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ABSTRACT 

We investigate the collapse of nonrotating gas sp~eres with a polytropic.equ~tion of state.: n 
= 3, corresponding toy = 4/3. Such polytropes provide~ re~sonable approximatiOn t<? collapsmg 
stellar cores during the early phase before nuclear density IS reached. W~ find a.famtl~ of ~xact 
homologously collapsing configurations. Homologous collapse of the enti~e core Is possib~e If the 
pressure at a given density is reduced by up to 3 '7o from the value for a margmally stable static c~re. 
For a greater pressure reduction, an inner core can collapse homologou~ly, the mass o~ which 
varies as the 3/2 power of the reduced pressure at the onset of collapse. Lmear perturbat~ons of 
these homologously collapsing solutions are separable in space and time. Low order radial and 
nonradial modes are calculated, and it is found that all modes are essentially stable. 
Subject headings: stars: collapsed - stars: interiors - stars: supernovae 

I. INTRODUCTION 

Most work on stellar core collapse in supernovae 
has employed numerical codes for spherically sym­
metric hydrodynamics. This approach to the hydro­
dynamics permits a detailed treatment of the 
remaining physics, such as nuclear reactions, energy 
transport, neutrino transport, and the equation of 
state. However, it can be instructive to disregard the 
details of the thermodynamics and consider a simple 
analytic equation of state. Many results may then 
be obtained analytically, the relationship between 
the input physics and the consequent behavior is 
more transparent, and it is possible to investigate 
behavior (such as departures from spherical sym­
metry) that is more difficult to examine with numerical 
hydrodynamics. 

According to recent work on the evolution of 
supernova progenitors (see Paczynski 1971; Ikeuc~ et 
al. 1971; Arnett 1977b; Barkat 1977), stars massive 
enough to ignite carbon nonexplosively all evolve to a 
very similar precollapse configuration. This consists. of 
a hot degenerate iron core of some 1-3 M0 , with 
overlying burning shells. The core can be roughly 
approximated by ann = 3 polytrope (Van Riper 1978; 
Nadyozhin 1977). It becomes dynamically unstable 
when the mean adiabatic index, y = Jv yPdV/Jv PdV, 
drops below 4/3. This results from some combination 
of inverse f3 decay, endothermic dissociation of iron, 
and general relativity. After these effects reduce the 
pressure and initiate collapse, the increasing density 
soon causes the core to become opaque to neutrinos so 
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that the subsequent collapse is nearly adiabatic (Arnett 
1977a; Bethe et al. 1979; Saenz and Shapiro 1979). 

These results indicate that an n = 3, y = 4/3 poly­
trope would be a reasonably simple approximation to 
the equation of state. By this we mean 

p = KpY' (1) 

where Pis the total pressure, pis the density, y = 4/3 is 
the adiabatic index, and K is a constant both in space 
and in time. "Adiabatic" normally means that K is 
constant in time along any given streamline, but not 
necessarily constant from streamline to streamline. 
"Polytropic" normally means that K is constant in 
space for a hydrostatic configuration, andy is replaced 
by 1 + 1/n, with n the polytropic index. For a non~al 
polytrope, y = dlog P/dlog p does not necessanly 
equal 1 + 1/n, nor is it necessarily constant. 

The numerical models indicate that the proposed 
equation of state is reasonable for the precollapse core 
since the core resembles an n = 3 polytrope. The mean 
y is 4/3 at the onset of collapse, although the local value 
will range above and below this. The pressure re­
duction at the onset of collapse can be modeled by 
using a smaller K for collapsing cores than the hydro­
static cores. The statement that core collapse is adia­
batic means in this case that it conserves entropy, not 
that the equation of state is as simple as equation (1). 
The equation of state will become stiffer at nuclear 
densities, an essential feature for causing a core bounce 
and for allowing a neutron star to form. However, the 
proposed equation of state should be reasonable at 
densities lower than nuclear density. This model is 
meant only to describe the early stages of collapse 
before nuclear density is reached. 
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One nice feature of this equation of state is that the 
characteristic mass corresponding to the Jeans length 
is independent of density. Put another way, the 
gravitational energy and the thermal energy scale as 
the same power of the radius for homologous defor­
mations of the star. Therefore, the center of the core 
should not run away from the outer parts during 
collapse, since the center alone would be less than the 
Jeans mass, regardless of the density increase. This 
suggests that a homologously collapsing solution 
could exist. Indeed, homologous collapse of the inner 
part of the core has been observed in the numerical 
models (Nadyozhin 1977; Epstein 1977;Arnett 1977a; 
Van Riper and Arnett 1978; Van Riper 1978). A more 
complicated equation of state would not give identical 
scaling of gravitational and thermal energy with core 
radius, so that homologous exact solutions for collaps­
ing cores would not be expected. However, if the true 
equation of state is not too different from that given by 
equation (1), the departure from homology should be 
small. 

The stability of core collapse, especially for non­
radial modes, is an important question. One reason is 
that no gravitational radiation is emitted by spheri­
cally symmetric systems. Growth of nonradial modes 
is essential if supernovae are to be powerful sources of 
gravitational radiation. It is relatively easy to in­
vestigate the stability of homologously collapsing 
cores. Since the Jeans mass is independent of density in 
our model, there is no tendency toward fragmentation. 
This suggests that the collapse will be stable. 

In § II, we determine that a family of homologous 
collapsing solutions does exist and discuss the proper­
ties of these solutions. The equations describing linear 
perturbations of those configurations are derived in 
§ III, and the normal modes are discussed in § IV. 
Section V presents a summary and conclusions. 

II. HOMOLOGOUSL Y COLLAPSING CORES 

We begin with the equation of continuity, Euler's 
equation, and Poisson's equation: 

op 
at+ V·(pu) = 0, (2) 

(4) 

Here, u is the fluid velocity; <P is the gravitational 
potential; G is the ~ravitational constant; and his the 
heatfunction(h = j dP/p = 4Kp113 forourequationof 
state). If the flow is vorticity free, the velocity may be 
obtained from a stream function: u = Vv. (Note that 
an arbitrary constant can be added to v.) Then, 
equation (3) can be integrated 

ov 
ot + !1Vvl2 + h + ¢ = 0 . (5) 

The constant of integration has been incorporated into 
the potential. 

It is conventional for polytropes to use a radial scale 
corresponding to the Jeans length (see Eddington 
1926). The scale factor is time dependent in our case: 

(
I( )1/2 

a(t) = (yPc/ PY12 /(nyGpY 12 = Pc - 113 nG ' (6) 

where the subscript c indicates the value at R = 0. We 
scale the radial coordinate from (dimensioned) R to 
(dimensionless) r = Rja(t). The differential equations 
are transformed by this time dependent scaling to 

.!_ 0: + a- 1(a- 1Vv- ar)·Vp/p + a- 2\72v = 0, (7) 
p ut 

av a v 1 -21 12 - - - r· v + 2a Vv + h + <P = 0, ot a 
(8) 

(9) 

where we have also substituted the stream function 
into the continuity equation. Next, we scale the density 
in terms of the central density, 

p = pJ3 = (n~ Y'2a-3f3, (10) 

and the potential in terms of the square of the central 
sound speed, 

<P- - t/1 -- - -· _ (YPc) _ 4 (1<3 
)

1
'
2 tjJ 

Pc 3 nG a 
(11) 

To seek a homologous solution, we set v = 1j2aar2 

or u = ar so that the continuity equation reduces to 
the trivial relation]= 0, which states that the density 
profile does not evolve. Euler's equation yields 

(f + t/J/3)jr2 = -~ (:~Y12a2ii = A/6, (12) 

which is separable in rand t. The expression on the left 
is a function of radius only, while the middle ex­
pression depends on time only, so both have been 
equated to a constant. This pair of equations implies 

t/1 =!Ar2 - 3f, (13) 

and also gives a nonlinear differential equation for a(t). 
The general solution to this differential equation gives 
the time dependence of the most general exactly 
homologous solution. 

The differential equation for a(t) can be integrated 
once, yielding the energy integral 

!a2 = 1;.(;~ Y' 2 
a- 1 +c. (14) 

The constant of integration, C, determines the con­
traction (or expansion) velocity when the radius of the 
star is infinite. Equation (14) can be integrated again if 
C = 0 and A> 0: 

a= (6).)1/3(;~ Y'6 (t + to)213 . (15) 
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The second constant of integration, t0 , is the time at 
which the radius goes to zero. We shall henceforth 
assume t0 = 0. In a realistic case of core collapse, C 
# 0 because a= 0 at some finite a. However, the value 
of C should have little effect on the solution for a(t) as 
a---+ 0. Indeed, we shall see in §IV that homologous 
linear perturbations of the solution given by equation 
(15) go to zero as a---+ 0. 

For A.= 0, the star has zero binding energy and is 
neutrally stable to homologous radial perturbations. 
The most general solution for a(t) in this special case is 
a linear function of time. However, we shall discuss 
only the static A. = 0 core, and shall not consider the 
core with a = constant # 0. 

We use equation (13) to eliminate t/J in Poisson's 
equation, and obtain an ordinary differential equation 
for the radial structure 

_!__~( 2 df) !3 = 1 zd r d + JL. r r r 
(16) 

This reduces to the Lane-Emden equation for poly­
tropic index n = 3 (Eddington 1926) in the limit A.= 0. 
The appropriate boundary conditions are f(O) = 1, 
df/dr(O) = 0. 

Numerical solutions of equation (16) for several 
values of A. are illustrated in Figure 1. The case A. = 0 is 
the usual n = 3 polytrope. Negative values of A. are not 
shown or discussed because they give unbound systems 
which cannot collapse and have a different time 
dependence than that given by equation (15). It can be 
seen that the solutions for positive A. differ little in the 
inner parts, but that the outer layers become more 
extended as A. increases. 

There is a maximum value of A. for which a physical 
solution is possible, Am ~ 0.00654376. Mathemati­
cally, this limit exists becausef(r) becomes tangent to 
f = 0 at the outer boundary in the limiting case, 
whereas for A.> A.m,Jremains finite at all r. Physically, 
the limiting value of A. is reached when the surface of 

O.B 

0.6 

FIG. I.-Density profilef(r) ocp113 ofhomologously-collapsing 
polytropes, for (left to right) ). = 0, 0.002, 0.004, and ).m· 

the core is in free fall. The condition u(R.) = 
-GM/R/ becomes PIPe= A. in dimensionless units, 
after equation (12) is used to evaluate the acceleration, 
and the core mass, M, is expressed in terms of the mean 
density, p. In order to see that p/ Pe = A. when A. = Am, 
we write 

PIPe= (4nr//3)- 1 I:· 4nr2f 3dr, 

and use equation (16) to evaluatef3 . The integral then 
can be performed, yielding 

PIPe= A.- (3/r,)df(r.)/dr. 

Thus, the condition for free fall at the surface can be 
seen to be satisfied when df(r.)/dr = 0. 

The core mass for the collapsing polytropes is M 
= 4/3nr, 3(PI Pe)(K/nG)312 • As A. increases from zero to 
A.m, r, increases from approximately 6.897 to 9.889, 
while PIPe decreases from 0.01846 to 0.006544. The 
product r, 3 PIPe is relatively insensitive to A., increasing 
only by a factor 1.0449 in this interval. Specifying M 
and A. determines K, and the range of A. corresponds to a 
range of 2.9% inK. Consequently, if we begin with a 
static (A. = 0) core, we can reduce K, and thus the 
pressure, by no more than 2.9'70 , and still find a 
homologously collapsing configuration for the entire 
core. The reason for this small range is that the static 
configuration is only neutrally stable and is highly 
centrally condensed. 

The pressure reduction initiating collapse in super­
novae is substantially larger (Bethe eta/. [1979] obtain 
26'70 ). Although the entire core cannot collapse ho­
mologously when the pressure reduction is this large, a 
less massive inner core can do so, while the remainder 
of the core is left behind. The A. = Am homologous 
solution should be a good approximation to the 
structure of the inner core to the extent that the 
pressure due to the material further out (which is 
nearly in free fall) is negligible. The mass of the inner 
core will be 

Mic = 1.0449(:J
312 

Mo, (17) 

where M 0 and Ko are the mass and the value of K for the 
marginally stable initial static core. 

This prediction for the mass of the homologous 
inner core is in good agreement with the results of Van 
Riper (1978), who numerically integrates collapses, 
starting from an n = 3 polytrope, with y = 1.32. His 
core masses agree with the prediction of equation (17) 
to within a few percent for pressure reductions of up to 
50%. His inner core mass is 30% larger than our 
prediction when the pressure reduction is 70%, but this 
difference is only 6% of the total core mass and may 
not be well determined. Note, however, that Van Riper 
finds that the mass of the homologous inner core is 
sensitive to the value of y, so that our quantitative 
predictions may be in error if y differs substantially 
from 4/3. 
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III. LINEAR PERTURBATION EQUATIONS 

Consider linear perturbations of the homologously 
collapsing configurations described in the preceding 
section. The perturbed dynamical variables are written 
as 

(18) 

(19) 

(20) 

The function g(l) gives the time dependence of the 
scaled perturbations, and is assumed to have the form, 

g(l) = exp[p rIff - 1dt'J = exp (pl/111-), A= 0, 

A.# 0, (21) 

where 

Iff= (11tGpc) - 112 (for all A.) , 

= (9A./2)1121 (for A. # 0) . (22) 

We have chosen to work with perturbations of the 
stream function rather than to work with the displace­
ment vector as is more conventional (see, e.g., 
Eddington 1926; Ledoux and Walraven 1958). It is 
algebraically simpler to work with scalar variables, 
especially in an accelerated coordinate system. 

Linearizing equations (7)-(9), and using equations 
(18)-(20) to define the perturbations, we obtain 

V2v1 + 3V logf· Vv1 + pp1 = 0, (23) 

[p + (A./2)1i2]v1 + fP1 + t/1 1 = 0 , (24) 

V2t/J1 + 3f3p1 = 0. (25) 

It can be seen that the time dependence due to the 
collapse of the unperturbed configuration has cancel­
led out of the dynamical equations, leaving an eigen­
value problem. 

Cowling (1941) classified the modes of nonradial 
oscillation of a spherical star. The g-modes have a 
displacement vector which is primarily horizontal. 
They produce little pressure perturbation, and gravity 
is the principal restoring force. For the p-modes, the 
displacement vector is primarily radial, and pressure is 
the dominant restoring force. Cowling also identifies a 
fundamental or /-mode, for which the radial com­
ponent of the displacement vector and the pressure 
perturbation are both constant in sign along any given 
radius vector. Thef-mode is intermediate in frequency 
between the p-modes and the g-modes. The frequency 
for p-modes increases as the number of modes in­
creases, while the frequency decreases with increasing 
order for g-modes. We shall not distinguish the!­
mode, but shall regard it as the lowest order p-mode. 

Cowling (1941) showed that for y = 1 + 1/n, which 
is assumed in our model, the g-modes are just neutral 
convective modes. These havep = 0, p1(r) = t/1 1(r) = 
0, V2v1 + 3V log f· Vv1 = 0. We shall not discuss the 
g-modes further. For the p-modes, equation (24) can 
be used to eliminate p1. Assuming that the angular 
dependence of the perturbations is given by spherical 
harmonics, we obtain two second-order ordinary 
homogeneous differential equations 

f !!_ (r2 dw) - I(!+ 1) fw + 3 df dw - t/1 1 + mw = 0 , 
r2 dr dr r2 dr dr 

(26) 

__1__!!_ (r2 dt/J~ _l(l + l) t/1 1 + 3Jlt/J1 - 3f2mw = 0, 
r2 dr dr} r2 

(27) 

where v1 = pw and m = -p[p + (A./2)112]. Thus, we 
have p = (A./8)112 ± (A./8 - m) 112 , and g(l) becomes 
exp (±im1121/l) for A.= 0; lq oc a3qf2 , q = -1/6 ± 
(1/36 - 2mj9A.~ 12 for A. # 0. The displacement vector 
~ = <>r/r is related to w by ~ = Vw. 

It can easily be proved that the eigenvalues, m, are 
real and that eigenfunctions ~ 1 (r), ~2(r) corresponding 
to different eigenvalues m1 # m2 are orthogonal: 
Jv/3~1 ·~2dV = 0. 

The boundary conditions for differential equations 
(26) and (27) are regularity conditions. Regularity at 
the origin for wand t/1 1 is insured by w, t/11 oc r1 as r- 0. 
Regularity of w at the surface requires 3(dfjdr)(dwjdr) 
- t/11 + mw = 0 atr = r,. Fori# 0, regularity oft/11 at 
infinity is insured by t/J 1 oc ,-<t+ 1> at r = r, [i.e., dt/1 ddr 
+(I+ 1)t/Jdr = 0]. For I= 0, the fourth boundary 
condition serves only to determine the arbitrary con­
stant in the definition of the stream function, and any 
convenient linearly independent condition can be 
specified. 

IV. NORMAL MODES 

We have found eigenvalues and eigenfunctions of 
equations (26) and (27) numerically, using the method 
of inverse iteration (Wilkinson 1955). Eigenvalues (m) 
for the lowest three modes for I = 0, 1, 2 and 0 ~ A. 
~ A.m are plotted in Figure 2. Some of the modes for the 
static A. = 0 case have been computed before. 
Schwarzschild (1941) has evaluated radial modes, and 
our results are in satisfactory agreement with his. For I 
= A. = 0, it is possible to reduce the system of equa­
tions to a single second-order differential equation, but 
we have not done so because this is not possible in the 
general case. Cowling (1941) has obtained the eigen­
value for the lowest I= 2 mode for A.= 0. He 
approximates the potential perturbation rather than 
including it exactly; however, his eigenvalue is still in 
reasonable agreement with ours. 

The lowest radial mode can be found analytically. It 
ism= -3A., w = r2 , t/1 1 = 6[r(df/dr) + f]- 3A.r2 • This 
mode corresponds to a homologous perturbation of 
the entire core. Consequently, it perturbs the partic­
ular homologously collapsing solution we have used 
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FIG. 2.-Eigenvalues (m) as functions of ). for l = 0, 1, 2, for 
modes with (bottom to top) 0--2 nodes. 

for our unperturbed configuration into the general 
homologously-collapsing solution. The value of m 
gives a time dependence of either t - 1 or t 2' 3 • The 
perturbations do grow in time for the former case, but 
this mode is produced simply by setting t0 # 0 in 
equation (15). This can be seen by 

[R(t + t0 )- R(t)]/R(t) 

~ R(t)t0/R(t) oc r 113/t213 = r 1 . 

Thus, this should not be considered a growing mode. It 
is only an indication that one has chosen an incon­
venient origin of time for the unperturbed configu­
ration. The t213 mode is a linearization of the C # 0 
solution of equation (14); that is, the solution with a 
nonzero collapse velocity in the limit a~ oo. The 
amplitude of this mode goes to zero as t~ 0, confirm­
ing our expectation that the value of C becomes 
unimportant as a~ 0. 

The lowest I = 1 mode is a trivial solution, giving a 
uniform displacement of the entire star. This solution 
has m = -A., giving a time dependence for wand t/J 1 of 
t- 213 or t 1 ' 3 . More relevant is the time dependence of 
()R = arVw oc t0 or t 1• These cases correspond to a 
neutral displacement or a constant translation velocity 
of the entire star. The eigenfunctions are w = r, t/1 1 

= 3(df/dr) - .A.r. 
For all modes except the two special cases discussed 

above, the eigenvalue approaches the same limit m 
~ (25/S).A.m as A.~ A.m. The reason for this is not 
difficult to understand. First, if we employ the WKBJ 
approximation for short wavelength perturbations, we 
find that the radial wavenumber, k, varies as 
k oc (P/p)- 1' 2 ocf- 1' 2 . When bothfand its derivative 
go to zero at the surface, an infinite number of 

wavelengths will be found in any neighborhood of r •. 
More rigorously, we can find an asymptotic solution 
for llr = r.- r « 1, f(Ar) oc Ar2 • This solution is 
w oc Arq, q = -5/2 ± (25/4- 2m/.A.)112 • We see that q 
becomes imaginary for mj.A. > 25/8, producing an 
essential singularity at Ar = 0. For A. < .A.m, f(Ar) will 
become linear for llr sufficiently small, and w(Ar) will 
become linear rather than oscillatory in that regime. 
Consequently, for eigenfunctions with a finite number 
of modes, m ~ 25/S.A.m and the modes become con­
centrated to the surface as A.~ A.m. The behavior of the 
eigenfunctions as A.~ .A.m is illustrated by Figure 3, 
which shows the I = 2 eigenfunctions with two modes 
for a sequence of values of A.. The variation of the 
amplitude of w(r) predicted by WKBJ theory, 
w(r) oc r -lj- 514, has been removed because the ampli­
tude varies too much to permit a worthwhile plot of 
w(r) by itself. 

The singular behavior at .A.m should be regarded as an 
artifact of the special mathematical character of this 
limiting solution. For a real stellar core there will be 
some finite pressure at the surface, although this will 
generally be much less than the central pressure. A 
finite sound speed at the surface will insure that the 
normal modes are regular and that the eigenfrequen­
cies are isolated. 

Figure 4 illustrates eigenfunctions for A. = 0, I = 2, 
and 0-3 nodes, scaled as in Figure 3. These particular 
eigenfunctions are characteristic in their qualitative 
character. Modes for different A. not too close to Am 
look much the same, as do modes for different I, except 
for their behavior as r~ 0. The power in these modes is 
concentrated near the surface, as in p-modes generally. 
This feature is somewhat obscured in the figures by the 
scaling. 

0 2345678910 

r 
FIG. 3.-Scaled eigenfunctions rf(r)514w(r) for l = 2, two nodes, 

and (top to bottom)). = 0, 0.0065, and 0.0065435. The vertical scale is 
arbitrary. Note how the nodes concentrate toward the surface as 
). --> ).m• 
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r 

FIG. 4.-Scaled eigenfunctions rf(r}514w(r) for l = 2, A. = 0, and 
Q-3 nodes. The vertical scale is arbitrary. Modes of different land A. 
are qualitatively similar to these. 

The most important characteristic of the normal 
modes is that all (excepting the two special cases 
discussed earlier) are oscillatory. The eigenvalues, m, 
are always greater than 25A./8. This limiting case gives a 
time dependence of tq, q = -1/6 ± (2/3)1' 2 i. It is 
sufficient for m/2 > 1/8 to obtain a complex eigen­
frequency. The amplitude of the oscillations for all 
modes does increase during the collapse as 
t- 116 oc a- 114. This increase in amplitude corresponds 
to adiabatic amplification of sound waves due to 
compression. Amplification of this sort should not be 
described as instability. Also, the small exponent 
insures that perturbations will not attain high ampli­
tude during collapse if they are initially small, unless 
the collapse is by a very large factor. Even in the 
collapse of a stellar core to a neutron star, in which the 
radius is reduced by a factor of order 102- 3 , per­
turbations will be amplified only by a factor of 3-6. 

V. CONCLUSIONS 

Our polytropic models for collapsing stellar cores 
can explain the formation of a homologous inner core, 

which has been observed in numerical models. The 
mass of the inner core is given by the model: it is 
essentially the Chandrasekhar mass corresponding to 
the reduced entropy of the adiabatic phase of the 
collapse (to be precise, it is up to 4.5% larger than the 
Chandrasekhar mass). The density profile of the inner 
core should be similar to that of a stationary n = 3 
polytrope, but with somewhat more extended outer 
layers. 

This homologously collapsing core is stable i1. the 
sense that perturbations are oscillatory, with the 
amplitude of the fractional displacement increasing as 
R. - 1' 4 as the core radius decreases. This may be 
contrasted with the pressure-free case, in which per­
turbations grow monotonically and rapidly (Lynden­
Bell 1964; Lin, Mestel, and Shu 1965). The fact that 
pressure can stabilize spherical collapse is familiar, of 
course. Hunter (1962) discusses the stability of per­
turbations of homogeneous gas spheres withy= 4/3. 
In that case, the unperturbed collapse is effectively 
pressure-free because there is no pressure gradient, and 
perturbations are stable only for sufficiently short 
wavelengths. Lynden-Bell's (1979) statement based on 
the homogeneous case, that the shape of a sphere will 
be stable only if the inward acceleration of the 
boundary is less than 2/5 of the free fall value, does not 
apply to our models. Our spheres are stable even in the 
limiting case when the surface collapses in free fall. 
However, the collapse of the interior is always slower 
than free fall. 

Nonspherically symmetric collapses have been cal­
culated numerically by Shapiro (1977) and Saenz and 
Shapiro (1978, 1979). These simplified models, em­
ploying homogeneous spheroids or ellipsoids, predict 
that departures from spherical symmetry and the 
emission of gravitational radiation become important 
only after the bounce of the core at nuclear densities. 
We concur that cores in which rotation is not impor­
tant will remain very nearly spherically symmetric, and 
therefore will not emit significant gravitational ra­
diation, before the core bounce. 

The hydrodynamics of core collapse up until the 
core bounce can be understood in terms of this 
relatively simple analytic model. The interesting hy­
drodynamics of the bounce itself and the production of 
a reflected shock must be approached in another way. 
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Note added in proof-Van Riper (1980, private communication) has provided us with homologous core masses 
obtained by numerical integration of collapses, in which the equation of state (1) is employed. The 
homologous core masses agree with our analytic result (eq. [17]) to within the accuracy claimed for the 
numerical calculation (±2/0 ), provided the pressure reduction initiating collapse is not too large. The numerical 
calculations give significantly larger homologous core masses than the analytic formula if K/Ko ~ 0.2. This can 
be explained easily. The gradients of density and pressure go to zero at the center of the initial configuration. 
A homogeneous pressure-free sphere collapses homologously, and a pressure gradient-free configuration is 
dynamically equivalent to one that is pressure-free. Therefore, the nearly homogeneous central part of the 
initial configuration will collapse nearly homologo'usly, regardless of the equation of state, until the small initial 
gradients can produce an appreciable effect. 

Our analytic results should always be valid asymptotically as the density goes to infinity. However, if the 
initial pressure reduction is very large, the homologous core must form from material that is initially nearly 
homogeneous, so the asymptotic solution may not be reached until the density has increased by a larger 
factor than a real core collapse would provide. Fortunately, the actual pressure reduction which initiates stellar 
core collapse is expected to be well within the regime in which our results should be valid. 
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