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HOMOLOGY  TANGENT  BUNDLES  AND  UNIVERSAL
BUNDLES1

DANIEL   HENRY   GOTTLIEB

Abstract. We find results about the evaluation map from the

group of homeomorphisms of a closed manifold M and also about

fibre bundles where M is the fibre. These facts follow from the

observation that the homology tangent bundle is induced from a

universal bundle pair.

1. Introduction. The object of this paper is to prove the following

theorem :

Theorem 12. Let G be any group of homeomorphisms acting on a closed

oriented topological manifold M and let w:G—>-A/ be the evaluation map at

the base point *. Then x(M)co*:H*(M; /?)—>-7/* (G; R) is trivial where R

is any ring of coefficients with a unit and #(AF) is the Euler-Poincaré number

ofM.

Note that the theorem applies to the coset mapping p : G-+GJH.

The proof of Theorem 12 makes use of the following observation : Let

G be the path-connected component of the group of homeomorphisms of

any topological manifold M and let H be the isotropy subgroup at *. Then

we have the fibre bundle M-^Bu-^-BG.

Theorem 5. The inclusion i induces the homology tangent bundle from a

"universal" fibre pair over BH.

We use a theorem of R. F. Brown to obtain Theorem 12 from Theorem

5. Along the way we obtain a topological version of a theorem of Borel [2].

Theorem 9. Let M-+E-+'"B be any fibre bundle with an orientation

preserving structural group, where M is a closed, orientable, topological

manifold. Let p be a prime such that x(M)^àf) mod p. Then -n* : H*(B; Z„)—►

H*(E; Z„) is injective.
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2. Preliminaries. Let G be a topological group and let H be a closed

subgroup. Let £ be a space on which G operates on the right such that the

projections E-+EJG and E-+E/H are principal fibre bundles with fibres G

and H respectively. Also, we have the fibre bundle p:EjH-*EjG with fibre

GjH.

Let G operate on the left of a space F. Then, as usual, E x G F will denote

the quotient space of Ex F under the equivalence relation (e\ x)~

(eg, g~xx). The equivalence class of (e, x) will be denoted by (e, x). Thus

(e,x) is a point of E XGF and (e, x) = (eg,g~lx). Similarly, we shall

denote points of EjH by (e)H where e e E and points of EjG will be de-

noted (e)G.

The map p; E x G F-^-EjG given by p((e, x))=(e)G is the projection of a

fibre bundle with fibre F and group G.

Also, we need the concept of bundles induced by a map. Let E-*PB be

a bundle and X^B be a map. The induced bundle/*(X)—pi,)X is a bundle

with the same fibre andf*(X) is the subspace of ExXgiven by points of

the form (e, x) such that p(e)=f(x). We shall denote points inf*(X) by

(e, x). Then the projection map p(f) is given by (e, x)h-»x.

We wish to consider the square of the bundle EjH—p EjG. This is the

bundle GjH—p*(EjHy—EjH. The points of p*(£///) have the form

({e)H, (e')H) where (e)Q=(e')G. Note there is a unique g e G such that

e' -g=e.

There is another bundle with fibre GjH over EjH. This is GjH-*

E XH GjH—EjH. These two bundles are equivalent. We record some

standard facts below for the reader's convenience:

Lemma 1. The two bundles p*(EjH)—EjH and E xH G/H—E/H are

equivalent. The bundle equivalence is given by the map p *(£///)—*■"

E xH GjH which sends ({e)H, (e')H)v-+{e, g~xH) where g is defined by the

equation e ■ g=e.

Lemma 2. There exists a cross-section s:EjH—p*(EjH) to the fibration

p*(EjH)—EjH given by {e)H*-+({e)H, {e)H). The fibration restricts over the

fibre GjH of EjH—"EjG to projection on the second factor GjHx GjH—GjH.

Then the cross-section s restricted to the fibre GjH is the diagonal GjH—»A

GjHxGjH. We may also regard s as the cross-section EjH—E XH GjH

given by (e)H—(e, H).

Lemma 3.    There is a commutative diagram of fibre bundles

GjH x GjH-* P*(EjH) — EjH

GjH-> EjH-> EjG

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



248 D.  H. GOTTLIEB [November

Lemma 4.    There is a bundle equivalence

E/H -^-»- E XGG[H

P P

£/G -i—> E\G

where p((e)H) = (e, H).

3. The homology tangent bundle. In this section we shall always

assume that G\H is a topological manifold without boundary, which we

shall also denote by M. Also, G will be a group of homeomorphisms of M

onto itself, endowed with the compact open topology. Then H will be a

space of homeomorphisms of M which leave the base point * e M fixed,

i.e. the isotropy subgroup. We shall always take E to be contractible. Thus

we have BG=E\G and BH = E/H.

Now observe that H may be regarded as a group of homeomorphisms

of M-*. Consider the universal principal bundle H^>-E—>-BH. By regarding

H as operating on M, we obtain the associated bundle M—>~E x H M-+BH.

By regarding H as operating on M-* we obtain the associated bundle

(Af-*)—£ XH (M-*)^BH.

Observe that E xH (M— *) is contained as a subspace in E xH M.

In fact, using the cross-section s of Lemma 2, we have E x H (M—*) =

(E xH M)—s(BH). The pair (E xH M,E xH (M— *)) is a fibre-bundle

pair in the sense of Fadell [6]. See also [10, p. 256]. The fibre is (M, M— *)

and the base is BH.

By Lemma 1, we may view the fibre pair from a different point. Recall

the fibre bundle M^iBH-*"Ba. Then ExHM is just p*(BH), and

E xH (M—*) is p*(BH)—s(BH). Thus it is easy to see, using Lemma 3,

that the fibre bundle MxM-+**M given by projection on the second

factor is induced by i:M—>-BH from the bundle p*(BH)-+BH. Also, the

bundle Mx M —A—»"'A/ given by projection on the second factor is in-

duced by i:M^>-BH from the bundle p*(BH)—s(BH)->-BH. We formalize

this in the following theorem.

Theorem 5. The bundle pair (MxM, Mx M—A)-^>?*M with fibre

(M, M—*) is induced from the bundle pair (p*(BH), p*(BH)—s(BH))->~BfT

by the inclusion map i: M-*Bn.

Now let (£', £0) be a fibre pair with fibre (F, F0) and base space B. Then

■nx(B, *) operates on H*(F, F0;Z). The fibre pair (£',£„) is said to be

orientable if -nx(B, *) operates trivially on H*(F, F0;Z). If -ttx(B, *)

operates trivially on Hif(F, F0;Z2), the fibre pair is called Z2-orientable.
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Lemma 6.    (a) The homology tangent bundle

(M, M - *) — (M x M, M x M - A) —V M

is Z2-orientable. If M is orientable, then the homology tangent bundle is

orientable.

(b) Let M be orientable and let G be a group of homeomorphisms of M

which preserve orientation. Then the fibre pair

(M, M-*)- (p*(BH), p*(BH) - s(BH)) - Bu

is orientable.

(c) For any M and G, the above fibre pair is Z2-orientable.

Proof,    (a) was proved by Fadell in [6].

(b) Let a.e-7Ti(BH,*). We shall show that a acts trivially on

Hn(M, M—*). There exists an isotopy/(: M—BH such that:

(1) each/, is a homeomorphism of M onto a fibre of BH-VBG.

(2) /0 is the identity map of M regarded as the fibre over p(*),

(3) the trace of the isotopy (i.e. the path a:t\—f,(*)) is a closed path

representing a.

Now we define an isotopy g t:M—p*BH by setting gt(m)=(f(m), /,(*)) e

P*BH. Note that g, is an isotopy of the pairs (M, M—*)—

(P*(BH), p*(BH)-s(BH)).

Now g0 is the identity on the fibre (M, A/—*) over * e BH. On the other

hand gi(m)=(fi(m), *) e (M, M—*). Since f preserves orientation on M

by hypotheses, we see that gx:(M, M—*)—(M, M— *) must induce the

identity homomorphism on Hn(M, A/—*). Thus a acts trivially on

H„(M, M—*), which was to be shown.

(c) is obvious since Hn(M, M—*;Z2)^Z2.

Let (E', Eó)—B be an orientable fibre bundle pair with fibre (M, A/—*).

Since H*(M, M-*)=H*(Rm, Rm-0), there exists a "Thorn isomor-

phism" <j>: H'(B)^Hi+n(E', Ej,) which is natural with respect to mappings

of fibre bundle pairs. Then <j>(\) e Hn(E', E0; R), where R is a ring of co-

efficients, is the "Thorn class". Characteristic classes (Fadell [6]) are

defined from the Thorn class in the obvious way. For example,

<f>-*(<f>(\)KJ</>(])) is the Euler class.
The characteristic classes of M are defined to be the characteristic

classes of the homology tangent bundle (M, Mx M—A).

Corollary 7. If k e H*(M; R) is a characteristic class of M, then k is in

the image ofi*:H(BH; R^H^M; R).

Now we assume that M is a closed orientable «-manifold. Then R. F.

Brown [4] says the Euler class of M is equal to %(M)p where p e Hn(M; R)
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is the fundamental class of the manifold and %(M) is the Euler-Poincaré

number of M. If e e Hn(BH; R) is the Euler class for the fibre pair

(p*(BH), p*(BH)-s(BH))^BH, then by Theorem 5 we have /*(e)=

X(M)p.

Corollary 8.   i*(e)=%(M)p.

4. Proof of Theorem 9.

Theorem 9. Let M-+E—+VB be a fibre bundle with orientation preserving

structural group and let M be a closed, orientable topological manifold. If

x(M)^0 (mod p), then p* is injective. In addition, the theorem is still true

when p=2 with no orientability condition on M or on the fibre bundle.

Proof. We know that the Euler class of M is %(M)p e Hn(M; Z),

where p is a generator, by a theorem of R. F. Brown [4]. Let %(AF),a also

denote the element in Zp cohomology. If x(M)^0 (mod p), then

x(M)p # 0 g H»(M; Z„).

Consider the fibration M-*iBH-^vBG. By Corollary 8, x(M)pi is in the

image of i*:Hn(BH;ZP)-*Hn(M;ZP). (Note that in order to apply

Corollary 8 we need that Lemma 6 be valid. But Lemma 6(b) requires that

G be orientation preserving.) ForZ2 coefficients we apply (c). By naturality,

X(M)p is in the image of ;'* for the fibration M-*-iE->-vB.

Lemma 3.1 of [2] (or see Theorem 14.5 of [3]) says the following:

Suppose F-*iE-^-vB is a fibration with an «-dimensional fibre F such that

nx(B) acts trivially on Hn(F; Zp). If i* : Hn(E; Zp)^-Hn(F; Zv) is nonzero,

then/?* is injective.

In the case at hand, ttx(B) operates trivially on Hn(M; Zv) since nx(B)

operates trivially on the image of /"* (which is onto Hn(M; Zv)).

Remark. In a forthcoming paper, we shall remove the hypothesis that

M is orientable.

5. Actions and characteristic classes. In this section we shall prove

that a characteristic class of a topological manifold M is "inert" under the

action có:GxM->-M. We say k e H*(M; R) is inert under co if co*(k)=

1 xk, where R is any ring of coefficients. One consequence of the inert-

ness of characteristic classes is that #(M)co* is trivial where co:G^-M is

evaluation at a base point *.

We begin by studying the action « : G x (G\H)-^-G\H given by

w(g, g'H)=gg'H. This action fits inside the following commutative dia-

gram.
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G x (GjH) —

Ii X 1

GjH

i

(*) E x (GjH)
<t>

-». BH = £///

Ä

p x *

1

f5

where <f> is defined by <f>(e, gH) = (eg)H and /': G-*£ is given by i(g)=g and

i-.G/H-E/H is given by i(gH) = (g)H. Observe that <j> is well defined and

continuous and that (*) in fact commutes.

Since E is contractible, the commutativity of (*) tells us that / o ¿ó is

homotopic to Gx(GIH)—s'10iGIH—iBH. This proves the following

theorem.

Theorem 10. Any k which is in the image of i*:H*(BH; R)—

H*(GjH; R) is inert under the action cô. In particular, characteristic classes

of topological manifolds are inert under cô.

Remark. The inertness of characteristic classes of differentiable mani-

folds under differentiable actions will be shown in [9] (i.e. Stiefel-Whitney

classes and Pontrjagin class are inert under differentiable actions).

The usefulness of the concept of inertness comes from the following

lemma. Let co:G—M be given by co=w(-, *) for base point * e M.

Lemma 11. Suppose that u and v are positive dimensional cohomology

elements of a space M, and suppose that v is inert under some action o>.

Then uKJv=0 implies co*(u)xv=0.

Proof.   We have

0 = ú*(u Ui)) = có*(u) U có*(v)

= (w*(m) X 1 + y a¿ x b,■ + 2 Ci * di) U 1 x v

= co*(u) X k + 2 a< x (¿¿ u *) + 2 (Ci * d^ U ^  X v^

Here the a¡ and c¡ e H*(M; R) are positive dimensional and b¡ and d¡ e

H*(G; R) and x is the cohomology cross product and * is the torsion

product coming from the Kiinneth formula. It is easy to see that no term

in the expansion has the right dimensions to cancel co*(u)xk. Hence

co*(u)xk=0.

The above lemma, with the aid of Corollary 8 gives us the main result.
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Theorem 12. Let M be a closed orientable topological manifold and let G

be a group of homeomorphisms acting on M by the action có.Gx M-+M.

Let co:G-*M be the evaluation map at the base point *. Then ^(M)o,*:

/?*(A/; R)-*H*(G; R) is trivial where R is any coefficient ring with unit.

Proof. By Corollary 8, i*(e)=x(M)pi. So yXM)pi is inert by Theorem

10. (We let yXM)p also stand for the image of x(M)pi in cohomology with

coefficients in R.) Since p is the top dimensional class, pKJv=0 for any

v e H*(M; R). Thus, by Lemma 11,

0 = co*(v) x xiM)l¿ = XÍM)o*iv) x p.

So x(M)<¿>*(v) must equal zero, thus proving the theorem.

Remark.   If R=Z2, the orientability requirement may be dropped.
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