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Abstract

Purpose: Recent studies have identifiedmutation signatures of
homologous recombination deficiency (HRD) in over 20% of
breast cancers, as well as pancreatic, ovarian, and gastric cancers.
There is an urgent need to understand the clinical implications of
HRDsignatures.WhereasBRCA1/2mutations confer sensitivity to
platinum-based chemotherapies, it is not yet clear whether muta-
tion signatures can independently predict platinum response.

Experimental Design: In this observational study, we
sequenced tumor whole genomes (100� depth) and matched
normals (60�) of 93 advanced-stage breast cancers (33 platinum-
treated). We computed a published metric called HRDetect,
independently trained to predict BRCA1/2 status, and assessed
its capacity to predict outcomes on platinum-based chemothera-
pies. Clinical endpoints were overall survival (OS), total duration
on platinum-based therapy (TDT), and radiographic evidence of
clinical improvement (CI).

Results: HRDetect predicted BRCA1/2 status with an area
under the curve (AUC) of 0.94 and optimal threshold of 0.7.
Elevated HRDetect was also significantly associated with
CI on platinum-based therapy (AUC ¼ 0.89; P ¼ 0.006)
with the same optimal threshold, even after adjusting for
BRCA1/2 mutation status and treatment timing. HRDetect
scores over 0.7 were associated with a 3-month extended
median TDT (P ¼ 0.0003) and 1.3-year extended median OS
(P ¼ 0.04).

Conclusions: Our findings not only independently validate
HRDetect, but also provide the first evidence of its association
with platinum response in advanced breast cancer. We demon-
strate that HRD mutation signatures may offer clinically relevant
information independently of BRCA1/2 mutation status and
hope this work will guide the development of clinical trials.
Clin Cancer Res; 23(24); 7521–30. �2017 AACR.

Introduction
Genomic instability and mutagenesis are hallmarks of human

cancers that can arise from deficient DNA repair processes. One
such process, homologous recombination (HR) involves strand
invasion by homologous sequences to facilitate error-free repair

of double strand breaks and interstrand crosslinks (1). Mutations
in genes responsible for HR are prevalent among human cancers.
The BRCA1 and BRCA2 genes are centrally involved in HR, DNA-
damage repair, end resection, and checkpoint signaling (2).
Inherited mutations in BRCA1 and BRCA2 account for 5% to
10% of all breast cancers, conferring an up to 85% lifetime risk
(3, 4). There is emerging evidence suggesting that germline
BRCA1- and BRCA2-mutated cancers are associated with sensi-
tivity to platinum-based chemotherapy and PARP inhibitors
(5–9). This is further supported by resistance to platinum-based
agents arising from secondary mutations that cause somatic
reversion of germline BRCA1/2 variants (10).

HR deficiency (HRD) is complex, and its myriad causes are not
fully understood. However, examining characteristic patterns of
mutation, collectively known as mutation signatures or genomic
scars, can provide an aggregate functional metric of pathway
function. For example, BRCA1 and BRCA2 are associated with
characteristic copy-number variant (CNV) patterns (11), which
have been suggested to independently predict platinum sensitiv-
ity in primary breast cancer (12). However, a clinical trial in
advanced stage triple-negative breast cancer did not verify this
association (5). Meanwhile, new genomic correlates have refined
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the detection of HRD. Large-scale genome profiling across thou-
sands of cancers has revealed characteristic patterns of mutation
giving rise tomillions of somatic single-nucleotide variants (SNV;
ref. 13) and structural variants (SV; ref. 14). Recent efforts aggre-
gated six HRD-associated signatures into a single score called
HRDetect to accurately classify breast cancers by their BRCA1 and
BRCA2 status (15).

With this improved capability to quantify "BRCA-ness," there
is substantial interest in its therapeutic implications in breast
cancer (13, 15–18). Importantly, these measures may be able to
identify BRCA1- and BRCA2-intact but HR-deficient tumors to
guide eligibility for HRD-targeted clinical trials and treatment
decision-making. However, there is not yet direct evidence that
aggregated genomic scar metrics predict platinum sensitivity. In
this observational biomarker study, we perform whole-genome
sequencing (WGS) to identify HRD mutation signatures in a
cohort of 93 patients with advanced-stage breast cancers and
associate them with molecular, pathologic, and clinical fea-
tures. Using HRDetect, we aggregate HRD signatures and dem-
onstrate their association with clinical benefit on platinum-
based chemotherapy.

Materials and Methods
Patient samples, ethics, and data policy

A total of 93 study participants with advanced-stage breast
cancer underwent tumor biopsies at the BC Cancer Agency
(BCCA) and collaborating hospitals as part of the Personalized
oncogenomics (POG) Project, the first 100 cases of which were
described in an earlier publication (19). The study was approved
by the University of British Columbia Research Ethics Board
(REB# H12-00137 and H14-00681-A019). Written informed
consent, includingpotential publicationoffindings,wasobtained
from patients prior to genomic profiling. Patient information was
anonymized, and each was assigned an alphanumeric identifica-
tion code. This study includes data from the first 93 verified breast
cancer cases that underwent whole genome characterization and
met quality assurance standards. Whole-genome sequencing and
RNA-seq data (.bam files) have been submitted to the European
Genome-Phenome Archive (EGA; www.ebi.ac.uk/ega/home)
under the study accession number EGAS00001001159. Dataset
accession IDs are provided in Supplementary Table S5.

Sample collection, preparation, and sequencing
Biopsy sampleswere embedded in optimal cutting temperature

(OCT) compound and sectioned. Pathology review was complet-
ed for each specimen, including assessment of tumor content.
Genome libraries from tumor and peripheral blood (normal
control) as well as transcriptome libraries from tumor were
constructed using Illumina protocols. Whole genome and tran-
scriptome sequencing was performed on an Illumina HiSeq2000
or HiSeq2500 sequencer. The details of library construction and
sequencing have been previously described (20, 21).

Bioinformatic analysis
Sequencing reads were aligned to the human reference genome

(GSCh37, available from http://www.bcgsc.ca/downloads/gen
omes/9606/hg19/1000genomes/bwa_ind/genome) by the BWA
aligner (v0.5.7; refs. 22, 23). Somatic SNVs and small insertions/
deletions were processed using samtools (24) and Strelka
(v0.4.6.2; ref. 25). CNVs were called using CNASeq (v0.0.6) as
described in ref. 26 and LOH by APOLLOH (v0.1.1; ref. 27). The
matched normal genome was used to subtract germline variants
and to report cancer risk variants in 98 select actionable genes,
preapproved by an ethics committee. Germline variant pathoge-
nicity was estimated according to established ACMG guidelines
(28) using a local curated variant database and custom-built risk
calculator established by the BCCA Cancer Genetics Laboratory.
Transcriptomes were repositioned using JAGuaR (version 2.0.3;
ref. 29). Differential expression analysis was performed by com-
paring RPKM expression levels against a compendium of 16
normal tissues from the Illumina BodyMap 2.0 project (available
fromArrayExpress, query ID: E-MTAB-513) as described in ref. 26.
Intrinsic subtypes were determined by performing Spearman
rank-order correlations on the expression of genes in the PAM50
gene set (30) for each breast cancer subtype between sequenced
samples and 823 breast cancers derived from The Cancer Genome
Atlas (31). For each sample, the subtype with the greatest corre-
lation coefficient was taken as the intrinsic subtype (Supplemen-
tary Fig. S1). One tumor sample did not pass quality control for
RNA-seq and was excluded from analyses involving intrinsic
subtypes.

Determining HRDetect scores
HRDetect scores were computed by aggregating six mutation

signatures associated with HRD: (i) SNV signature 3/V9, (ii) SNV
signature 8/V6, (iii) SV signature 3/R1, (iv) SV signature 5/R5, (v)
the HRD index, and (vi) the fraction of deletions with micro-
homology. All signatureswere normalized and log transformed as
previously described (15), and HRDetect scores were computed
using a logistic model with the same intercept and coefficients as
those reported in the previously trained model, without any
retraining or adjustment (15). The intercept was �3.364 and the
coefficients were 1.611, 0.091, 1.153, 0.847, 0.667, and 2.398,
respectively, for the six HRD signatures. The sections that follow
detail the computation of the six component signatures. All non-
public computer code used to compute HRDetect or its compo-
nent signatures will be made available upon request.

Single nucleotide variant mutation signatures
Somatic SNVs called by Strelka were used for mutation signa-

ture calculation. SNVs were categorized based on 6 variant types
and 16 trinucleotide context subtypes to yield a total of 96
mutation classes. Mutation signatures were deciphered using a

Translational Relevance

Cancer cells that lack DNA repair abilities aremore sensitive
to a common class of drugs called platinum-based chemo-
therapy. Successfully identifying patients whose cancers lack
DNA repair function could substantially improve the use of
such therapies, but is an ongoing challenge. Recent research
has revealed that sequencing thewhole genomeof a tumor can
reveal the mutational "scars" left behind by deficient DNA
repair. In this article, we analyze the whole genomes of 93
breast cancers to identify these mutational scars. We then
demonstrate that this approach can, with good accuracy,
identify patients who respond well to platinum-based che-
motherapies. As whole genome sequencing becomes more
affordable, this presents an exciting opportunity to improve
breast cancer treatment.
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published framework (32), which uses nonnegative matrix fac-
torization (NMF) to infer both the operative signatures prevalent
across the 93-genome cohort and the relative exposure of each
signature to each genome. Exposures are modeled as the number
of mutations contributed by a mutation signature. Fractional
exposure was defined as the proportion of a genome's total
mutation burden contributed by a particular signature. Signature
stability estimates were obtained by bootstrap resampling with
1,008 iterations (84 iterations over 12 cores). Solutions with a 7-
to 10-signature model were found to best maximize signature
stability and minimize Frobenius reconstruction error (Supple-
mentary Fig. S3A). Among these, a 9-signaturemodel was selected
as it yielded one signature with maximal cosine similarity to the
previously described HRD-associated Signature 3. The similarity
of signatures to 30 previously described mutational signatures
(available from http://cancer.sanger.ac.uk/cosmic/signatures)
was quantified using the cosine similarity metric (Supplementary
Fig. S3C).

Structural variant mutation signatures
Large-scale somatic SVs were reconstructed by de novo assembly

of tumor and normal reads using ABySS and Trans-ABySS (33).
Candidate SVs were realigned to the reference genome to resolve
breakpoints. Additionally, we used DELLY (v0.6.1) to obtain an
independent SV set by reference-based analysis of split and paired
end reads (34). Germline events were filtered out by subtracting
SVs found in the matched normal genome. SVs detected by the
two methods were merged to yield a high-quality consensus set,
containing an intersection of variants called by both methods
withmatching pairs of breakpoint loci each separated by nomore
than 20 base pairs.

The 32-parameter SV mutation catalog vectors were comput-
ed by binning variants based on breakpoint clustering, SV type,
and SV length (14), yielding a 32 by 93 catalogue matrix. This
matrix was decomposed by NMF (like with SNV signatures)
using a 6-signature model, which was chosen to maximize
signature stability and minimize Frobenius reconstruction error
(Supplementary Fig. S3B). Pairwise comparisons of newly
deciphered mutation signatures to six previously described
signatures were performed by cosine similarity metric (Supple-
mentary Fig. S3D).

Calculation of the HRD index
For each cancer genome, the HRD index was computed as the

arithmetic sum of LOH, TAI, and LST scores. CNV and LOH
analysis pipelines yielded coordinates segmenting whole gen-
omes by allele-specific copy-number ratios. We created an R
package calledHRDtools that computes LOH, TAI, and LST scores
based on the genome-wide CNV profile. Because the HRD index
relies upon large-scale events, HRDtools first filters out small
events occurring within contiguous events at least 100 times
larger. The three scores are then determined based on published
guidelines (11)

Analysis of deletion microhomology
Somatic deletions were detected based on sequence align-

ment using Strelka. The 30 and 50 flanking deletions were
obtained. The microhomology fraction was determined as the
proportion of deletions which were larger than three base
pairs and demonstrated overlapping microhomology at the
breakpoints.

Review of clinical case data
Retrospective chart review was performed to obtain treatment

history and clinical response to chemotherapy regimens. We
queried a province-wide registry of oncology therapeutic records
(35) to obtain dates of (1) birth, (2) death if applicable, (3) most
recent cancer diagnosis, and (4) start and end dates of all plat-
inum-based chemotherapy regimens administered to treat the
most recent cancer diagnosis along with therapies used in com-
bination. Treatment timelines and clinical response are presented
in Supplementary Fig S2. All patients were treated as part of
standard cancer care either prior to, during, or after the sequencing
biopsy. Platinum-treated patients were given standard doses of
cisplatin (30 mg/m2 on days 1 and 8 of a 21-day cycle) or
carboplatin (calculated in milligrams as glomerular filtration rate
þ 25, multiplied by 6 for monotherapy or 5 in combination
regimens).

To assess therapeutic benefit, three outcomes were chosen:
overall survival (OS), total duration on platinum-based therapy
(TDT), and clinical response based on imaging. Overall survival
was assessed in patients treated after sequencing (n¼ 19) andwas
computed as the duration from first post-biopsy dose of plati-
num-based chemotherapy to death. TDT was examined as a
surrogate for therapy effectiveness. To improve relevance to the
present diagnosis, TDT included only treatment regimens occur-
ring within 2 years of sequencing biopsy (n¼ 33; Supplementary
Fig. S2).

Clinical imaging reports were reviewed to evaluate platinum
response including fludeoxyglucose positron emission tomogra-
phy and computed tomography obtained during or within two
months after the period of platinum-based therapy, compared
with pretreatment comparison scans. Treatment response was
classified as follows: (1) clinical improvement (CI), any tumor
shrinkage of one or more lesions with no evidence of growth or
new lesions; (2) stable disease (SD), either no change in lesions or
decreased size of some lesions with growth of others; or (3)
progressive disease (PD), disease progression with no associated
tumor shrinkage. The best observed response per regimen was
recorded.

Results
Somatic mutation signatures

Using a published framework (32), we deciphered the muta-
tion signatures of 1,182,840 somatic SNVs and 11,393 SVs from
the whole genomes of 93 advanced-stage breast cancers.

Of the nine resulting SNV signatures, numbered V1–V9 (Fig.
1A), six closely match previously described mutation signatures
(Supplementary Fig. S3C). V9 (signature 3) and V6 (signature 8)
are associated with HRD (13–15). V4 (signature 1) is associated
with aging (36). V1 (signature 2) and V2 (signature 13) are
associated with APOBEC deaminase activity. V3 (signature 17)
has been observed acrossmany cancers, but its etiology is unclear.

The three remaining signatures, V5, V7, and V8, represent novel
breast cancer mutational signatures. V5 predominantly displays
C>Tmutations in CpCpT and CpCpC contexts and was present in
only three cancers. V7 is characterized by high pyrimidine tran-
sition rate with enrichment in NpCpG and NpTpG contexts and
was observed across many tumors spanning histological and
molecular subtypes. V8 demonstrated moderate enrichment of
all base substitution typeswhen flanked by T andAbases, andwas
present at low levels across many tumors. These signatures may

HRD and Platinum Outcomes in Advanced Breast Cancer
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reflect the advanced, recurrent, and drug-treated nature of our
cohort, whereas previous mutation signatures have been derived
from primary untreated cancers. Further study is necessary to
verify etiology.

Hierarchical clustering revealed that most cases of high SNV
burdenwere driven byAPOBECorHRDassociated processes (Fig.
1B), which together were dominant in 46 (49%) of the 93
sequenced breast cancers. The aging mutation signature was
ubiquitous across cancers, and was the dominant signature in
31 (33%) cases, all of which had low mutation burden (<5 SNVs
per Mb; Supplementary Fig. S5).

Ninety-two samples with available RNA-seq data were classi-
fied into intrinsic subtypes based on expression profiles of PAM50
(30) genes. Nonparametric analysis demonstrated significant
differences in signatures V2, V3, V8, and V9 across subtypes
(Supplementary Table S1). Post hoc pairwise Dunn tests revealed
elevated V3, V8, and V9within basal-like cancers (Supplementary
Fig. S1), suggesting that diverse mutagenic etiologies, including
HRD, underlie this subtype. Elevated signature V9 was also most
common among triple-negative tumors.

The six deciphered SV signatures, numbered R1–R6, closely
resembled the six previously described breast cancer signatures
(ref. 14; Supplementary Figs. S6 and S7). R1–R4 and R6 uniquely
matched previously described signatures. By visual inspection, R5
matches previously described rearrangement signature 5 albeit
with more nonclustered translocations.

Genomic findings associated with HRD
Alongside these four SNV and SV mutation signatures, we

measured two additional HRD-associated patterns of somatic
mutation. The HRD index measures the frequency of large-scale
loss-of-heterozygosity (LOH), telomeric allelic imbalance (TAI),
and large-scale transition (LST) events (11) and was computed

using allelic copy-number ratios inferred from read alignment
frequencies. The proportion of small deletions associated with
microhomology was determined by comparing sequences flank-
ing deletion breakpoints. As per a published method (15), all six
scores were log transformed, normalized, and combined into a
single HRDetect predictor. This was performed using a logistic
predictor with the same coefficients as those reported by Davies
and colleagues (15) to ensure consistency with the trainedmodel.

Nineteen breast cancers had high HRDetect scores (>0.7),
37 had moderate scores (0.005–0.7), and 37 had low scores
(< 0.005). All cancers underwent genome-wide characterization
of germline and somatic point mutations, insertions and dele-
tions, and copy loss in gene regions and splice sites. Across the 93
breast cancers, HRDetect predicted pathogenic germline and
somatic variants in BRCA1 and BRCA2 with high accuracy and
an optimal differentiating threshold of 0.74 (Fig. 3B). These
findings closely agree with the previously established threshold
of 0.70 (15). Because VUS have previously not been associated
with increased HRDetect (15), we classified VUS as nonpatho-
genic mutations for the purposes of this analysis. Elevated HRDe-
tect scores were observed in all tumors with observed BRCA1/
BRCA2 frame shifts, nonsensemutations, homozygous deletions,
or splice variants identified as likely pathogenic inClinVar (Fig. 2).
There were 11 cases with germline missense VUS. The most
common of these was BRCA2 T1915M, which had a global minor
allele frequency (GMAF) of 1.14% and has been reported both to
reduce (37) and contribute to (38) breast cancer risk. In our study,
seven breast cancers (BR004, BR027, BR032, BR036, BR064,
BR074, and BR086) harbored germline BRCA2 T1915M, of which
three (BR004, BR036, andBR086)were homozygous in the tumor
and displayed a wide range of HRDetect scores (0, 0.04, and 0.62,
respectively). However, BR086 exhibited coincident homozygous
deletion of RAD51, which may account for the elevated score.

Figure 1.

Nine signatures of single nucleotide
variation deciphered from 93 breast
cancer whole genomes. A, Signatures
are visualized according to relative
frequencies of mutations grouped by
base change and 30/50 context. Six of
nine signatures match previously
published mutation signatures (cosine
similarity > 0.9), five of which are
associated with hypothetical etiologies.
B, Fractional exposures and mutation
burdens across the patient cohort,
ordered by hierarchical clustering,
reveal groups defined by APOBEC,
aging, and HRD-associated signatures.
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These data therefore do not suggest pathogenicity of BRCA2
T1915M.

A number of other genes involved in HR demonstrated tenta-
tive associations with HRDetect scores. Elevated HRDetect was
observed in three caseswithhomozygous deletionofPTEN aswell
as one casewith two coincident PTENmissensemutations (F278L
and P38S). However, one case with homozygous PTEN A126D
somatic mutation was associated with a low HRDetect score.
Homozygous deletions in RAD50, RAD51, and MCPH1 were
observed in some tumors withmoderate or highHRDetect scores.
MCPH1 is a potential cancer susceptibility gene (39) whose
deletion may be a poor prognostic marker (40). Although recur-
rently deleted in our cohort, its link to HRD signatures was
inconsistent.

High HRDetect scores were also associated with triple negative
and basal-like breast cancers (Table 1). Of 19 samples with high
HRDetect, 11 (58%) were classified as basal-like. Among low
HRDetect samples, only 2 (5%) were basal like. Luminal B and
normal-like tumorsweremore likely tohave lowHRDetect scores,
whereasmost (7/9)HER2-like tumors displayedmoderateHRDe-
tect. Receptor status was assessed by immunohistochemistry and
retrieved from pathology records, which were available for 79
tumors at primary and 76 at relapse (Supplementary Fig. S1).
High HRDetect was inversely associated with positive receptor
status in all three receptors. Fifty percent of highHRDetect tumors
were triple negative, compared with only 6% of primary and 15%
of metastatic low HRDetect tumors.

HRD mutation signatures are associated with platinum
outcomes

HighHRDetect scoreswere significantly associatedwith clinical
improvement on platinum-based chemotherapy, even after

adjusting for BRCA1/BRCA2 status and treatment timing (P ¼
0.006, n¼ 26; Supplementary Table S4). HRDetect demonstrated
areas under the ROC curve of 0.89 for CI and 0.86 for SD, which
exceeded those of its component signatures (Fig. 3B and C;
Supplementary Table S3). Optimal thresholds of 0.005 for pre-
dicting stable disease (SD) and0.7 for predicting clinical improve-
ment (CI) were chosen (Fig. 3B and C). Sensitivity, specificity,
precision, and recall were computed for both thresholds and are
reported in Supplementary Table S2.

Biallelic loss of BRCA1 or BRCA2 was also associated with
clinical improvement on platinum-based chemotherapy (Fig. 3A)
but was observed in only 3 of 26 treated patients with available
imaging. By comparison, 11 patients demonstrated HRDetect
scores above 0.7, of whom 8 experienced CI, 2 experienced SD,
and 1 had disease progression. Therefore, HRDetect scores cor-
rectly identified 5 additional patients without biallelic loss of
BRCA1 or BRCA2whobenefited fromplatinum-based therapy. In
a joint logistic model, BRCA1 and BRCA2 status did not contrib-
ute significantly to the predictive value of HRDetect (Supplemen-
tary Table S4).

Effects of HRDetect on overall survival and treatment duration
Of patients treated post-biopsy with platinum-based chemo-

therapy, there was a statistically significant difference in OS
depending upon HRDetect (P ¼ 0.04, n ¼ 33). Five patients with
predicted CI (HRDetect > 0.7) demonstrated amedian survival of
384 days, 8 with predicted SD (0.7 > HRDetect > 0.005) had a
median survival of 160 days, and 6 patients with predicted PD
(HRDetect < 0.005) had a median survival of 122 days. This
difference should be interpretedwith caution due to small sample
size, but represents a promising trend which warrants further
study.

Figure 2.

HRDetect scores, mutations in key homologous recombination genes, and outcomes on platinum-based therapy. Six distinct mutation signatures associated
with homologous recombination deficiency (HRD) were deciphered from 93 breast cancer whole genomes and aggregated into a single HRDetect score.
Radiology reports during and after treatment regimens involving platinum-based chemotherapy were reviewed for evidence of clinical improvement (CI), stable
disease (SD), or progressive disease (PD). Analysis of receiver-operator characteristic curves suggested HRDetect thresholds of 0.7 for CI and 0.005 for
SD, indicated here by a color bar.

HRD and Platinum Outcomes in Advanced Breast Cancer
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In addition to OS, TDT was used as a surrogate for clinical
response. In practice, platinum-based chemotherapy is typically
continued in responding patients until disease progression or

significant toxicity. Supplementary Fig. S2 verifies that, in 26
patients with available imaging, patients with reported radio-
graphic responseweremore likely to undergo a longer duration of

Table 1. Summary of patient molecular and clinical characteristics by HRDetect status

HRDetect status
Low < 0.005 Moderate 0.005–0.7 High > 0.7 Total

Sample counts
Total count 37 37 19 93
Treated count 9 13 11 33
Treated and imaged 8 7 11 26
Pathogenic BRCA1/2 variant 0 0 7 7
Response to platinum-based therapy
CI 0 2 8 10
SD 2 4 2 8
PD 6 1 1 8
Median TDT 56 days (n ¼ 9) 71 days (n ¼ 13) 143 days (n ¼ 11)
Median OS 122 days (n ¼ 6) 160 days (n ¼ 8) 384 days (n ¼ 5)
Intrinsic subtype
Basal 2 12 11 24
HER2 amplified 1 7 1 9
Luminal A 6 5 2 13
Luminal B 22 12 4 38
Normal-like 6 0 1 7
Primary receptor status
ER (positive/negative) 31/3 20/9 7/8 58/20
PR (positive/negative) 18/4 11/10 4/12 33/26
HER2 (positive/negative) 4/23 4/22 0/14 8/59
Triple negative 2 (6%) 8 (28%) 8 (50%) 18
Metastatic receptor status
ER (positive/negative) 27/6 17/10 5/10 49/26
PR (positive/negative) 15/15 9/13 2/10 26/38
HER2 (positive/negative) 6/28 4/22 1/13 11/63
Triple negative 5 (15%) 6 (21%) 8 (50%) 19

Figure 3.

Association of platinum-based treatment
outcomes with HRDetect, an aggregate
of six homologous recombination
deficiency (HRD) mutation signatures.
A, The HRDetect score is significantly
associated with clinical improvement
(CI) on platinum-based chemotherapy
(logistic regression, adjusted for
BRCA1/2 status and treatment timing,
P ¼ 0.006). There was also a trend
between low HRDetect and progressive
disease (PD; P ¼ 0.112). Moreover, of 8
BRCA1/2-intact cases with elevated
HRDetect score, 5 responded favorably
to platinum-based chemotherapy.
Receiver-operator characteristic for
B, BRCA status and (C, D) therapeutic
outcomes on platinum-based
chemotherapy (C: CI; D: stable disease,
SD). These suggest optimal HRDetect
thresholds of 0.7 and0.005 for CI andSD,
respectively. Specific near-threshold
HRDetect values are labeled. In all three
ROC curves, HRDetect had a superior
area under the curve than its six
constituent mutation signatures.
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treatment. HRDetect scores were significantly associated with
extended TDT with a hazard ratio of 0.28 (0.081–0.95; P ¼
0.04, n ¼ 33), after adjusting for BRCA1 and BRCA2 mutation
status, timing of treatment, and patient age (Fig. 4B). Tumorswere
classified based on HRDetect scores into predicted treatment
response categories. There was a significant difference in TDT
(P < 0.001, n ¼ 33; Fig. 4A) between patients with predicted CI
(median 143 days), SD (median 71 days), and PD (median 56
days). This amounts to an estimated 3-month difference in
median TDT between high HRD and low HRD cases.

Feasibility of HRD analysis in personalized medicine
The development of precision oncology initiatives (19, 41–

43) has necessitated genome analysis pipelines compatible
with "N of 1" cases. One challenge of mutation signature
analysis by nonnegative matrix factorization (NMF) is the
reliance upon large cohorts of sequenced tumors. This has led

to techniques to determine the most likely composition of
signatures for a single isolated sample (44). HRD analysis
provides a promising target for personalized treatment deci-
sion-making. Thus, in addition to cohort-based de novo signa-
ture discovery, we also computed individual-tumor best-fit
signature exposure profiles for SNV signatures 3 (V9) and 8
(V6) and SV signatures 3 (R1) and 5 (R5) using nonnegative
least squares (NNLS; details in Materials and Methods). We
then recomputed HRDetect scores using these individualized
NNLS signature exposures to assess accuracy.

HRDetect scores and all four HRD-associated SNV and SV
signatures demonstrated high concordance between NMF and
NNLS approaches based on Pearson linear regression (r > 0.9;
Fig. 5). Using the selected thresholds of 0.005 for SD and 0.7 for
CI, 86 out of 93 cancers were concordantly classified byNNLS and
NMF, including all cases predicted to experience CI. NNLS reclas-
sified 4 cancers from PD to SD, and 3 from SD to PD.

Figure 4.

Homologous recombination deficiency is associated with extended overall survival (OS) and total duration on platinum-based therapy (TDT). A, Among patients
treated after the sequencing biopsy (n ¼ 19), OS was computed as the duration between first post-biopsy treatment and death. There was a statistically
significant (P¼0.04) difference between patients predicted to beCI (HRDetect >0.7), SD (0.7 >HRDetect >0.005), andPD (HRDetect<0.005).B,Platinum-treated
patients (n ¼ 33) with different predicted treatment outcomes also experienced significantly different TDT as part of standard care for advanced breast
cancer. C, Multivariate Cox survival model demonstrated a significant association between HRDetect and TDT independently of BRCA1/2 mutation status.

Figure 5.

Mutation signatures of single-
nucleotide variation and structural
variation were deciphered using two
approaches. The first, nonnegative
matrix factorization (NMF), deciphers
signatures and associated exposures
de novo across a cancer cohort. The
second, nonnegative least squares
(NNLS), estimates the best-fit exposure
vector using a consensus set of known
mutation signatures. A, HRDetect
scoreswere computed usingbothNMF-
andNNLS-derivedmutation signatures.
Scores derived from the two
approaches were strongly correlated
(Pearson R squared ¼ 0.99) and
demonstrated high classification
concordance based on selected
thresholds. B, Individual HRD-
associated mutation signatures were
concordant between the two
approaches (Pearson R squared
> 0.82 for all signatures).
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These findings demonstrate that NNLS-based "N of 1" com-
putation of mutation signature exposures provides robust HRD
estimates concordant with a cohort-based NMF approach. This is
promising for the application of HRD biomarkers in sequencing-
driven treatment guidance.

Discussion
In this retrospective study, HRD mutation signatures were

associated with clinical benefit on platinum-based chemotherapy
in advanced-stage breast cancer. Specifically, we demonstrated that
HRDetect, the same model independently trained to predict
BRCA1 and BRCA2 status with high sensitivity and specificity
(15), was also significantly associated with favorable response to
platinum chemotherapy response and longer TDT. Moreover, we
identifiedanoptimalHRDetect thresholdof 0.7,whichagreeswith
the previously established cutoff for BRCA1/BRCA2 status (15).
Therefore, our findings both independently validate the HRDetect
model and provide promising evidence for its clinical relevance.

A key limitation of this study is the ability to establish causa-
tion. As this was an observational cohort of advanced-stage breast
cancers undergoing standard chemotherapy treatments, some
patients were sequenced during or after courses of platinum-
based chemotherapy. Tomitigate the impacts of tumor evolution,
we limited analyses to patients sequenced within two years of
treatment. Another significant challenge when studying treated
tumors is that platinum-associated mutagenesis may affect the
mutation signature profile, especially in cancers biopsied after
treatment. A few factors help tomitigate this challenge, but cannot
entirely rule out platinum-induced mutagenesis. First, we adjust-
ed for the treatment timing in statistical analyses of the association
between HRDetect and clinical outcomes. Second, there has been
reproducible evidence of HRD-associated signatures in cohorts of
predominantly primary tumors which are a close match to the
signatures we deciphered (11, 13–15, 45). Lastly, the aggregation
of six distinct signatures into a more robust metric should help
minimize any platinum-induced mutagenesis impacting any one
signature in particular. Notably, the investigation of advanced-
stage breast cancers is an important feature of this study. Whereas
a previous trial did not find that the HRD index alone was
predictive in advanced breast cancer (5), our findings renew
promise for aggregated metrics such as HRDetect. However,
studying advanced-stage tumors inevitably introduces potential
confounders such as variable treatment histories. Therefore, well-
designed prospective clinical trials are needed to further validate
HRDetect as a predictive biomarker.

HRD is common among breast cancers. Based on ourHRDetect
predictive thresholds, 19 cases (20%) showed potentially target-
able highHRD status (HRDetect >0.70). An additional 37 cancers
(40%) showed moderate HRD status consistent with stable dis-
ease on platinum-based chemotherapy (HRDetect > 0.005). By
comparison, biallelic germline and somatic mutations were
detected in only 11 cases, and known pathogenic variants in only
7. Similarly, an analysis of 560 breast cancer genomes, which
additionally examined promoter hypermethylation, estimated
the frequency of BRCA-null breast cancers at 14% (14). The
analysis of HRD signatures may identify patients who could
benefit from platinum-based therapy otherwise undetected on
BRCA1/2 screening. These signatures may also have implications
for PARP inhibitor sensitivity, which exploit a synthetic lethal
interaction between PARP-1 and the HR pathway. Germline

mutations in BRCA1 and BRCA2 are associated with improved
response to PARP inhibitors (9). Additional translational research
incorporating WGS is necessary to reveal whether HRDmutation
signatures are similarly associated with PARP inhibitor response.

However, clinical translation of HRD mutation signatures
requires sufficient capture of somatic SNVs and SVs to infer the
processes underlyingmutagenesis.WhileHRDetect improvesupon
theaccuracyof the clinically employedLOH,TAI, andLSTmetrics, it
requires WGS, which currently poses technical and financial chal-
lenges for clinicaluse. Further research todeveloppredictivemodels
that exclude SV signatures may enable application on cancer
exomes or other targeted sequencing methods, which can capture
sufficient somaticmutations for SNV signature but not SV signature
analysis. Additionally, orthogonal HRD assays, for example using
gene set expression profiling (46), may also serve as lower cost
parameters for treatment prediction. Nevertheless, as sequencing
costs fall, WGS provides unique opportunities to integrate diverse
markers of genomic instability and mutagenesis within a single
protocol. Moreover, we demonstrated that NNLS mutation signa-
ture analysis enables accurate "N of 1"HRD signature investigation
for genome-driven personalized medicine initiatives.

Quantifying HRD signatures supplements existing knowledge
and paradigms of cancer detection and stratification. HRDetect
scores were associated not only with BRCA1 and BRCA2, but also
potentially with other genes such as PTEN. This approach pro-
vides a functional indicator for mutations whose impact on gene
function is uncertain, potentially expanding the repertoire of
known causative variants which comprise hereditary cancer
screening. Additionally, we observed that HRD signatures were
more common in, but not exclusive to, triple-negative and basal-
like breast cancers. This agrees with previous work (14) and helps
to situate HRD in the context of other widely used breast cancer
markers. A topic for future investigation is the value of screening
basal-like and triple-negative breast cancers for signatures ofHRD.

Breast cancer remains the most common cancer diagnosis in
women worldwide. It is evident that a substantial proportion are
driven in some part by HRD. Here, we have quantified the
relationship between aggregated HRD signatures and measures
of success on platinum-based chemotherapy, providing the basis
for further investigation of this putative predictive biomarker in
prospective trials. In doing so, this study demonstrates the poten-
tial formutation signatures to guide clinical therapy in a precision
oncology setting.
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