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Abstract. We study homomorphic authenticated encryption, where privacy and authenticity of data
are protected simultaneously. We define homomorphic versions of various security notions for privacy
and authenticity, and investigate relations between them. In particular, we show that it is possible to
give a natural definition of IND-CCA for homomorphic authenticated encryption, unlike the case of
homomorphic encryption. Also, we construct a homomorphic authenticated encryption scheme sup-
porting arithmetic circuits, which is chosen-ciphertext secure both for privacy and authenticity. Our
scheme is based on the error-free approximate GCD assumption.
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1 Introduction

Homomorphic cryptography allows processing of cryptographically protected data. For example,
homomorphic encryption lets a third party which does not have the secret key to evaluate functions
implicitly using only ciphertexts so that the computed ciphertext decrypts to the correct function
value. Similarly, homomorphic signature allows a third party who is not the signer to derive a signa-
ture to the output of a function, given signatures of the inputs. This possibility for secure delegation
of computation could potentially be used for many applications including cloud computing, and so
it makes homomorphic cryptography a very interesting area, which was recently attracting many
focused research activities, especially since Gentry’s first construction [16] of a fully homomorphic
encryption scheme in 2009. While existing fully homomorphic encryption schemes are still many
orders slower than ordinary encryption schemes to be truly practical, many progresses are already
being made in improving the efficiency of fully homomorphic encryption schemes [23, 22, 7, 8, 17, 12,
13, 4, 6, 18, 19, 10, 5, 11]. Eventually, a truly practical fully homomorphic encryption scheme could
be used to implement secure cloud computing services where even the cloud provider cannot break
the privacy of the data stored and processed by the cloud.

But, if such user data is important enough to protect its privacy, in many scenarios the authen-
ticity of the data would also be worth protecting simultaneously. Indeed, in symmetric-key cryptog-
raphy, the authenticated encryption [21, 2, 14, 20] is exactly such a primitive protecting both privacy
and authenticity of data. Therefore, we would like to study homomorphic authenticated encryption
(henceforth abbreviated as HAE), which is a natural analogue of the authenticated encryption for
homomorphic cryptography. A HAE is a symmetric-key primitive which allows public evaluation
of functions using only corresponding ciphertexts.

Just as in the case of homomorphic encryption, one important goal in this area might be to
design a fully homomorphic authenticated encryption. Since there are several known constructions
of fully homomorphic encryption schemes, if there exists a fully homomorphic signature, or even
a fully homomorphic MAC, then we may construct a fully homomorphic authenticated encryption
scheme by generic composition [2]. Unfortunately, the homomorphic signature scheme closest to



being fully homomorphic is [3], where only low-degree polynomial functions are supported. A fully
homomorphic MAC is proposed by Gennaro and Wichs [15], but it supports only a limited number of
verification queries, so that the solution is in a sense incomplete. So far, the problem of constructing
a fully homomorphic authenticated encryption is still not completely solved.

Our contribution in this paper is twofold. First, we define various security notions for HAE
and study relations among them. For privacy, we define homomorphic versions of IND-CPA and
IND-CCA. While for homomorphic encryption, the usual IND-CCA security is not achievable due
to the malleability, nevertheless we may define a version of IND-CCA for HAE. It is because that
for HAE, encryption of a plaintext is done with respect to a ‘label’, and similarly decryption of a
ciphertext is done with respect to a ‘labeled program’. So, while the ciphertext is still malleable by
function evaluation, a decryption query should essentially declare how the ciphertext was produced.
This allows a homomorphic version of IND-CCA to be defined naturally.

For authenticity, we define UF-CPA, the homomorphic version of the unforgeability when the
adversary has access to the encryption oracle. We also consider UF-CCA, where the adversary
not only has the encryption oracle but also the decryption oracle. Moreover, we consider strong
unforgeability flavors of authenticity and define homomorphic versions accordingly: SUF-CPA and
SUF-CCA. We investigate relationship between these notions, and, for example, show that SUF-
CPA implies SUF-CCA. And, we show that IND-CPA and SUF-CPA imply IND-CCA. Together,
this shows that a HAE scheme with IND-CPA and SUF-CPA security is in fact IND-CCA and
SUF-CCA.

The second contribution is that we propose a HAE scheme supporting arithmetic circuits. This
scheme is not fully homomorphic, but only somewhat homomorphic, but we show that our scheme
is secure and satisfies both IND-CCA and SUF-CCA. Another appeal of our scheme is that it is a
simple and natural construction based on the error-free approximate GCD (EF-AGCD) assump-
tion. EF-AGCD assumption was used before [23, 12, 13, 10, 11] in constructing fully homomorphic
encryption schemes supporting boolean circuits, but here we use it to construct a HAE scheme
supporting arithmetic circuits on ZQ for Q ∈ Z+.

2 Related work

Gennaro and Wichs [15] proposed the first construction of the fully homomorphic MAC. Their
construction uses FHE, and exploits the randomness in the encryption to hide information necessary
for authentication. In fact, since their scheme naturally encrypts plaintexts using FHE, it is already
a fully homomorphic authenticated encryption. But, their construction essentially does not allow
verification queries, so it satisfies only weaker security notions: IND-CPA and UF-CPA, according
to our definition. Construction of a fully-homomorphic authenticated encryption scheme satisfying
chosen ciphertext security is still an interesting open problem.

Catalano and Fiore [9] proposed two somewhat homomorphic MACs supporting arithmetic
circuits on Zp for prime modulus p. In their construction, a MAC for a message m is a polynomial
σ(X) such that its constant term σ(0) is equal to the message m, and its value σ(α) on a hidden
random point α is equal to randomness determined by the ‘label’ τ of the message m. While their
construction is very simple and practical for low-degree polynomials, it does not protect privacy of
data, and it seems that this cannot be changed by simple modifications, for example by choosing
a secret random value β as the value satisfying σ(β) = m. Also, in their scheme, the size of the
prime modulus p is determined by the security parameter, so it cannot be chosen arbitrarily by the
application.

Our scheme is not as efficient as the schemes of Catalano and Fiore, but certainly more effi-
cient than the generically composed HAE of a FHE scheme and the Catalano-Fiore homomorphic
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MAC. And our scheme is also very simple and its security is based on the EF-AGCD assumption,
an assumption which was used in the context of fully homomorphic encryption schemes before.
Moreover, in our construction, the modulus Q does not depend on the security parameter so that
it can be chosen depending on the application.

Our scheme can also be compared with a homomorphic encryption scheme called IDGHV pre-
sented in [10]. It supports encryption of a plaintext vector (m1, . . . ,m`) where each mi is an element
in ZQi . Like our scheme, IDGHV also uses the Chinese remainder theorem, and indeed our con-
struction can be seen as a special-case, symmetric-key variant of IDGHV where ` = 1, and where
encryption randomness is pseudorandomly generated from the label. We intentionally omitted en-
cryption of multiple plaintexts for simplicity of exposition, but our construction can naturally be
extended in this way.

The privacy of our scheme is proved using the decisional EF-AGCD assumption, which is sug-
gested by Cheon at al. [10]. Recently, Coron et al. proposed a scale-invariant fully homomorphic
encryption scheme over integers (to be published in PKC 2014 [11]). In the paper, they showed
that the decisional EF-AGCD assumption is equivalent to the (computational) EF-AGCD GCD
assumption. Therefore, the privacy of our scheme is in fact based on the computational EF-AGCD
assumption. Note that in a previous version of this paper, the privacy of our scheme was based
more directly on the EF-AGCD assumption, but the proof was done only for smooth modulus Q.

Security notions of the authenticated encryption was studied before. Bellare and Namprempre [2]
studied both privacy and authenticity of authenticated encryption schemes, and the authenticity
notions are later studied further by Bellare, Goldreich and Mityagin [1]. Our UF-CPA and SUF-CPA
can be considered as homomorphic versions of INT-PTXT-1 and INT-CTXT-1 of [1], respectively.
Our UF-CCA and SUF-CCA are comparable to homomorphic versions of INT-PTXT-M and INT-
CTXT-M, respectively, but in our (S)UF-CCA, the adversary has access to the decryption oracle,
while in INT-PTXT-M and INT-CTXT-M, the adversary has access to the verification oracle.

3 Preliminary

3.1 Notations

In this paper, we use the following notations for intervals of integers. For any real number a and b,
we define

[a, b] := {x ∈ Z | a ≤ x ≤ b} ,
(a, b] := {x ∈ Z | a < x ≤ b} ,
[a, b) := {x ∈ Z | a ≤ x < b} ,
(a, b) := {x ∈ Z | a < x < b} .

For any real number a, the nearest integer bae of a is defined as the unique integer in
[
a− 1

2 , a+ 1
2

)
.

The ring Zn of integers modulo n is represented as the set (−n
2 ,

n
2 ]. This means that

x mod n := x−
⌊x
n

⌉
· n

for any integer x. For example, Z2 = {0, 1}, Z3 = {−1, 0, 1}.
For any positive integers n and m with gcd(n,m) = 1, CRT(n,m) is the isomorphism from

Zn × Zm onto Znm, satisfying

(CRT(n,m)(a, b) mod n,CRT(n,m)(a, b) mod m) = (a, b)
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for any (a, b) ∈ Zn × Zm.
In this paper, the security parameter is always denoted as λ, and the expression

f(λ) = negl(λ)

means that f(λ) is a negligible function, that is, for any c > 0, f satisfies

|f(λ)| ≤ λ−c

for all sufficiently large λ ∈ Z+.
Also, lg means the logarithm to base 2. And ∆(D1, D2) denotes the statistical distance between

two distributions D1 and D2.

3.2 Security assumptions

In this section we define security assumptions we are going to use in this paper. In order to do this,
first let us define some distributions.

Definition 1. For any positive integers p, q0, ρ, let us define the following distributions.

D(p, q0, ρ) := {choose q
$← [0, q0), r

$← (−2ρ, 2ρ) : output pq + r},

Clearly, we can efficiently sample from the above distribution for any given parameters. When a
distribution is given as an input to an algorithm, it means that a sampling oracle for the distribution
is given; we use the same notation for a sampling oracle as that of the distribution from which it
samples.

Let PRIME be the set of all prime numbers and ROUGH(x) the set of all integers having no
prime factors less than x.

Definition 2 (Error-Free Approximate GCD Assumption). The (computational) (ρ, η, γ)-EF-AGCD
assumption is that, for any PPT adversary A, we have

Pr [A(ρ, η, γ, y0,D(p, q0, ρ)) = p] = negl(λ),

where p
$← [2η−1, 2η) ∩ PRIME, q0

$← [0, 2γ/p) ∩ ROUGH(2λ), and y0 = pq0.

The EF-AGCD assumption is suggested by Coron et al. [12] to prove the security of their variant
of the DGHV scheme [23].

There is also a decisional version of the EF-AGCD assumption, which is suggested by Cheon at
al. [10].

Definition 3 (Decisional Error-Free Approximate GCD Assumption). The decisional (ρ, η, γ)-EF-AGCD
assumption is that, for any PPT distinguisher D, we have∣∣∣Pr [D(ρ, η, γ, y0,D(p, q0, ρ), z) = 1 | z ← D(p, q0, ρ)]

− Pr
[
D(ρ, η, γ, y0,D(p, q0, ρ), z) = 1 | z $← Zy0

]∣∣∣
= negl(λ)

where p
$← [2η−1, 2η) ∩ PRIME, q0

$← [0, 2γ/p) ∩ ROUGH(2λ), and y0 = pq0.

Recently, Coron et al. proved the equivalence of the EF-AGCD assumption and the decisional
EF-AGCD assumption in [11]. Later we will show that our scheme is IND-CPA under the decisional
EF-AGCD assumption. Therefore, the security of our scheme is based on the EF-AGCD assumption,
according to the equivalence.
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4 Homomorphic authenticated encryption

In this section, we define the homomorphic authenticated encryption (HAE) and its security. In
the following,M and C are the plaintext space and the ciphertext space, respectively, L is the label
space, and F is the admissible function space.

4.1 Syntax

Labeled programs. First, let us define labeled programs, a concept first introduced in [15].

For each HAE, a set of admissible functions F is associated. In reality, F is not a set of
mathematical functions, but a set of representations of mathematical functions; an element f of
F is a concrete representation of a function which can be evaluated in polynomial time, and in
general, it is possible for two distinct representations f 6= f ′ to represent the same mathematical
function. It is required that any f ∈ F should represent a function of form f :Ml →M for some
l ∈ Z+ which depends on f . We will simply call an element f ∈ F an admissible function. The
number l is the arity of f .

A HAE encrypts a plaintext m ∈M under a ‘label’ τ ∈ L, and a labeled program is an admissi-
ble function together with information which plaintexts should be used as inputs. Formally, a labeled
program is a tuple P = (f, τ1, . . . , τl), where f ∈ F is an admissible function f : Ml → M, and
τi ∈ L are labels for i = 1, . . . , l for each input of f . The idea is that, if mi are plaintexts encrypted
under the label τi, respectively, then the evaluation of the labeled program P = (f, τ1, . . . , τl) is
f(m1, . . . ,ml).

We also define the identity labeled program with label τ , which is Iτ = (id, τ), where id :M→M
is the identity function and τ ∈ L is a label.

Homomorphic authenticated encryption. A HAE is a tuple Π = (Gen,Enc,Eval,Dec) of the
following four PPT algorithms.

– (ek , sk)← Gen(1λ): given a security parameter λ, Gen(1λ) outputs a public evaluation key ek
and a secret key sk .

– c ← Enc(sk , τ,m): given a secret key sk , a label τ ∈ L and a plaintext m ∈ M, Enc(sk , τ,m)
outputs a ciphertext c ∈ C.

– c̃← Eval(ek , f, c1, · · · , cl): given an evaluation key ek , an arity-l admissible function f :Ml →
M in F and l ciphertexts c1, · · · , cl ∈ C, the deterministic algorithm Eval outputs a ciphertext
c̃ ∈ C.

– m or ⊥ ← Dec(sk , (f, τ1, · · · , τl), ĉ): given a secret key sk , a labeled program (f, τ1, · · · , τl) and
a ciphertext ĉ ∈ C, the deterministic algorithm Dec outputs a message m ∈M or ⊥.

We assume that evaluation key ek implicitly contains the information about M, C, L, and F . As
mentioned above, we assume both Eval and Dec are deterministic algorithms.

Compactness. In order to exclude trivial constructions, we require that there exists some c > 0
such that, for any λ ∈ Z+, the output size of Eval(ek , . . . ) and Enc(sk , ·, ·) are bounded by λc

for any choice of their input, when (ek , sk) ← Gen(1λ). That means that the ciphertext size is
independent of the choice of the admissible function f or the arity of f .
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Correctness. A HAE scheme must satisfy the following two correctness properties:

– We should have

m = Dec(sk , Iτ ,Enc(sk , τ,m)),

for any λ ∈ Z+, τ ∈ L and m ∈M, when (ek , sk)← Gen(1λ).

– We should have

f(m1, . . . ,ml) = Dec(sk , (f, τ1, . . . , τl), c),

for any λ ∈ Z+, any f ∈ F , any τi ∈ L, mi ∈ M for i = 1, . . . , l, when (ek , sk) ← Gen(1λ),
ci ← Enc(sk , τi,mi) for i = 1, . . . , l, and c← Eval(ek , f, c1, . . . , cl).

In addition, we require that a HAE should satisfy a property we call ciphertext constant testa-
bility, which will be explained next.

4.2 Constant testability

Given a HAE Π, an admissible function f : Ml → M of arity l, a subset I of the index set
{1, · · · , l}, plaintexts (mi)i∈I ∈ M|I|, and their corresponding ciphertexts (ci)i∈I ∈ C |I|, consider
the following functions:

f̃(mi)i∈I := f(mi)i∈I ,

c̃f,(ci)i∈I := Eval(ek , f, (ci)i∈I).

More explicitly, f̃(mi)i∈I is a function from Ml−|I| to M defined by

f̃(mi)i∈I (mj)j 6∈I := f(m1, · · · ,ml),

for any (mj)j 6∈I ∈ Ml−|I|. That is, plaintexts for the index set I are fixed, and plaintexts for the
indices in {1, . . . , l} \ I are considered as variables. In short, f̃ = f̃(mi)i∈I is a partially evaluated
admissible function.

Similarly, c̃f,(ci)i∈I is a function from Cl−|I| to C defined by

c̃f,(ci)i∈I (cj)j 6∈I := Eval(ek , f, c1, · · · , cl),

for any (cj)j 6∈I ∈ Cl−|I|. In particular, f̃(mi)i∈I and c̃f,(ci)i∈I are constant functions if I = {1, . . . , l}.
Sometimes we would like to determine whether such a function f̃(mi)i∈I or c̃f,(ci)i∈I is constant or

not. Therefore we define a property called ‘constant testability’. Depending whether we are working
on plaintexts or ciphertexts, we define two versions of constant testability accordingly.

Definition 4. We say that a HAE Π satisfies the plaintext constant testability (PCT) if there
exists a PPT algorithm that determines if the function f̃(mi)i∈I is constant or not with overwhelming

probability, for any admissible function f : Ml → M of arity l, any subset I of the index set
{1, · · · , l} and any (mi)i∈I ∈M|I|.

Definition 5. We say that a HAE Π satisfies the ciphertext constant testability (CCT) if there
exists a PPT algorithm that determines if the function c̃f,(ci)i∈I is constant or not with overwhelming

probability, for any evaluation key ek generated by Π.Gen, any admissible function f : Ml → M
of arity l, any subset I of the index set {1, · · · , l} and any (ci)i∈I ∈ C|I|.
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When the set of admissible functions supported by a HAE is simple, both PCT and CCT may
be satisfied. But, the plaintext constant testability might be a difficult property to be satisfied
in general; for example, if a HAE supports general boolean circuits, then PCT implies that the
CIRCUIT-SAT problem can be solved in polynomial time with overwhelming probability, therefore
the polynomial hierarchy PH collapses.

On the other hand, we claim that a HAE to satisfy the ciphertext constant testability is a
relatively mild requirement: unlike the plaintext spaceM, often the ciphertext space C might be a
large ring, and c̃f,(ci)i∈I is a polynomial on the ring C, in which case we may use the Schwartz-Zippel
lemma to perform the polynomial identity testing. This applies to our HAE scheme to be presented
in this paper, as shown in Theorem 8.

Moreover, we show that if Π is a HAE which does not necessarily satisfy CCT, then there is
a simple generic transformation which turns it into another HAE Π ′ which satisfies CCT, while
preserving original security properties satisfied by Π. This will be shown in Theorems 5, 6 and 7.

Therefore, without loss of generality, we assume the CCT property to be an additional require-
ment for a HAE to satisfy.

4.3 Privacy

Here we define security notions of privacy for HAE. First, let us define IND-CPA.

Indistinguishability under chosen plaintext attack. Our definition of privacy for HAE is a
homomorphic version of the IND-CPA security. We use the following security game IND-CPAΠ,A

between the challenger and the adversary A, which is a natural adaptation of the corresponding
security game of the symmetric-key encryption.

The main difference is that, in case of a HAE, at most one message m ∈M can be encrypted to
produce the corresponding ciphertext c← Enc(sk , τ,m) under each label τ ∈ L. In other words, a
label used once in an encryption cannot be used again. To prevent from generating two ciphertexts
with respect to the same label, an encryption history S will be kept in the game IND-CPA. If a
label τ is not in the history S, then we say that the label τ is new.

IND-CPAΠ,A(1λ):

Initialization. A key pair (ek , sk) ← Gen(1λ) is generated, a set S is initialized as the
empty set ∅. Then ek is given to A.

Queries. A may make encryption queries adaptively. For each encryption query (τ,m) of
A, if (τ, ·, ·) /∈ S (that is, (τ,m, c) 6∈ S for any m ∈ M, c ∈ C), then the challenger
returns the answer c← Enc(sk , τ,m) to A and updates S ← S ∪ {(τ,m, c)}. Otherwise,
the query is rejected.

Challenge. A outputs the challenge (τ∗,m∗0,m
∗
1). If (τ∗, ·, ·) /∈ S, then the challenger flips

a coin b
$← {0, 1}, gives the corresponding challenge ciphertext c∗ ← Enc(sk , τ∗,m∗b) to

A and updates S ← S ∪ {(τ∗,m∗b , c∗)} . Otherwise, the challenge is rejected.
Queries. Again A may make encryption queries adaptively, and such queries are answered

precisely as before.
Finalization. A outputs a bit b′, and then the challenger returns 1 if b = b′, and 0 otherwise.

The advantage of A in the game IND-CPA for the scheme Π is defined as

AdvIND-CPA
Π,A (λ) :=

∣∣∣∣Pr
[
IND-CPAΠ,A(1λ) = 1

]
− 1

2

∣∣∣∣ .
We say that a HAE Π satisfies IND-CPA, if the advantage AdvIND-CPA

Π,A (λ) is negligible for any
PPT adversary A.
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Indistinguishability under chosen ciphertext attack. We also consider a homomorphic ver-
sion of the IND-CCA security of symmetric-key encryption. Even though the usual IND-CCA
security is not achievable for homomorphic encryption due to the malleability, nevertheless we may
define a version of IND-CCA for HAE. It is because that for HAE, decryption of a ciphertext
is done with respect to a labeled program. So, while the ciphertext is still malleable by function
evaluation, a decryption query should essentially declare how the ciphertext was produced. This
allows a homomorphic version of IND-CCA to be defined naturally as follows.

Homomorphic IND-CCA for a HAE Π = (Gen,Enc,Eval,Dec) is defined using the following
security game IND-CCAΠ,A, which is also a natural extension of the security game IND-CCA of a
symmetric-key encryption.

This time, the important difference is on the definition of legality of a decryption query after the
Challenge phase. In the IND-CCA game for the symmetric encryption, the only illegal decryption
query after Challenge phase is the decryption query for the challenge ciphertext itself. On the
other hand, in the HAE case, any decryption query for a ciphertext that was produced by function
evaluation which may nontrivially depend on the input m∗0 or m∗1 should be considered illegal, since
decryption of that ciphertext could reveal the bit b. This is formalized as follows.

To check the legality of a decryption query after Challenge, the security game keeps the en-
cryption history S. Then, we say that a decryption query ((f, τ1, · · · , τl), ĉ) after Challenge phase
is illegal, if τ∗ = τi∗ for some i∗ ∈ I, and the two functions f̃0 and f̃1 are not equal, where

I := {i ∈ {1, · · · , l} | (τi,mi, c) ∈ S for some mi ∈M, c ∈ C} ,

f̃0 := f(mi)i∈I ,with mi∗ = m∗0,

f̃1 := f(mi)i∈I ,with mi∗ = m∗1.

This means that the function value of f depends nontrivially whether m∗0 or m∗1 is used as the i∗th
plaintext input. In the following security game, it is forbidden for the adversary A to make any
illegal decryption query after the Challenge phase.

IND-CCAΠ,A(1λ):

Initialization. A key pair (ek , sk)← Gen(1λ) is generated and a set S is initialized to be
the empty set ∅. Then ek is given to the adversary A.

Queries. A may make encryption queries and decryption queries adaptively. For each en-
cryption query (τ,m) of A, if (τ, ·, ·) 6∈ S then the query is replied with an answer
c ← Enc(sk , τ,m) and S is updated as S ← S ∪ {(τ,m, c)} . Otherwise, the encryp-
tion query is rejected. Each decryption query ((f, τ0, · · · , τl), ĉ) of A is answered by
Dec(sk , (f, τ1, · · · , τl), ĉ).

Challenge. A outputs the challenge tuple (τ∗,m∗0,m
∗
1). If (τ∗, ·, ·) 6∈ S, then a coin b

$←
{0, 1} is flipped and the challenge ciphertext c∗ ← Enc(sk , τ∗,m∗b) is given to A, and S
is updated as S ← S ∪ {(τ∗,m∗b , c∗)}. Otherwise, the challenge is rejected.

Queries After Challenge. Again, A may make encryption queries and decryption queries
adaptively. This time, it is forbidden for A to make illegal decryption queries. Then, any
encryption or decryption query of A is answered precisely as before.

Finalization. A outputs a bit b′, and then the challenger returns 1 if b = b′, and 0 otherwise.

The advantage of A in the game IND-CCA for the scheme Π is defined as

AdvIND-CCA
Π,A (λ) :=

∣∣∣∣Pr
[
IND-CCAΠ,A(1λ) = 1

]
− 1

2

∣∣∣∣ .
We say that a HAE Π satisfies IND-CCA, if the advantage AdvIND-CCA

Π,A (λ) is negligible for any
PPT adversary A which does not make illegal decryption queries.
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4.4 Authenticity

Unforgeability under chosen plaintext attack. Our authenticity definition for HAE is an
adaptation of the definition given by Catalano and Fiore [9] for homomorphic MACs.

First, we define the forgery of an adversary. Let ((f, τ1, · · · , τl), ĉ) be a forgery attempt of an
adversary, and let S be the encryption history maintained in the security game. We say that it is
a forgery, if the following holds:

1. It is valid, that is, ⊥ 6= Dec(sk , (f, τ1, · · · , τl), ĉ) and,
2. One of the following holds:

– Type 1 forgery: f̃ = f(mi)i∈I is not constant, or,
– Type 2 forgery: f̃ = f(mi)i∈I is constant but f̃ 6= Dec(sk , (f, τ1, · · · , τl), ĉ),

where
I = {i ∈ {1, · · · , l} | (τi,mi, c) ∈ S for some mi ∈M, c ∈ C} ,
f̃ :Ml−|I| →M defined by f̃(mj)j 6∈I := f(m1, . . . ,ml).

We define the unforgeability under chosen plaintext attack (UF-CPA) of a HAE Π using the
following security game UF-CPAΠ,A.

UF-CPAΠ,A(1λ):

Initialization. A key pair (ek , sk)← Gen(1λ) is generated and a set S is initialized to be
the empty set ∅. Then ek is given to the adversary A.

Queries. A may make encryption queries adaptively. For each encryption query (τ,m) of
A, if (τ, ·, ·) /∈ S, then the query is replied with the answer c ← Enc(sk , τ,m), and S is
updated with S ← S ∪ {(τ,m, c)}. Otherwise, the query is rejected.

Finalization. A outputs a forgery attempt ((f, τ1, · · · , τl), ĉ). The challenger returns 0 if
⊥ = Dec(sk , (f, τ1, · · · , τl), ĉ). Otherwise, I is initialized as ∅, and for each i = 1, . . . , l,
if (τi,m, c) ∈ S for some m ∈M, c ∈ C, then let I ← I ∪ {i} and mi ← m. And then let
f̃ = f(mi)i∈I . If f̃ is not constant, or if f̃ is constant but f̃ 6= Dec(sk , (f, τ1, · · · , τl), ĉ),
then the challenger returns 1. Otherwise, 0 is returned.

The advantage of A in the game UF-CPA for the scheme Π is defined as

AdvUF-CPA
Π,A (λ) := Pr

[
UF-CPAΠ,A(1λ) = 1

]
.

We say that a HAE Π satisfies UF-CPA, if the advantage AdvUF-CPA
Π,A (λ) is negligible for any

PPT adversary A.

Unforgeability under chosen ciphertext attack. It is also natural to consider a stronger
variant of unforgeability, in which an adversary is allowed to make decryption queries as well as
encryption queries. We call this variant UF-CCA. The only difference of UF-CCA from UF-CPA
is the Queries phase, which is given below.

Queries. A may make encryption queries and decryption queries adaptively. For each en-
cryption query (τ,m) of A, if (τ, ·, ·) /∈ S, then the query is replied with the answer c←
Enc(sk , τ,m), and S is updated with S ← S∪{(τ,m, c)}. Otherwise, the query is rejected.
Each decryption query ((f, τ0, · · · , τl), ĉ) of A is answered by Dec(sk , (f, τ1, · · · , τl), ĉ).

The advantage of A in the game UF-CCA for the scheme Π is defined as

AdvUF-CCA
Π,A (λ) := Pr

[
UF-CCAΠ,A(1λ) = 1

]
.

We say that a HAE Π satisfies UF-CCA, if the advantage AdvUF-CCA
Π,A (λ) is negligible for any PPT

adversary A.
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Strong unforgeability under chosen plaintext attack. Sometimes it is useful to consider
stronger definition of authenticity. So let us define strong unforgeability for HAE.

We first define strong forgery of an adversary. Let ((f, τ1, · · · , τl), ĉ) be a forgery attempt of an
adversary, and let S be the encryption history maintained in the security game. We say that it is
a strong forgery, if the following holds:

1. It is valid, that is, ⊥ 6= Dec(sk , (f, τ1, · · · , τl), ĉ) and,
2. One of the following holds:

– Type 1 strong forgery: c̃ = Eval(ek , f, (ci)i∈I) is not constant, or,
– Type 2 strong forgery: c̃ = Eval(ek , f, (ci)i∈I) is constant but c̃ 6= ĉ,

where
I = {i ∈ {1, · · · , l} | (τi,m, ci) ∈ S for some m ∈M, ci ∈ C} ,
c̃ : Cl−|I| → C defined by c̃(cj)j 6∈I := Eval(ek , f, c1, · · · , cl).

Now, we define the strong unforgeability under chosen plaintext attack (SUF-CPA) of a HAE
Π using the following security game SUF-CPAΠ,A.

SUF-CPAΠ,A(1λ):

Initialization. A key pair (ek , sk)← Gen(1λ) is generated and a set S is initialized to be
the empty set ∅. Then ek is given to the adversary A

Queries. A may make encryption queries adaptively. For each encryption query (τ,m) of
A, if (τ, ·, ·) /∈ S, then the query is replied with the answer c ← Enc(sk , τ,m), and S is
updated with S ← S ∪ {(τ,m, c)}. Otherwise, the query is rejected.

Finalization. A outputs a forgery attempt ((f, τ1, · · · , τl), ĉ). The challenger returns 0 if
⊥ = Dec(sk , (f, τ1, · · · , τl), ĉ). Otherwise, I is initialized as ∅, and for each i = 1, . . . , l,
if (τi,m, c) ∈ S for some m, c, then let I ← I ∪ {i} and ci ← c. And then let c̃ =
Eval(ek , f, (ci)i∈I). If c̃ is not constant, or if c̃ is constant but c̃ 6= ĉ, then the challenger
returns 1. Otherwise, 0 is returned.

The advantage of A in the game SUF-CPA for the scheme Π is defined as

AdvSUF-CPA
Π,A (λ) := Pr

[
SUF-CPAΠ,A(1λ) = 1

]
.

We say that a HAE Π satisfies SUF-CPA, if the advantage AdvSUF-CPA
Π,A (λ) is negligible for any

PPT adversary A.

Strong unforgeability under chosen ciphertext attack. Also for strong unforgeability, we
consider security against chosen ciphertext attacks, which we call SUF-CCA. Again, the only dif-
ference of SUF-CCA from SUF-CPA is the Queries phase, which is given below.

Queries. A may make encryption queries and decryption queries adaptively. For each en-
cryption query (τ,m) of A, if (τ, ·, ·) /∈ S, then the query is replied with the answer c←
Enc(sk , τ,m), and S is updated with S ← S∪{(τ,m, c)}. Otherwise, the query is rejected.
Each decryption query ((f, τ0, · · · , τl), ĉ) of A is answered by Dec(sk , (f, τ1, · · · , τl), ĉ).

The advantage of A in the game SUF-CCA for the scheme Π is defined as

AdvSUF-CCA
Π,A (λ) := Pr

[
SUF-CCAΠ,A(1λ) = 1

]
.

We say that a HAE Π satisfies SUF-CCA, if the advantage AdvSUF-CCA
Π,A (λ) is negligible for any

PPT adversary A.
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4.5 Relations on security notions

In this section, we investigate relations between the six security notions defined in the previous
section. First, we have trivial implications from CCA security to CPA security.

Theorem 1. UF-CCA implies UF-CPA, SUF-CCA implies SUF-CPA, and IND-CCA implies
IND-CPA.

Proof. Trivial.

The following theorem says that the strong unforgeability implies unforgeability.

Theorem 2. SUF-CCA implies UF-CCA. And SUF-CPA implies UF-CPA.

Proof. It is enough to show that a forgery is also a strong forgery. Let ((f, τ1, · · · , τl), ĉ) be a
forgery. If it is a forgery of type 1, then f̃ = f(mi)i∈I is not constant. That is, there exist two
tuples (m1

j )j 6∈I and (m2
j )j 6∈I such that f̃(m1

j )j 6∈I 6= f̃(m2
j )j 6∈I . Then there exists two distinct tuples

(c1
j )j 6∈I and (c2

j )j 6∈I such that m1
j = Dec(sk , Iτj , c

1
j ) and m2

j = Dec(sk , Iτj , c
2
j ) for each j 6∈ I. Then

we have c̃(c1
j )j 6∈I 6= c̃(c2

j )j 6∈I by the correctness property, which shows that c̃ = Eval(ek , f, (ci)i∈I)
is nonconstant. So it is a strong forgery of type 1.

If it is a forgery of type 2 but not a strong forgery of type 1, then both f̃ and c̃ are constants
and f̃ 6= Dec(sk , (f, τ1, · · · , τl), ĉ). But f̃ = Dec(sk , (f, τ1, · · · , τl), c̃), again by the correctness. This
means that ĉ 6= c̃, and this shows that it is a strong forgery of type 2.

Bellare et al. [1] showed that, in case of a MAC, strong unforgeability implies strong unforge-
ability even when the adversary has access to the verification oracle, and in case of an AE, integrity
of ciphertexts implies integrity of ciphertexts even when the adversary has access to the verification
oracle. The following can be considered as a homomorphic analogue to the result.

Theorem 3. SUF-CPA implies SUF-CCA.

Proof. We prove the theorem by a hybrid argument to transform the game SUF-CCA into another
game that is essentially the same as the game SUF-CPA.

Let A be any PPT adversary. Without loss of generality, we may assume that A makes exactly
q = q(λ) decryption queries.

For each i ∈ {0, . . . , q}, define SUF-CCAi to be the game that is identical to SUF-CCA except
that the first i decryption queries are answered by the following decryption simulation.

Decryption Simulation. For a decryption query ((f, τ1, · · · , τl), ĉ) made by the adversary
A, let I ← ∅ and do the following for i = 1, · · · , l: If (τi,m, c) ∈ S for some m ∈M and
c ∈ C, then I ← I ∪ {i} and mi = m, ci = c. And then let c̃ = Eval(ek , f, (ci)i∈I) and
f̃ = f(mi)i∈I . If c̃ is constant and c̃ = ĉ, then return f̃ . Otherwise, return ⊥.

In particular, SUF-CCA is equal to SUF-CCA0. So,

AdvSUF-CCA0

Π,A (λ) = AdvSUF-CCA
Π,A (λ).

Moreover, since the decryption simulation does not use any secret information and is efficiently
computable by the CCT property in SUF-CCAq, the adversary A does not obtain any useful
information by the decryption queries at all in this game. Formally, we can easily construct an
adversary A′ which plays SUF-CPA game and makes the same number of encryption queries as A
does, and satisfying

AdvSUF-CCAq

Π,A (λ) = AdvSUF-CPA
Π,A′ (λ).
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For each i ∈ {1, . . . , q}, the difference between AdvSUF-CCAi−1

Π,A (λ) and AdvSUF-CCAi

Π,A (λ) is
bounded by the probability that the decryption simulation on the ith decryption query made
by A fails (that is, is different from the real decryption). From the definition of a strong forgery, it
is easy to check that the decryption simulation fails if and only if the decryption query made by A
is a strong forgery: we have

decryption simulation fails

⇐⇒ c̃ is constant and c̃ = ĉ, but ⊥ = Dec(sk , (f, τ1, . . . , τl), ĉ), or,

c̃ is nonconstant, or c̃ is constant but c̃ 6= ĉ, but ⊥ 6= Dec(sk , (f, τ1, . . . , τl), ĉ),

but when c̃ is constant and c̃ = ĉ, by the correctness we should have Dec(sk , (f, τ1, . . . , τl), ĉ) = f̃ ,
which should also be a constant not equal to ⊥, therefore this subcase cannot happen. So,

decryption simulation fails

⇐⇒ c̃ is nonconstant, or c̃ is constant but c̃ 6= ĉ, but ⊥ 6= Dec(sk , (f, τ1, . . . , τl), ĉ)

⇐⇒ ((f, τ1, . . . , τl), ĉ) is a strong forgery.

Hence, we may construct a PPT adversary A′′ for the game SUF-CPA using the ith decryption
query made by A. Specifically, A′′ runs the adversary A until it makes the ith decryption query,
while answering the encryption queries using its own encryption queries and answering the previous
decryption queries by the decryption simulation. Then A′′ aborts the running of A, and outputs
the ith decryption query of A as its own forgery attempt.

So, ∣∣∣AdvSUF-CCAi−1

Π,A (λ)−AdvSUF-CCAi

Π,A (λ)
∣∣∣ ≤ AdvSUF-CPA

Π,A′′ (λ) = negl(λ).

Therefore,

AdvSUF-CCA
Π,A (λ) ≤ AdvSUF-CPA

Π,A′ (λ) +
∣∣AdvSUF-CCA

Π,A (λ)−AdvSUF-CPA
Π,A′ (λ)

∣∣
= negl(λ) +

∣∣∣AdvSUF-CCA0

Π,A (λ)−AdvSUF-CCAq

Π,A (λ)
∣∣∣

≤ negl(λ) +

q∑
i=1

∣∣∣AdvSUF-CCAi

Π,A (λ)−AdvSUF-CCAi−1

Π,A (λ)
∣∣∣

≤ negl(λ) + q · negl(λ)

= negl(λ).

So AdvSUF-CCA
Π,A (λ) is also negiligible for any PPT adversaryA and thereforeΠ is SUF-CCA.

Theorem 4. IND-CPA and SUF-CPA together imply IND-CCA.

Proof. Proof of this theorem is similar to that of Theorem 3; again we prove this theorem by a
hybrid argument to transform the game IND-CCA into another game that is essentially same as
the game IND-CPA.

Let A be a PPT adversary engaging in the game IND-CCA. Again, without loss of generality,
we assume that A makes exactly qb = qb(λ) decryption queries before the Challenge phase, and
qa = qa(λ) decryption queries after the Challenge phase.

For each i ∈ {0, . . . , qb}, define IND-CCAb,i to be the game that is equal to IND-CCA except
that the first i decryption queries before the Challenge phase are answered by the same decryption
simulation as shown in Theorem 3.
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For each i ∈ {0, . . . , qa}, define IND-CCAa,i to be the game that is equal to IND-CCA except
that all decryption queries before the Challenge phase, and the first i decryption queries after the
Challenge phase are answered by the same decryption simulation.

By definition, IND-CCAb,0 = IND-CCA and IND-CCAb,qb = IND-CCAa,0. So,

AdvIND-CCAb,0

Π,A (λ) = AdvIND-CCA
Π,A (λ),

AdvIND-CCAb,qb

Π,A (λ) = AdvIND-CCAa,0

Π,A (λ).

Now, we construct a PPT adversary A′ for the security game IND-CPA using the adversary A.
The adversary A′ simulates the game IND-CCAa,qa for the adversary A as follows:

The adversary A′(1λ):

Initialization. The evaluation key ek is generated and given to A′. Then A′ initializes
S ← ∅, and gives ek to the adversary A.

Queries. When A makes an encryption query (τ,m), if (τ, ·, ·) 6∈ S then A′ makes the same
encryption query, receives the ciphertext c← Enc(sk , τ,m), replies A with the answer c,
and updates S by S ← S ∪ {(τ,m, c)}. Otherwise, the encryption query is rejected.
When A makes a decryption query ((f, τ0, · · · , τl), ĉ), it is answered by the decryption
simulation as in Theorem 3.

Challenge. A outputs the challenge tuple (τ∗,m∗0,m
∗
1). If (τ∗, ·, ·) 6∈ S, then A′ outputs

the same challenge tuple, and receives the challenge ciphertext c∗ ← Enc(sk , τ∗,m∗b).
A′ gives the challenge ciphertext c∗ to A, and updates S by S ← S ∪ {(τ∗,m∗0, c∗)}.
Otherwise, the challenge is rejected.

Queries After Challenge. Any encryption query, or any decryption query of A is an-
swered precisely as before.

Finalization. When A outputs a bit b′, the adversary A′ outputs the same bit b′.

In the first Queries phase, the simulation of A′ for the game IND-CCAa,qa is perfect. But, in the
Challenge phase, the history S is updated by S ← S ∪{(τ∗,m∗0, c∗)} because A′ does not know the
coin b, while in the actual game IND-CCAa,qa , S is updated by S ← S ∪ {(τ∗,m∗b , c∗)}. We need
to show that, despite this the simulation of A′ for the game IND-CCAa,qa in the ‘Queries After
Challenge’ phase is correct.

We see that the decryption simulation might potentially be incorrect only when b = 1 and
τ∗ ∈ I. So, suppose that a decryption query of A is ((f, τ0, · · · , τl), ĉ) when b = 1 and τ∗ ∈ I.
Let τ∗ = τi∗ for some i∗ ∈ {1, . . . , l}. Let us compare how this query is answered in the game
IND-CCAa,qa and in the simulation of A′.

In the game IND-CCAa,qa , m∗1 is encrypted under the label τ∗ to produce the ciphertext c∗.
So, in the game IND-CCAa,qa , c̃ = Eval(ek , f, (ci)i∈I) and f̃ = f(mi)i∈I are computed, and the
decryption query is answered with f̃ if and only if c̃ is constantly equal to ĉ ∈ C. And in the
computation of f̃ , m∗1 is used for the i∗th plaintext input. To emphasize this fact, let us denote this
f̃ as f̃1, meaning that m∗1 was used to produce this plaintext.

In the simulation of A′, still m∗1 is encrypted under the label τ∗ to produce the ciphertext c∗,
and c̃ = Eval(ek , f, (ci)i∈I) and f̃ = f(mi)i∈I are computed, and the decryption query is answered
with f̃ if and only if c̃ is constantly equal to ĉ ∈ C. But, this f̃ is computed using m∗0 as the i∗th
plaintext input. So let us denote this f̃ as f̃0.

Therefore, in both scenarios, the decryption query is answered by ⊥ if and only if c̃ is noncon-
stant, or c̃ is constant but not equal to ĉ. Meanwhile, when c̃ is constantly equal to ĉ, then the
game IND-CCAa,qa will output f̃1, but the simulation of A′ will output f̃0. Despite this, recall that
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any decryption query made by A after the Challenge phase is legal by the definition of IND-CCA.
Hence, we have f̃0 = f̃1. This shows that A′ correctly simulates the game IND-CCAa,qa , and we
conclude that

AdvIND-CCAa,qa

Π,A (λ) = AdvIND-CPA
Π,A′ (λ).

Now consider the difference of each consecutive two games. Again, for each i ∈ {1, . . . , qb}, the

difference between AdvIND-CCAb,i−1

Π,A (λ) and AdvSUF-CCAb,i

Π,A (λ) is not greater than the probability
that the decryption simulation on the ith decryption query made by A before Challenge fails, and
we may use this to construct an adversary A′′ for the game SUF-CPA just like in Theorem 3. Note
that A′′ aborts the running of A before it has any chance to output the challenge tuple.

So, ∣∣∣AdvIND-CCAb,i−1

Π,A (λ)−AdvIND-CCAb,i

Π,A (λ)
∣∣∣ ≤ AdvSUF-CPA

Π,A′′ (λ) = negl(λ).

Similarly, for each i ∈ {1, . . . , qa}, the difference between AdvIND-CCAa,i−1

Π,A (λ) and AdvSUF-CCAa,i

Π,A (λ)
is not greater than the probability that the decryption simulation on the ith decryption query made
by A after Challenge fails, and we may use this to construct an adversary A′′ for the game SUF-CPA
just like in Theorem 3. In this case, the challenge tuple output of A is handled by A′′; A′′ flips the

coin b
$← {0, 1}, and obtains the challenge ciphertext via its encryption query (τ∗,m∗b). Since A′′

knows the coin b, the correct encryption history is maintained: (τ∗,m∗b , c
∗) ∈ S.

So, ∣∣∣AdvIND-CCAa,i−1

Π,A (λ)−AdvIND-CCAa,i

Π,A (λ)
∣∣∣ ≤ AdvSUF-CPA

Π,A′′ (λ) = negl(λ).

Hence,
AdvIND-CCA

Π,A (λ) ≤ AdvIND-CPA
Π,A′ (λ) +

∣∣AdvIND-CCA
Π,A (λ)−AdvIND-CPA

Π,A′ (λ)
∣∣

= negl(λ) +
∣∣∣AdvIND-CCAb,0

Π,A (λ)−AdvIND-CCAa,qa

Π,A (λ)
∣∣∣

≤ negl(λ) +

qb∑
i=1

∣∣∣AdvIND-CCAb,i

Π,A (λ)−AdvIND-CCAb,i−1

Π,A (λ)
∣∣∣

+

qa∑
i=1

∣∣∣AdvIND-CCAa,i

Π,A (λ)−AdvIND-CCAa,i−1

Π,A (λ)
∣∣∣

≤ negl(λ) + (qb + qa) · negl(λ) = negl(λ).

So, AdvIND-CCA
Π,A (λ) is also negiligible for any PPT adversary A. Therefore Π is IND-CCA.

In conclusion, we see that IND-CPA and SUF-CPA together imply the strongest security no-
tions, IND-CCA and SUF-CCA. When we discuss our construction in Section 5, we show that our
scheme is IND-CPA and SUF-CPA.

Generic transformation for ciphertext constant testability Suppose that Π is a HAE which
is not necessarily ciphertext constant testable. We describe a generic construction that transforms
a HAE Π into another HAE Π ′ satisfying CCT while preserving IND-CPA or SUF-CPA of the
original scheme Π. Our construction is based on the Merkle hash tree technique used by Gennaro
and Wichs [15]. For concreteness, here we assume thatΠ represents admissible functions as circuits1.
In such a case, we also assume that Eval algorithm works by evaluating ciphertexts gate by gate;
the evaluation of a circuit becomes a circuit of ciphertexts.

1 In general case, the construction is even simpler: instead of the Merkle hash tree, we may simply use a hash
function. The hash tree is only needed to support composition of circuit representation of functions.

14



Let H : {0, 1}∗ → {0, 1}n be a collision-resistant hash function. We define the hash tree as
in [15]. The hash tree fH of a circuit f :Ml →M is a function from ({0, 1}∗)l into {0, 1}n, which
takes as input bitstrings xi ∈ {0, 1}∗ for each input wire of f . For each wire w in the circuit f , we
define the value of the hash tree fH(x1, . . . , xl) at w recursively:

– val(w) := H(xi), if w is the ith input wire of f .

– val(w) := H(val(w1), . . . , val(wt)), if w is the output wire of some gate with input wires w1, . . . ,
wt.

We define the output of fH(x1, . . . , xl) as the val(wout) of the output wire wout of the circuit f . For
example, if f consists of only one gate, then fH(x1, · · · , xl) = H(H(x1), · · · , H(xl)).

Also, for each wire w in the circuit f , we define the index set ind(w) associated with the wire
w recursively:

– ind(w) := {i}, if w is the ith input wire of f .

– ind(w) := ind(w1)∪ · · · ∪ ind(wt), if w is the output wire of some gate with input wires w1, . . . ,
wt.

We say that the ith input wire of f is unused in f , if i 6∈ ind(wout). If the ith input wire is unused,
then the value of f does not depend on the ith input. If the ith input wire is not unused, then we
say that it is used in f .

Remark 1. In this paper, a circuit is a DAG where each vertex with positive indegree and positive
outdegree is assigned a gate, and there is a unique dedicated wire wout called the output wire. In
general, there might be many vertices with zero outdegree, but only one is the outgoing vertex
of wout. We use this definition to allow possibility of easily representing projection functions πi :
Ml →M, for example. But, under this definition, some input wires may be unused.

Now, using a pseudorandom function F and a family H of collision-resistant hash functions, we
can transform a HAE Π to another HAE Π ′ as follows.

Scheme Π ′ = (Gen′,Enc′,Eval′,Dec′):

– (ek ′, sk ′) ← Gen′(1λ): Generate keys (ek , sk) ← Gen(1λ), k ← {0, 1}λ and H ← H.
Return ek ′ = (ek , H) and sk ′ = (sk , k).

– c′ ← Enc′(sk ′, τ,m): Let h = H(Fk(τ)) and c← Enc(sk , τ,m). Return (h, c).

– c̃′ ← Eval′(ek ′, f, c′1, · · · , c′l): Let f :Ml →M be a circuit. For each i = 1, · · · , l, parse
c′i = (hi, ci). Let h̃ = fH(h1, · · · , hl) and c̃← Eval(ek , f, c1, · · · , cl). Return (h̃, c̃).

– m← Dec′(sk ′, (f, τ1, · · · , τl), c̃′): Let f :Ml →M be a circuit. Parse c̃′ = (h̃, c̃). For each
i = 1, · · · , l, let hi = H(Fk(τi)). If h̃ = fH(h1, · · · , hl), then return Dec(sk , (f, τ1, · · · , τl), c̃).
Otherwise, return ⊥.

Above, we assume that Fk : {0, 1}λ → {0, 1}λ and H : {0, 1}∗ → {0, 1}λ.

Π ′ and Π share the same message space M and the label space L. The ciphertext space of Π ′

is {0, 1}λ × C, where C is the ciphertext space of Π.

And the correctness of Π ′ can easily be concluded from that of Π. Below, we show that the
constructed scheme Π ′ satisfies the CCT property, and also this generic transformation preserves
both SUF-CPA and IND-CPA.

Theorem 5. The HAE scheme Π ′ satisfies CCT.
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Proof. As in p. 6, let f : Ml → M be an arity-l admissible function, I a subset of the index set
{1, . . . , l}, and (mi)i∈I ∈ M|I| and (c′i = (hi, ci))i∈I ∈ ({0, 1}λ × C)|I| some plaintexts and their
corresponding ciphertexts.

Consider c̃′ : ({0, 1}λ × C)l−|I| → {0, 1}λ × C defined as

c̃′ := Eval(ek ′, f, (c′i)i∈I) = (fH(hi)i∈I ,Eval(ek , f, (ci)i∈I)).

The above expression c̃′ is a function of the values for the ‘missing’ indices: (hi)i 6∈I and (ci)i 6∈I .

If I = {1, . . . , l}, then c̃′ is clearly constant. Now, suppose that I 6= {1, . . . , l}. Consider the case
when the ith input of f is unused for all indices i 6∈ I. In that case, again clearly c̃′ is constant.

Finally, consider the case that the ith input of f is actually used for at least one index i 6∈ I.
Since the underlying hash function H is collision-resistant, the hash tree fH(h1, . . . , hl) cannot be
constant on the variable hi except with negligible probability. So, c̃′ is not constant except with
negligible probability. This means that we can trivially determine if c̃′ is constant or not. Therefore,
Π ′ satisfies CCT.

Theorem 6. If Π is IND-CPA, then Π ′ is also IND-CPA.

Proof. We will just provide a sketch of the proof. Let A′ be any PPT adversary for the game
IND-CPAΠ′,A′ . We construct a PPT adversary A for the game IND-CPAΠ,A that simulates the
game IND-CPAΠ′,A′ for the adversary A′.

Most of the simulation is trivial message-passing, but for the challenge (τ∗,m∗0,m
∗
1) made by

A′, A returns the challenge ciphertext (H(r), c∗) to A′, where r
$← {0, 1}λ and c∗ is the challenge

ciphertext given to A in the security game IND-CPAΠ,A.

This simulation does work because τ∗ is a new label and F is a PRF. Moreover, H(r) in the
challenge ciphertext given to A′ does not contain any information that may help A′ to distinguish
between m∗0 and m∗1. So the advantage of A′ entirely comes from c∗. Therefore, the difference of
advantages of A and A′ is negligible. Formally, we have

AdvIND-CPA
Π′,A′ (λ) ≤ AdvIND-CPA

Π,A (λ) + AdvPRF
F,A′′(λ).

Theorem 7. If Π is SUF-CPA, then Π ′ is also SUF-CPA.

Proof. Let A′ be a PPT adversary engaged in the security game SUF-CPAΠ′,A′ . Using A′, we
construct a PPT adversary A for the security game SUF-CPAΠ,A which simulates the game
SUF-CPAΠ′,A′ for the adversary A′.

Adversary A(1λ):

Initialization. A set S is initialized to be the empty set ∅. Receiving the evaluation key ek ,
the adversary A picks H ← H, k ← {0, 1}λ, and gives the evaluation key ek ′ := (ek , H)
to A′, and keeps the PRF key k by himself.

Queries. Whenever A′ makes an encryption query (τ,m), if (τ, ·, ·) /∈ S, then A makes
the same encryption query. Receiving the answer c ← Enc(sk , τ,m), the adversary A
computes h := H(Fk(τ)), answers the encryption query of A′ by c′ := (h, c), and updates
S by S ← S ∪ {(τ,m, c′)}. Otherwise, the query is rejected.

Forgery. A′ outputs a forgery attempt ((f, τ1, · · · , τl), ĉ′). Parse ĉ′ = (ĥ, ĉ). Then the ad-
versary A outputs ((f, τ1, · · · , τl), ĉ).
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Now, let us show that if the forgery attempt ((f, τ1, · · · , τl), ĉ′ = (ĥ, ĉ)) of A′ is a strong forgery
for SUF-CPAΠ′,A′ , then ((f, τ1, · · · , τl), ĉ) is also a strong forgery for SUF-CPAΠ,A, except with
negligible probability. Let I be the set of indices i ∈ {1, . . . , l} such that (τi,mi, ci) ∈ S.

Since ((f, τ1, · · · , τl), ĉ′) is valid in Π ′, ((f, τ1, · · · , τl), ĉ) is also valid in Π. Also, we have
fH(H(Fk(τ1)), · · · , H(Fk(τl))) = ĥ.

Suppose I 6= {1, . . . , l}, and assume there exists at least an index j 6∈ I which is used in
the circuit f . In this case, we claim that fH(H(Fk(τ1)), · · · , H(Fk(τl))) = ĥ only with negligible

probability. Since j is new, Fk(τj) is computationally indistinguishable to a random number rj
$←

{0, 1}λ. Due to the collision resistance of H, the probability

Pr
[
fH(H(Fk(τ1)), · · · , rj , · · · , H(Fk(τl))) = ĥ

∣∣∣ rj $← {0, 1}λ
]

should be negligible. So, fH(H(Fk(τ1)), · · · , H(Fk(τl))) = ĥ holds only with negligible probability.
Therefore, since we already have fH(H(Fk(τ1)), · · · , H(Fk(τl))) = ĥ, we may assume with negligible
exception that any i 6∈ I is unused in the circuit f . In this case, both c̃′ and c̃ are constants, where

c̃′ = (h̃, c̃),

with
h̃ := fH((H(Fk(τi)))i∈I), c̃ = Eval(ek , f, (ci)i∈I).

But then ((f, τ1, · · · , τl), ĉ′) must be a strong forgery of type 2. So we have

ĉ′ = (ĥ, ĉ) 6= (ĥ, c̃) = c̃′.

Therefore, ĉ 6= c̃, and ((f, τ1, · · · , τl), ĉ) is a strong forgery of type 2 for Π. This shows that

AdvSUF-CPA
Π′,A′ (λ) ≤ AdvSUF-CPA

Π,A (λ) = negl(λ).

Hence Π ′ is SUF-CPA.

5 Construction

In this section, we describe our HAE Π and show that it satisfies correctness and CCT. All of the
parameters ρ, η, γ, d̄ of the scheme are polynomials in λ. The specific choices of these parameters
are given after the description of the scheme.

We use a pseudorandom function F in our construction. We assume that Fk : {0, 1}λ → Zq0
for each k ∈ {0, 1}λ. The message space and the ciphertext space of our scheme is ZQ and Zy0 ,
respectively, and the label space is {0, 1}λ. To represent admissible functions we use arithmetic
circuits, that is, circuits consisting of + gates and × gates. Such a circuit f of arity l determines a
polynomial f : Zl → Z with integral coefficients. We use such a circuit to compute function values
of plaintext inputs in ZQ, and also to homomorphically evaluate ciphertexts in Zy0 . The precise
description of the admissible function space will be given in the next, together with discussions on
the correctness property.

SCHEME. Π = (Gen,Enc,Eval,Dec)
– (ek , sk)← Gen(1λ, Q): Given security parameter λ and any modulus Q ∈ [2, 2λ], choose

p
$← [2η−1, 2η) ∩ PRIME and q0

$← [0, 2γ

p ) ∩ ROUGH(2λ). Let y0 = pq0. Choose a PRF

key k ← {0, 1}λ. Return (ek , sk), where ek = (Q, y0), and sk = (p, q0, Q, k).
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– c← Enc(sk , τ,m): Given the secret key sk , a label τ ∈ {0, 1}λ and a plaintext m ∈ ZQ,

choose r
$← (−2ρ, 2ρ). Let a = rQ+m and b = Fk(τ). Return c = CRT(p,q0)(a, b).

– c̃← Eval(ek , f, c1, · · · , cl): Given the evaluation key ek , an arithmetic circuit f of arity
l and ciphertexts c1, · · · , cl, return f(c1, · · · , cl) mod y0

– m← Dec(sk , (f, τ1, · · · , τl), ĉ): For i = 1 to l, compute bi ← Fk(τi) and b = f(b1, · · · , bl) mod
q0. Return m = (ĉ mod p) mod Q, if b = ĉ mod q0. Otherwise, return ⊥.

Correctness To show the correctness of the scheme, let (ek , sk) ← Gen(1λ, Q) for any λ ∈
Z+ and any modulus Q ∈ [2, 2λ]. Let ci ← Enc(sk , τi,mi) for each i = 1, · · · , l. And c̃ ←
Eval(ek , f, c1, · · · , cl) For any arithmetic circuit f of arity l. We identify an arithmetic circuit
f of arity l with the l-variate integral polynomial determined by f . Let d := deg(f), Then

c̃ mod p = (f(c1, · · · , cl) mod y0) mod p

= f(c1, · · · , cl) mod p

= f(c1 mod p, · · · , cl mod p) mod p

= f(r1Q+m1, · · · , rlQ+ml) mod p

= f(r1Q+m1, · · · , rlQ+ml)

The last equality in the above equations holds if

| f(r1Q+m1, · · · , rlQ+ml) | ≤
p

2
.

And so, in this case,

(c̃ mod p) mod Q = f(r1Q+m1, · · · , rlQ+ml) mod Q

= f(m1, · · · ,ml) mod Q

Since | f(r1Q+m1, · · · , rlQ+ml) | ≤ ‖f‖1 · 2d(ρ+λ) and 2η−2 ≤ p/2, the correctness is guaranteed
if

‖f‖1 · 2d(ρ+λ) ≤ 2η−2,

equally,

d ≤ η − 2− lg ‖f‖1
ρ+ λ

.

If ‖f‖1 ≤ 2d, we have

d ≤ η − 2

ρ+ λ+ 1
.

Let d̄ =
⌊

η−2
ρ+λ+1

⌋
. Then an admissible function in our scheme is an arithmetic circuit f such that

deg f ≤ d̄ and ‖f‖1 ≤ 2d̄ as a polynomial over ZQ.

Parameter selection. In the scheme, the parameters ρ, η, γ are given as follows.

– ρ = ω(lg λ) to resist the brute force attack on the EF-AGCD problem.

– η ≥ d̄(ρ + λ + 1) + 2 for the upper bound d̄ on degrees of admissible functions. This is a
consequence of discussions about correctness property. If we choose d̄ = O(λ) and ρ = O(λ),
then η = O(λ2).
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– γ = η2ω(lg λ) to resist known attacks on the EF-AGCD problem as explained in [23, 10] . If
we choose η = O(λ2), then γ = O(λ5)

Theorem 8. The scheme Π satisfies CCT.

Proof. Let ek be an evaluation key generated by Gen(1λ, Q) for some λ ∈ Z+ and a modulus Q,

f any admissible arity-l arithmetic circuit for some l ∈ Z+ and (ci)i∈I any element in Z| I |y0 for
some subset I of the index set {1, · · · , l}. We construct an algorithm ALG-CCT that determines if
c̃ = Eval(ek , f, (ci)i∈I) is constant or not with overwhelming probability, as follows.

procedure ALG-CCT(ek , f , (ci)i∈I):
if I = {1, · · · , l} then

return 1
else

(c0
j )j /∈I , (c1

j )j /∈I
$← (Zy0)l−| I |

if c̃(c0
j )j /∈I ≡ c̃(c1

j )j /∈I mod y0 then
return 1

else
return 0

The algorithm ALG-CCT is essentially the usual probabilistic polynomial identity testing. In
the scheme Π, c̃ can be considered as an (l−| I |)-variate polynomial over Zy0 of degree not greater
than deg f . We have

c̃ = f(ci)i∈I mod y0 : Zl−|I|y0 → Zy0
In case I = {1, · · · , l}, c̃ is clearly constant and the algorithm outputs 1 correctly. In case I (
{1, · · · , l}, consider the function c̃′ := c̃ − c̃(c0

j )j /∈I mod y0 for any (c0
j )j /∈I ∈ (Zy0)l−| I |. If c̃ is

constant, then c̃′ is constantly zero and c̃′(c1
j )j /∈I = c̃(c1

j )j /∈I − c̃(c0
j )j /∈I ≡ 0 mod y0 for any (c1

j )j /∈I ∈
(Zy0)l−| I |. So, c̃(c0

j )j /∈I ≡ c̃(c1
j )j /∈I mod y0 and the algorithm outputs 1 correctly. If c̃ is not constant,

then c̃′ is not constantly zero and the algorithm outputs the incorrect answer 1 when c̃(c0
j )j /∈I ≡

c̃(c1
j )j /∈I mod y0, that is, c̃′(c1

j )j /∈I ≡ 0 mod y0. This is the only case that the algorithm outputs an
incorrect answer. So the error probability of the algorithm is

Pr
[
c̃′(c1

j )j /∈I ≡ 0 mod y0 | (c1
j )j /∈I

$← (Zy0)l−| I |
]
,

when c̃′ is not constantly zero.
To find an upper bound on the error probability of the algorithm using Schwartz-Zippel lemma,

we need the following fact. A 2λ-rough random integer y0 is square-free with overwhelming prob-
ability and there exists some prime factor p′ of y0 such that c̃′ mod p′ is not constantly zero and
p′ ≥ 2λ. From these, we have

Pr
[
c̃′(c1

j )j /∈I ≡ 0 mod y0 | (c1
j )j /∈I

$← (Zy0)l−| I |
]

≤ Pr
[
c̃′(c1

j )j /∈I ≡ 0 mod p′ | (c1
j )j /∈I

$← (Zy0)l−| I |
]

= Pr
[
c̃′(c1

j )j /∈I ≡ 0 mod p′ | (c1
j )j /∈I

$← (Zp′)l−| I |
]

≤ deg f

p′
≤ d̄

2λ
= negl(λ)

where d̄ is the upper bound on degrees of the admissible functions in our scheme, which is polyno-
mially bounded. Therefore, the error probability of the algorithm is negligible and we can efficiently
determine if c̃ is constant or not with overwhelming probability.
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6 Security

In this section, we prove our HAE scheme satisfies both IND-CPA and SUF-CPA. From this, we
conclude that Π is actually IND-CCA and SUF-CCA by Theorem 3 and Theorem 4. For simplicity,
we consider the scheme Π as an ideal scheme which is obtained by replacing the pseudorandom
function F in our scheme with a random function from {0, 1}λ into Zq0 . If F is pseudorandom, then
the security of this ideal scheme Π implies that of the real scheme.

6.1 Privacy

The privacy of the scheme Π is stated in the following theorem.
As we mentioned in Sec. 3.2, Coron et al. proved the equivalence of the EF-AGCD assump-

tion and the decisional EF-AGCD assumption in [11]. So, this theorem actually shows that Π is
IND-CPA under the computational (ρ, η, γ)-EF-AGCD assumption.

Theorem 9. The scheme Π is IND-CPA under the decisional (ρ, η, γ)-EF-AGCD assumption.

Proof. Suppose there exists a PPT adversary A for the IND-CPA security game of the scheme Π
such that

Pr
[
IND-CPAΠ,A(1λ, Q) = 1

]
≥ 1/2 + ε(λ)

for some modulus Q ∈ [2, 2λ] and some non-negligible function ε. Then, we can construct a PPT
distinguisherD for the decisional (ρ, η, γ)-EF-AGCD problem, by simulating the game IND-CPAΠ,A

as follows.

Distinguisher D(ρ, η, γ, y0,D(p, q0, ρ), z):

Initialization. Initialize a set S ← ∅. Give ek = (Q, y0) to A.
Queries. For each encryption query (τ,m) ∈ {0, 1}λ ×ZQ of A, if (τ, ·, ·) 6∈ S, then sample

x ← D(p, q0, ρ), compute c := (xQ + m) mod y0, return c to A, and update S by S ←
S ∪ {(τ,m, c)}. Otherwise, reject the query.

Challenge. For the challenge (τ∗,m∗0,m
∗
1) of A, if (τ∗, ·, ·) 6∈ S, then flip a coin b

$← {0, 1},
compute the challenge ciphertext c∗ := (zQ + m∗b) mod y0, return c∗ to A, and update
S by S ← S ∪ {(τ∗,m∗b , c∗)}. Otherwise, reject the challenge.

Queries. Again A may make encryption queries adaptively, and such a query is answered
exactly as before.

Finalization. For the output b′ of A, return 1 if b = b′. Otherwise, return 0.

Note that gcd(y0, Q) = 1 since y0 has no prime factors less than 2λ and Q is not greater than 2λ.
Let us consider the distribution of c produced by D in the Queries phase. Since c = xQ+m mod y0

for x ← D(p, q0, ρ), we have c = pqQ + rQ + m mod y0 for some q
$← [0, q0) and r

$← (−2ρ, 2ρ).
Therefore, c ≡ rQ+m (mod p). Also, since q is uniform random on [0, q0), c mod q0 is also uniform
random on Zq0 .

So, the distribution of c is identical to that of a real ciphertext and the encryption oracle can
be simulated using D(p, q0, ρ).

Now, consider the distribution of c∗ in the Challenge phase. If z ← D(p, q0, ρ), then the dis-
tribution of c∗ is identical to that of original security game by the same reason as above. But if

z
$← Zy0 , then c∗ is also uniformly distributed over Zy0 regardless of a random bit b. Thus, c∗ does

not contain any information on the challenge plaintext mb. So

Pr [D(ρ, η, γ, y0,D(p, q0, ρ), z) = 1 | z ← D(p, q0, ρ)] = Pr
[
IND-CPAΠ,A(1λ, Q) = 1

]
≥ 1

2
+ ε(λ)
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and

Pr
[
D(ρ, η, γ, y0,D(p, q0, ρ), z) = 1 | z $← Zy0

]
=

1

2

Therefore, the advantage of D is at least non-negligible ε, and this completes the proof.

6.2 Authenticity

The authenticity of the scheme Π is stated in the following theorem.

Theorem 10. If the (ρ, η, γ)-EF-AGCD assumption holds, then the scheme Π is SUF-CPA.

Proof. Suppose there exists a PPT adversary A for the game SUF-CPA such that

Pr
[
SUF-CPAΠ,A(1λ, Q) = 1

]
≥ ε(λ)

for some modulus Q ∈ [2, 2λ] and some non-negligible function ε. Then, we can construct a PPT
algorithm B for the (ρ, η, γ)-EF-AGCD problem, by simulating the game SUF-CPAΠ,A as follows.

Algorithm B(ρ, η, γ, y0,D(p, q0, ρ)):

Initialization. Initialize S ← ∅. Give ek = (Q, y0) to A.
Queries. For each encryption query (τ,m) ∈ {0, 1}λ ×ZQ of A, if (τ, ·, ·) 6∈ S, then sample

x ← D(p, q0, ρ), compute c := (xQ + m) mod y0, return c to A, and update S by S ←
S ∪ {(τ,m, c)}. Otherwise, reject the query.

Finalization. Let ((f, τ1, · · · , τl), ĉ) be the forgery attempt output by A. For each i ∈
{1, · · · , l}, set the value of ci as follows. Let ci = c if (τi,m, c) ∈ S for some m ∈M and

c ∈ C. Otherwise, choose ci
$← Zy0 . And then, compute c̃ = f(c1, · · · , cl) mod y0. Output

y0/ gcd(y0, c̃− ĉ).

For the same reason as in Theorem 9, the simulation of the encryption oracle by B is ex-
act. Consider the forgery attempt ((f, τ1, · · · , τl), ĉ) made by A in the Finalization phase. In case
((f, τ1, · · · , τl), ĉ) is a strong forgery of type 1, c̃ = f(ci)i∈I is not constant, where I is the set of
indices i such that τi is not new with respect to S. So we can apply the probabilistic polynomial
identity test as in Theorem 8:

Pr
[
c̃(cj)j 6∈I ≡ ĉ mod y0 | (cj)j /∈I

$← (Zy0)l−| I |
]
≤ d̄

2λ

where d̄ is an upper bound on degrees of admissible functions in our scheme and is polyno-
mially bounded. This means that c̃(cj)j 6∈I 6= ĉ mod y0 with overwhelming probability. In case
((f, τ1, · · · , τl), ĉ) is a strong forgery of type 2, c̃(cj)j 6∈I = c̃ 6= ĉ mod y0.

Hence in both cases, we have c̃ 6= ĉ mod y0, but also c̃ ≡ ĉ mod q0, since any strong forgery is
valid. Therefore, gcd(y0, ĉ− c̃) = q0 and the output of the algorithm A′ is exactly p with overwhelm-
ing probability if the challenge made by A is a strong forgery. Since A makes a strong forgery with
non-negligible probability, A′ outputs the correct answer p with non-negligible probability.
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