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Abstract

Background: Schistosomes are trematode parasites of the phylum Platyhelminthes. They are considered

the most important of the human helminth parasites in terms of morbidity and mortality. Draft genome

sequences are now available for Schistosoma mansoni and Schistosoma japonicum. Non-coding RNA

(ncRNA) plays a crucial role in gene expression regulation, cellular function and defense, homeostasis, and

pathogenesis. The genome-wide annotation of ncRNAs is a non-trivial task unless well-annotated genomes

of closely related species are already available.

Results: A homology search for structured ncRNA in the genome of S. mansoni resulted in 23 types of

ncRNAs with conserved primary and secondary structure. Among these, we identified rRNA, snRNA, SL

RNA, SRP, tRNAs and RNase P, and also possibly MRP and 7SK RNAs. In addition, we confirmed five

miRNAs that have recently been reported in S. japonicum and found two additional homologs of known

miRNAs. The tRNA complement of S. mansoni is comparable to that of the free-living planarian Schmidtea

mediterranea, although for some amino acids differences of more than a factor of two are observed: Leu,

Ser, and His are overrepresented, while Cys, Meth, and Ile are underrepresented in S. mansoni. On the

other hand, the number of tRNAs in the genome of S. japonicum is reduced by more than a factor of four.

Both schistosomes have a complete set of minor spliceosomal snRNAs. Several ncRNAs that are expected

to exist in the S. mansoni genome were not found, among them the telomerase RNA, vault RNAs, and Y

RNAs.

Conclusion: The ncRNA sequences and structures presented here represent the most complete dataset

of ncRNA from any lophotrochozoan reported so far. This data set provides an important reference for

further analysis of the genomes of schistosomes and indeed eukaryotic genomes at large.
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Background
Non-coding RNA (ncRNA) plays a crucial role in gene
expression regulation, cellular function and defense, and
disease. Indeed, in higher eukaryotes, most of the
genomic DNA sequence encodes non-protein-coding
transcripts [1]. In contrast to protein-coding mRNAs,
ncRNAs do not form a homogeneous class. The best-char-
acterized subclasses form stable basepairing patterns (sec-
ondary structures) that are crucial for their function. This
group includes the well-known tRNAs, catalytically active
RNAs such as rRNA, snRNAs, RNase P RNA, and other
ribozymes, and regulatory RNAs such as microRNAs and
spliceosomal RNAs that direct protein complexes to spe-
cific RNA targets. Much less is known about long mRNA-
like ncRNAs, which are typically poorly conserved at the
level of both sequence and structure.

Most non-vertebrate genome projects have put little
emphasis on a comprehensive annotation of ncRNAs.
Indeed, most non-coding RNAs, with the notable excep-
tion of tRNAs and rRNAs, are difficult or impossible to
detect with BLAST in phylogenetically distant organisms.
Hence, ncRNA annotation is not part of generic genome
annotation pipelines. Dedicated computational searches
for particular ncRNAs, for example, RNase P and MRP
[2,3], 7SK RNAs [4,5], or telomerase RNA [6,7], are verita-
ble research projects in their own right. Despite best
efforts, ncRNAs across the animal phylogeny remain to a
large extent uncharted territory.

The main difficulty with ncRNA annotation is poor
sequence conservation and indel patterns that often corre-
spond to large additional "expansion domains". In many
cases, the secondary structure is much better conserved
than the primary sequence, providing a means of confirm-
ing candidate ncRNAs even in cases where sequence con-
servation is confined to a few characteristic motifs.
Secondary structure conservation can also be utilized to
detect homologs of some ncRNAs based on characteristic
combinations of sequence and structure motifs using spe-
cial software tools designed for this purpose.

In [8] we described a protocol for a more detailed homol-
ogy-based ncRNA annotation than what can be achieved
with currently available automatic pipelines. Here, we
apply this scheme to the genome of S. mansoni, and by
comparison with the newly sequenced S. japonicum
genome, identify ncRNAs in both of these clinically
important schistosomes.

Schistosomes belong to an early-diverging group within
the Digenea, but are clearly themselves highly derived [9-
11]. The flatworms are a long-branch group, suggesting
rapid mutation rates (see [12]).

Schistosome genomes are comparatively large, estimated
to be over 350 megabase pairs, and perhaps as high as 400
megabase pairs, for the haploid genome of S. mansoni and
S. japonicum [13-15]. The other major schistosome species
parasitizing humans probably have a genome of similar
size, based on the similarity in appearance of their karyo-
types [16]. These large sizes may be characteristic of platy-
helminth genomes in general: the genome of Schmidtea
mediterranea is even larger, with the current genome
sequencing project reporting a size of ~480 million base
pairs [17]http://genome.wustl.edu/genomes/view/schmi
dtea_mediterranea/.

Genome sequencing of the seven autosomes and the pair
of sex chromosomes of S. mansoni with about 8× coverage
has lead to a genome assembly comprising 5,745 scaffolds
(> 2 kb) covering 363 Mb [13,14,18]. Similarly, shotgun
sequencing of S. japonicum with coverage of 5.4× decoded
397 Mb of sequence [15]. These form about 25,000 scaf-
folds. Albeit both genome projects did not lead to com-
plete finished genomes, we therefore know at least 90-
95% of the genomic DNA sequences of S. japonicum and
S. mansoni, respectively.

The protein-coding portion of the Schistosoma genomes
have received much attention in recent years. Published
work includes transcriptome databases for both S. japoni-
cum [19] and S. mansoni [20], microarray-based expres-
sion analysis [21], characterization of promoters [22,23],
and physical mapping and annotation of protein-coding
genes from both the S. mansoni and S. japonicum genome
projects [18]. Recently, a systematic annotation of pro-
tein-coding genes in S. japonicum was reported [24]. In
contrast to other, better-understood, parasites such as
Plasmodium [25], however, not much is known about the
non-coding RNA complement of schistosomes. Only the
spliced leader RNA (SL RNA) of S. mansoni [26], the ham-
mer-head ribozymes encoded by the SINE-like retrotrans-
posons Sm-α and Sj-α [27,28], and secondary structure
elements in the LTR retrotransposon Boudicca [29] have
received closer attention. Ribosomal RNA sequences have
been available mostly for phylogenetic purposes [30], and
tRNAs have been studied to a limited degree [31].

The wealth of available ESTs, in principle, provides a val-
uable resource for ncRNA detection. Since mostly poly-A
ESTs have been generated, it is not surprising that most
ESTs have been attributed to protein-coding genes [32].
The large evolutionary distance, with 55% of the genes
without homologs outside the genus [13,18], makes it
hard or even impossible to reliably distinguish ESTs of
putative mRNA-like ncRNAs from non-coding portions of
protein-coding transcripts.

http://genome.wustl.edu/genomes/view/schmidtea_mediterranea/
http://genome.wustl.edu/genomes/view/schmidtea_mediterranea/
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In this contribution we therefore focus on a comprehen-
sive overview of the evolutionary conserved non-coding
RNAs in the genomes of S. mansoni and S. japonicum. We
discuss representatives of 23 types of ncRNAs that were
detected based on both sequence and secondary structure
homology.

Results and discussion
Structure and homology-based searches of the schisto-
some genomes revealed ncRNAs from 23 different RNA
categories. Table 1 lists these functional ncRNA categories,
the number of predicted genes in each category, and refer-
ences associated with each RNA type. Supplementary
fasta files containing the ncRNA genes, bed files with
the genome annotation, and stockholm-format align-
ment files can be accessed at http://www.bioinf.uni-leip
zig.de/Publications/SUPPLEMENTS/08-014.

Transfer RNAs

Candidate tRNAs were predicted with tRNAscan-SE in
the genomes of S. mansoni, S. japonicum and S. mediterra-
nea (a free-living platyhelminth, used for comparison).
After removal of transposable element sequences (see
below), tRNAscan-SE predicted a total of 713 tRNAs for
S. mansoni and 739 for S. mediterranea, while 154 tRNAs
were found in the S. japonicum sequences. These included
tRNAs encoding the standard 20 amino acids of the tradi-
tional genetic code, selenocysteine encoding tRNAs
(tRNAsec) [33] and possible suppressor tRNAs [34] in all
three genomes. The tRNAsec from schistosomes has been
characterized, and is similar in both size and structure to
tRNAsec from other eukaryotes [35].

The tRNA complements of the three platyhelminth
genomes are compared in detail in Figure 1. The amino

Table 1: Summary of homology-based RNA annotations from the sequenced genomes of S. mansoni and S. japonicum.

RNA class Functional Category S. man. S. jap. Related reference(s)

7SK Transcription regulation (1) 0 This study

Hammerhead ribozymes Self-cleaving > 38, 000 > 5, 000 [27]

miRNA Translation control 8 7 [109], this study

potassium channel motif RNA editing 9 3 [65]

RNase MRP Mitochondrial replication, rRNA processing (1) (1) This study

RNase P tRNA processing 1 1 This study

rRNA-operon Polypeptide synthesis 80-105 50-280 [39], this study

5S rRNA Polypeptide synthesis 21 1-13 This study

SL RNA Trans-splicing 6-48 1-9 [26], this study

SnoRNA U3 Nucleolar rRNA processing 1 1 This study

SRP Protein transportation 12 4+1 This study

tRNA Polypeptide synthesis 663 154 This study

U1 Splicing 3-34 2-6 [44], this study

U2 Splicing 3-15 1-63 [44], this study

U4 Splicing 1-19 1-6 [44], this study

U5 Splicing 2-9 1-24 [44], this study

U6 Splicing 9-55 2-12 [44], this study

U11 Splicing 1 1 This study

U12 Splicing 1-2 0-1 [44], this study

U4atac Splicing 1 1 This study

U6atac Splicing 1 1 This study

U7 Histone maturation 0 (2) This study

Where are range of numbers is given, it remains uncertain whether multiple copies in the genomic DNA are true copies of the gene or assembly 
artifacts.

http://www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/08-014
http://www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/08-014
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Comparison of the tRNA complement of Schistosoma mansoni, Schistosoma japonicum, and Schmidtea mediterraneaFigure 1
Comparison of the tRNA complement of Schistosoma mansoni, Schistosoma japonicum, and Schmidtea mediter-
ranea. A: Comparison of anti-codon distributions for the 20 amino acids. Numbers below each pie-chart are the total number 
of tRNA genes coding the corresponding amino acid. Left columns: S. mansoni; middle columns: S. mediterranea; right columns: 
S. japonicum. B: Number of tRNAs encoding a particular amino acid. red: S. mansoni, blue: S. japonicum, green: S. mediterranea. 
Abbreviations: Sup: putative suppressor tRNAs (CTA, TTA); Scys: Selenocysteine tRNAs (TCA); Pseu: predicted pseudo-
genes; Und: tRNA predictions with uncertain anticodon; likely these are also tRNA pseudogenes. The Gln-tRNA derived 
repeat family (see text) is not included in these data. C: Comparison of codon usage and anti-codon abundance. No significant 
correlation is observed for the two schistosomes. For S. mediterranea there is a weak, but statistically significant, positive cor-
relation: t ≈ 2.0

TGC

GGC

CGC

AGC

20 34 10 Ala
TCC

GCC

CCC

ACC

31 27 5 Gly
TGG

GGG

CGG

AGG

48 50 12 Pro

TCT

CCT

TCG

GCG

CCG

ACG

58 44 13 Arg

GTG

ATG

27 8 2 His
GCT

ACT

TGA

GGA

CGA

AGA

51 94 19 Ser

GTT

ATT

23 27 3 Asn
TAT

GAT

AAT

17 42 5 Ile
TGT

GGT

CGT

AGT

35 34 7 Thr

GTC

ATC

8 15 5 Asp
TAG

GAG

CAG

AAG

TAA

CAA

86 46 12 Leu

CCA

23 23 0 Trp

GCA

ACA

21 44 5 Cys
TTT

CTT

36 38 10 Lys
GTA

ATA

6 8 1 Tyr

TTG

CTG

63 65 8 Gln
CAT

21 44 7 Met
TAC

GAC

CAC

AAC

37 29 13 Val

TTC

CTC

39 44 8 Glu
GAA

AAA

13 12 4 Phe

S.ma. S.me. S.ja. S.ma. S.me. S.ja. S.ma. S.me. S.ja.

A

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
la

A
rg

A
s
n

A
s
p

C
y
s

G
ln

G
lu

G
ly

H
is

Ile

L
e
u

L
y
s

M
e
t

P
h

e

P
ro

S
e

r

T
h

r

T
rp

T
y
r

V
a

l

S
u

p

S
c
y
s

U
n

d

P
s
e

u

B                                                                            

S. mansoni
S. mediterranea

S. japonicum

0.00 0.02 0.04 0.06 0.08
Fraction of Codons

0.00

0.02

0.04

0.06

0.08

F
ra

c
ti
o
n
 o

f 
A

n
ti
c
o
d
o
n
s

S.mansoni
S.japonicum

S.mediterranea

B C



BMC Genomics 2009, 10:464 http://www.biomedcentral.com/1471-2164/10/464

Page 5 of 13

(page number not for citation purposes)

acids are represented in approximately equal numbers in
S. mansoni and Schmidtea. Nevertheless, there are several
notable deviations. S. mansoni contains many more leu-
cine (86 vs. 46) and histidine (27 vs. 8) tRNAs, while ser-
ine (51 vs. 94), cysteine (21 vs. 44), methionine (21 vs.
44), and isoleucine (17 vs. 42) are underrepresented. In
addition, there are several substantial differences in codon
usage. In most cases, S. mansoni has a more diverse reper-
toire of tRNAs: tRNA-Asn-ATT, tRNA-Arg-CGC, tRNA-His-
ATG, tRNA-Ile-GAT, tRNA-Pro-GGG, tRNA-Tyr-ATA,
tRNA-Val-GAC are missing in Schmidtea. Only tRNA-Ser-
ACT is present in Schmidtea but absent in Schistosoma. The
tRNA complement of S. japonicum, on the other hand, dif-
fers strongly from its two relatives. Not only is the number
of tRNAs decreased by more than a factor of four, S. japon-
icum also prefers anticodons that are absent or rare in its
relatives, such as tRNA-Ala-GGC, tRNA-Cys-ACA, and Lys-
CTT. On the other hand, no tRNA-Trp was found. Since
the UGG codon is present in many open reading frames
we interpret this as a problem with the incompleteness of
the genome assembly rather than a genuine gene loss. The
reduction in the number of tRNAs is also evident by com-
paring the number of tRNAs with introns: 27 in S. mansoni
versus 5 in S. japonicum.

It has been shown recently that changes in codon usage,
even while coding the same protein sequences, can
severely attenuate the virulence of viral pathogens [36] by
"de-optimizing" translational efficiency. This observation
leads us to speculate that the greater diversity of the tRNA
repertoire could be related to the selection pressures of the
parasitic life-style of S. mansoni. The effect is not straight-
forward, however, because there is no significant correla-
tion of tRNA copy numbers with the overall codon usage
in both S. mansoni and S. japonicum, Figure 1C. In con-
trast, a weak but statistically significant correlation can be
observed in Schmidtea mediterranea. It would be interest-
ing, therefore, to investigate in detail whether there are
differences in codon usage of proteins that are highly
expressed in different stages of S. mansoni's life cycle, and
whether the relative expression levels of tRNAs are under
stage-specific regulation.

The most striking result of the tRNAscan-SE analysis
was the initial finding of 1,135 glutamine tRNAs (Gln-
tRNAs) in S. mansoni in contrast to the 8 Gln-tRNAs in S.
japonicum and 65 in S. mediterranea. Nearly all of these
(1,098 in S. mansoni) were tRNA-Gln-TTG. In addition, an
extreme number of 1,824 tRNA-pseudogenes in S. man-
soni (vs. 951 in S. japonicum and 19 in S. mediterranea) was
predicted. Of these, 1,270 were also homologous to
tRNA-Gln-TTG. These two groups of tRNA-Gln-TTG-
derived genes (those predicted to be pseudogenes and
those predicted to be functional tRNAs) totaled 2,368.
These high numbers suggest a tRNA-derived mobile

genetic element. We therefore ran the 2,368 S. mansoni
tRNA-Gln-TTG genes through the RepeatMasker pro-
gram [37]. Almost all of them (2,342) were classified as
SINE elements. Further BLAST analysis revealed that these
elements are similar to members of the Sm-α family of S.
mansoni SINE elements [38]. Removal of these SINE-like
elements yielded a total of 63 predicted glutamine-encod-
ing tRNAs in S. mansoni. About 650 of 951 pseudogenes
in S. japonicum derived from tRNA-Pro-CGG.

Homology-based analysis yielded similar, though some-
what less sensitive, results to those of tRNAscan-SE. For
instance, a BLAST search in S. mansoni with Rfam's tRNA
consensus yielded 617 predicted tRNAs compared to the
663 predictions made by tRNAscan-SE.

Ribosomal RNAs

As usual in eukaryotes, the 18S, 5.8S, and 28S genes are
produced by RNA polymerase I from a tandemly repeated
polycistronic transcript, the ribosomal RNA operon. The
S. mansoni genome contains about 90-100 copies [39,40]
which are nearly identical at sequence level, because they
are subject to concerted evolution [41]. The repetitive
structure of the rRNA operons causes substantial prob-
lems for genome assembly software [42]. In order to
obtain a conservative estimate of the copy number, we
retained only partial operon sequences that contained at
least two of the three adjacent rRNA genes. We found 48
loci containing parts of 18S, 5.8S, and 28S genes, 32 loci
covering 18S and 5.8S rRNA, and 57 loci covering 5.8S
and 28S rRNAs [see Additional file 1 - Figures S1 and S2].
Adding the copy numbers, we have not fewer than 80 cop-
ies (based on linked 18S rRNAs) and no more than 137
copies (based on linked 5.8S rRNA). The latter is probably
an overestimate due to the possibility that the 5.8S rRNA
may be contained in two scaffolds. The copy number of
rRNA operons is thus consistent with the estimate of 90-
100 from hybridization analysis [39]. An analogous anal-
ysis of the current S. japonicum assembly yields less accu-
rate results. Due to the many short fragments, we obtained
90 copies; the true number may lie between 50 and 280,
however.

The 5S rRNA is a polymerase III transcript that has not
been studied in schistosomes so far. We found 21 copies
of the 118 nt long 5S rRNA in S. mansoni, compared with
13 copies in S. japonicum. Four of the 21 copies are located
within a 3,000 nt cluster on Scaffold010519.

Spliceosomal RNAs and Spliced Leader RNA

Spliceosomes, the molecular machines responsible for
most splicing reactions in eukaryotic cells, are ribonu-
cleoprotein complexes similar to ribosomes [43]. The
major spliceosome, which cleaves GT-AG introns,
includes the five snRNAs U1, U2, U4, U5, and U6. In the
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S. mansoni genome, all of them are multicopy genes. By
homology search we found 34 U1, 15 U2, 19 U4, 9 U5,
and 55 U6 sequences in the genome assembly. Interpret-
ing all sequences that are identical in short flanking
regions as the same, we would retain only 3 U1, 3 U2, 1
U4, 2 U5, and nine U6 genes [44]. The true copy number
in the S. mansoni genome is most likely somewhere
between these upper and lower bounds. For S. japonicum,
the corresponding numbers are U1: 2-6, U2: 1-63 U2, U4:
1-6 U4, U5: 1-24, and U6: 2-12. Due to the more frag-
mented genome assembly we expect the true numbers to
be closer to the lower bounds. Secondary structures for
these candidates are similar to those of typical snRNAs,
Figure 2.

A second, much less frequent, minor spliceosome is
responsible for the processing of atypical AT-AC introns.
It shares only the U5 snRNA with the major spliceosome.
The other four RNA components are replaced by variants
called U11, U12, U4atac, and U6atac [45]. The minor-
spliceosomal snRNAs are typically much less conserved
than the RNA components of the major spliceosome [44].
It was not surprising, therefore, that these RNAs were
detectable only by means of GotohScan[8] but not with
the much less sensitive BLAST searches. Although U4atac
and U6atac are quite diverged compared to known

homologs, they can be recognized unambiguously based
on both secondary structure and conserved sequence
motifs. Furthermore, the U4atac and U6atac sequences
can interact to form the functionally necessary duplex
structure shown in Figure 2. As in many other species,
there is only a single copy of each of the minor spliceo-
somal snRNAs in both of the schistosome genomes, Tab.
1. An analysis of promoter sequences showed that the
putative snRNA promoter motifs in S. mansoni are highly
derived. Only one of the two U12 genes exhibited a clearly
visible snRNA-like promoter organization.

The Spliced Leader (SL) RNA is one of the very few previ-
ously characterized ncRNAs from S. mansoni [26]. The 90
nt SL RNA, which was found in a 595 nt tandemly
repeated fragment (accession number M34074), contains
the 36 nt leader sequence at its 5' end which is transferred
in the trans-splicing reaction to the 5' termini of mature
mRNAs. Using blastn, we identified 54 SL RNA genes.
These candidates, along with 100 nt flanking sequence,
were aligned using ClustalX, revealing 6 sequences with
aberrant flanking regions, which we suspect to be pseu-
dogenic. The remaining sequences are 43 identical copies
and 5 distinct sequence variants. A secondary structure
analysis corroborates the model of [26], according to
which the S. mansoni SL RNA has only two loops, with an

Secondary structures of the nine snRNAs and the interaction complexes of U4/U6 and U4atac/U6atac, respectively, in S. man-soniFigure 2
Secondary structures of the nine snRNAs and the interaction complexes of U4/U6 and U4atac/U6atac, respec-
tively, in S. mansoni. Structure prediction was performed by RNAfold, RNAalifold and for U4/U6 and U4atac/U6atac 
by RNAcofold from the RNA Vienna Package [96,108]. Boxes indicate Sm binding sites. Additional details on sequences, 
structures, and alignments are available at the supplementary material.
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unpaired Sm binding site [see Additional File 1 - Figure
S3]. This coincides with the SL RNA structure of Rotifera
[46], but is in contrast to the SL RNAs in most other
groups of eukaryotes, which exhibit single or triple stem-
loop structures [47]. A blastn-search against S. mansoni
EST data confirms that the 5' part of the SL is indeed trans-
spliced to mRNAs. Several nearly identical SL RNA
homologs are found in S. japonicum.

SRP RNA and Ribonuclease P RNA

Signal recognition particle (SRP) RNA, also known as 7SL
RNA, is part of the signal recognition particle, a ribonucle-
oprotein that directs packaged proteins to their appropri-
ate locations in the endoplasmic reticulum. Although one
of the protein subunits of this ribonucleoprotein was
cloned in 1995 [48], little is known about the other subu-
nits or the RNA component in S. mansoni. We found eight
probable candidates for the SRP RNA, with one almost
canonical sequence [see Additional file 1 - Figure S4], and
four possible candidates with point mutations which may
influence their function.

The RNA component of Ribonuclease P (RNase P) is the
catalytically active part of this enzyme that is required for
the processing of tRNA precursors [49,50]. We found one
classic RNase P RNA in the S. mansoni genome using both
GotohScan and rnabob with the eukaryotic ("nuclear")
Rfam consensus sequence for RNase P as search sequence.

MicroRNAs

MicroRNAs are small RNAs that are processed from hair-
pin-like precursors, see e.g. [51]. They are involved in
post-transcriptional regulation of mRNA molecules. So
far, no microRNAs have been verified experimentally in S.
mansoni. The presence of four protein-coding genes
encoding crucial components of the microRNA process-
ing machinery (Dicer, Argonaut, Drosha, and Pasha/
DGCR8) [52,53], and the presence of Argonaut-like genes
in both S. japonicum [54] and S. mansoni (detected by
tblastn in EST data, see Supplemental Data online),
strongly suggests that schistosomes have a functional
microRNA system. Indeed, most recently five miRNAs
were found by direct cloning in S. japonicum that are also
conserved in S. mansoni [55]: let-7, mir-71, bantam, mir-
125, and a single schistosome-specific microRNA. These
sequences, including the precursor hairpins, are well con-
served in S. japonicum. On the other hand, the microRNA
precursor sequences of both schistosomes are quite
diverged from the consensus of the homologous genes in
Bilateria.

Using bioinformatics (see methods) we were able to find
only one further miRNA candidate in S. mansoni, mir-124,
that is also conserved in S. japonicum. In insects, this
miRNA is clustered with mir-287. The distance of both

miRNAs is approximately 8 kb in Drosophilids. We found
an uncertain mir-287 candidate in S. mansoni, however, on
a different scaffold than mir-124. Although this sequence
nicely folds into a single stem-loop structure, it is con-
served only antisense to the annotated mature sequence
in insects (see, Figure 3). This S. mansoni mir-287 candi-
date does not seem to be conserved in S. japonicum.

In [56], 71 microRNAs are described for the distantly
related trematode Schmidtea mediterranea, and additional
ones are announced in a recent study focussing on piRNAs
[57]. The overwhelming majority, 54, were reported to be
members of 29 widely conserved metazoan microRNA
families, although in some cases even the mature miRNA
sequence is quite diverged. Therefore, we regard several
family assignments as tentative at best. Of those 29 miR-
NAs, we found mir-124 only. However, the schistosome
sequences are more related to the other bilaterian mir-124
homologs than to those of S. mediterranea. Out of the
remaining 54 miRNAs that were annotated in S. mediter-
ranea we found that mir-749 is also conserved in the two
schistosome species. Here, the sequences show a common
consensus sequence and secondary structure in their pre-
cursors (see Figure 3).

The small number of recognizable microRNAs in schisto-
somes is in strong contrast to the extensive microRNA
complement in S. mediterranea, indicating massive loss of
microRNAs relative to the planarian ancestor. This may be
a consequence of the parasitic lifestyle of the schisto-
somes.

Small Nucleolar RNAs

Small nucleolar RNAs play essential roles in the process-
ing and modification of rRNAs in the nucleolus [58,59].
Both major classes, the box H/ACA and the box C/D snoR-
NAs are relatively poorly conserved at the sequence level
and hence are difficult to detect in genomic sequences.
This has also been observed in a recent ncRNA annotation
project of the Trichoplax adhaerens genome [8]. The best-
conserved snoRNA is the atypical U3 snoRNA, which is
essential for processing of the 18S rRNA transcript into
mature 18S rRNA [60]. In the current assembly of the S.
mansoni genome we found six U3 loci, but they are also
identical in the flanking sequences, suggesting that in fact
there is only a single U3 gene. No unambiguous homo-
logue was detected for any of the other known snoRNAs.

A de novo search for snoRNAs (see methods for details)
resulted in 2,610 promising candidates (1,654 box C/D
and 956 box H/ACA), see Supplemental Data online. All
these predictions exhibit highly conserved sequence boxes
as well as the typical secondary features of box C/D and
box H/ACA snoRNAs, respectively.
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A comparison of the predicted snoRNAs with the entries
in the Rfam[61] and NONCODE[62] databases returned
only 47 hits that match to several other RNAs like tRNAs,
parts of the rRNA operon, snRNAs, mRNAlike genes and a
few of our candidates map to the hammerhead ribozyme.
These sequences are likely false positives and have been
removed from the candidate list. The number of predicted
candidates is much larger than the number of snoRNAs
reported in other organisms; for instance [59] lists 456 for
the human genome. Although we most likely do not yet
know the full snoRNA complement of eukaryotic
genomes, we have to expect that a large fraction of predic-
tion will turn out to be false positives.

We therefore analysed the conservation of the candidates
in S. japonicum and focussed on the snoRNA candidates
with targets in the 18S, 28S and/or 5.8S ribosomal RNA.
While targets are predicted for more than half of the can-
didates, see Table 2, the numbers are drastically reduced
when conservation of the candidates in S. japonicum is
required. Note, furthermore, that the fraction of con-
served candidates is strongly enriched among those with
ribosomal RNA targets, indicating that these sets are likely
to contain a sizeable fraction of true positives. This filter-
ing step leaves us with 227 box C/D and 352 box H/ACA
snoRNA candidates. While still high, these numbers fall
into the expected range for a metazaon snoRNA comple-
ment.

Multiple sequence alignments of the pre-miRNAs that were computationally found in S. mansoniFigure 3
Multiple sequence alignments of the pre-miRNAs that were computationally found in S. mansoni. For mir-124 and 
mir-749 the sequences share a common consensus structure. The uncertain mir-287 candidate clusters together with mir-124 
in insect genomes. However, though it also exhibits a single stem-loop structure, it is different from that of insects. Here the 
sequence is only conserved at the antisense region of the annotated mature miRNA.

                                                               ****************** *        
Structure                .((.(((.(((((.(((((..(((((((((...............................)))))))))))))).))))).))).))...
sma-mir-124 UUGUAUGCCAUUUUCCGCGAUUGCCUUGAUGAGUUAUAA--AUAUUAUUCAUAACAAAAAUAUUAAGGCACGCGGUGAAUGUCAUCCACGG
sja-mir-124 AUGUAUGCCAUUUUCCGCGAUUGCCUUGAUUUGUUAAAAGAAAAUGAUUCACAACAAAA-UAUUAAGGCACGCGGUGAAUGUCAUCCACGG
hsa-miR-124 ---------------------------------------------------------------UAAGGCACGCGGUGAAUGCC--------

mir-124

                                                  |-conserved antisense--|            *        **  * *        
dme-Struc             ..(((((.(.......).))..))).((...(((((((((((((..(((((((((((.....)))))))))))...)))..)))).)).)))).)).
dme-mir-287 GGACGCCGGGGAUGUAUGGG--UGUGUA--GGGUCUGAAAUUUUGCACACAUUUACAAUAAUUGUAAAUGUGUUGAAAAUCGUUUGCACGACUGUGA
dme-miR-287 --------------------------------------------------------------------UGUGUUGAAAAUCGUUUGCAC--------
sma-mir-287 ---GUAUACUCGUAUGGGUGAAUGUGUACA---UGUUAAAUUUUGCACACAUUUACAAAAAAAAGGUGCCGAAUAUUCCAUUUUCACCCUACAUGUU
sma-Struc ...........(((.(((((((.(((...(...((((.......((((.(.(((......))).)))))..)))))..))).)))))))))).....

mir-287

sme-miR-749     **  ****** **********                                                                    
Structure ...((((((((((((((((((((..(((.(.((((((.......)))))).))))....))))))...)))))).........))))))))..
sja-mir-749 AAUCGCCAGGAUGAACCUCGGUGGUCCGGGGUGCAGGCUUCAAACCUGCAGCCGACUGGCGUCGGAGUGGUUCGAUUCCGCCUUCCUGGCGUG
sma-mir-749 AAUUGCCGGGAUGAACCUCGGUGGUCCGGGGUGCAGGCUUCAAACCUGUAGCCGACUAGCAUCGGAGCGGUUCGAUUCCGCCUUCCUGGCGUA
sme-mir-749-1 AAUCGCUGGGAUGAGCCUCGGUGGUCCGGGGUGCAGGCUUCAAACCUGUAGUCGGUUGACACCGAAGUGGUUCGAUUCCACCUUUCCAGCGAU
sme-mir-749-2 AAUUGCUGGGAUGAGCCUCGGUGGUCCGGGGUGCAGGCUUCAAACCUGUAGUCGGUUGACACCGAAGUGGUUCGAUUCCACCUUUCCAGCGAU
sme-miR-749 ----GCUGGGAUGAGCCUCGGUGGU--------------------------------------------------------------------

mir-749

Table 2: Conservation and target prediction of snoRNA candidates.

snoReporttargets Box C/D (snoscan) Box H/ACA (RNAsnoop)

≥ 2 1 0 ≥ 2 1 0

predicted in S. mansoni 926 110 613 284 495 177

conserved in S. japonicum 200 27 83 149 203 62

Only ribosomal RNAs were searched for putative target sites.
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We remark, finally, that five of the snoRNA candidates
(three box C/D and two box H/ACA) are also conserved in
Schmidtea mediterranea.

Other RNA motifs

Two examples of relatively well-known schistosome non-
coding RNAs are the hammerhead ribozyme motifs
within the Sm-α and Sj-α SINE-like elements [27,28]. A
blastn search of the hammerhead ribozyme motif from
the Rfam database resulted in ~38,500 candidates for S.
mansoni in contrast to ~5,000 candidates for S. japonicum.
While high, this number is not surprising considering the
generally high copy number of SINE elements; previously,
the copy number for Sm-α elements in the S. mansoni
genome was estimated to exceed 10,000 [27]. The highly
conserved potassium channel RNA editing signal [63,64]
is another structured RNA element that was described pre-
viously [65]. We found nine copies of this hairpin struc-
ture in the S. mansoni genome assembly and three in S.
japonicum.

Uncertain and missing candidates

Both the MRP RNA [2,3,66] and the 7SK RNA [4,5,67]
have highly variable, rapidly evolving sequences that
make them difficult or impossible to detect in invertebrate
genomes. Their ancient evolutionary origin and their
extremely conserved molecular house-keeping functions
make it more than likely that they are present in the schis-
tosome genomes as well. In both cases, we have not been
able to identify unambiguous homologs. There are, how-
ever, plausible candidates. We briefly describe them in the
following paragraphs since they may warrant further
attention and may be a useful starting point for subse-
quent experimental studies, as exemplified by the history
of discovery of the snRNA in Giardia intestinalis [68-70].

MRP RNA has multiple functions, among them mito-
chondrial RNA processing and nucleolar pre-rRNA
processing. The S. mansoni MRP candidate fits the general
secondary structure model of metazoan MRP RNAs
[2,3,66] and analysis with RNAduplex shows that the
candidate contains a pseudoknot which exhibited striking
sequence identity with known MRPs. The locus is well-
conserved in S. japonicum. On the other hand, stems 1 and
12 were divergent compared to known MRPs, and stem 19
also fails to display clear similarities with known MRPs.
Although quite likely a true MRP homolog, we therefore
consider this sequence only tentative.

7SK RNA is a general transcriptional regulator, repressing
transcript elongation through inhibition of transcription
elongation factor PTEFb and also suppresses the deami-
nase activity of APOBEC3C [71]. The S. mansoni 7SK can-
didate has a 5' stem similar to that described in other
invertebrates [5], and parts of the middle of the sequence
are also recognizable. There is, furthermore, a homolo-

gous locus in the genome of S. japonicum. However, the 3'
stem (which was followed by a poly-T terminator) was not
conserved. In addition, a large sequence deletion was evi-
dent.

Three major classes of ncRNAs were expected, but not
found, in the S. mansoni genome. As in all other inverte-
brates genomes, no candidate sequence was found for a
telomerase RNA. S. mansoni almost certainly has a canon-
ical telomerase holoenzyme, since it encodes telomerase
proteins (Smp_066300 and Smp_066290) and has the
same telomeric repeat sequences as many other metazoan
animals [72]. Telomerase RNAs are notoriously difficult
to find, as they are highly divergent among different spe-
cies, varying in both size and sequence composition
[7,73]. Vault RNAs are known in all major deuterostome
lineages [74], and homologs were recently also described
in two lophotrochozoan lineages [75]. Since S. mansoni
has a homolog of the major vault protein (Smp_006740)
we would also expect a corresponding RNA component to
be present. So far, Y RNAs have been found only in verte-
brates [76,77] and in nematodes [78,79], although the Ro
RNP, that they are associated with, seems to be present in
most or even all eukaryotes.

Conclusion
We have described here a detailed annotation of "house-
keeping" ncRNAs in the genomes of the parasitic platy-
helminth Schistosoma mansoni and Schistosoma japonicum.
Limited to the best conserved structured RNAs, our work
nevertheless uncovered important genomic features such
as the existence of a SINE family specific to Schistosoma
mansoni, which is derived from tRNA-Gln-TTG. Our data
furthermore establish the presence of a minor spliceo-
some in schistosomes and confirms spliced leader trans-
splicing. With a coverage of at least 90-95% of the
genomic DNA, missing data are not a significant problem.
The fragmented genome assemblies, however, preclude
accurate counts of the multi-copy genes.

Platyhelminths are known to be a fast-evolving phylum
[80]. It is not surprising therefore that in particular the
small ncRNAs are hard or impossible to detect by simple
homology search tools such as blastn. Even specialized
tools have been successful in identifying only the better
conserved genes such as tRNA, microRNAs, RNase P RNA,
SRP RNA. The notoriously poorly conserved families,
such as snoRNAs, telomerase RNA, or vault RNAs, mostly
escaped detection.

The description of several novel, and in many cases quite
derived, schistosome ncRNAs contributes significantly to
the understanding of the evolution of the corresponding
RNA families. The schistosome ncRNA sequences, further-
more, are an important input to subsequent homology
search projects, since they allow the construction of
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improved descriptors for sequence/structure-based search
algorithms. Last but not least, the ncRNA annotation
tracks are an important contribution to the genome-wide
annotation datasets of both S. mansoni and S. japonicum.
It not only contributes the protein-based annotation but
also helps to identify annotation errors, e.g. cases where
putative proteins are annotated that overlap rRNA oper-
ons or other ncRNAs.

The house-keeping ncRNAs considered in this study are
almost certainly only the proverbial tip of the platy-
helminth ncRNAs iceberg. The discovery of a large
number of mRNA-like ncRNAs (mlncRNAs) in many
eukaryotes (compiled e.g. in the RNAdb[81] and reviewed
e.g. in [1]), and in particular in many other invertebrate
species (nematodes [82], insects [83,84]) suggests that
similar transcripts will also be abundant in schistosomes.
The abundant EST data for both schistosome species
[85,86] can provide a starting point e.g. for an analysis
along the lines of [87]. Computational surveys, further-
more, have provided evidence for large numbers of RNAs
with conserved secondary structures in other invertebrates
[88-90]. The underlying methods, such as RNAz[91], are
inherently comparative, presenting difficulties for appli-
cation to schistosome genomes due to the large evolution-
ary distance between schistosome and non-schistosome
genomes. This is also the case for a recent approach to
identify mRNA-like non-coding RNAs with very low levels
of sequence conservation based on their intron structure
[92]. A deeper understanding of the non-coding transcrip-
tome of schistosomes will therefore have to rely primarily
on experimental approaches, either by means of tiling
arrays or by means of high throughput transcriptome
sequencing.

Methods
tRNA annotation

We used tRNAscan-SE[93] with default parameters to
annotate putative tRNA genes. As additional confirma-
tion, the genome sequence was searched using tRNA con-
sensus sequences from the Rfam database [61]. In order to
obtain suitable data for comparison, the genome of the
free-living platyhelminth Schmidtea mediterranea [17] was
searched alongside that of S. mansoni and S. japonicum.

microRNA annotation

We followed the general protocol outlined in [8] to iden-
tify miRNA precursors, using all metazoan miRNAs listed
in miRBase [94] [Release 11.0, http://micro
rna.sanger.ac.uk/sequences/]. The initial search was con-
ducted by blastn with E < 0.01 with the mature and
mature* miRNAs as query sequences. The resulting candi-
dates were then extended to the length of the precursor
sequence of the search query and aligned to the precursors
using ClustalW[95]. Secondary structures were pre-
dicted using RNAfold[96] for single sequences and

RNAalifold[97] for alignments. Candidates that did
not fold into miRNA-like hairpin structures were dis-
carded. The remaining sequences were then examined by
eye to see if the mature miRNA was well-positioned in the
stem portion of each putative precursor sequence. In addi-
tion, we used the final candidates to search the S. japoni-
cum and S. mediterranea genomes to examine whether
these sequences are conserved in Schistosoma and/or
Platyhelminthes.

snoRNA annotation

We compared all the known human and yeast snoRNAs
that are annotated in the snoRNAbase[98] to the S. man-
soni genome using BLAST[99] and GotohScan[8]. The
search for novel snoRNA candidates was performed only
on sequences that were not annotated as protein-coding
or another ncRNA in the current S. mansoni assembly. The
SnoReport program [100] was used to identify putative
box C/D and box H/ACA snoRNAs on both strands. Only
the best predictions, i.e., those that show highly conserved
boxes and canonical structural motifs, were kept for fur-
ther analysis. The remaining candidates are further ana-
lysed for possible target interactions with ribosomal RNAs
using snoscan[101] for box C/D and RNAsnoop[102]
for box H/ACA snoRNA candidates. In addition, the
sequences were checked for conservation in S. japonicum
and S. mediterranea using BLAST. To estimate the number
of false predictions we compared the candidate snoRNAs
with common ncRNA databases, in particular Rfam[61]
and NONCODE[62]. All sequences that match a non-
snoRNA ncRNA were discarded.

Other RNA families

For other families, we employed the following five steps:

(a) For candidate sequences of ribosomal RNAs, spliceo-
somal RNAs, the spliced leader (SL) and the SRP RNA, we
performed BLAST searches with E < 0.001 using the
known ncRNA genes from the NCBI and Rfam databases.
For the snRNA set, see [44]. For 7SL RNA we used X04249,
for 5S and 5.8S rRNAs we used the complete set of Rfam
entries, for the SSU and LSU rRNAs, we used Z11976 and
NR_003287, respectively. The SL RNAs were searched
using SL RNA entries from Rfam and the sequences
reported in [26]. For more diverged genes such as minor
snRNAs, RNase MRP, 7SK, and RNase P, we used
GotohScan[8], an implementation of a full dynamic
programming alignment with affine gap costs. In cases
where no good candidates were found we also employed
descriptor-based search tools such as rnabob http://
selab.janelia.org/software.html.

(b) In a second step, known and predicted sequences were
aligned using ClustalW[95] and visualized with Clus
talX[103]. To identify functional secondary structure,
RNAfold, RNAalifold, and RNAcofold[104] were

http://microrna.sanger.ac.uk/sequences/
http://microrna.sanger.ac.uk/sequences/
http://selab.janelia.org/software.html
http://selab.janelia.org/software.html
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used. Combined primary and secondary structures were
visualized using stockholm-format alignment files in
the emacs editor utilizing ralee mode [105]. Align-
ments are provided at the Supplemental Data online.

(c) Putatively functional sequences were distinguished
from likely pseudogenes by analysis of flanking genomic
sequence. To this end, the flanking sequences of snRNA
and SL RNA copies were extracted and analyzed for con-
served sequence elements using MEME[106]. Only snRNAs
with plausible promoter regions were reported.

(d) Additional consistency checks were employed for
individual RNA families, including phylogenetic analysis
by neighbor-joining [107] to check that candidate
sequences fall at phylogenetically reasonable positions
relative to previously known homologs. For RNase MRP
RNA candidates, RNAduplex http://www.tbi. uni
vie.ac.at/RNA/RNAduplex.html was used to find the pseu-
doknot structure. In order to confirm that the SL RNA can-
didate is indeed trans-spliced to mRNA transcripts, we
searched the FAPESP Genoma Schistosoma mansoni website
for ESTs including fragments of the predicted SL RNA. We
found 52 ESTs with blastnE < 0.001 that span the pre-
dicted region of the SL RNA (nt 8-38), indicating that this
RNA does indeed function as a spliced leader.

(e) Accepted candidate sequences were used as BLAST
queries against the S. mansoni genome to determine their
copy number in the genome assembly.

Additional Data Online

The website http://www.bioinf.uni-leipzig.de/Publica
tions/SUPPLEMENTS/08-014 provides extensive machine
readable information, including sequence files, align-
ments, and genomic coordinates.
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