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Abstract. We describe a comparatively simple fully homomorphic
encryption (FHE) scheme based on the learning with errors (LWE) prob-
lem. In previous LWE-based FHE schemes, multiplication is a compli-
cated and expensive step involving “relinearization”. In this work, we
propose a new technique for building FHE schemes that we call the ap-
proximate eigenvector method. In our scheme, for the most part, ho-
momorphic addition and multiplication are just matrix addition and
multiplication. This makes our scheme both asymptotically faster and
(we believe) easier to understand.

In previous schemes, the homomorphic evaluator needs to obtain the
user’s “evaluation key”, which consists of a chain of encrypted secret
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keys. Our scheme has no evaluation key. The evaluator can do homo-
morphic operations without knowing the user’s public key at all, except
for some basic parameters. This fact helps us construct the first identity-
based FHE scheme. Using similar techniques, we show how to compile a
recent attribute-based encryption scheme for circuits by Gorbunov et al.
into an attribute-based FHE scheme that permits data encrypted under
the same index to be processed homomorphically.

1 Introduction

Fully homomorphic encryption (FHE) schemes [RAD78, Gen09, Gen10,
vDGHV10] [SV10, GH11b, CMNT11, BV11a, BV11b, GH11a, BGV12, CNT12,
GHS12a,GHS12b] [LATV12,Bra12] “have been simplified enough so that their
description can fit, well, in a blog post” [BB12b,BB12a]. In this paper, we try
to make FHE even simpler.

1.1 Previous FHE Schemes Based on Learning with Errors

Currently, perhaps the simplest leveled1 FHE scheme based on the learning
with errors (LWE) assumption [Reg05] is by Brakerski [Bra12]. In fact, Barak
and Brakerski do give a remarkably clear exposition of this scheme in a blog
post [BB12a]. However, while the scheme’s key generation, encryption, decryp-
tion, and homomorphic addition procedures are easy to describe, they note that
“multiplication is more tricky”.

In Brakerski’s scheme, similar to previous FHE schemes based on LWE
[BV11b, BGV12], the ciphertext c and secret key s are n-dimensional vectors
whose dot product 〈c, s〉 ≈ μ equals the message μ, up to some small “error”
that is removed by rounding. Homomorphic multiplication uses an identity re-
garding dot products of tensor products of vectors: namely, 〈u1⊗u2,v1⊗v2〉 =
〈u1,v1〉 · 〈u2,v2〉. Thus, if ciphertexts c1 and c2 satisfy 〈c1, s〉 ≈ μ1 and
〈c2, s〉 ≈ μ2, then 〈c1 ⊗ c2, s ⊗ s〉 ≈ μ1 · μ2, where c1 ⊗ c2 is interpreted as
the new ciphertext and s ⊗ s as the new secret key, each having dimension
Θ(n2). Since multiplying-by-tensoring blows up the ciphertext size, it can only
be used for a constant number of steps. For efficiency, the evaluator must re-
linearize [BV11b] the ciphertext after tensoring. Relinearization is a procedure
that takes the long ciphertext that encrypts μ1 ·μ2 under the long key s⊗s, and
compresses it into a normal-sized n-dimensional ciphertext that encrypts μ1 ·μ2

under a normal-sized n-dimensional key s′. To relinearize, the evaluator multi-
plies the long ciphertext vector by a special n × Θ(n2) relinearization matrix.

1 “Leveled” FHE is a relaxation of “pure” FHE [Gen09]. For fixed parameters, a
pure FHE scheme can evaluate arbitrary circuits. In a leveled FHE scheme, the
parameters of the scheme may depend on the depth, but not the size, of the circuits
that the scheme can evaluate. We focus on leveled FHE schemes, and typically omit
the term “leveled”. One can transform our leveled FHE schemes to pure ones by
using Gentry’s bootstrapping theorem and assuming “circular security” [Gen09].
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This relinearization matrix is part of the “evaluation key” that the evaluator
must obtain from the public key to perform homomorphic evaluation.

The relinearization step [BV11b] is ingenious and is perhaps the main insight
that led to FHE based on LWE. However, relinearization is not particularly nat-
ural, nor is it easy to give an intuitive description of how and why it works. More-
over, relinearization is expensive. Each relinearization matrix has size Ω(n3), and
the public key must contain L of them to evaluate circuits of maximum mul-
tiplicative depth L. Computationally, relinearization requires Ω(n3) operations,
where each operation has cost polynomial in L.

This situation raises the question: Can we construct a LWE-based FHE scheme
with a natural multiplication procedure? For ciphertexts c1 and c2, can we con-
struct a scheme where homomorphic addition and multiplication are just c1 + c2
and c1 · c2, where ‘+’ and ‘·’ are natural algebraic operations over some ring, and
where the new ciphertexts have the “same form” as the old ones; for example,
c1 · c2 is not a “long” ciphertext? Can we eliminate the need for an “evaluation
key” in general, and the relinearization matrices in particular? If so, LWE-based
FHE might become easier to explain. If we can simplify LWE-based FHE while
also improving its efficiency and supporting new applications, then even better.

1.2 Our Results

Our main results are:

– Conceptually simpler FHE based on LWE: We fully describe our
scheme here in the Introduction, and think our new approach will prove
valuable pedagogically and theoretically.

– Asymptotically faster FHE based on LWE: We eliminate relineariza-
tion and the large relinearization matrices, with their Ω(n3) complexity.
Instead, ciphertexts are matrices that are added and multiplied naturally. In
principle, matrix multiplication uses sub-cubic computation: e.g., Strassen
and Williams achieved n2.807 and n2.3727 respectively [Str69,Wil12].

– Identity-based FHE: We solve an open problem mentioned in previous
works [Nac10, GHV10, Bra12, CHT13] – namely, to construct an identity-
based FHE scheme, in which there are no user-specific keys that must be
obtained by the encrypter or evaluator. Informally speaking, in an identity-
based FHE scheme, a user that has only the public parameters should be
able to perform both encryption and homomorphism operations. The homo-
morphism operations should allow a user to take two ciphertexts encrypted
to the same target identity, and homomorphically combine them to produce
another ciphertext under the same target identity. Previously, only “weak”
identity-based FHE schemes were known, where the evaluator needs a user-
specific evaluation key, and thus the homomorphism is not exploitable by a
user that only has the public parameters. Our scheme solves the problem by
eliminating evaluation keys entirely.

We obtain our identity-based FHE scheme by presenting a “compiler”
that transforms any LWE-based IBE scheme in the literature that satis-
fies certain properties, into a fully homomorphic identity-based encryption
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scheme. Several LWE-based IBE schemes in the literature satisfy the prop-
erties needed for our compiler [GPV08,ABB10a,ABB10b,CHKP10].

– Attribute-based FHE: Recently Gorbunov et al. [GVW13] constructed an
attribute-based encryption (ABE) for circuits based on LWE. Our compiler
for LWE-based IBE also works for their ABE scheme, with relatively minor
modifications. We obtain an ABE scheme in which messages encrypted under
the same index can be processed homomorphically without any evaluation
key in a polynomial depth circuit, and still be decrypted by any party that
was entitled to decrypt the original ciphertexts.2

Our FHE scheme retains advantages of other LWE-based FHE schemes, such as
making bootstrapping optional [BGV12], (with bootstrapping) basing security
on LWE for quasi-polynomial factors versus sub-exponential factors [BGV12],
eliminating “modulus switching” [Bra12], and basing security directly on the
hardness of classical GapSVP [Bra12].

We do not want to oversell our asymptotic result; we now provide some ad-
ditional context: In general, FHE schemes based on LWE have much worse per-
formance (certainly asymptotically) than schemes based on ring LWE (RLWE)
[LPR10,BV11a,GHS12a], and even RLWE-based schemes cannot yet be consid-
ered practical [GHS12b]. Moreover, sub-cubic matrix multiplication algorithms
may not beat cubic ones by much in practice. Rather, we view our asymp-
totic result mainly as evidence of how fundamentally new our techniques are.
We note that it is straightforward to construct an RLWE-based version of
our scheme, but its performance is worse than the best known RLWE-based
schemes [BGV12, Bra12,GHS12a, GHS12b] by log factors. On the other hand,
while our techniques may not reduce evaluation complexity as much as we would
like, they reduce the space complexity significantly (from quasi-cubic to quasi-
quadratic), which is a significant issue for LWE-based FHE schemes in practice.

As with all current FHE schemes without bootstrapping, the parameters and
per-gate complexity of evaluation depend on the multiplicative depth L of the cir-
cuit. “Bootstrapping” [Gen09], together with an assumption of circular security,
remains the only known way of making these performance metrics independent
of L, and while the overhead of bootstrapping is high, it becomes an attractive
option once L passes some threshold. However, our scheme loses some of its ad-
vantages once bootstrapping is used. First, to apply bootstrapping, the evaluator
needs to obtain the user’s secret key encrypted under its public key – in effect,
an evaluation key – and therefore we no longer achieve identity-based/attribute-
based FHE in this context. Second, this encrypted secret key has quasi-cubic size
in our scheme, and while this can be mitigated by public key compression tech-
niques [CNT12], it eliminates the space complexity advantages of our scheme.
Essentially, bootstrapping returns us to the realm of “unnatural” operations,
with all of its disadvantages. It remains a fascinating open problem to find some

2 Independently, Garg et al. [GGH+13b] also recently constructed an ABE scheme for
circuits using multilinear maps [GGH13a,CLT13], but our techniques do not work
as effectively with their scheme.
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“natural” alternative to bootstrapping, and (relatedly) to achieve “pure” FHE
without an assumption of circular security.

1.3 An Overview of Our FHE Scheme

Our main insight is that we can achieve LWE-based homomorphic encryption
where homomorphic addition and multiplication correspond directly to matrix
addition and multiplication.

Homomorphic Operations. Let us skip key generation and encryption for the
moment, and jump directly to the homomorphic operations (and decryption).

In our scheme, for some modulus q and dimension parameterN to be specified
later, a ciphertext C is a N × N matrix over Zq, with “small” entries (much
smaller than q) and the secret key v is a N -dimensional vector over Zq with at
least one “big” coefficient vi. We restrict the message μ to be a “small” integer.
We say C encrypts μ when C ·v = μ ·v+e, where e is a “small” error vector. To
decrypt, we extract the i-th row Ci from C, compute x ← 〈Ci,v〉 = μ · vi + ei,
and output μ = �x/vi�. In a nutshell, the essence of our scheme is that the secret
key v is an approximate eigenvector of the ciphertext matrix C, and the message
μ is the eigenvalue.

Now, let us see why matrix addition and multiplication are correct homomor-
phic operations. Suppose C1 and C2 encrypt μ1 and μ2 in that Ci ·v = μi ·v+ei
for small ei. Let C+ = C1 + C2 and C× = C1 · C2. For addition, we have
C+ · v = (μ1 + μ2) · v + (e1 + e2), where the error likely has grown a little, as
usual in FHE schemes. But assuming the error is still “small”, the sum of the
ciphertext matrices encrypts the sum of the messages. For multiplication, we
have

C× · v = C1 · (µ2 · v + e2) = µ2 · (µ1 · v + e1) + C1 · e2 = µ1 · µ2 · v + µ2 · e1 + C1 · e2

= µ1 · µ2 · v + small

where the final error vector is hopefully “small”, since μ2, C1, e1, and e2 are
all small. If so, the product of the ciphertext matrices encrypts the product of
the messages. Interestingly, C2 ·C1 is also an encryption of μ1 · μ2, even though
matrix multiplication is not commutative.

To simplify further, it might be helpful to imagine an error-free version of the
scheme, where Ci · v = μi · v exactly. In this case, the key v is an (exact) eigen-
vector of ciphertext matrices, and the message μi is the eigenvalue. In general,
if matrices C1 and C2 have a common eigenvector v with eigenvalues μ1 and μ2,
then C1 · C2 and C2 · C1 have eigenvector v with eigenvalue μ1 · μ2.

Of course, in our scheme, the secret key v is only an approximate eigenvector,
not an exact one. Introducing error is necessary to base the security of our scheme
on LWE. The cost of making v only an approximate eigenvector is that certain
terms in our scheme must be “small” to ensure that homomorphic operations
do not disrupt the essential form of the ciphertexts. We call our new approach
to LWE-based (homomorphic) encryption the approximate eigenvector method.



80 C. Gentry, A. Sahai, and B. Waters

Bounding the Error and Somewhat Homomorphic Encryption. Al-
though we have not fully specified the scheme, let us go ahead and estimate
how homomorphic it is. The scheme above works correctly until the coefficients
of the error vector begin to approach q in magnitude. How many homomorphic
operations can we perform before that happens?

Suppose C1 and C2 are B-bounded ciphertexts, in the sense that μi and the
coefficients of Ci and ei all have magnitude at most some bound B. Then, C+

is 2B-bounded, and C× is (N + 1)B2-bounded. In short, the error level grows

worse than B2L , doubly exponentially with the multiplicative depth L of the cir-
cuit being evaluated. Alternatively, if one wants to consider the degree (rather
than depth) of functions that can be evaluated, if we evaluate a multivariate
polynomial P (x1, . . . , xt) of total degree d, on B-bounded ciphertexts as input,
the final ciphertext is |P |(N+1)d−1Bd-bounded, where |P | is the �1-norm of P ’s
coefficient vector. Taking q to comfortably exceed this bound, we (roughly) can
evaluate polynomials of degree logNB q. Since q/B must be subexponential (at
most) in N for security reasons, our scheme-so-far can only evaluate polynomials
of (sublinear) polynomial degree in N (only logarithmic depth). In short, our
scheme-so-far is a somewhat homomorphic encryption (SWHE) scheme [Gen09]
that can evaluate log-depth or polynomial degree. Though not yet fully homo-
morphic, it is by far the most homomorphic LWE-based encryption scheme that
uses only “natural” homomorphic operations.

Flattening Ciphertexts and Fully Homomorphic Encryption. To obtain
a leveled FHE scheme that can evaluate circuits of polynomial depth without
bootstrapping or techniques like relinearization, we need to ensure better bounds
on the growth of the error. Let us say that a ciphertext C is B-strongly-bounded
if its associated μ and the coefficients of C all have magnitude at most 1, while
the coefficients of its e all have magnitude at most B. If we evaluate a NAND
gate on B-strongly-bounded ciphertexts C1, C2 to obtain a new ciphertext C3 ←
IN −C1 ·C2 (where IN is the N -dimensional identity matrix), then the message
remains in {0, 1}, and the coefficients of C3’s error vector have magnitude at
most (N + 1)B. If we could somehow additionally ensure that C3’s coefficients
have magnitude at most 1 so that strong-boundedness is preserved, then we
could evaluate a circuit of depth L while keeping the error magnitude at most
(N + 1)LB. Setting q/B to be subexponential in N , we could evaluate a circuit
of polynomial depth rather than merely polynomial degree. In short, we would
have a leveled FHE scheme.

Here we describe a operation called ciphertext flattening that keeps cipher-
texts strongly bounded, so that we obtain leveled FHE.

Flattening uses some simple transformations from [BV11b, BGV12, Bra12]
that modify vectors without affecting dot products. Let a, b be vectors of some
dimension k over Zq. Let � = �log2 q	 + 1 and N = k · �. Let BitDecomp(a) be
the N -dimensional vector (a1,0, . . . , a1,�−1, . . . , ak,0, . . . , ak,�−1), where ai,j is the
j-th bit in ai’s binary representation, bits ordered least significant to most sig-
nificant. For a′ = (a1,0, . . . , a1,�−1, . . . , ak,0, . . . , ak,�−1), let BitDecomp−1(a′) =
(
∑

2j · a1,j, . . . ,
∑

2j · ak,j) be the inverse of BitDecomp, but well-defined even
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when the input is not a 0/1 vector. For N -dimensional a′, let Flatten(a′) =
BitDecomp(BitDecomp−1(a′)), a N -dimensional vector with 0/1 coefficients.
When A is a matrix, let BitDecomp(A), BitDecomp−1, or Flatten(A) be the ma-
trix formed by applying the operation to each row of A separately. Finally,
let Powersof2(b) = (b1, 2b1, . . . , 2

�−1b1, . . . , bk, 2bk, . . . , 2�−1bk), a N -dimensional
vector. Here are some obvious facts:

– 〈BitDecomp(a),Powersof2(b)〉 = 〈a, b〉.
– For any N -dimensional a′, 〈a′,Powersof2(b)〉 = 〈BitDecomp−1(a′), b〉 =
〈Flatten(a′),Powersof2(b)〉.

An interesting feature of Flatten is that it makes the coefficients of a vector
or matrix small, without affecting its product with Powersof2(b), and without
knowing b.

To facilitate ciphertext flattening, we give a special form to our secret key v.
Specifically, we set v = Powersof2(s) for some secret vector s (to be specified
later). This form is consistent with our earlier requirement that v have some
big coefficient vi for decryption; indeed, since v’s coefficients go up by �log2 q	
powers of 2, it must have a big coefficient suitable to recover μ ∈ {0, 1}.

Now, for any N × N matrix C, we have Flatten(C) · v = C · v. So, after
we compute an initial ciphertext C3 ← IN − C1 · C2 for the NAND gate, we
set CNAND = Flatten(C3) to obtain a ciphertext that has 0/1 coefficients and is
strongly bounded. Thus, we obtain leveled FHE without relinearization, under
a fixed approximate eigenvector secret key.

Key Generation, Encryption, and Reduction to LWE. Let us finally
circle back to key generation and encryption. We want to base security on LWE.
So, for key generation, we generate an LWE instance. For suitable parameters
q, n,m = O(n log q), an LWE instance over Zq consists of a m× (n+ 1) matrix
A such that there exists a (n+ 1)-dimensional vector s whose first coefficient is
1 where e = A ·s is a “small” error vector. (See Section 2 for a formal definition
of LWE.) In our scheme, A is public and s is secret. We set our approximate
eigenvector to be v = Powersof2(s), a vector of dimension N = (n + 1) · � for
� = �log2 q	+ 1.

To encrypt μ ∈ Zq, the encrypter generates a random N ×m matrix R with
0/1 entries, and sets C = Flatten(μ · IN + BitDecomp(R · A)), where IN is the
N -dimensional identity matrix. Since Flatten does not affect the product with
v, we have:

C · v = μ · v + BitDecomp(R ·A) · v = μ · v +R · A · s = μ · v + small

Flatten ensures that the coefficients of C are small, and therefore that C has the
proper form of a ciphertext that permits our homomorphic operations. Decryp-
tion works as mentioned previously.

To show that security is based on LWE, it is now enough to show that C
is statistically independent of μ when A is a uniformly random m × (n + 1)
matrix over Zq. Let C′ = BitDecomp−1(C). Recall that C is Flatten’d, and so
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C = Flatten(C) = BitDecomp(C′). Therefore, C reveals nothing more than C′.
But C′ = BitDecomp−1(μ · IN ) +R ·A, and R ·A is statistically uniform by the
leftover hash lemma when m = O(n log q) is chosen appropriately.

1.4 Roadmap

After finishing some preliminaries in Section 2, we describe our new FHE con-
struction more formally in Section 3. In Section 4, we provide an overview of our
identity-based and attribute-based FHE schemes.

2 Preliminaries

2.1 The Learning With Errors (LWE) Problem and GapSVP

The learning with errors (LWE) problem was introduced by Regev [Reg05].

Definition 1 (LWE). For security parameter λ, let n = n(λ) be an integer
dimension, let q = q(λ) ≥ 2 be an integer, and let χ = χ(λ) be a distribution
over Z. The LWEn,q,χ problem is to distinguish the following two distributions:
In the first distribution, one samples (ai, bi) uniformly from Z

n+1
q . In the second

distribution, one first draws s← Z
n
q uniformly and then samples (ai, bi) ∈ Z

n+1
q

by sampling ai ← Z
n
q uniformly, ei ← χ, and setting bi = 〈ai, s〉 + ei. The

LWEn,q,χ assumption is that the LWEn,q,χ problem is infeasible.

Sometimes it is convenient to view the vectors bi‖ai as the rows of a matrix A,
and to redefine s as (1,−s). Then, either A is uniform, or there is a vector s
whose first coefficient is 1 such that A · s = e, where the coefficients of e come
from the distribution χ.

For lattice dimension parameter n and number d, GapSVPγ is the problem
of distinguishing whether a n-dimensional lattice has a vector shorter than d
or no vector shorter than γ(n) · d. The two theorems below capture reductions,
quantum and classical, from GapSVP to LWE for certain parameters. We state
the result in terms of B-bounded distributions.

Definition 2 (B-bounded distributions). A distribution ensemble {χn}n∈N,
supported over the integers, is called B-bounded if Pre←χn [|e| > B] = negl(n).

Theorem 1 ( [Reg05, Pei09, MM11, MP12], stated as Corollary 2.1
from [Bra12]). Let q = q(n) ∈ N be either a prime power or a product of
small (size poly(n)) distinct primes, and let B ≥ ω(logn) ·√n. Then there exists
an efficient sampleable B-bounded distribution χ such that if there is an efficient
algorithm that solves the average-case LWE problem for parameters n, q, χ, then:
– There is an efficient quantum algorithm that solves GapSVPÕ(nq/B) on any

n-dimensional lattice.
– If q ≥ Õ(2n/2), then there is an efficient classical algorithm for

GapSVPÕ(nq/B) on any n-dimensional lattice.
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In both cases, if one also considers distinguishers with sub-polynomial advantage,
then we require B ≥ Õ(n) and the resulting approximation factor is slightly larger
than Õ(n1.5q/B).

Theorem 2 (Informal Theorem 1.1 of [BLP+13]). Solving n-dimensional
LWE with poly(n) modulus implies an equally efficient solution to a worst-case
lattice problem (e.g., GapSVP) in dimension

√
n.

2.2 Identity-Based and Attribute-Based Homomorphic Encryption

In a homomorphic encryption scheme HE = (KeyGen,Enc,Dec,Eval), the mes-
sage space is some ring, and Eval homomorphically evaluates arithmetic circuits
over this ring (with addition and multiplication gates). We omit formal defini-
tions and theorems regarding homomorphic encryption, which can be found in
referenced papers.

An identity-based HE scheme IBHE = (Setup,KeyGen,Enc,Dec,Eval) has
all of the properties of a normal IBE scheme IBE = (Setup,KeyGen,Enc,Dec)
[Sha84,BF03]. Setup generates master keys (MSK,MPK), KeyGen(MSK, ID) out-
puts a secret key skID for identity ID, Enc(MPK, ID,m) outputs an encryption
c of m under ID, and Dec(skID, c) decrypts c (if it is under ID). Standard secu-
rity properties apply. For example, an IBE scheme is expected to be collusion-
resistant – in particular, the adversary can ask for many secret keys, as long as
the challenge ciphertext is under an unqueried identity.

For some function family F , IBHE’s procedure c← Eval(MPK, ID, f, c1, . . . , ct)
homomorphically evaluates any f ∈ F on ciphertexts {ci ← Enc(MPK, ID,mi)}
under the same ID. Ultimately, Dec(skID, c) = f(m1, . . . ,mt). We define identity-
based (leveled) fully homomorphic encryption (IBFHE) in the expected way.

The definition of IBHE can be extended to a multi-identity setting – specifi-
cally, Eval could work over ciphertexts under multiple identities. For security to
make sense, Dec would require cooperation of all parties whose identities were
used in Eval. In this paper, we restrict our attention to the single-identity setting.

An attribute-based HE scheme ABHE = (Setup,KeyGen,Enc,Dec,Eval) has
all of the properties of a normal ABE scheme ABE = (Setup,KeyGen,Enc,Dec)
[SW05,GPSW06]. For some relation R, some function family F and any f ∈ F ,
and any ciphertexts {ci ← Enc(MPK, x,mi)} encrypted under common in-
dex x, the ciphertext c ← Eval(MPK, x, f, c1, . . . , ct) can be decrypted (to
f(m1, . . . ,mt)) using a key sky for any y for which R(x, y) = 1. In an ABE
scheme for circuits, R can be a circuit of polynomial depth. We define attribute-
based (leveled) fully homomorphic encryption (ABFHE) in the expected way.

Similar to IBHE, ABHE can be extended so that Eval operates on ciphertexts
under multiple indices x1, . . . , xk. Regarding decryption, there are different
possibilities. For example, the result can only be decrypted using some sky
for which R(x1, y) = · · · = R(xk, y) = 1. Alternatively, the result can be
cooperatively decrypted using sky1 , . . . , sky�

such that for every xi there is some
j such that R(xi, yj) = 1. We restrict our attention to the single-index setting.
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2.3 Other Preliminaries

For n, q, and � = �log q	+1, we define the procedures BitDecomp, BitDecomp−1,
Flatten and Powersof2 as described in the Introduction. IN denotes the N -
dimensional identity matrix.

3 Our LWE-Based FHE Scheme

3.1 Basic Encryption Scheme

Here, we formally describe our basic encryption scheme (without homomorphic
operations). This description matches the description outlined in the Introduc-
tion. In our description, we split up KeyGen into three parts Setup, SecretKeyGen
and PublicKeyGen. We provide two decryption algorithms Dec and MPDec. Dec
is sufficient to recover the message μ when it is in a small space (e.g., {0, 1}).
MPDec is an algorithm by Micciancio and Peikert [MP12] that can recover any
μ ∈ Zq.

– Setup(1λ, 1L): Choose a modulus q of κ = κ(λ, L) bits, lattice dimension
parameter n = n(λ, L), and error distribution χ = χ(λ, L) appropriately
for LWE that achieves at least 2λ security against known attacks. Also,
choose parameter m = m(λ, L) = O(n log q). Let params = (n, q, χ,m). Let
� = �log q	+ 1 and N = (n+ 1) · �.

– SecretKeyGen(params): Sample t ← Z
n
q . Output sk = s ←

(1,−t1, . . . ,−tn) ∈ Z
n+1
q . Let v = Powersof2(s).

– PublicKeyGen(params, sk): Generate a matrix B ← Z
m×n
q uniformly and a

vector e ← χm. Set b = B · t + e. Set A to be the (n + 1)-column matrix
consisting of b followed by the n columns of B. Set the public key pk = A.
(Remark: Observe that A · s = e.)

– Enc(params, pk, μ): To encrypt a message μ ∈ Zq, sample a uniform matrix
R ∈ {0, 1}N×m and output the ciphertext C given below.

C = Flatten
(
μ · IN + BitDecomp(R · A)) ∈ Z

N×N
q .

– Dec(params, sk, C): Observe that the first � coefficients of v are
1, 2, . . . , 2�−1. Among these coefficients, let vi = 2i be in (q/4, q/2]. Let Ci

be the i-th row of C. Compute xi ← 〈Ci,v〉. Output μ′ = �xi/vi�.
– MPDec(params, sk, C) (for q a power of 2): Observe that q = 2�−1 and

the first � − 1 coefficients of v are 1, 2, . . . , 2�−2, and therefore if C · v =
μ ·v+ small, then the first �− 1 coefficients of C ·v are μ · g+ small, where
g = (1, 2, . . . , 2�−2). Recover LSB(μ) from μ · 2�−2 + small, then recover the
next-least-significant-bit from (μ−LSB(μ)) · 2�−3 + small, etc. (See [MP12]
for the general q case.)

Dec is a BitDecomp’d version of Regev’s decryption procedure, applied to one
row of the ciphertext, which is a BitDecomp’d Regev ciphertext. (The extra rows
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will come into play in the homomorphic operations). If C is properly generated,
then by the elementary properties of BitDecomp and Powersof2, we have

C · v = μ · v +R · A · s = μ · v +R · e.
Dec only uses the i-th coefficient of the above expression, which is xi = μ · vi +
〈Ri, e〉. The error 〈Ri, e〉 has magnitude at most ‖e‖1. In general, if xi = μ·vi+e′

for some error e′ of magnitude at most q/8, and if vi ∈ (q/4, q/2], then xi/vi
differs from μ by at most (q/8)/vi < 1/2, and Dec uses rounding to output the
correct value of μ. (In the basic scheme, we set χ to ensure that the error is so
bounded with overwhelming probability.)

For the basic scheme (without homomorphic operations), one can take n to
be quasi-linear in the security parameter λ and κ = O(log n). When allowing
homomorphic operations, L represents the circuit complexity of the functions
that the scheme correctly evaluates (roughly, L is the multiplicative depth); we
provide a detailed analysis later of how L affects the other parameters.

3.2 Security

Observe that BitDecomp−1(C) = μ ·G+ R · A, where G = BitDecomp−1(IN ) is
(the transpose of) the “primitive matrix” used by Micciancio and Peikert [MP12]
in their construction of lattice trapdoors, and the rows of R · A are simply
Regev [Reg05] encryptions of 0 for dimension n. Assuming BitDecomp−1(C)
hides μ, C does as well, since C can be derived by applying BitDecomp. Thus,
the security of our basic encryption scheme follows directly from the following
lemma, used to prove the security of Regev’s encryption scheme [Reg05].

Lemma 1 (Implicit in [Reg05]). Let params = (n, q, χ,m) be such that the
LWEn,q,χ assumption holds. Then, for m = O(n log q) and A, R as generated
above, the joint distribution (A,R ·A) is computationally indistinguishable from

uniform over Z
m×(n+1)
q × Z

N×(n+1)
q .

Concretely, it suffices to take m > 2n log q [Reg05].
Like Brakerski [Bra12], we can also base security on GapSVP via a classical

reduction from LWE [Pei09,BLP+13]. Specifically, Peikert [Pei09] gives a clas-
sical reduction of GapSVP to LWE, with the caveat that q must be exponential
in n. Brakerski notes that exponential q was unusable in previous FHE schemes,
since the ratio of q to the error level B of “fresh” ciphertexts cannot be ex-
ponential in n for security reasons (since LLL [LLL82] could be used to break
such a scheme), and since B must be very small to permit many homomorphic
operations. As in Brakerski’s scheme, we do not have that problem. The error
bound B of fresh ciphertexts in our scheme does not need to be small to per-
mit many homomorphic operations; we only require q/B to be sub-exponential,
and we can therefore permit q to be exponential. Alternatively, we can use a
sub-exponential q and base security on GapSVP via Brakerski et al.’s [BLP+13]
recent classical reduction to LWE that works even for polynomial-size moduli,
with the caveat that, in their reduction, the dimension of the GapSVP instances
may be much smaller than the dimension of the LWE instances.
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3.3 Homomorphic Operations

Recall that we already described some basic “homomorphic” operations
BitDecomp, BitDecomp−1, Flatten, and Powersof2. These will play an impor-
tant role in analyzing the homomorphic operations supported by our scheme.
We remark that BitDecomp could alternatively decompose with respect to bases
other than 2, or according to the Chinese Remainder Theorem.

We provide additional homomorphic operations MultConst, Add, Mult, NAND
as follows.

– MultConst(C,α): To multiply a ciphertext C ∈ Z
N×N
q by known constant

α ∈ Zq, set Mα ← Flatten(α · IN ) and output Flatten(Mα ·C). Observe that:

MultConst(C,α) · v = Mα · C · v = Mα · (μ · v + e) = μ · (Mα · v) +Mα · e
= α · μ · v +Mα · e

Thus, the error increases by a factor of at most N , regardless of what ele-
ment α ∈ Zq is used for multiplication. As in “classical” additively homo-
morphic encryption schemes, we could alternatively perform multiplication-
by-constant α by recursively applying Add. But this multiplies the error size
by at least α, whereas MultConst increases the error by at most a factor
of N , regardless of α. An example application of MultConst is that we can
perform homomorphic fast Fourier transformations (FFTs) natively over Zq

without error growth dependent on q. Previously, the error growth depended
on the size of the field underlying the FFT [GHS12a,GHS12b], restricting
the choice of field.

– Add(C1, C2): To add ciphertexts C1, C2 ∈ Z
N×N
q , output Flatten(C1 + C2).

The correctness of this operation is immediate. Note that the addition of
messages is over the full base ring Zq.

– Mult(C1, C2): To multiply ciphertexts C1, C2 ∈ Z
N×N
q , output Flatten(C1 ·

C2). Observe that:

Mult(C1, C2) · v = C1 · C2 · v = C1 · (μ2 · v + e2) + μ2 · (μ1v + e1) + C1 · e2
= μ1 · μ2 · v + μ2 · e1 + C1 · e2

As in Add, the multiplication operator is over the full base field Zq. In Mult,
the new error depends on the old errors, the ciphertext C1, and the message
μ2. The dependence on the old errors seems unavoidable (and normal for
LWE-based HE schemes), and observe that C1 contributes at most a factorN
blowup of error, since all components of C1 are restricted to {0, 1}. The error
growth based on the message μ2, however, presents a concern. In general,
we must address this concern by using homomorphic operations in a way
that restricts the message space to small messages. One way to do this is to
consider Boolean circuits using only NAND operations: this would restrict
the message space to {0, 1}. We elaborate below.

– NAND(C1, C2): To NAND ciphertexts C1, C2 ∈ Z
N×N
q that are known to

encrypt messages μ1, μ2 ∈ {0, 1}, output Flatten(IN −C1 ·C2). Observe that:

NAND(C1, C2) · v = (IN − C1 · C2) · v = (1− μ1 · μ2) · v − μ2 · e1 − C1 · e2
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Note here that the NAND homomorphic operation maintains the invariant
that if the input messages are in {0, 1}, then the output ciphertext will
also encryption of {0, 1}, thus guaranteeing small messages. Note that since
μ2 ∈ {0, 1}, the error is increased by a factor of at most N + 1.

Circuits. By iteratively applying the homomorphic operations above, differ-
ent types of (bounded-depth) circuits may be homomorphically computed while
maintaining correctness of decryption.

The simplest case to analyze is the case of Boolean circuits computed over
encryptions of {0, 1} values. In this case, the circuit can be converted to use
only NAND gates, and through appropriate leveled application of the NAND
homomorphic operation, the final ciphertext’s error will be bounded by (N +
1)L · B, where L is the NAND-depth of the circuit, and B is the original bound
on the error of a fresh encryption of {0, 1}.

More generally, with more care, we may consider arithmetic circuits over Zq

that make use of gates that perform addition, multiplication, or multiplication by
a known constant. However, as we have seen in the case of multiplication gates,
the error growth may depend on the values being encrypted in intermediate
computations. One way to deal with this is to focus on situations where (1) all
input values are known to encrypt values bounded by some value T , and (2)
the arithmetic circuit is chosen to guarantee that all intermediate values are also
bounded by T ′ whenever the circuit inputs are constrained to values bounded by
T . In such a situation, the final ciphertext’s error will be bounded by (N+T ′)L·B,
where L is the depth of the arithmetic circuit, and B is the original bound on
the error of fresh encryptions of values smaller than T . For example, in this way,
we can homomorphically evaluate polynomials of degree d in this large-message-
space variant when the initial messages are bounded by roughly q1/d, achieving a
scheme that is “somewhat homomorphic” [Gen09]. Another example application
would be to convert encryptions of a polynomially bounded set of small values
to encryptions of binary values, by using an appropriate arithmetic circuit for
the conversion. Once converted to encryptions of binary values, a NAND-based
Boolean circuit could be used for further computations.

3.4 Parameters, Performance and Optimizations

Suppose that Flatten’d ciphertexts C1, C2 encrypt μ1, μ2 ∈ {0, 1} under approx-
imate eigenvector v with B-bounded error – that is, Ci · v = μi · v + ei where
|ei|∞ ≤ B. Then CNAND ← NAND(C1, C2) encrypts NAND(μ1, μ2) ∈ {0, 1}
under v with (N + 1)B-bounded error. As long as q/B > 8(N + 1)L, we can
evaluate a depth-L circuit of NANDs over B-bounded ciphertexts to obtain a
q/8-bounded ciphertext, which Dec will decrypt correctly.

As in previous LWE-based FHE schemes, n (hence N) must increase linearly
with log(q/B) to maintain fixed 2λ security against known attacks, so q/B grows
more like exp(L logL). We will brush such issues under the rug and view n as
a fixed parameter. Choosing χ so that B is not too large, and since in practice
there is no reason to have κ = log q grow super-linearly with n, we have κ =
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O(L logN) = O(L(log n+log κ)) = O(L logn), similar to [BGV12,Bra12]. Given
that the NAND procedure is dominated by multiplication of two N×N matrices
for N = O(nκ) = Õ(nL), we have the following theorem to characterize the
performance of our FHE scheme.

Theorem 3. For dimension parameter n and depth parameter L, our FHE
scheme evaluates depth-L circuits of NAND gates with Õ((nL)ω) field operations
per gate, where ω < 2.3727 is the matrix multiplication exponent.

This compares favorably with previous LWE-based FHE schemes, which all have
at least Õ(n3L) field operations per gate [BV11b,BGV12,Bra12].

Theorem 3 hides some factors, both good and bad. On the good size, it hides
the fact that ciphertext matrices in our scheme have 0/1 entries, and therefore
can be multiplied faster than if they were general matrices over Zq. In previ-
ous LWE-based FHE schemes, the field operations involve multiplying a small
number with a general number of Zq, which has complexity Õ(κ) = Õ(L). So,

previous LWE-based FHE schemes have real complexity Õ(n3L2) whereas ours
remains Õ((nL)ω). On the bad side, Theorem 3 hides logarithmic factors in the
dimension of the ciphertext matrices, since N = O(nκ) = O(nL logn). We note
that typically n will dominate L, since for very deep circuits, one would want to
use Gentry’s bootstrapping technique [Gen09] to make the per-gate computation
independent of L.

Since bootstrapping involves homomorphically evaluating the decryption
function, and since Dec is essentially Regev decryption [Reg05], bootstrapping
works as in previous LWE-based FHE schemes. In particular, we can use tech-
niques from [BV11b] to reduce the dimension and modulus-size of the ciphertext
before bootstrapping, so that the complexity of decryption (and hence bootstrap-
ping) is completely independent of the depth L of the circuit that was evaluated
to arrive at that ciphertext. Regev decryption can be evaluated inO(log n) depth.
Due to the logarithmic depth, one can take q/B to be quasi-polynomial in n,
and base security on LWE for quasi-polynomial factors.

4 Our Identity-Based and Attribute-Based FHE Schemes

Identity-based encryption (IBE) [Sha84, BF03] and attribute-based encryption
(ABE) [SW05, GPSW06] are designed to provide more flexible access control
of encrypted data than a traditional public key infrastructure. Traditionally,
IBE and ABE do not offer any computation over the encrypted data. However,
access control of encrypted data remains important even (or especially) when
the data is encrypted homomorphically. (See [CHT13] for a nice discussion of
applications.)

Unfortunately, while there are some IBE schemes that allow simple homo-
morphic operations [GHV10, CHT13], it has remained a stubborn open prob-
lem [Nac10, GHV10, Bra12, CHT13] to construct an IBE scheme that allows
fully or even “somewhat” homomorphic encryption. Previously it was men-
tioned [Bra12,CHT13]) that instead of building an FHE scheme on Regev’s en-
cryption scheme as we do in Section 3, one can alternatively use the “dual-Regev”
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system [GPV08], for which it is known how to generate identity-based keys (see
also [ABB10a,ABB10b,CHKP10]). However, making the encryption/decryption
keys identity-based only solves half of the problem, and yields only a “weak”
form of identity-based FHE. In all previous FHE schemes, there is also an “eval-
uation key” required for homomorphic evaluation. This evaluation key is user-
specific and is not “identity-based”, in the sense that it cannot be computed non-
interactively from the user’s identity. But having to obtain this evaluation key
undermines the main appeal of IBE: its non-interactivity. Thus, identity-based
FHE (IBFHE) has remained wide open, and attribute-based FHE (ABFHE)
seems even more difficult to construct.

Interestingly, however, our new FHE scheme does not have evaluation keys.
To perform evaluation, the evaluator only needs to know some basic parameters
of the scheme (like n, m and �).

The absence of evaluation keys allows us to construct the first IBFHE scheme.
We describe a simple “compiler” that transforms any LWE-based IBE scheme
(that satisfies certain natural properties) into a IBFHE. All LWE-based IBE
schemes that we know of (e.g., [GPV08, ABB10a, ABB10b, CHKP10]) can be
described so as to have the required properties.

1. Property 1 (Ciphertext and decryption key vectors): The decryption
key for identity ID, and a ciphertext for ID, are vectors sID, cID ∈ Z

n′
q for some

n′. The first coefficient of sID is 1.
2. Property 2 (Small Dot Product): If cID encrypts 0, then 〈cID, sID〉 is

“small”.
3. Property 3 (Security): Encryptions of 0 are indistinguishable from uni-

form vectors over Zq (under LWE).

Theorem 4. We can compile an IBE scheme E with the above properties into
a related IBFHE scheme.

Proof. The IBFHE uses E’s Setup and KeyGen algorithms, supplementing E’s
MPK with the basic parameters for our FHE scheme (such asm, �). Let N = (n+
1) · � for � = �log q	+1, as usual. To encrypt μ ∈ {0, 1}, the encrypter generates
N encryptions of 0 using E.Enc, sets C′ID to be the N × (n + 1) matrix whose
rows are these ciphertexts, and outputs CID = Flatten(μ · IN +BitDecomp(C′ID)).
Suppose sID is the decryption key for ID, as above, and let vID = Powersof2(sID).
The decrypter runs our FHE decryption algorithm Dec(vID, CID) to recover μ.
Homomorphic operations are as in Section 3.3.

Decryption is correct, since CID ·vID = μ·vID+C′ID ·sID = μ·vID+small, where
C′ID · sID is a small vector by Property 2. In this setting Dec recovers μ ∈ {0, 1}.
Any adversary that breaks the semantic security of our IBFHE scheme can
distinguish C′ID from a uniform matrix over Zq, and therefore distinguish LWE
by Property 3.

For ABFHE, our approach begins by re-interpreting the decryption process in the
Gorbunov et al. (GVW) ABE scheme [GVW13]. To decrypt a ABE ciphertext
under x with sky for which R(x, y) = 1, we view the decrypter as deriving a
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“sub-key” sx,y associated to x. This sub-key will satisfy something similar to
Property 2 above – i.e., if cx encrypts 0 under x, then 〈cx, sx,y〉 is “small”.
Viewing GVW in this way allows us to apply our compiler above.

We provide more details of our identity-based and attribute-based FHE con-
structions in the full version of the paper.
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