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O. INTRODUCTION 

0.1. Let X be a linear transformation of a finite-dimensional vector space V. 
The configuration of flags in V which are fixed by X has rather remarkable 
properties when X is unipotent. Though this case is especially interesting, 
the proper generality in which to study such configurations is in the theory of 
reductive algebraic groups, where their definition can be reformulated in the 
language of Borel subalgebras as follows. 

Let G be a connected reductive group over C, with Lie algebra g, and let 
NEg be a nilpotent element. Let IB be the variety of all Borel subalgebras 
of g and let 

(a) 

These varieties play an important role in representation theory, in particular 
in questions concerning characters of infinite dimensional representations of 
real semisimple groups and characters of complex representations of reductive 
groups over a finite field (see [Spr I D. 

The variety IBN has in general many irreducible components which may 
be singular and have a very complicated intersection pattern. (The reader is 
referred to [Spa I ] for a detailed discussion of the geometry of IBN .) 

One of our main results is that the integral homology of IBN is zero in odd 
degrees and is without torsion in even degrees. This answers a question of 
Springer (see [Spr 2 D. (The vanishing of the rational homology in odd degrees 
of IBN has been proved earlier by Shoji [Sh] and Beynon-Spaltenstein [BS].) 

We also show that all the homology of IBN comes from algebraic cycles. This 
result is new even over Q; it was known earlier only for GLn and groups of 
low rank [Spa 2 ]. 

0.2. Let S E G be a semisimple element such that 

(a) S • N = qN for some q E C· . 
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16 C. DE CONCINI, G. LUSZTIG, AND C. PROCESI 

(Here we use the adjoint action of G and g and the action of C· on g given 
by scalar multiplication.) 

Following [L] we consider the variety 

(b) ~; = {b E ~ I NEb, s· b = b} 

which reduces to ~N when s = e; this variety enters in a significant way in 
recent work on representations of affine Hecke algebras (see [G, KL]). 

Our results on the homology of ~ N are special cases of more general results 
which hold for any ~~. In fact, in our proof, the case of ~N cannot be 
separated from the more general case ~~. (The vanishing of the rational 
homology of ~~ in odd degrees is proved in [KL, 4.1]].) 

0.3. The proofs of our results are quite elementary in the sense that no inter-
section homology or reduction to characteristic p is used. 

We shall now describe our method of analyzing the varieties ~~. 
We intersect ~~ with the P-orbits on ~ , where P is a certain parabolic 

subgroup of G canonically attached to N. Each of these intersections 'Y is 
shown to be a vector bundle 'Y -+ 'Y over a smooth projective variety 'Y. 
We are then reduced to analyzing the varieties 'Y. We can reduce ourselves 
to the case where N is distinguished (see § 1.12) and s = e. In this case, the 
varieties 'Y c ~ N are all pure of the same dimension, hence the closures of 
their connected components are precisely the irreducible components of ~ N • 

Moreover, the projective varieties 'Y can all be naturally imbedded in the 
flag manifold gr of a Levi subgroup M of P; their images in gr form a 
remarkable lattice of submanifolds of gr . 

One of our observations is that for a certain natural prehomogeneous vector 
space V with respect to M, the previous lattice is isomorphic to the lattice of 
all subspaces of V which are stable under a fixed Borel subgroup of M and 
meet the open M-orbit in V. We show that for certain triples ¥" c 'Y c 'Y' 
of submanifolds in our lattice (each of codimension one in the next) the blow 
up of ¥' along ¥" is isomorphic to a pi -bundle over 'Y. This gives many 
constraints for the homology of the varieties 'Y , which, at least for exceptional 
groups, are sufficient to show that all the homology of 'Y comes from algebraic 
cycles and has no torsion. 

In the classical groups, we follow a different approach which gives the fol-
lowing result: ~ N can be partitioned into finitely many pieces isomorphic to 
affine space. This was proved earlier by Spaltenstein [Spa I ' Spa 2] for types 
An and E6 ; we can also prove it for type F4 and it is likely to be true also in 
types E7 , E8 . 

1. PRELIMINARIES 

1.1. In this section we collect some material which will be needed in the later 
sections. We make the following conventions. All algebraic varieties are reduced 
and assumed to be over C. All algebraic groups are assumed to be linear. If H 
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ZERO SET OF A NILPOTENT VECTOR FIELD 17 

is an algebraic group, an H -module is always assumed to be a finite-dimensional 
C-vector space with a given rational representation of H. Throughout this 
paper, G ,g ,g, ... are as in §O.l. 

1.2. We recall a well-known result of Bialynicky-Birula. Let X be a smooth 
projective variety with an algebraic action of C· denoted (t, x) ~ t . x. Then 

c· c· the fixed point set X is smooth. For each connected component Y of X 
we set Fy = {x E X llimt -+o t·x E Y}. Then we have a map 7r y : Fy ~ Y given 
by 7ry(x) = lim t-+o t· x and for each Y E Y, 7r;1 (y) is C· -stable. According 
to [BB] we have: 

(a) There exists a vector bundle p: E ~ Y and an isomorphism'll: E ....::.... 
Fy such that p = tr y . 'II and such that the C· -action on Fy corresponds to a 
linear C* -action on E with strictly positive weights. 

1.3. A finite partition of a variety X into subsets is said to be an Ct -partition 
if the subsets in the partition can be indexed Xl' ... ,Xn in such a way that 
Xl u X2 U ... U Xi is closed in X for i = 1, ... ,k. It is known that: 

(a) the partition of X into the subsets Fy in § 1.2 is an Ct -partition. 

1.4. Let X be a smooth projective variety with an action of a torus T. Then 
there exists an Ct -partition of X into subsets which are vector bundles over 
various connected components of the fixed point set XT . 

Indeed, we can choose a I-parameter subgroup A.: C* ~ T such that the 
fixed point set XT coincides with the fixed point set of C* acting on X via 
A.. To this action of C· we may apply §§ 1.2 and 1.3; the resulting partition of 
X has the required property. 

1.5. Let p: E ~ Y be a vector bundle over a smooth variety Y, with a fiber 
preserving linear C· -action on E with strictly positive weights. Let Z c E 
be a C* -stable smooth closed subvariety. Then 7r(Z) is smooth and Z is a 
sub-bundle of E restricted to 7r(Z). 

This follows easily from [BH, Theorem 9.1]. 

1.6. If X is an algebraic variety, we denote by Ak(X) the group generated by 
k-dimensional irreducible subvarieties modulo rational equivalence (see [Fu, 
1.3]). Let Hj(X) be the (Borel-Moore) integral homology of X; this is the 
singular homology of X if X is proper; it is the singular homology of X 
modulo X - X if X is not proper and X is a compactification of X. There 
is a canonical homomorphism ("cycle map", see [Fu, 19.1]): 

'Pj: Aj(X) ~ H2j (X). 

1.7. A variety X is said to have property (S) if 
(a) Hi(X) = 0 for i odd, Hj(X) has no torsion for even, 
(b) 'Pj: Ai(X) ....::.... H2j (X) for all i. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



18 C. DE CONCINI, G. LUSZTIG, AND C. PROCESI 

1.8. Lemma. If X has an a -partition (see § 1.3) into pieces which have property 
(S). then X has property (S). 

Proof. Let Xl' .. , ,Xn be the pieces of the partition indexed so that Yj = 
Xl u· .. U Xj is closed in X for all j. We show by induction on j that Yj has 
property (S). This is clear for j = 1. Assume now that j ~ 2 and that Yj - l 

is already known to have property (S). We have an exact sequence 
HZi+I(Yj-l) - HZi+I(Y) - HZi+I(X) 

II II 
o 0 

hence HZi+1 (Y) = O. We have an exact sequence 

0- HZi(Yj- l ) - HZi(Y) - HZi(X) - 0 
(since HZi - 1 (X) = HZi+1 (Yj- l ) = 0) in which HZi(Yj- l ) and HZi(X) have 
no torsion. It follows that HZi(Y) has no torsion. We have a commutative 
diagram 

Ai(Yj_ l) - Ai(Y) - Ai(X) - 0 
rp 1 rp'l rp" 1 

o - HZi(Yj- l ) - HZi(Y) - HZi(H) - 0 
whose rows are exact (see [Fu, 1.8]) and the vertical arrows are as in § 1.6. 

Moreover rp, rp" are isomorphisms. It follows that rp' is an isomorphism. 

1.9. Lemma. Assume that E - X is a vector bundle and that X has property 
(S). Then E has property (S). 

Proof. This follows easily from [Fu, 1.9] and the analogous result for homology. 
1.10. Since a point clearly has property (S) we see from Lemmas 1.8 and 1.9 

that: 
(a) If X admits an a -partition into affine spaces then X has property (S). 
Using §1.4 and Lemmas 1.8 and 1.9 we see also that: 
(b) If X is smooth projective with an action of a torus T such that XT has 

property (S), then X has property (S). 
1.11. Let P be a parabolic subgroup of G and let p be its Lie algebra. The 

natural action of G on pg restricts to an action of P on pg. The P-orbits 
on pg form an a-partition of pg. Let L be a Levi subgroup of P with Lie 
algebra (. Let T be the identity component of the center of L. Then for each 
P-orbit &, the T-fixed point set &T is isomorphic to the variety of Borel 
subalgebras of ( under the map b - b n ( . 

Let n be the nilpotent radical of p , and let 1fI: n x &T - & be defined by 
1fI( Y , b) = exp( Y)b . There is a unique map 7t: & - &T such that the diagram 

nx&T ~ & 
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ZERO SET OF A NILPOTENT VECTOR FIELD 19 

is commutative; we may regard &' ---+ &,T as a vector bundle, quotient of the 
constant vector bundle pr2: n x &,T ---+ &,T . 

Let A.: c* ---+ T be a I-parameter subgroup which acts on p II with strictly 
positive weights. Then C* acts on !B via A.. Its fixed point set on !B coincides 
with &,T. Each P-orbit &' is C* -stable; moreover the action of C* on &' 
preserves the fibers of the vector bundle 7r: &' ---+ &,T and is linear with strictly 
positive weights on each fiber. 

1.12. Let N E 0 be a nilpotent element. By the Jacobson-Morozov theo-
rem, there exists a homomorphism of algebraic groups ¢: SL2(C) ---+ G such 
that dqJ(g~) = N. For each z E C* let D(z) = (~Z~l)' Let 0i = {x E 

OlqJ(D(z))x = Zi X , Vz E C*}. Then N E 02' We have 0 = €BiOi and 
[0 i .0) c 0 i+ j for all i. j . 

Let Go (resp. P) be the connected algebraic subgroup of G whose Lie 
algebra is 00 (resp. €Bi>oOj)' Note that 0i is a Go-module for each i. 

Then P is a parabolic subgroup of G with Levi subgroup Go' It is known 
that: 

(a) P depends only on N (and not on the choice of qJ). 
(b) The P-orbit of N in €Bj>2 0j is dense. 
(c) The Go-orbit of N in 02 -is dense. 
(d) If (g. q) E G x C· satisfies g. N = qN then g E P (see [SS; KL, §2]). 
We say that N is distinguished if it is not contained in any Levi subalgebra 

of a proper parabolic subalgebra of 0 . It is known [BC] that: 
(e) If N is distinguished, then, with the previous notations, we have 0 j = 0 

for all odd i. 

2. PREHOMOGENEOUS VECTOR SPACES 

2.1. In this section, M denotes a connected algebraic group. An M -module 
V is said to be prehomogeneous if V contains a dense M -orbit VO • 

Let V be a prehomogeneous M -module, let v E VO and let Mv be the 
stabilizer of v. 

Given a closed subgroup H in M and an H -stable linear subspace V of V 
we construct a closed subvariety Xv c MI H as follows: Set 

-I Mv = {g E Mig v E V}. 

Then M v is stable under right multiplication by H and we set Xv = M v I H . 

2.2. Lemma. (i) Xv is smooth. 
(ii) If Xv :j:. 0 (or. equivalently. V n VO :j:. 0) then 

dimMIH - dim Xv = dim V IV. 

(iii) Mv acts transitively on the set of connected components of Xv' 
(iv) If V. V' c V are H-stable subspaces. then Xv n Xv' = X vnv .. 
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20 C. DE CONCINI, G. LUSZTIG, AND C. PROCESI 

Proof. Consider the diagram 
7C rp 

M/H+-M--+ V 

where qJ (g) = g -I V and 7l is the quotient map. Then VO = qJ (M) and qJ is 
the composition of the quotient map M -+ Mv \M with the open imbedding 
i: Mv \M "--+ V given by i(Mv g ) = g-I V • Clearly Un VO is either empty or 
a smooth closed subvariety of VO of dimension equal to dim U. From this, 
(i) and (ii) follow immediately. Since Un VO is open in U, it is connected 
and isomorphic to Mv \M u ' hence Mv acts transitively on the set of connected 
components of Mu and hence also of Mu/H. Statement (iv) is obvious. 

2.3. Remark. If U c V is a subspace and H is the stabilizer of U in M, a 
necessary condition for having Un VO =1= 0 is that dim M/ H ~ dim VI U . This 
follows from Lemma 2.2.(ii). 

2.4. We can interpret the construction of Xu in the language of vector bundles. 
Consider the vector bundle M x H V / U over M/ H; this is a quotient of the 
vector bundle M x H V. The last vector bundle is isomorphic to the trivial 
bundle (M/H) x V by the map (g, w) modH -+ (gH, gw). The element v 
gives a "constant" section of (M/ H) x V and hence a section Sv of M x H V /U . 
By the method of proof of Lemma 2.2 we see that Sv is transversal to the zero 
section of M x H V / U and Xu is the zero locus of sv' 

More generally, if U1 c U2 are H-stable subspaces of V, we have the exact 
sequence of vector bundles 

The section Sv of M x H V / U1 ' restricted to X U2 ' lies in the sub-bundle 
M x H U2/ U1 and X U1 C X U2 is again the zero locus of this section. 

2.5. In the special case that H is a Borel subgroup of M, we have first of 
all that the varieties Xu are projective. Furthermore for any H-stable sub-
space U in V, we can find a sequence U = Uo C U1 C ... C Uh = V of 
H-stable subspaces such that for each i, 1 ~ i ~ h, we have dim UJUi_ 1 = 
1. M x H UJUi_ 1 is a line bundle over M/H, and X U;_1 is a hypersurface in 
Xu;, 

2.6. Returning now to the setup in §2.1, let Mv be the stabilizer in M of the 
line through v. Let X: Mv -+ C· be the character through which Mv acts on 
that line. Let T c Mv be a maximal torus; we denote the restriction of X 
to T again by X. Let L be the centralizer of T in M. Given an H -stable 
subspace U C V and an L-orbit &' on the set (M/ H) T of T -fixed points 
on M/ H , we want to describe the intersection Xu n &'. Let goH E Xu n &' 
and let C = L n goHg;;1 be the stablizer of goH in L. The set Xu n &' 
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can be described as Lui C where Lu = {I ELI r 1 v E go V}. Consider the 
subspaces V X :::> (goV)x where, for any T-module W, we denote by W X the 
x-eigenspace. Note that VX is L-stable, (goV)X is C-stable and v E V X. 
Note that Tn Mv is the unique maximal torus of Lv = L n Mv and it is exactly 
the kernel of L -> GL(Vx). It follows that L acts on V X via its quotient 
- - --- -:-0 
L = LIT n Mv and that Lv = {I E L I/v = v} is such that Lv is unipotent. 

We claim that Lv = Iv is dense in V X • Indeed let m = Lie M, I = Lie L. 
We have I = m T. Since m· v = V we get Iv = m T v = V X and our claim 
follows. 

We see therefore that: 
(a) V X is a prehomogeneous L-module (or L-module), v is in the open 

L-orbit in V X and Xu n & is the subvariety of LIC associated to the 
C-stable subspace (goV)X c V X according to §1.1 (for L, VX,C instead of 
M,V,H). 

Of special interest is the case where H is a Borel subgroup of M. In this 
case, (MI H)T is a finite union of L-orbits and C is a Borel subgroup of L. 
Applying § 1.4 to the T -action on Xu which is smooth, projective (Lemma 
2.2(i), §2.5) we see that: 

(b) Xu admits an a-partition into varieties which are vector bundles over 
the various components of the varieties Xu n & (which have been described in 
(a) ). 

This allows us to reduce certain questions for (M, V) (for example the ques-
tion of whether the varieties Xu have the property (S)) to the special case where 
M~ is unipotent. 

2.7. Let M, V, H, v be as in §2.1. We assume for the remainder of this section 
that H is a Borel subgroup of M . Let r be the set of all H -stable subspaces 
of V. For each V E r let P u be the stabilizer of V in M; this is a parabolic 
subgroup containing H. 

We want to consider r as the set of vertices of a graph whose edges are the 
pairs V, Vi with the following three properties: 

(i) V c Vi, 
( ii ) dim Vi I V = 1 . 

(iii) There exists a parabolic subgroup P :::> H of semisimple rank 1 and 
V" E r such that V" C V, PcP u'" P ct P u' PcP u' and 
dim VI V" = 1. 

Note that in (iii), V" is necessarily equal to ngEP gV. Let r* be the set 
of all V E r such that V n V O "1121 . 

2.8. Assume that the prehomogeneous M -module V arises in the context of 
§ 1.12 from a nilpotent element N in a simple Lie algebra 9, that is V = 
92' M = Go (see §1.12(c)). Let HeM be as in §2.7 and let v = N. A 
maximal torus of H acts on V with distinct weights (which are certain roots of 
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G). Hence the set r of H-invariant subspaces of V is finite. If furthermore, 
9 is simple of type A, D or E, the definition (§2.7) of an edge of r can be 
simplified as follows. 

(a) Let V c V' be in r such that dim V' /V = 1 and such that there exists 
a parabolic subgroup P of M containing H, of semisimple rank 1 with 
P rt. P U' PcP u' . 

We claim that if V, V' are as in (a) then automatically there exists a 
P-stable subspace V" c V such that dim V/V" = 1. (Hence condition (a) 
defines the edges of r.) 

Let R be the (solvable) radical of P and let K be a semisimple subgroup of 
type A I of P . The K -module V is a sum of K -stable subspaces of dimension 
1 and 2. This follows from the following fact: if a is a simple root and P is a 
positive root of a simple Lie algebra of type A, D or E then P - a and P + a 
cannot both be roots. 

Consider the P-module (V,)* (= dual of V'). The hyperplane V of V' 
corresponds to a line D c (V,)* which is B-stable but not P-stable. The 
P-submodule Y of (V')* generated by D is irreducible and distinct of D, 
hence of dimension ?: 2. It is also irreducible as a K -module since R acts 
trivially on it; hence it has dimension 2. It follows that the annihilator of Y is 
a P-stable subspace V" c V' of codimension 2, contained in V, as claimed. 

2.9. Returning to the setup of §2.7, we define for any V E r two numbers: 

J(V) =dim(M/Pu ) -dim(J1V), 
I/(V) = dim(M/H) - dim(J1V) = J(V) + dimPu/H. 

Notice that: 
(a) the condition J(V) < 0 implies that the subvariety Xu of M/H is 

empty, while the condition J (V) = 0 implies that Xu is the preimage in M/ H 
of a finite number of points in M/ P u under the natural projection. 

This follows from Lemma 2.2(ii) and Remark 2.3. 

2.10. We say that the M -module V is good if for any V E r one has either 
V c V' for some V' E r with J (V') < 0, or V lies in the same connected 
component of r as some V' E r with J (V') :$ O. 

2.11. Lemma. Let V C V' bean edge oJ r and let V" and P be as in §2.7(iii). 
Note that XU II has codimension 2 in Xu'; let Blxull (Xu,) be the blow up oj 
Xu' along X Ull ' Let Z = {(gH, g'H) E M/H x M/H I g-I v E V, g-I g' E P}. 
Then 

(i) pr l : Z -+ Xu is a pi-bundle. 
(ii) There is a canonical isomorphism Z ~ Bixull (Xu,), 

ProoJ. Let F be the rank 2 vector bundle over G / H defined as M x H V' / V" 
and let F be its restriction to XU" The fiber of F at g' H E M/ H is 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ZERO SET OF A NILPOTENT VECTOR FIELD 23 

g' V' / g' V" . Let Sv be the section of F which attaches to gH the image of v 
in gV'/gV". By §2.4, the zero locus of Sv is exactly XU"' Hence Blxv" (Xu,) 
can be identified with the subspace of the projective bundle P(F) consisting 
of all lines in F which contain the image of the section sv' Let p(i) be the 
projective bundle of F. Let Z = {(gH, g'H) E M/H x M/H I g-I g' E P}. 
The map Z --+ P(F) which associates to (gH, g' H) the line gV/ g' V" in 
g' V' / g' V" is an isomorphism. It restricts to an isomorphism {(gH, g' H) E 

M/ H x M/ Hlg,-l v E V', g -I g' E P} ~ P(F) which, in turn, restricts to an 
isomorphism as in (ii). (We regard Blx (Xu,) as a subvariety of P(F), as 

v" 
above.) Statement (i) is obvious. 

2.12. Proposition. If the M-module V is good (see §2.10), then Xu has prop-
erty (S) (see §1.7) for any V E r. 
Proof. Consider for any V E r and any integer n 2: 0 the following statement: 

(Sn) { 
H2i+1 (Xu) = 0 if 2i + 1 2: 2v(V) - 2n. 
H2i (XU) has no torsion if 2i 2: 2v(V) - 2n. 
'Pi: Ai(Xu) --+ H2i (XU) is an isomorphism if i 2: v(V) - n. 

We shall prove (Sn) by induction on n. This is trivial for n = 0 (see Lemma 
2.2(ii)). 

We can therefore assume that n 2: 1 and that (Sn_l) is already proved for 
all V E r. If V E r is contained in V' E r such that J(V') < 0 then Xu 
is empty (see §2.9(a)) and (Sn) holds trivially for V. If J(V) ~ 0 then by 
§2.9(a), Xu is a finite union of copies of the flag manifold Pu/H, hence (Sn) 
holds for V. (Note that a flag manifold Pu/H has property (S) by Bruhat 
decomposition and §l.lO(a).) Since r is good we see that in every connected 
component of r there is some V for which (Sn) holds. We are therefore 
reduced to proving the following result. 

Lemma. Assume that n 2: 1 and that (Sn_l) holds for all VI E r. Let V c V' 
be an edge of r. Then (Sn) holds for V if and only if (Sn) holds for V'. 

Proof. Let P and V" be as in §2.7(iii) and let Z be as in Lemma 2.11. Using 
Lemma 2.11 and [Fu, 6.7, 3.3] we see that there are natural isomorphisms 

{ Ai(Z)"'::' Ai_I(XU") EBAi(XU')' 
(a) 

Ai(Z) ...::. Ai_1 (Xu) EB Ai(XU)' 
Similarly, we have natural isomorphisms 

{ HiZ )"'::' Hj_2(XU") EBHj(Xu')' 
Hj(Z) ...::. Hj_2(XU) EB Hj(Xu )' 

which are compatible with (a) under the maps 'P: A() --+ H( ) of §1.6. Hence 
we obtain isomorphisms 

{ Ai_1 (Xu) EBAJXu )"'::' Ai_1 (XU") EBAi(XU')' 
(b) 

Hj_2(XU) EB Hj(Xu) ...::. Hj_2(XU") EB Hj(Xu'}. 
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which are compatible with the maps 'P: A( ) - H() of §1.6. 
If j - 2 ~ 2v(V) - 2n (or, equivalently, j ~ 2v(V') - 2n) we have j ~ 

2v(V) - 2(n - I), j - 2 ~ 2v(V") - 2(n - I), hence, by (Sn_I),HiXu) and 
H j _ 2(XUIl ) are zero for odd j and have no torsion for even j. Hence from 
(b) it follows that the two groups H j _ 2(XU) and HiXu') are isomorphic for 
odd j and have isomorphic torsion subgroups for even j. 

If i-I ~ v(V) - n (or, equivalently, i ~ v(V') - n) we consider the 
commutative diagram 

Aj _ 1 (Xu) EB Aj(Xu) ..::. Aj _ 1 (XUIl ) EB Aj(Xu') 

( c) (IIi - iE~(IIi 1 (11:'- 1 EB(II: 1 
H2j_2(XU) EB H2j (XU) ..::. H2j_2(XUII) EB H2j (XU') 

where 'Pj_I' 'P j , 'P;'-I' 'P; are as in §1.6, and the horizontal arrows are as in (b). 
From (Sn_I)' it follows that 'Pj and 'P;'-I are isomorphisms. From (c) it then 
follows that 'Pj_1 is an isomorphism if and only if 'P; is an isomorphism. The 
lemma is proved. 

2.13. Let I = Mv/ M~ . Note that Mv acts by left translation on M/ H leaving 
stable each of the subvarieties Xu (V En. This induces an action of I 
01) Hj(Xu). By Lemma 2.2(ii), I acts transitively on the set of connected 
components of Xu (when Xu =I- 0); we denote by Iu the stabilizer in I of 
some connected component of Xu. (This is defined only up to conjugacy and 
only when Xu =I- 0.) From Lemma 2.11 we deduce 

(a) If V c V' is an edge of r then either both Xu and Xu' are empty 
or both are nonempty and I u ' I u' are conjugate in I. In particular, r* (see 
§2.7) is a union of connected components of r. 

Assume now that we are given a set of representatives VI' V2' ... ,VI for 
the connected components of r* such that J (V) = 0 (I ::; j ::; t). We also 
assume that I Uj is known for I ::; j ::; t. If this information is given, we can 
determine inductively the structure of the I-module H2j (XU ) ® C for any i 
and any V E r, as follows. 

If i = v(V) we have 

H2j (XU ) ®C = {Iond~u(C) if V E r* 
otherwise. 

(This follows from (a) and §2.9(a).) Assume now that the I-modules H2i (XU )® 
C are known for all V for i ~ v(V) - (n - I) for some n ~ I. We wish to 
determine the I-modules H2j (XU) ® C for i = v(V) - n. If V c V' is an 
edge of rand P, V" are as in §2.7(iii), we have 

H2(v(Uj-nj(XU) ® C - H2(v(u'j-nj(XU') ® C 
= H2(v(Ullj-(n-ljj(XUII) ® C - H2(v(uj-(n-ljj(Xu) ® C 

as virtual I -modules. By our inductive hypothesis, the right-hand side of this 
equality is known; hence its left-hand side is known. Hence H2(v(Uj_nj(Xu )®C 
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is known if and only if H 2(v(U')-n)(Xu ') ® C is known. Hence it is enough to 
describe H 2(v(Uj)-n) (Xu) ® C for 1 :5 j :5 t. 

This is Ind~uj (C) ® H2n (PU/H) (see §2.9(a)). Here H2n (PU/H) has triv-
ial action of I. This completes our inductive description of the I -modules 
H2i (XU ) ®C. 

We see, in particular, that: 
(a) H2i(XU ) ®C is a Z-linear combination of I-modules of form Ind~u' (C) 

for various Vi E r* . 
3. THE VARIETIES tBN,tB~ 

3.l. Let N be a nilpotent element in 9 and let tBN ctB beasin§O.I(a). Let 
P be a parabolic subgroup of G such that the closure p. N c 9 is a linear 
subspace V. 

3.2. Proposition. The intersection tBN.&, of tBN with any P-orbit &' on tB is 
smooth. 

Proof. Let b E tBN and let &' c tB be the P-orbit of b so that tBN.&, = 
tBNnp·b. Let B be the Borel subgroup of G with Lie algebra b. The stabilizer 
of b in P is H = B n P and p. b == PI H. We have pb E tBN , pEP, if 
and only if p -I NEb. Hence tB N.&' = tB N n p . b is as a subvariety of PI H 
exactly like the one analyzed in §2.1 relative to the P-prehomogeneous space 
V = P . N , and the subspace V = b n V , so it is smooth of pure dimension 
dimPIH - dim V Ib n V (see Lemma 2.2). 

3.3. Corollary. If N is a Richardson element in p = Lie P, then the intersec-
tions of tBN with the P-orbits on tB are pure of dimension dim PI BI (where 
BI is a Borel subgroup of P). In particular, the closures of their connected 
components are the irreducible components of tB N . 

Proof. In this case V = n is the nilpotent radical of p and Lie H = b n p 
(notations of Proposition 3.2). It is known that (b np) +n is a Borel subalgebra 
of p. Hence 

dimPIH - dim V Ib n V = dimp/b np - dimn/b nn 
= dim(p + b) I (n + b) = dim p I (b n p) + n , 

as required. 

3.4. Returning to an arbitrary nilpotent element NEg, we consider the canon-
ical parabolic subgroup P attached to N in §1.12 (see §1.12(a)). According to 
§ 1.12(b), p. N is a linear subspace of 9 . 

Hence Proposition 3.2 is applicable and we see that the intersections tB N.r'! of 
tBN with the various P-orbits &' on tB are smooth. They form an 
a-partition of tBN (see §§1.3, 1.11). 
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Now let (S, q) E G x C· be a semisimple element such that sN = qN. Then 
s E P (see §1.12(d)), hence s: 2# ---> 2# leaves stable each P-orbit &. From 
sN = qN we see that s: 2# ---> 2# also leaves stable 2#N' hence s leaves stable 
each 2# N .~. Since 2# N.~ is smooth and s is semisimple, the fixed point set 
2#~.~ of S:2#N.~--->2#N.~ is smooth. Clearly, U~2#~.~=2#~ (see§O.2(b)), 
hence 

(a) The subsets 2#~.~ (for various P-orbits & on 2#) form an a-partition 
2#~ into smooth varieties. 

According to [KL, 2.4(g)] there exists a homomorphism of algebraic groups 
rp: SL2 (C) ---> G such that 

(notations of § 1.12), where q I /2 is a fixed square root of q. 
We define 9 i ' Go in terms of such a rp, as in § 1.12. Let A: C· ---> G be the 

I-parameter group A(Z) = rp(D(z)) , Z E C· , and let sg be its image in G. 
From (b) we see that 

(c) 

By § 1.11, each & is naturally a vector bundle over the sg -fixed point set ~ 
and C· acts (via A) on this vector bundle linearly on each fiber with strictly 
positive weights. Now 2#~.~ is a closed, smooth subvariety of & (see (a)) 
stable under the C· -action (see (b), (c)). From §1.5 it follows that 

(d) 2#~.~ is a vector bundle over the sg-fixed point set 2#~'~, which is a 
smooth projective variety (hence a union of connected components of 2#~'~). 

(The fact that 2#~'~ is projective follows from the fact that it is the inter-
section of two projective varieties: 2#~ and &~ .) 

3.5. Let Sl = SD(q-I/2). Then Sl commutes with rp(SL2 (C)) (see §3.4(b)), 
and sIN = N. Hence rp can be regarded as a homomorphism rp: SL2 (C) ---> 

ZO(SI) and N is in the Lie algebra 3 of ZO(SI)' 
Let 2#S l be the fixed point set of S I : 2# ---> 2# and let 2# be the variety 

of Borel subalgebras of 3. The map 2#S l ---> 2# defined by b ---> b n 3 is an 
isomorphism when restricted to any connected component of 2#S l • It defines 
a map 2#~1 ---> 2# n (the last space is defined as in §O.l (a) replacing 9 by 3 ) 
which becomes an isomorphism when restricted to any connected component 
of 2#~1 . (Recall that 2# N is connected.) These isomorphisms are compatible 
with the action of sg , hence taking sg -fixed points we get a map 2#~1'~ ---> 

2#! which maps each connected component of 2#~1.~ isomorphicaIly to a 
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-Si1 Si1 connected component of ~ N' On the other hand we have clearly ~~" = 
~~.Si1 • From §3.4(a),(d) we now see that: 

(a) There exists an a-partition of ~~ into pieces which are vector bundles 
-Si1 

over various connected components of ~ N • 

3.6. Let T be a maximal torus in the connected stabilizer of N in G. We 
can choose T so that M = Z(T) contains the image of (jJ. Then N is a 
distinguished nilpotent element of m = Lie M. Let !JJ be the variety of all 
Borel subalgebras of m and let ~ T be the fixed point set of T on ~. The 

T • map ~ -+ ~ defined by b -+ b nm restricted to any connected component of 
~ T is an isomorphism. It defines a map ~:; -+!JJ N where ~:; = ~ T n ~ N 

and !JJ N is defined as in §O.1 (a) replacing 9 by m. This map becomes an 
isomorphism when restricted to any connected component of ~:;. These iso-
morphisms are compatible with the action of ;;g , hence taking ;;g -fixed points 

TSi1 'Si1 . TSi1 we get a map ~ N • -+ ~ N WhICh maps each connected component of ~ N . 

isomorphically onto a connected component of !JJ: . 
On the other hand, ~:;.Si1 can also be considered as the set of T -fixed points 

on ~: . Note that 
(a) ~: is smooth, projective. (We have ~: = U&~:& where each 

~:& is smooth, projective by §3.4(a) with s = e; these pieces do not meet 
each other, hence ~: is smooth, projective. The fact that ~: is smooth was 
conjectured in [L] and first proved by Ginzburg in a quite different way.) 

Now using § 1.4 for the action of T on ~: we see that 
(b) ~: admits an a-partition whose pieces are vector bundles over the 

'Si1 various connected components of ~ N • 

3.7. We fix a Borel subgroup Bo of Go with Lie algebra bo ' For each P-orbit 
& on ~ there is a unique b& E &Si1 such that b& n90 = bo ' The intersection 
U& = b&n92 is clearly a bo-stable (hence Bo-stable) subspace of 92' Hence the 
subvariety Xu",cGo/Bo iswelldefinedasin§2.1 (for M=Go' V=92' H= 
Bo' v = N); note that the Go-module 92 is prehomogeneous by §1.l2(c). 

From the definitions it is clear that: 
(a) The map Xu", -+ ~:& defined by gBo -+ g . b& is an isomorphism. 

Hence for any &, ~:& is of the form Xu for some Bo-stable subspace U 
of the prehomogeneous Go-module 92' 

The converse is true for certain N: 
(b) If N is such that 9 i = 0 for i odd (in particular, if N is distinguished, 

see §1.l2(e)) then for any Bo-stable subspace U of 92 there exists a P-orbit 
& on ~ such that U = U & . 

This follows immediately from the theorem in the appendix. 

3.8. Assume that E is an irreducible G-module of dimension 2:: 2 such 
that in the corresponding 9-module, N acts as a nilpotent transformation N 
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with Jordan blocks of distinct sizes. Then the image of g in GL(E) acts 
on ker(N: E ~ E) with distinct weights, hence there are only finitely many 
g-stable lines LeE such that N L = O. Now G has a closed orbit on P(E) 
of dimension > O. The stabilizers in G of the points of this orbit form a 
conjugacy class g of proper parabolic subgroups of G. It follows that the set 
g: = {Q E gig c Q, N E LieQ} is finite. 

Let (J be an element of D such that !Bg =!B(1 (= fixed point set of 
(J:!B~!B). 

We have a natural map !B; =!B: ~ g: which associates to b the unique 
Q E g such that beLie Q. Taking the fibers of this map we find a partition of 
!B; =!B: into finitely many pieces which are both open and closed. Consider 
the piece corresponding to some Q E g: . It is clearly isomorphic to (!BQ)w, 
the variety of Borel subalgebras of Lie Q (Q = Q modulo its radical) containing 
N (= 'image of N) and which are fixed by the action of (j E Q (the image of 
(J E Q in Q). 

We now state one of our main results. 

3.9. Theorem. Let NEg be a nilpotent element and let (s, q) E G x C· 
be a semisimple element such that s· N = qN. Then, in general, !B~ sat-
isfies property, (S) (see § 1.7). If G is a classical group, then !B~ admits an 
a-partition (see § 1.3) into subvarieties which are affine spaces. 

Proof. The theorem is trivial when G is a torus. Hence we may assume that 
G is not a torus and that the theorem is already proved for G replaced by a 
group of strictly smaller dimension. 

We preserve the notations of §3.4. 
From Lemmas 1.8 and 1.9 and §3.5(a) we see that it is enough to prove 

the statement of the theorem for G, with !B~ replaced by !B:. (This is 
91 ' in fact a special case of the theorem since !B N =!B~ for a suitable element 

s' E g.) Using Lemmas 1.8 and 1.9 and §3.6(b) we see that we can further 
assume that N is distinguished. We can also assume that G is almost simple, 
simply connected. If G = SLn(C) , then N is regular, !BN is a point so there 
is nothing to prove. 

Assume that G is SP2n(C) (n ~ 2) or Spinn(C) (n ~ 7). We define a 
G-module E as follows: it is the standard representation of SP2n (C) , or it is the 
standard representation of SOn(C) lifted to Spinn(C). From the classification 
of distinguished nilpotent elements [BC], we see that E satisfies the assumption 
of §3.8. Using the induction hypothesis for Q (notations of §3.8), we see 
that !B: admits an a-partition into subvarieties which are affine spaces; in 
particular, it satisfies property (S) (see §l.lO(a)). 

Next assume that G is simply connected of type G2 , F4 , E6 , E7 or E8 . 

Using §3.7(a) and Proposition 2.12 we see that it is enough to show that the 
Go-module g2 is good (see §2.1 0). This can be verified case-by-case, using the 
classification [BC] of distinguished nilpotent classes. This verification is very 
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long, but completely mechanical. One first has to make a list of all Bo-subspaces 
V of 92 (a finite set, by §2.8), then one determines Pu (see §2.7) for each V, 
and then one applies the definition of the graph r (see §2.7) (which simplifies, 
as in §2.8, in type En)' Note that in each case, Go is of type A and 92 is an 
explicitly known representation of Go' 

We omit further details. This completes the proof of the theorem. 

4. EXAMPLES ARISING FROM EXCEPTIONAL GROUPS 

4.1. In this section we shall consider some examples of the prehomogeneous 
vector spaces (GO,92) associated as in §1.12 to a distinguished nilpotent ele-
ment N in the Lie algebra 9 of a simply connected exceptional group G. 

The list of such distinguished classes can be found in [BC]; up to G-conjugacy 
there are two such elements in type G2 , four in F4 , three in E6 , six in E7 and 
11 in Es' In each case, the derived group of Go is a product of SLn's (n ~ 5) 
and its representation on 92 can be described explicitly. Recall that the graph 
r associated to (GO,92) is finite (see §2.8). As we have already mentioned in 
the proof of Theorem 3.9 the Go-module 92 is good. 

Furthermore the following can be verified in each case. 
(a) If V E r, then we have V ¢ r* if and only if V is contained in some 

V' E r which is in the same connected component in r as some V" with 
c5(V") < O. 

(b) If V, V' E r* then V, V' lie in the same connected component of r if 
and only if Iu ,lUI are conjugate in I (see §2.13). 

(c) The number of connected components of r* is equal to the number of 
conjugacy classes in I . 

(d) I is isomorphic to one of the symmetric groups Sn (1 ~ n ~ 5) . 
(e) If I ~ S2' then for V E r*, Iu is either {e} or S2' 
If I ~ S3' then for V E r*, Iu is either {e} or S2 or S3 except for the 

nilpotent class 
0020002 

o 
in Es in which case luis either S3 or a cyclic group of order 2 or 3. (In 
this last case there is a unique V E r* such that luis of order 3 .) 

If I ~ S4' then, for V E r*, Iu is either S2 or S2 x S2 or S3 or Ds or 
S4' 

If I ~ Ss' then for V E r*, Iu is either S2 or S2 x S2 or S3 or Dg or 
S3 x S2 or S4 or Ss' 

(Here, Ds denotes the dihedral group of order 8 imbedded in S4 or Ss in 
the standard way.) 

In the rest of this section we shall discliss the cases where I ~ S4 or Ss; we 
shall omit the other cases. 
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4.2. Assume now that G is of type F4 and that N is a distinguished nilpotent 
element in g with Dynkin diagram 0200. In this case we can identify g 2 with 
Hom(E, Hom(S2 V , C)) where E is a 2-dimensional C-vector space, V is a 
3-dimensional C-vector space, and GO is an extension of SL(E) x SL(V) by a 
one-dimensional torus with the natural action. 

We can think of N as the most general family (pencil) of symmetric bilinear 
forms Qe( , ) on V indexed by vectors e E E depending linearly on e. Using 
N , we identify a vector e E E with the corresponding form Qe ( , ). 

There are exactly four lines L I , L2 ' L3 ,L4 in V which are isotropic for all 
of the forms Qe( , ). There are exactly three lines Da, Db' Dc in E consist-
ing of degenerate forms. The radicals of these degenerate forms give us three 
lines Ra, Rb ,Rc in V. We can choose notations so that Ra = (LI + L 2)n 
(L3 + L 4), Rb = (LI + L 3) n (L2 + L 4), Rc = (LI + L 4) n (L2 + L3). The group 
I permutes naturally the four lines L i ; this gives an isomorphism of I with 
S4· 

One verifies that roO consists of nine subspaces Ui (1 ~ i ~ 9). We shall re-
gard the corresponding varieties XVi (§2.1) as subvarieties of the flag manifold 

!7 = {(EI C E2 = E, VI C JS C V3 = V)} 

of Go. (HeredimEi = i. dim ~ = j.) 
X VI is the full flag manifold !7 . 
X V2 is the subset of !7 defined by the equation Qe (V; . V;) = 0 for all 

eEEI • 

XV3 is the subset of !7 defined by the equation Qe(V;. JS) = 0 for all 
eEEI • 

X V4 is defined by the equation Qe (V; . V;) = 0 for all e E E . 
X v~ = X V3 n X V4 . 
XVs is defined by the equation Qe(VI , V3) = 0 for all e E EI . 
X V7 is defined by the equation Qe(JS. JS) = 0 for all e E EI . 

X Vs = X Vs n X V7 . 

X Vg = X V4 n X V7 . 
We now give a geometric description of the varieties XVi (2 ~ i ~ 9). X V2 

is a pi-bundle over the variety obtained from P (V) by blowing up the four 
points [Li1. XV3 is obtained from P(V) by blowing up the seven points 
[Ld. [L 21. [L3], [L4], [Ra], [Rb], [Rc1 . X V4 is isomorphic to four copies of 
pi x pi ; its natural projection to P(V) consists of the four points [L i 1. XV5 

consists of four copies of pl. X Vs consists of three copies of pi ; the natural 
projection to P( V) (resp. P(E)) consists of the three points [Ra1, [Rb 1. [Rc1 
(resp. [Da ],[Db ],[Dc1). X V7 consists of six copies of pl. XVs consistsofsix 
points; X Vg consists of 12 points. The graph r* is: 

UI-U2-U3 • U4-U5 • U6 • U7-U8 • U9· 
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4.3. Assume now that G is of type Eg and that N is a distinguished nilpotent 
element in 9 with Dynkin diagram 

0002000 
o 

In this case we can identify the pair ( GO, 92) with 
2 (S(GL(E) x GL(V)), Hom(E, Hom(A V, C))), 

where E is a 4-dimensional C-vector space and V is a 5-dimensional C-vector 
space; the action is the obvious one. 

We can think of N as the most general family of alternating bilinear forms 
we ( , ) on V, indexed by vectors e E E, depending linearly on e. Using N 
we identify a vector e E E with the corresponding form we ( , ). 

There are exactly five lines D I , D2 , D3 , D4 , Ds in E whose nonzero vectors 
are forms of rank 2. (This can be seen using the fact that the Grassman-
nian G3 (Cs) imbedded in P(/\ 2 Cs) by the Plucker imbedding, has degree 
5.) The radicals of these forms of rank 2 give us five 3-dimensional subspaces 
HI ' H2 ' H3 ' H4 ,Hs in V. 

The group I permutes naturally the five lines Di ; this gives an isomorphism 
of I with Ss' 

The graph r* has 502 vertices. Of these, 12 have Iv = S2' 71 have Iv = 
S2 X S2' 40 have Iv = S3' 8 have I v = Dg , 121 have Iv = S3 X S2' 98 have 
Iv=S4 and 152 have Iv=Ss' 

Giving a Borel subgroup Bo of Go is the same as giving complete flags 
0000 00000 .. EI C E2 C E3 C E4 = E and ~ c f2 c J!3 c ~ c Vs = V . A Bo-mvanant 

subspace of 92 is an intersection of subspaces of form 
ijk 0 0 0 

U = Ann(Ei ® ~ 1\ Vk ) C 92' 1 SiS 4, 1 S j S k S 5. 

The corresponding variety Xv' regarded as a subvariety of the flag manifold 

!T = {(EI C E2 C E3 C E4 = E, VI C V2 C V3 C ~ C ~ = V)} 

of Go' is the intersection n XVijk 

U.j .kJEA 

where U = nu.j .kJEA U ijk for some set of indices A, and XVijk c!T is defined 
by the equation we(v, v') = 0 for every e E Ei' v E ~, v' E JIk . 

We shall give enough information on the varieties Xv so as to be able to 
compute their Betti numbers (even equivariant ones) by the method indicated 
in §2.13. We shall therefore exhibit in each connected component of r* a 
subspace U such that r5 (u) = 0 . 

Let UI =92' U2=U135 , U3 =U2IS , U4=u422nu224, u S=u2nu3, U6 = 
U314 n U333 , U7 = U6 n U125. 
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By §2.9(a), Xu; is the inverse image (under the natural projection) of a 
O-dimensional subvariety Yu; of a partial flag manifold. 

X UI is the full flag manifold !T ,so YUI is a point. 
YU2 is the set of all (EI' JJ) such that JJ is in the radical of each form in 

E I • This consists of five points (Dj' H j) . 
YU3 is the set of all (E2' V;) such that V; is in the radical of each form in 

E2 • This consists of ten points (D j + Dj' Hj n Hj ), i < j. 
YU4 is the set of all (E2' JS C ~) such that we(JS, JS) = 0 for all e E E 

and We (JS, ~) = 0 for all e E E2. This consists of 15 points 

((D j + Dj + Dk) n (D j + D, + Dm), (Hj n Hk) + (H, n Hm) 
C Hj + (Hj n Hk) + (H, n Hm)), 

where i, j , k , I ,m are all distinct. 
YU5 is the set of all (EI C E2 , V; C JJ) such that JJ is in the radical of 

each form in EI and V; is in the radical of each form in E2 • This consists of 
20 points 

(D j C Dj + Dj' Hj n Hj C Hj). i =f. j. 

YU6 is the set of all (E3' VI C JJ C ~) such that we(V;, ~) = we(JJ, JJ) = 
o for all e E E3 . This consists of 30 points 

(Dj+Dj+Dk • HjnHk C (HjnH)+(HjnHk)+(HjnHk) 
C Hj + (Hj n Hk)), i, j. k distinct. 

YU7 is the set of all (EI C E3 • V; C JS C JJ C ~) such that we(V;, ~) = 
we(V3 • V3) = 0 for all e E E3 and JS is in the radical of each form in E I. 
This consists of 60 points 

(Dj C Dj + Dj + Dk , Hj n Hk C (Hj n Hk) + (Hj n Hj ) 
C (Hi n H) + (Hi n Hk) + (Hj n Hk) CHi + (Hj n Hk)). 

Now using §2.13(a) we see that for any U E r* , the Ss-module H2i (Xu) ®C 
does not contain the sign representation of Ss' (It follows that the Ss-module 
H2i (fBN ) does not contain the sign representation of Ss') (This was proved 
earlier, by a less elementary method, in [BS].) 

ApPENDIX. A RESULT ON GRADED SEMISIMPLE LIE ALGEBRAS 

Let 9 be a semisimple Lie algebra over C and let 9 = EB iE2z gi be a de-
composition such that [9 i • 9 j] C 9 i+ j for all i, j . 

Let ( , ) be the Killing form on 9. Then (9 i • 9) = 0 unless i + j = O. 
Hence ( . ) defines a nonsingular pairing 9 -i X 9 i -+ C. Also 90 is reductive. 

Theorem. Let bo be a Borel subalgebra of 90 and let b2 be a subspace of 92 
such that [b o • b2] C b2 . Define b2i C 92i for i ~ 2 by the inductive formula 
b2i = [b 2 .b 2i_ 2]. Define b2i for i:5 -1 by b2i = {x E 92i l(x.b_2;) = O}. 
Then b = EB iE2Z b i is a Borel subalgebra of 9 . 
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We first prove 

Lemma 1. [bi,b) C bi+j for i,j ~ O. 

Proof. Assume that i = O. If j = 0 or 2 then clearly [b 0' b) C b j' If j ~ 4 
we can assume that [b o ' b j-2] C b j-2 is already known and then 

[b o ' b) = [b o ' [b 2, b j-z]] C [[b o ' b2], b j-z] 

+ [[b o ' b j-2], bz] C [b z ' b j-z] C b j" 

For i = 2 the lemma is true from definitions. We now assume that i ~ 4 
and that [b i-2 ' b) C b i+ j-Z is already known for all j ~ O. We have 

[bi' b) = [[bz, bi- Z], b) C [b i- Z ' [bz, b)] + [bz, [b i_ Z ' b)] 

C [b i _ 2 , b HZ] + [b z , bi+j _ Z] 

C bi+j + bi+j C bi+j" 

The lemma is proved. 

Lemma 2. [b -i ' b) C b j-i for i, j ~ O. 

Proof. In the case where i = 0, this follows from Lemma 1. Hence we can 
assume that i ~ 2. Assuming j :5 i , we have, using Lemma 1: 

([b " b .], b. .) = (b " [b " b. .]) C (b " b) = 0, -I j 1- j -I j 1- j -I I 

hence, 

(a) { [b -i' b) C b j-i (if j < i), 
[b -i' b) C b~ C bo (if j = i). 

(Here b~={XE901(x,bo)=0}.) 
We prove the lemma by induction on j. If j = 0 or 2 then i ~ j, 

which has been considered already. Hence we can assume that j ~ 4 and 
that [b -i' b j-z] C b j-i-Z is already known for all i ~ O. We have (for i ~ 2) : 

[b -i ' b j] = [b -i' [b 2' b j-2]] C [[b -i ' b Z], b j-Z] + [[b -i' b j-2]' b 2] 

C [b -i+2' b j-2] + [b -i+j-2' b2] 
Cb .+b .. =b '. j-I j-I j-I 

(Note that [b -i+ j-2' b 2] C b j-i holds by (a) if j - 1 :s: 0 and by Lemma 1 if 
j - i ~ 2 .) The lemma is proved. 

Lemma 3. [b ., b .] C b . . for i, j ~ 0 . -I -j -I-j 

Proof. By Lemma 2 we can assume that i >0, j > O. We have 

([b_i,b_j],b i+) = ([b_i,bi+j],b_), 
C (b j , b _ ) by Lemma 2 
=0, 

and the lemma follows. 
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Proof of the Theorem. Let 

b/.={b;, i=l=O, 
I b' 0' i = 0, 

and let b' = ffi; b~. From Lemmas 1, 2, 3 and from (a) above, we see that 
[b , b] c b '; in particular, b is a subalgebra. It is clear that (b I, b) = 0, 
and from Cartan's criterion it follows that b is solvable. We have dim b = 
dim(b 0 EB ffi ;>0 g;) and the last space is a Borel subalgebra. It follows that b is 
a Borel subalgebra. 
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