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ABSTRACT. For A a triangulated d-dimensional region in Kd, let S^(A) de-
note the vector space of all Cr functions F on A that, restricted to any simplex
in A, are given by polynomials of degree at most rn. We consider the prob-
lem of computing the dimension of such spaces. We develop a homological
approach to this problem and apply it specifically to the case of triangulated
manifolds A in the plane, getting lower bounds on the dimension of S^(A) for
all r. For r = 1, we prove a conjecture of Strang concerning the generic dimen-
sion of the space of C1 splines over a triangulated manifold in R2. Finally, we
consider the space of continuous piecewise linear functions over nonsimplicial
decompositions of a plane region.

1. Introduction. Let A be a finite d-dimensional simplicial complex [16, p.
7] (rectilinearly) embedded in Rd, i.e., we think of A as giving a triangulation of
a compact region in Rd in such a way that each simplex in A is the convex hull of
its vertices. We will often just denote the region itself by A; for example, we write
A C Rd. The exact nature of the embedding will be an issue later on. We assume
throughout that A is pure, that is, each maximal simplex has dimension d. We will
also assume, without loss of generality, that A is connected.

For nonnegative integers m and r, we define Sm(A) to be the set of all piecewise
polynomial functions on A which are of degree at most m and are smooth of order
r, i.e., all functions F: A —► R such that

(1.1) F\a is a (real) polynomial of degree < m, for each ct G A and
(1.2) F is continuously differentiable of order r.
Such functions are often called splines or finite elements. The set Sm (A) forms

a vector space over R; it is the aim of this paper to study its dimension.
This problem was first formally introduced by Strang [23, 24], who traces its

history to a paper of Courant [12], where the idea of approximation by continuous
piecewise polynomial (specifically, piecewise linear) functions is suggested. In the
case of continuous piecewise linear functions (i.e., r = 0, m = 1), it is straightfor-
ward to see that the dimension is /0, the number of vertices of A; in particular, a
basis for S°(A) is given by those piecewise linear functions having value 1 on some
vertex and 0 on all others. For a detailed discussion of all the spaces S„(A), see
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326 L. J. BILLERA

[8], where, for example, it is shown that dim5^(A) = 2Z,-_0/j(m_1) for m > 0,
where fj is the number of ./-dimensional faces of A.

We are interested here in developing methods to deal with the spaces Sm(A) for
r > 0. We use these methods, in the case d = 2 and r = 1, to verify a conjecture of
Strang [23] when A is a 2-manifold.

The case d — 2 of planar triangulations has received considerable attention since
Strang's 1973 paper [23] (see also [24]). Here, a heuristic calculation was suggested
to compute the dimensions of the spaces 5^(A), leading to a conjecture, which we
state as follows.

STRANG'S CONJECTURE.   For a generic embedding of a planar 2-manifold A,

(1.3) dim^(A)=(m + 2)/2-(2m + l)/r + 3/0°,

where f2 is the number of triangles in A, fl and /q the number of interior edges
and vertices, respectively.

To be specific, let A be a simplicial complex with n vertices. We say a property
of A holds for generic embeddings of A in the plane, or holds generically, if there
is a nonzero real polynomial p of 2n variables such that the property is true for
any embedding of A in R2, with vertex locations (xi,yi), i = 1,... ,n, such that
p(x1,yi,...,xn,yn) t^O.

While generic embeddings were not explicitly mentioned by Strang, he was al-
ready aware of the fact that the dimension of the spline spaces might jump in some
special positions. In particular he noted that the number of smooth quadratics on
a rectangle triangulated by its two crossing diagonals was higher than the case in
which the interior edges did not lie on two straight lines.

The first published results on this problem were by Morgan and Scott [17], who
proved the conjecture for m > 5 by showing that for any embedding of A, the
dimension of S^(A) is given by (1.3) plus the number of rectangles triangulated
by crossing diagonals. Their proof gave an explicit basis for S^l(A), m > 5. In
an unpublished paper written around the same time [18], they gave an example
which showed that their result was false for m = 2. (See also [19] or [10].) Later,
Schumaker [19] showed that the Morgan-Scott dimension was a lower bound for all
m > 2 and gave a similar lower bound for the dimension of the spaces Sm(A) when
m > r ■+ 1. (When m < r, there are only global polynomials.)

Since then much work has been done on special triangulations, usually rectan-
gular grids with diagonals (e.g., [9] and [10]), or on special subspaces of splines
(e.g., B-splines). For a survey of this work, especially the latter approach, see [14].
In [19], upper bounds are derived for general planar triangulations, while in [22],
simplices defined by more general hypersurfaces are considered.

In the past few years, there has been much progress on this problem [1—6].
Alfeld and Schumaker [6] extended the Morgan-Scott result for all r by showing
that Schumaker's lower bound is in fact the dimension of Sm (A) when m > 4r + 1.
Along with Piper [4, 5], they constructed explicit bases for these spaces. Alfeld,
Piper and Schumaker [3] also extended the Morgan-Scott C1 results to m = 4.

The purpose of this paper is to develop some algebraic machinery to study the
spaces of smooth piecewise polynomial functions on triangulations of any dimension.
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HOMOLOGY OF SMOOTH SPLINES 327

In §2, an algebraic criterion is given for local smoothness of piecewise polynomial
functions on fairly general pseudomanifolds. The basic idea of this criterion can
be found in the early paper of Wang [25] and the lecture notes of Ciarlet [11].
§3 gives a homological approach to piece together these local conditions. This
is specialized to the case of d = 2 in §4 and used to produce some easy lower
bounds on the dimension of S^(A) for all m > r + 1. The essential elements in
the proof of Strang's conjecture are also developed in this section. In §5, the proof
of Strang's conjecture is completed, making use of a result of Whiteley [28]. §6
discusses possible extensions, including the study of piecewise linear functions on
nonsimplicial subdivisions of planar regions and splines with boundary constraints.

Given the results of Morgan and Scott and of Alfeld, Piper and Schumaker, the
essential contribution of this work to Strang's conjecture is in the case of degrees
m = 2 and m = 3. It is here (at least for m = 2) that a global notion of genericity
of triangulations comes into play.

While it is likely that the essential elements of the proof of Strang's conjecture
given here can be "simplified" to exclude any mention of homology (most likely with
longer arguments; after all, it is just linear algebra), we feel that the importance
of homological methods is that they provide a unified approach to many problems
of this sort. It basically gives a way of doing a lot of complicated linear algebra in
a very organized way and very possibly could be of use in other problems in this
area.

Much of the original interest in the study of smooth piecewise polynomial func-
tions was due to their application in the solution of partial differential equations
by the finite element method. Recently, they have been attracting much interest
because of new applications in the field of computational geometry. These have
involved mostly questions in dimension 2, concerning piecewise polynomial approx-
imation of surfaces for purposes of automated design and control. (See, for example,
[7] or the references in [14].)

This work has benefited from conversations with Marshall Cohen, John Hubbard,
Gil Kalai, Alex Rosenberg and Walter Whiteley. In particular, Whiteley's solution
of the spline matrix problem [28] is essential to the main result here.

2. Some algebraic preliminaries. We first develop an algebraic condition
that is both necessary and sufficient for a piecewise polynomial function on a (suffi-
ciently connected) d-dimensional complex A to be smooth of order r. The necessity
of this condition is discussed in [11] and [25] (see also [9]) for the case d — 2. The
former suggests a proof that can be used for general d; we show here that the basic
idea of the latter also extends.

LEMMA 2.1. Let I be an affine polynomial (i.e., of degree at most 1) and f be
an arbitrary polynomial in k[x\,... ,Xd], where k is any infinite field. Suppose f
vanishes at any point in kn at which I vanishes.  Then l\f in fc[xi,... ,Xd].

PROOF.   Let R — k[x2,... ,Xd], so k[x\,...,Xd] = R[xi].  We can assume / =
xi+a2x2-\-\-adXd+ao, and define a — —(a2x2-\-\-adXd+ar>) £ R. Considering
/ = f(x\) as an element of i2[ii], we see that f(a) — f(—a2x2-adXj — an) = 0
for all values of x2,... ,Xd 6 k, by hypothesis. Thus f(a) = 0 in R. By [30,
Corollary 1, p. 31], (x\ - a)\f(x\) in R[x\] and so l\f in fc[zi,... ,Xd]-    □
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328 L. J. BILLERA

In [9], this result is proved for d = 2 for any irreducible / (not necessarily affine)
by means of Bezout's theorem on plane curves. That proof does not generalize to
d > 2. In [25], however, there is another proof given for the affine case in d = 2
that is basically the same as the one above. Using Lemma 2.1, the following result
is proved exactly as in [9, Lemma 2.7].

LEMMA 2.2. Suppose F € Sm(A) for some d-complex A C Rd and r > 0.
Suppose o\,o2 € A are two d-simplices such that r — o\C\o2 has dimension d—1.
Then if I is a nontrivial affine form which vanishes on t, we have
(2.3) /r+1|(pi-p2)

where pi = F\ai, i = 1,2.    □

We say a d-complex A is strongly connected if for any two d-simplices a, a' G A,
there is a sequence of d-simplices

a = o\, a-i, •.., &k — a'

such that for each i < k, Oi n Oi+\ has dimension d - 1. Here we say that ct; and
CTj+i are adjacent. For r G A, define the link of r, lk(r) — {a E A|er fl r = 0,
crUr G A}. (For the purposes of this definition, we are considering a simplex to be
merely the set consisting of its vertices.)

We note here that it follows from Lemma 2.2 that if A is a strongly connected d-
complex and r >m, then Sm(A) is exactly the space of global polynomial functions
of degree at most m, i.e., functions F satisfying (1.1) such that F\a = F\a> for all
a,a' € A.

THEOREM 2.4. Suppose A is a strongly connected d-complex such that all links
of simplices are also strongly connected complexes. Let F be a piecewise polynomial
function satisfying (1.1) and r > 0. Then F € Sm(A) if and only if (2.3) holds for
each pair o~\,o~2 of adjacent d-simplices in A.

PROOF. Necessity is Lemma 2.2. To see sufficiency, note first that (2.3) implies
that F is an r-fold smooth function on any pair of adjacent simplices c\ and a2;
the only problem could be on r = cri n a2, but (2.3) shows there is no problem
here either. More generally, let x be any point in A (as a subset of Rd) and let r
be a minimal simplex of A containing x. That F has continuous rth order partial
derivatives at x follows from the observation above and the fact that lk(r) is strongly
connected.    □

We note here that if A is a triangulation of a connected d-manifold, then A satis-
fies the conditions of the theorem [16, §63]. In fact, given that A is embedded in Rd,
the hypothesis is equivalent to asking that A and all its links are pseudomanifolds
[16].   '

Let Pm denote the R-subspace of the polynomial ring A — R\x\,... ,Xd] consist-
ing of all polynomials of degree at most m. This subspace has dimension (mj" ).
We wish to consider the dimension of certain quotients of Pm.

Let r be a simplex in Rd, i.e., the convex hull of affinely independent points. Let

IT is the ideal in A of all polynomials vanishing on aff(r), the affine hull of r. In
fact, we have more.
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Proposition 2.5. 7/0 < dimr < d- l, then

IT = (/ e A | /|aff(r) = 0, deg/ = l),

where (fa) denotes the ideal spanned by the fa.

PROOF. First, suppose aff(r) = {x e Rd|xJ = 0, j < fc}, where fc = d - dimr.
Then if / G IT, the restriction of / to aff(r) gives a polynomial in R[xk+i,- --,Xd]
which vanishes on an open set in Rd~k; thus it must vanish on all of Rd~k = aff(t).
So IT is the kernel of the R-algebra map

R[xi,...,xd] ->R[xk+i,...,xd]

that sends Xj —* 0 for j < k and Xj —> Xj for j > fc. This is (xi,..., xk), which is
easily seen to be the desired ideal.

In the general case, one can, by an invertible affine transformation of Rd, trans-
form aff (r) into a set of the form considered above. Suppose, under this transfor-
mation, Xj —► y3 where each y3 is of the form an + ai Xi + • ■ ■ -r-adXd- Then yi,...,yd
also generate A as a polynomial ring, and the proof follows from the first case.    □

In what follows, we adopt the convention that (£) = 0 if a < b, except that

to1) = 1-

Proposition 2.6. Form>r>0,

diraPm/(PmnI^) = ±(^ + l.-j)^ + d-i-1),

where i = dimr.

PROOF. In the case i = d, IT — 0, and both sides of the equation yield (m£ ).
Otherwise, we can assume, as in the proof of the last proposition, that aff(r) = {x G
Rd\xj = 0, j < d — i} and so IT = (xi,..., xd^i). In this case Pm (~l I^+1 is spanned
by all monomials of degree at most m in x\,...,xd that, when restricted to the
variables X\,... ,xd-i, yield monomials of degree at least r + l. So Pm/(Pmr\IT'+1)
is spanned by all monomials (of degree at most m) which can be formed by the
product of a monomial of degree j in xi,..., Xd-i, 0 < j < r, with a monomial
of degree at most m — j in the remaining i variables. There are (■7+d~l_1) of the

former and (m+/~J) of the latter.    □
Note that if r > m, then Pm/(Pm H FT + 1) = Pm, which has dimension (mj"d).
Finally, let us note that if t, a € A are such that r c a, then Ia C IT. Thus any

R-linear map p: Pm —► Pm such that p(Pm n/^+1) C Pm C\Il+1 induces a unique
map ip: Pm/(Pm n Ira+1) — Pm/(Pm n IrT + 1) such that the square,

P *   > Prm ' * m

Pm/(Pm n ra+1) —£— Pm/(Pm n /;+1)

with the downward maps being the canonical projections, commutes.
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3. Homology theory for Sm(A). For the (pure) d-complex A, let A* be the
set of i-dimensional faces (i-faces) of A and A° the set of f-faces in the interior of
A. If A has the property that each (d - l)-face is in one or two d-faces (e.g., if A
is a pseudomanifold), then A° = A;\(<9A)j, where dA is the complex consisting of
all those (d — l)-faces lying on just one d-face (as well as all subsets of these).

Consider the complex of R vector spaces, for m > 0 and r > 0,

(3.1)
^r:o-0pm^  0 pro/(Pmn/;+1)-^  0 pm/(Pmnrx+1)

-...*♦ 0 pm/(pmn/;+1)^o.
veA°0

Here, the maps di are induced by the usual simplicial boundary maps d% used to
compute the relative homology H»(A, dA; Pm) of the pair (A, dA) with coefficients
in the additive group Pm. We choose the orientation of A so that whenever o\, a2 G
Ad and r = o\ V\a2 G A°d_x then the coefficient of r in dd(o\) is ±1 while in dd(o~2)
it is =FL. (One way to accomplish this is to order all the vertices of A,v\,v2,... ,vn-
If a = {vi0,«j,,...,«,-,,}, to < t"i < ••• < id, and r = a\{i>iy}, then choosing
the coefficient of r in dd(a) to be ( —l)Jsign[det(t;i1 — Vi0,... ,Vid — vl0)] yields the
desired property.)

The homology i/»(9^) of the complex ^ is of interest in studying CT piecewise
polynomials of degree at most m. In particular, we have the following.

THEOREM 3.2. Let A be a strongly connected d-complex with strongly connected
links.  Then for m > 0 and r > 0,

Srm(A) = Hd(^).

PROOF. Since Hd(WJn) = ker(dd), the result follows from Theorem 2.4 and the
sign property for dd discussed above.    □

Define /, = |A,| and f° = |A°|, i = 0, ...,d. Using Proposition 2.6, we can
compute the Euler characteristic X of the complex W^.

THEOREM 3.3.   For m > r > 0,

(-i)-xra-(m^/-+i;(-i)«[E(m^"0(i+d7,'"1)l^
^ ' t=0 j=0 ^ /  \ J /

D
Let x(^i 9A) denote the Euler characteristic of the pair (A, dA). From the note

following the proof of Proposition 2.6, we have

Proposition 3.4. Ifr>m,

xra=(m^)x(A,3A).    D
We consider now the short exact sequences of complexes induced by two special

maps. These, in turn, induce in the usual way long exact sequences in homology
(see, e.g. [21, p. 182]) that, under certain conditions, allow us to read off useful
information. The first of these is straightforward.
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PROPOSITION 3.5. For r > 0, the canonical projection Pm —► Pm/Pm fl /£+1,
for a G A, induces an exact sequence of complexes of the form

0 - J% - C(A, dA; Pm) -» 8£ - 0,
w/iere C(A,dA;PTO) is £/ie usua/ complex to compute H,(A,dA;Pm) and Jf^ is
the complex

o-o-   0 (Pmn/;+1)----- 0(pmnp;+1)->o.   n
t€A2_, v€A°0

COROLLARY 3.6. If A is a connected complex, then H0(W£) = 0 for allm>0
and r > 0.

PROOF. For a connected complex we have H0(A, dA) = 0, and so, by the uni-
versal coefficient theorem [21], P0(A,dA;Pm) = 0. Now the short exact sequence
of complexes in Proposition 3.5 induces a long exact sequence in homology, the tail
of which is

• • • - ffoffl - H0(A, dA; Pm) -+ ff0(9£) - 0.
We see directly that H0(A, dA; Pm) = 0 implies Pn(^) =0.    D

Now consider the inclusion Pm <—► Pm+i of polynomials of degree at most m
into those of degree at most m + 1. If / is any ideal in A = R[xi,... ,Xd], then
Pm <—> Pm+i induces an exact sequence of vector spaces

0 - Pm/(Pm D /) - Pm + l/(Pm+l n /) - Pm+l/(Pm + (Pm + 1 fl J)) - 0,
where the first map takes the equivalence class mod (PmnJ) of p G Pm to the class
of p mod (Pm+i fl I), and the second map is similarly defined. That the sequence
is exact follows from the isomorphisms of abelian groups B C A D C,

A/(B + C) = (A/C)/(B + C/C)    and   B + C/C =s B/B nC,
applied to A = Pm+i, P = Pm and C = Pm+i H J. Applying this when / = I£+1,
a G A, we get the following.

PROPOSITION 3.7. The inclusion Pm <—> Pm+i induces an exact sequence of
complexes

0 — ^m -* ^rn + l ^ ^^rn + l ~* °.

w/iere ^-%^+i is </te complex

°-0   ̂ m + l/Pm -      0     Pm + l/(Pm + (Pm + 1 D TT + 1)) - ■ ■ ■
<rGAd TeA°_j

-   0   Pm + l/(Pm + (Pm + 1 n/;+1)) - 0
^GA°

wi£/i boundary maps given as in (3.1).    □

Finally, we note that for m> r, the last term in the complex ^J?^+1 will always
be 0. This follows from

Proposition 3.8. For m>r
Pm+i/(Pm + (Pm+i n/;+1)) = o.

PROOF. As before, we can assume without loss of generality that v = 0 and so
Iv = (xi,...,xd). In this case Pm + (Pm+i n/£+1) = Pm+i-    □
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4. The case d = 2. We now specialize the results of the previous section to
the case of a 2-dimensional complex A embedded in the plane. The complex ^
in (3.1) becomes

(4.i) wm-. o- 0 pm -^ 0 pm/(Pmn/i+1) -^ 0 pm/(Pmnrv+1) -o.
<r€A2 e€A° «€Ag

By Lemma 2.1, we have that Ie = (le), when le is a nontrivial affine function which
vanishes on the edge e. If v = (ui, v2) then by Proposition 2.5, Iv = (x — vx,y — v2).

Specializing Theorem 3.3 to d = 2 gives

x«:,- (->- [grroe)] ̂ [g(mo ocr)]«
= (m,+2)/*- £>+w) /?+ Eo+d /„°

=(TM(T)-(%r+l)Mr;>
for m > r. From this we can obtain a lower bound on the dimension of Sm(A) for
a large class of complexes A.

THEOREM 4.3. If A C R2 is a connected 2-manifold, with f2 triangles, fl
interior edges and /q interior vertices, then for m > r > 0

PROOF. We have

dim H2 (g£) - dim Pi (g£) + dim P0(^) = xOO
By Corollary 3.6, Po(^) = 0 and so by Theorem 3.2

(4.4) dim5^(A) = X(^)+dimP1(^).

Using (4.2) and the fact that dimP^g^) > 0, we get the desired inequality.    □
We note here that by (4.4), the error in the inequality of Theorem 4.3 is measured

by the space H\(W^).
Using the relation x(A,3A) — f2- f\ + /q, the inequality in Theorem 4.3 can

be rewritten as

**.<*) >- (™2+ >..a,+(™ -;+> - [("+») - (':2)] /o.

In the case that A is a 2-disk (and so X(A,dA) = 1), (4.5) is a weaker form
of the inequality of Schumaker [19, Theorem 3.1].   (The proof in [19] involves a
construction that seems to assume implicitly that A triangulates a disk anyway.)

Specializing Theorem 4.3 to the case r = 1, we have for m > 1,

(4.6) dim5^(A)> (m^2)/2-(2m + l)/1°+3/0°.
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It is the conjecture of Strang that this inequality holds as an equation for m > 2
for generic triangulations A. This was proved for m > 5 by Morgan and Scott [17]
and for m — 4 by Alfeld, Piper and Schumaker [3] for any 2-manifold A.

In fact, [17] and [3] prove an equality in which the right-hand side of (4.6) is
augmented by a correction term that counts the number of degree 4 vertices whose
edges lie on only two straight lines. A similar term, involving a measure of the local
deficiency in slope over all vertices, appears in the inequality of Schumaker for each
r. By (4.4), these correction terms are captured somehow by the spaces Hi(Wm).
It is important to note that for generic embeddings, the r = 1 correction term
vanishes; this is not so for r > 1. It is our aim to show, in fact, that Hi(Wm) = 0,
for generic embeddings of a 2-manifold A, for all m > 2, thereby proving the
conjecture of Strang.

Note that by the remark immediately preceding Theorem 2.4, dim S* (A) = (r~^ )
for a connected 2-manifold A C R2, so by (4.4) we have

dimP1(^)=(7" + 2)-x(^r)=(r22)(l-x(A,aA))

=er)u-*<*»=(TH
where j3\ is the number of "holes" in A. Thus when A is a disk, X(A) = X(A, dA) =
1, and we have the following.

PROPOSITION 4.8.  If A is a 2-disk, then for all r, Hr(%r) = 0.    □
In particular, Hi(W±) = 0 for any embedding of a 2-disk A.
Recall the short exact sequence of complexes induced by the inclusion Pm "—►

Pm+i in Proposition 3.7,

(4-9) 0 - Wm - g£+1 - gPJTm+1 - 0,
where for m > r W^m+l is the complex

S^m+l ■■ 0 -   0  Pm+l/Pm —   0 Pm+l/(Pm + (Pm+1 fl %+1)) -0-0
ct6A2 e£A°

by Proposition 3.8. The sequence (4.9) induces a long exact sequence of homology,
part of which is

By Corollary 3.6, Pn(g^) = 0 for a connected 2-complex A, so this gives an exact
sequence of vector spaces

(4.10) Hx(Wm) - Hr(Wm+1) - PtOrJfm+1) - 0.
PROPOSITION 4.11.   For a connected complex A C R2, we have for any m>r,

(4.11.1) H,(Wm) = 0 implies H,(Wm+1) S Hx(W5?m+l),
and

(4.11.2) #i(g\2£+1) = 0 implies dim P, (Wm+1) < dim Pi (g^).
PROOF. This follows directly from the sequence (4.10).    □
An immediate corollary of Propositions 4.8 and 4.11 is the following.
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COROLLARY 4.12.  For a 2-disk A c R2,

P!(^+1)-#!(£*jr/+1).  □
In order to achieve our aim of showing that Hi (^m) = 0, for m > 2, for generic

embeddings of a 2-manifold A, we must show that, generically, Hi(WJfm) = 0 for
m > 2. This will enable us, in the case of A a 2-disk, to bootstrap the vanishing
of Hi(Wi) to give the vanishing of Hi(Wm) for all m > 1. When A is a general
2-manifold, Pi^1) is not necessarily zero by (4.7). In this case the vanishing of
Hi(W2) (when it occurs) will then imply, by (4.11.1), the vanishing of B~±(Wm) for
m > 3.

In the next section we show that the spaces H1(W^rn) vanish generically for
m > 2, for all 2-manifolds in the plane. We devote the remainder of this section to
proving the following result.

PROPOSITION 4.13. // Pi(^) = 0 for generic embeddings of 2-disks in the
plane, then it holds also for generic embeddings of any 2-manifold.

PROOF. By (4.4) we have

dim 522 (A) - dim Hl (%?) = 6/2 - 5/f + 3/0°.
By hypothesis, then, if A is a generically embedded 2-disk, we have

(4.14) dim S} (A) = 6/2 - bfl + 3/0°.
To prove the result, we must show that (4.14) continues to hold for any generically
embedded 2-manifold A. The proof is by induction on /3i(A), the number of holes
in A; the case /?i(A) = 0 is the hypothesis. If /?i(A) > 0, we have a further
induction on the number of edges bounding a given hole. If the hole is triangular,
then filling it in with a single triangle results in a complex A' with one fewer hole.
Since A' has one more triangle, 3 more interior edges and 3 more interior vertices,
to prove (4.14) for A', we must show dimS2(A) = dimS2(A'). If the hole has more
than three edges, then adding a triangle joining any three successive vertices gives
a complex A' with a hole having one fewer edge and with two additional interior
edges and one additional interior vertex. In this case, proving (4.14) for A' requires
showing

dim521(A)-dimS21(A') = 1.
In either case, consider the short exact sequence of complexes

(4.15) 0-^'-g'21(A')-g'21(A)-0
induced by the canonical projection

9^   0^2-0.
o€A'2 tr6A2

If the new triangle in A' is denoted by t, then the kernel complex .5? is given by

^:O-p-^0p2/(p2n/2)^0P2/(P2n/2)-o
i=l i=l

in the case where r has 3 edges in common with A, and by

Jf2: o - p2 -^ p2/(p2 n /2,) e p2/(p2 n i22) -^ p2/(p2 n I2) - o
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in the other case. It is a straightforward calculation to verify that Pj(^i) = 0
for t = 0,1,2 and that H%(9£2) = 0 for t = 0,2 while dim Pi (^2) = 1 for generic
embeddings of r (not all vertices on a line). For example, to check the assertions
about H2(5?j), observe that it is the space spanned by quadratic polynomials di-
visible by the squares of linear forms defining the three edges of r in the case j = 1
and by those defining two edges in the case j = 2. In either case, there are none.

Now the short exact sequence (4.15) induces a long exact sequence in homology,
the beginning of which is

0 - P2(Jf) - 52X(A') - S'(A) - Pxpf) - Px^A')).
To complete the proof, note that in the case of a triangular hole, this sequence to-
gether with Hi(Ji?i) = 0 for t = 1,2 shows 52(A') = S2(A) (giving a generalization
of a result of Whiteley [29. Theorem 2.4]). In the other case, the induction hypoth-
esis on A' gives Hi(W2(A')) = 0 and so the sequence together with H2(Jf2) = 0
gives an exact sequence

0 - S^A') - 52:(A) - Pi(Jf2) - 0.

Together with dim Pi (,^2) = 1, this completes the proof.    □

5. Generic triangulations. In this section, we complete the development
necessary to prove Strang's conjecture by showing that H\(Wm) = 0, m > 2, for
generic embeddings of 2-disks in the plane. As discussed in the previous section,
this will follow if we can show Hi('S'^m) = 0 generically for rn > 2. We accomplish
this by reducing this to a question of showing that a certain matrix has generically
independent columns. This last question was recently settled by Whiteley [28].

For now, we let A be any 2-manifold (with boundary) embedded in R2. Recall
for general r > 0 and m > r + 1, the complex ^^m is given by

%5?m ■ 0 -   0   Pm/Pm-1  ^   0  Pm/(Pm-l + (Pm H l'e + 1)) - 0 - 0
ct£A2 e€A°

so the statement H\{^ 3^^) = 0 is equivalent to the surjectivity of the map 6m.
We show first that it is enough to show that 6*+1 is surjective.

LEMMA 5.1.   For rn > r + 1, 6m surjective implies 6m+1 is also surjective.

PROOF. To show 6m+1 is surjective, we must show that for each egAJ and each
monomial p in Pm+i of degree m + 1, we have a q - (qa)„€A2 in 0ctGa2 Pm+i/Pm
so that

(5-2) 6^+i(0)e-pGPm + (Pm+in/er+1)

and for e ^ e',

(5-3) 6m+l(Q)e, ePm + (Pm+i n /er,+1).

Suppose p = Xip', where p' G Pm. By the surjectivity of 6m there is a q' =
(<7ff)<reA2, q'a G Pm/Pm-i, so that

«5m(a')e-p'GPm_i + (Pmn/er+1)

and for e/e'
%'VePm_1 + (Pmn/;+1).
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Let q'a represent the class q'^ for each a G A2. Define q — (xi^)CT€A2- By the
definition of the boundary map, for each e' G A^

6m + l(a)e> =Xl8m(q')e>,

and so (5.2) and (5.3) hold for this q.    □
Consider now the case r = 1. By the previous result, we need only consider the

map

(5.4) 0 P2/Pi -^ 0 P2KP1 + (P2 n I2)).
<rGA2 eeA°

Here <52 is induced by the usual boundary map d2 obtained by orienting each 2-
simplex a counterclockwise, and directing the edges e G A\ arbitrarily. The sign of
e in d2(a) is ±1 if e C a, depending upon whether or not the direction of e agrees
with the orientation of a, and is 0 if e <£ a.

Each component of 62 involves the projections

(5.5) P2/Pi-P2/(Pi + (P2n/2))

which we consider first. The vector space P2/Pi has as basis the equivalence classes
of the monomials x2,y2 and 2xy (the factor 2 being included for convenience).
Suppose Ie = (le), where le is an affine function vanishing on the edge e. If e has
endpoints with coordinates (xi,j/i) and (x2,y2), then le can be taken to be the
affine function given by the determinant

x     y    1
le-   xi    yi    1   = (yi - y2)x - (xx - x2)y + (xiy2 - yxx2).

x2    y2    1

Thus I2 = (l2), where

I2 = (y! - y2)2x2 - (yi - y2)(xx - x2)(2xy) + (xx - x2)V + terms in Pi,

and so in P2/(Pi + (P2 fl I2)) we have that (for equivalence classes)

2xy = y±zyix* + el^£» ya.
x\ -x2 yi- y2

If we take as basis for this space the classes of x2 and y2, we get that the map (5.5)
has the matrix

(1 0    \
B3 =      0        1        ,

\me    l/meJ
where me = (t/i - y2)/(xx — x2) is the slope of the edge e.

We assume from now on that if the vertices of A have coordinates (xi, j/i), (x2,y2),
..., (xn, yn) then the polynomial V(x, y) ^ 0, where

(5-6) V(x.,y) = H(xi-Xj)(yi-yj).
i<j

Now the matrix M of the usual boundary map d2 on A has rows indexed by
a G A2 and columns indexed by e G A\, and the (a,e) entry is the sign of e in
d2(a) as discussed above. Equivalently, M is the vertex-edge incidence matrix of
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the directed graph G(A) whose vertices are the triangles in A, where an edge exists
between triangle a and a' precisely when a n a' is an (interior) edge of A. (That
is, G(A) is the planar dual of the 1-skeleton of A, restricted to duals of edges in
A\.) The orientation of the edges in G(A) is such that they can be viewed as 90
degree counterclockwise rotations of their dual edges in A\. For e G A\, we will
often refer to the corresponding dual edge in G(A) also as e.

The matrix D of the map 62 in (5.4) is obtained from M by substitution for each
entry in column e by ±Be or a 3 x 2 block of zeros, depending on whether the entry
in question is ±1 or 0. We will view D = P(x, y) as a matrix whose entries are
rational functions of the xt and yi. To show that 62 is generically surjective is to
show that for generic embeddings of A, D has linearly independent columns; that
is, considered as a matrix over the field of rational functions on 2n indeterminates,
F = R(xi, t/i,..., xn,yn), D has linearly independent columns.

Multiplying columns of D by the appropriate Xi — Xj or yi — yj, we get an
equivalent matrix D' over F, which is obtained from M by the substitution of ±1
or 0 times the block

(Xi - Xj 0     \
0 Vi-Vj J

Vi — Vj     Xi      Xj J
m column e, where e is dual to the edge between (xi,yi) and (xj,yj). It is this
so-called "spline matrix" that is shown by Whiteley [28] to have generically inde-
pendent columns. His proof is an induction on the number of interior vertices; the
inductive step consists of shrinking an interior edge and dealing with the result-
ing degenerated triangles. This matrix is related to matrices arising in structural
rigidity theory [26].

Thus, combining the above discussion with Lemma 5.1, we have the following
result.

LEMMA 5.7. For generic embeddings of any triangulated 2-manifold A in R2,
H1(W^)=0form>2.    D

We can now formally assemble the proof of Strang's conjecture.

THEOREM   5.8.   For generic embeddings of any triangulated 2-manifold A in
R2,

dimS^(A) = (m + 2)/2 - (2m + l)fl + 3/0°.

PROOF. By (4.4), we must show Pi(^) = 0 for all m > 2. We assume first
that A is a 2-disk. Then by Proposition 4.8, Hi(Wy) = 0, so by repeated uses
of (4.11.1) and Lemma 5.7, we conclude H\(Wm) = 0 for all m > 2 as well. To
complete the proof for a general 2-manifold A, by the first part of the proof and
Proposition 4.13, Pi (W2 ) = 0 for generic embeddings of A. Thus again by repeated
uses of (4.11.1) and Lemma 5.7, we get Hi(Wm) = 0 for all m > 2.    □

Note that for a 2-disk A, an embedding is bad for Sm(A) for some m > 2 (i.e.,
gives a dimension strictly larger than that in the theorem) precisely when it is bad
for m — 2. That is, if a triangulation admits the right number of C1 quadratics,
then it has the right number for all other degrees. To see this, recall that by
Corollary 4.12, Hx(^) = H^Jt1), so if Pi^1) = 0 we have that the map b\
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in (5.4) is surjective and so, by Lemma 5.1, Sm is surjective for all m > 2. This
gives the conclusion of Lemma 5.7 for A.

Morgan and Scott [17] have shown that for any planar embedding of a 2-manifold
A, and for m > 5, the dimension of Sm(A) is equal to the value given in Theorem 5
plus the number of quadrilaterals in the complex which are triangulated by crossing
straight lines. Alfeld, Piper and Schumaker [3] have shown this to hold for m = 4
as well, while Schumaker [19] has shown this to be a lower bound for m > 2. It is
easy to see that for a single quadrilateral triangulated with a single interior vertex,
the nongeneric positions are exactly those in which the four interior edges lie on
two straight lines (aside from trivial degeneracies in which all the vertices of some
triangle lie on some line). Thus, for such embeddings, we get one extra quadratic
which causes the count to be one higher for all m.

On the other hand, the triangulation of a triangle with three interior vertices
given by the 1-skeleton of the 3-dimensional octahedron has been shown by Morgan
and Scott (unpublished [18], see also [13], [5] or [2]) to have a nongeneric embedding
resulting in one more quadratic than predicted by Strang's formula. However, there
are no crossing diagonals in this embedding, and so by the above results, the formula
is correct for m > 4. Direct calculation shows it to be correct for m — 3 as well [2].

From all this, we see that the behavior of the S^(A) in nongeneric cases can
be fairly subtle. The deviations of the dimensions of these spaces from Strang's
formula is completely described by the spaces H\(Wm), and perhaps further study
of these will shed more light on these issues.

6. Variations and extensions. We discuss here a few related problems which
can be approached by variations in the techniques in this paper and some of the
new problems that arise. Most of these variations have not been investigated very
deeply.

A problem which has considerable geometric interest (e.g., see [13, 27]) is the
study of continuous piecewise linear functions over not-necessarily-simplicial de-
compositions of a d-dimensional region in Rd. For d = 2, the techniques of §§3 and
4 apply directly and we get the relation

(6.1) dim S°(A) = 3/2 - 2ft + ft + dim Px(8?)

from (4.2) and (4.4). In particular, when A is a 2-disk, Hi(W0°) = 0 by Proposition
4.8 and so Pi(^,°) = Pi(^^°) by (4.11.1). Thus the "error term" in (6.1) is
given by the corank of the linear transformation

0 Pi/Po-^ 0Pi/(Po + (P1n/e))
a€A2 e£A°

(compare with (5.4)).
As in the last section (assuming distinct vertex coordinates), the matrix of 6°

is equivalent to the matrix D obtained from the vertex-edge incidence matrix of
G(A) by substitution of ±1 or 0 times the 2 x 1 blocks
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for each entry. Thus we have

PROPOSITION 6.2.   For any polygonal decomposition A of a 2-disk in R2,

dim S°(A) = 3/2 - 2ft + /0° + corank(P),
where corank(P) is the number of columns of D minus its rank. Further, if corank(D)
= 0 then

dim5°(A)=(rn + 2)/2-(m + l)/1°+/0°

for all m > 0.
PROOF. The last statement follows from Lemma 5.1 and the Euler equation for

A (in the case m = 0).    □
When A is a simplicial 2-disk, corank(P) = 0 as long as none of the triangles

degenerates to a line. This follows directly since in the simplicial case, dim S° (A) =
/o and 3/2 = 2ft. However for nonsimplicial disks, the corank of D will not vanish
for certain embeddings, showing that S°(A) depends upon geometric as well as
combinatorial factors, as does 52(A) in the simplicial case. See [29] for examples.

The "error term" in (4.4) for r > 1 can be approached in the same way. For a
2-disk A, the dimension of Hi(Wrr+l) can be calcualted as the corank of a matrix
obtained by substitution of an (r + 2) x (r + 1) block in the vertex-edge incidence
matrix of G(A). Here, even in the simplicial case, one cannot expect Hi(W/+1) to
vanish generically. In particular Hi(W2) will not vanish if A has an interior vertex
of degree 3; this follows, for example, from Schumaker's lower bound [19].

Another problem of some interest is to study piecewise polynomial functions
which vanish on the boundary of A with the appropriate degree of smoothness.
This is easily incorporated by changing the complex (3.1) by substituting A% for
A°, i = 0,..., d— 1. This is essentially switching to usual homology from homology
relative to the boundary. The calculation of the Euler characteristic in Theorem
3.3 remains unchanged except for the substitution fi for f°. The first real change
is that one no longer should expect Po to vanish, although its calculation should
be straightforward. The rest of the analysis for planar manifolds should not be all
that difficult.

A variation is to ask for different degrees of smoothness along different faces of
dimension d — 1. This can be accomplished by varying the exponents on the ideals
IT in (3.1), although some care must be taken on the exponents on the rest of the
I\,...,Iy in (3.1) in order for it to remain a complex (i.e., dd — 0). It seems that
assigning to each face the maximum r of any d — 1 face containing it should work.

One possibility to vary the technique of §3 is to use something other than
the space of functions Pm in (3.1). This idea has been applied to the study of
divergence-free d-tuples of piecewise polynomials over A, yielding, in dimension 2,
a relationship between the dimensions of such spaces and the dimensions of spaces
of ordinary piecewise polynomials [15].
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