (Antoniou et al. 2014). Although muta-
tions are generally infrequent compared with

BRCA1 and BRCA2, in the Finnish population

≏1% of unselected breast cancers are associated
with a founder PALB2 mutation (Erkko et al.

2007). The clinical phenotype of breast cancers

with PALB2 mutation is more similar to that
of BRCA2 in that a more substantial fraction

is estrogen receptor positive rather than triple

negative (Antoniou et al. 2014). Monoallelic
PALB2 mutations have also been associated

with pancreatic and ovarian cancer susceptibil-

ity (Jones et al. 2009; Walsh et al. 2011).
Biallelic PALB2mutation leads to a Fanconi

anemia subtype (FA-N), which shares a similar

tumor spectrum with the FA-D1 subtype aris-

ing from BRCA2 mutation. Patients are predis-
posed to developing early childhood cancers,

such as Wilms’ tumor and medulloblastoma

(Reid et al. 2007; Xia et al. 2007). Further, ho-
mozygous germline deletion of Palb2 in mice

leads to early embryonic lethality (Bouwman

et al. 2011; Bowman-Colin et al. 2013), whereas
conditional deletion of Palb2 causes mammary

tumors with long latency accelerated by p53 loss

(Bowman-Colin et al. 2013; Huo et al. 2013). As
with BRCA2 but unlike BRCA1, 53BP1 loss fails

to rescue genome instability caused by PALB2

deficiency (Bowman-Colin et al. 2013). These
phenotypes are consistent with the notion that

PALB2 and BRCA2 function in the same step of

the HR pathway to maintain genome integrity
and suppress tumor development.

PALB2 Domains and Interactions

PALB2 is an 1186 amino acid protein with a

coiled-coil domain at its amino terminus,
which interacts with BRCA1, and a WD40 b-

propeller domain at its carboxyl terminus,

which interacts with BRCA2 (Fig. 3) (Xia et al.
2006; Oliver et al. 2009; Sy et al. 2009; Zhang

et al. 2009a,b). Emphasizing the importance of

the PALB2 interaction for BRCA2 function, dis-
ruption of this interaction results in severe HR

defects (Xia et al. 2006; Siaud et al. 2011). Fur-

thermore, human BRCA2 mutations that abro-
gate PALB2 interaction fail to support viability

of Brca2-null mouse embryonic stem cells (Bis-

was et al. 2012), although paradoxically Palb2-
null embryonic stem cells have been reported to

be viable (Bowman-Colin et al. 2013).

PALB2 and HR

Biochemical studies have shown that purified
PALB2 binds DNA and RAD51, and is able to

stimulate RAD51-dependent strand invasion,

including synergistically with a BRCA2 peptide
(Buisson et al. 2010; Dray et al. 2010). A recent

report also links both BRCA2 and PALB2 to a

downstream step in HR, DNA synthesis, by
stimulating polymerase h activity on strand in-

vasion intermediates (Buisson et al. 2014).
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RAD51 PARALOGS

RAD51 Paralog Mutations in Patients

RAD51 has five paralogs (RAD51B, RAD51C,
RAD51D, XRCC2, and XRCC3) that were dis-

covered both as RAD51-related genes and

through their complementation of radiation-
sensitive Chinese hamster cell mutants (Tebbs

et al. 1995; Albala et al. 1997; Cartwright et al.

1998; Dosanjh et al. 1998; Pittman et al. 1998).
Thus far, the strongest evidence that RAD51

paralogs are tumor suppressors comes from

studies of RAD51C and RAD51D. Monoallelic,
germline mutations in these genes predispose

to ovarian cancer (Meindl et al. 2010; Loveday

et al. 2011, 2012), although the predisposition
to breast cancer is less clear. However, in both

cases, mutations have been observed in ≏1% of

families with BRCA1/2-negative breast and
ovarian cancer. Truncating mutations have

been reported for both RAD51C and RAD51D

and, in addition, missense mutations that im-
pair the ATP-binding site have been reported for

RAD51C (Meindl et al. 2010; Loveday et al.

2011, 2012; Somyajit et al. 2012).
RAD51B, XRCC2, and XRCC3 monoallelic

mutations have also been observed in breast

cancer families, although the significance is
not certain (Hilbers et al. 2012; Park et al.

2012; Golmard et al. 2013). One unusual find-

ing is the presence of chromosomal transloca-
tions involvingRAD51B in some benign tumors

(Ingraham et al. 1999; Schoenmakers et al.

1999), including a germline translocation in a
family with multiple cases of thymoma (Nico-

deme et al. 2005). As reduced gene dosage of

RAD51B has been reported to have phenotypic
consequences (Date et al. 2006), translocations

involving one allele may reduce repair activity.

Biallelic missense mutations of RAD51C

(R258H)were identified in one consanguineous

familywith three childrenwith severe congenital

abnormalitieswhose cellswere sensitive tocross-
linking agents (Vaz et al. 2010). Thus, biallelic

RAD51C mutation is now considered to confer

a Fanconi anemia-like disorder, subtype FA-O.
Twoof the childrenwithRAD51Cmutationdied

as infants from the congenital defects; the sur-

viving child was reported at 10 years of age to be

cancer free. Some of the congenital abnormali-

ties are similar to those described in FA-D1 and
FA-N children with biallelic BRCA2 and PALB2

mutation, respectively; however, the absence of a

malignancy in theolderchild is distinct (Moldo-
van andD’Andrea 2009). RAD51CR258 is close

to the ATP-binding site and is highly conserved;

the mutation has been shown to reduce but
not abolish HR function (Somyajit et al. 2012).

XRCC2 is the only other RAD51 paralog besides

RAD51C for which a Fanconi anemia–like phe-
notype has been described to date. A child from

a consanguineous family with an XRCC2 trun-

cating mutation has been reported with de-
velopmental issues and cellular sensitivity to

cross-linking agents (Shamseldin et al. 2012).

RAD51 Paralog Complexes

RAD51 paralogs show 20%–30% amino acid
sequence similarity to RAD51 and with each

other, and this sequence conservation is pre-

dominantly found at a globular domain with
Walker A and B motifs, which are critical for

theATP-binding/hydrolysisactivity.Proteinho-
mologymodeling studies havepredicted that the
RAD51 paralogs, with the exception XRCC2,

have an amino-terminal domain containing

a four-helix bundle linked to the carboxy-ter-
minal globular domain (Miller et al. 2004), sim-

ilar to RAD51 (Shin et al. 2003). Yeast two-/
three-hybrid, coimmunoprecipitation studies,
and biochemical studies have shown that

RAD51 paralogs exist in two major complexes,

RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2)
and RAD51C-XRCC3 (CX3) (Fig. 3), although

subcomplexes have also been identified (BC,

CD, DX2, BCD, and CDX2) (Braybrooke et al.
2000; Schild et al. 2000; Masson et al. 2001;

Sigurdsson et al. 2001; Liu et al. 2002; Wiese

et al. 2002). The amino-terminal domain of
one paralog apparently makes contact with the

carboxy-terminal domain of another, providing

specificity to the interactions (e.g., RAD51B-
N-ter with RAD51C-C-ter, RAD51C-N-ter

with RAD51D-C-ter, RAD51D-N-ter with

XRCC2-C-ter) (Kurumizaka et al. 2003; Miller
et al. 2004). Furthermore, RAD51 interactions

with the BCDX2 and CX3 complexes and indi-
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vidual paralogs have also been reported (Do-

sanjh et al. 1998; Schild et al. 2000; Masson et
al. 2001; Liu et al. 2002).

Biochemical activities of these various com-

plexes and subcomplexes have been described,
although their integration into HR pathways

involving BRCA2 and other factors is not

well understood. The RAD51 paralogs bind a
variety of DNA structures, including ssDNA

and branched structures like Holliday junctions

(Braybrooke et al. 2000; Kurumizaka et al. 2001;
Masson et al. 2001; Sigurdsson et al. 2001; Yo-

koyama et al. 2003, 2004; Liu et al. 2004). As

expected, the RAD51 paralogs have been shown
to hydrolyze ATP (Braybrooke et al. 2000; Si-

gurdsson et al. 2001; Lio et al. 2003; Yokoyama

et al. 2003; Shim et al. 2004); an intact ATP hy-
drolysis domain is required for the function

of several paralogs (French et al. 2003; Yamada

et al. 2004; Gruver et al. 2005;Wiese et al. 2006),
although not for XRCC2 (O’Regan et al. 2001).

The BC subcomplex has been reported to stim-

ulate RAD51 strand-exchange activity in the
presence of RPA (Sigurdsson et al. 2001), appar-

ently by stabilizing the RAD51 nucleoprotein

filament rather than facilitating RAD51 nucle-
ation (Amunugama et al. 2013).

RAD51 Paralog Cellular Phenotypes

A key role for the RAD51 paralogs in HR was

initially shown for XRCC2 and XRCC3 in Chi-
nese hamster cell mutants (Johnson et al. 1999;

Pierce et al. 1999) and later for each of the pa-

ralogs in chicken B lymphocytes (Takata et al.
2001). As with biochemical studies in human

cells, two distinct paralog complexes are pre-

dicted in chicken cells, given that mutations
in two paralogs in the same complex are epistat-

ic (Rad51B and Rad51D), whereas mutations

in paralogs in two different complexes are not
(Xrcc3 and Rad51D) (Yonetani et al. 2005).

Overexpression of RAD51 in each of the chicken

cell mutants partially suppresses DNA-damage
sensitivity, indicating a role for each of the pa-

ralogs in RAD51 loading or filament stabiliza-

tion (Takata et al. 2001). Overall, mammalian
RAD51 paralog mutants display reduced DNA-

damage-induced RAD51 focus formation and

have increased spontaneous chromosomal ab-

normalities and are sensitive to DNA-damaging
agents, such as cross-linking agents like cisplat-

in, and to PARP inhibitors (Bishop et al. 1998;

Liu et al. 1998; Cui et al. 1999; Takata et al. 2001;
French et al. 2002; Yoshihara et al. 2004; Smi-

raldo et al. 2005; Loveday et al. 2011; Urbin et

al. 2012; Min et al. 2013).
An early role for RAD51 paralogs in HR

pathways is supported by the rapid recruitment

of XRCC3 to DSBs, which is independent of
RAD51 (Forget et al. 2004). A later role in HR

for RAD51 paralogs has also been investigated.

RAD51C accumulates in nuclear foci in re-
sponse to ionizing radiationwhere it colocalizes

with RAD51; however, RAD51C foci persist

for longer than RAD51 foci, suggesting that
RAD51C, a component of bothmain complexes

(BCDX2 and CX3), has a role in both early

and late stages of HR (Badie et al. 2009). Like
hamster and chicken cells, XRCC3 knockout

HCT116 human cells were initially reported to

have impaired RAD51 focus formation (Yoshi-
hara et al. 2004); however, a recent study in these

cells and in XRCC3 siRNA knockdown MCF7

cells reported no RAD51 focus formation de-
fect, leading investigators to conclude that

BCDX2 acts to load RAD51 onto DNA ends

while CX3 acts after RAD51 loading (Chun
et al. 2013). Consistent with a distinct role for

XRCC3 among the paralogs, XRCC3 knock-

down in HeLa cells results in a persistent spin-
dle assembly checkpoint, whereas RAD51B or

RAD51C knockdown induces a G2/M cell-cy-

cle arrest (Rodrigue et al. 2013). Overall, these
studies point to the need for a coherent mam-

malian model to dissect the roles of the individ-

ual paralogs in HR.

RAD51 Paralog Mouse Knockout Models

Mouse knockouts of four RAD51 paralogs

(Rad51b, Rad51c, Rad51d, and Xrcc2) have

been reported and each is embryonic lethal,
implying a critical function at developmental

stages when cells are rapidly dividing (Shu

et al. 1999; Deans et al. 2000; Pittman and Schi-
menti 2000; Kuznetsov et al. 2009; Smeenk et al.

2010). No mouse model for Xrcc3 is currently
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available. The reported developmental stage of

death is not equivalent in the various knock-
outs, suggesting possible distinct functions of

the paralogs, although differences in genetic

background of the various mutants may ac-
count for some of the phenotypic differences.

Embryonic lethality does not appear to be de-

fined by a specific developmental defect but,
rather, the embryos show growth delays over

the course of a few days, consistent with what

might be expected from stochastic DNA dam-
age that is not repaired.

Supporting repair defects leading to apo-

ptosis as a cause of lethality, death is delayed a
few days by Trp53mutation, although postnatal

viability is not restored (Shu et al. 1999; Smir-

aldo et al. 2005; Adam et al. 2007; Kuznetsov
et al. 2009). The partial rescue by Trp53 muta-

tion is similar to that observed with Rad51,

Brca1, and Brca2 mutants (Moynahan 2002)
but is unlike NHEJ mutants, in which the late

embryonic lethality is rescued to give rise to

viable (although feeble) mice (Frank et al.
2000; Gao et al. 2000). The one exception is

Xrcc2, in which the viability of one of the two

reported knockouts is rescued by Trp53 muta-
tion (see below) (Orii et al. 2006).

A summary of the RAD51 paralog knock-

outs is as follows in order of embryonic death
(Rad51b, Rad51c, Rad51d, Xrcc2):

Rad51bmutants have severe growth retardation
by embryonic day E5.5 and by E8.5 are

completely resorbed (Shu et al. 1999). Em-

bryonic stem cell lines could not be derived,
suggesting that loss of RAD51B is cell lethal,

similar to RAD51, BRCA1, or BRCA2 (Moy-

nahan 2002).

Rad51c mutants show abnormalities by E5.5,

are severely retarded by E8.5, and are re-

sorbed shortly thereafter (Kuznetsov et al.
2009). Rad51c and Trp53 are on the same

chromosome, and adult mice that are hetero-

zygous for both genes in cis develop a tumor
spectrum (including mammary and prepu-

tial gland tumors) that differs from mice ei-

ther with both mutations in trans or with
Trp53 mutation alone. The difference in the

cis and trans mice is because LOH allows tu-

mors to develop, which are null for both

Rad51c and Trp53. A hypomorphic Rad51c

mutant has also been described in which

RAD51C levels are reduced significantly

(�30%) (Kuznetsov et al. 2007). This level
of expression is sufficient to give rise to viable

mice; however, a significant fraction is infer-

tile owing to meiotic defects, including re-
duced RAD51 foci and the presence of unre-

paired DSBs in spermatocytes.

Rad51d embryos display a range of abnormali-

ties between E7.5 and 10.5, and none are

viable by E11.5 (Pittman and Schimenti
2000). Trp53 mutation leads to a significant

rescue, such that embryos are detected as late

as E16.5, although they are growth retarded
(Smiraldo et al. 2005). Rad51d is located be-

tween Rad51c and Trp53; mice with Rad51d

and Trp53 heterozygous mutations in cis are
not tumor prone up to 12 months of age.

Xrcc2mutants develop normally to E8.5; there-

after, they display developmental delay/de-
fects and are found at sub-Mendelian ratios

(Deans et al. 2000). The few mice that are

born succumb soon after birth. However,
when Xrcc2 mice are backcrossed onto a

C57BL/6 genetic background, embryos do

not reach late embryogenesis, although com-
bined Trp53 mutation allows some embryos

to survive until just before birth (Adam et al.

2007). In another knockout model, presum-
ably on a mixed genetic background, Trp53

mutation actually rescues the viability of

Xrcc2 mice (Orii et al. 2006).

Apoptosis is elevated throughoutXrcc2mu-

tant embryos (Deans et al. 2000), especially in
the brain in proliferating cells, which is distinct

from Lig4 mutant embryos where it predomi-

nates in postmitotic cells (Fig. 2C) (Orii et al.
2006). Trp53 mutation suppresses apoptosis in

the developing brain and rescues the viability of

Xrcc2 mutant mice in this model, as it does to
Lig4 mutant mice (Frank et al. 2000; Orii et al.

2006), permitting a comparison of postnatal

phenotypes, such as tumorigenesis. Although
Lig4/Trp53 null mice succumb to Myc-ampli-

fied B cell lymphoma and medulloblastoma by
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3 months of age (Frank et al. 2000; Lee and

McKinnon 2002), Xrcc2/Trp53 null mice have
a broad tumor spectrum with an earlier onset

without obvious Myc amplification (Orii et al.

2006). Thus, both HR and NHEJ are important
for the viability of mice and tumor suppression,

although their roles differ.

Rad51c/Trp53, Rad51d/Trp53, and Xrcc2/
Trp53 mouse embryonic fibroblasts have been

established (Smiraldo et al. 2005; Adam et al.

2007; Kuznetsov et al. 2009), as have Xrcc2 em-
bryonic stem cell lines (Deans et al. 2003). These

RAD51 paralog mutant cells are sensitive to

DNA-damaging agents, such as ionizing radia-
tion and interstrand cross-links, have defects in

RAD51 foci formation, increased genomic in-

stability, and, where checked, decreased HR in
reporter assays. Rad51d/Trp53 fibroblasts have

shortened telomeres, suggesting that RAD51D

plays a role in telomeremaintenance (Tarsounas
et al. 2004).

SUMMARY AND FUTURE DIRECTIONS

Genetic studies have revealed a link between

germline mutations in several HR genes and
predisposition to breast/ovarian and other tu-

mors. Somatic mutations in HR genes have also

been uncovered (Cancer Genome Atlas Re-
search Network 2011; Pennington et al. 2014).

Insight into the molecular functions of the var-

ious HR proteins has been forthcoming. A role
for BRCA1 in the end resection step of HR is

well supported. At least three mechanisms are

implicated: antagonizing the resection inhibitor
53BP1, promoting resection in the BRCA1-C

complex with CtIP, and inhibiting resection

in the BRCA1-A complex through Abraxas-
RAP80. The BRCA1-PALB2-BRCA2 complex

and RAD51 paralogs cooperate to load RAD51

onto ssDNA coated with RPA to form the essen-
tial recombination intermediate, the RAD51-

ssDNA filament. The crucial role of these genes

in key steps of HR provides important clues for
understanding the cause of cancer in patients

with mutations in these genes and for investi-

gating more effective cancer treatments.
However, many key questions remain to be

addressed. For instance, how are the various

roles of BRCA1 orchestrated? How do so many

players, including the BRCA1-PALB2-BRCA2
complex andRAD51 paralog complexes, collab-

orate to load and stabilize RAD51 onto ssDNA?

Importantly, how exactly does HR deficiency
specifically contribute to ovarian/breast carci-
nogenesis and other cancer-prone diseases,

such as Fanconi anemia? And how are other
potential functions of HR proteins integrated

into their tumor suppressor roles? A compre-

hensive understanding of disease-linked com-
ponents and mechanisms of HR in mammalian

system will be vital, including for therapeutic

approaches that target the HR pathway.
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