
Homomorphic Encryption Standard

Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai

Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody,

Travis Morrison, Amit Sahai, Vinod Vaikuntanathan

November 21, 2018

We met as a group during the Homomorphic Encryption Standardization Workshop on July 13-14, 2017,

hosted at Microsoft Research in Redmond, and again during the second workshop on March 15-16, 2018

in MIT. Researchers from around the world represented government, industry, and academia. There are

several research groups around the world who have made libraries for general-purpose homomorphic

encryption available for applications and general-purpose use. Some examples include [SEAL], [HElib],

[PALISADE], [cuHE], [cuFHE], [NFLlib], [HEAAN], and [TFHE]. Most general-purpose libraries for

homomorphic encryption implement schemes that are based on the ring learning-with-error (RLWE)

problem, and many of them displayed common choices for the underlying rings, error distributions, and

other parameters.

Homomorphic Encryption is a breakthrough new technology which can enable private cloud storage and

computation solutions, and many applications were described in the literature in the last few years. But

before Homomorphic Encryption can be adopted in medical, health, and financial sectors to protect data

and patient and consumer privacy, it will have to be standardized, most likely by multiple

standardization bodies and government agencies. An important part of standardization is broad

agreement on security levels for varying parameter sets. Although extensive research and benchmarking

has been done in the research community to establish the foundations for this effort, it is hard to find all

the information in one place, along with concrete parameter recommendations for applications and

deployment.

This document is an attempt to capture (at least part of) the collective knowledge regarding the

currently known state of security of these schemes, to specify the schemes, and to recommend a wide

selection of parameters to be used for homomorphic encryption at various security levels. We describe

known attacks and their estimated running times in order to make these parameter recommendations.

We also describe additional features of these encryption schemes which make them useful in different

applications and scenarios.

Outline of the document:

HES Section 1.1 standardizes the encryption schemes to be used. Section 1.1 consists of:

Section 1.1.1: introduces notation and definitions.

Section 1.1.2: defines the security properties for homomorphic encryption.

Section 1.1.3: describes the BGV and BFV schemes.

Section 1.1.4: described the GSW scheme.

Section 1.1.5: mentions some alternative schemes: [YASHE13], [HPS98]/[LTV12], and [CKKS17].

Section 1.1.6: describes additional features of the schemes.

HES Section 2.1 recommends parameter choices to achieve security. Section 2.1 consists of:

Section 2.1.1: describes the hard problems: the LWE and RLWE assumptions.

Section 2.1.2: describes known lattice attacks and their estimated running times.

Section 2.1.3: mentioned the Arora-Ge attack on LWE.

Section 2.1.4: discusses algebraic attacks on RLWE.

Section 2.1.5: recommends concrete parameters to achieve various security levels.

It is expected that future work to update and expand this Homomorphic Encryption Standard will use

the following numbering convention:

• updates to the encryption schemes or additional schemes may be added as Sections 1.2, 1.3, …

• updates to security levels or recommended parameters may be added as Sections 2.2, 2.3, …

• a new section to cover API design is planned to be added as Section 3.0, and updated as 3.1, …

• a new section to cover applications may be added as Section 4.0, and updated as 4.1, …

In the appendix we list some aspects that are not specified in this document and are expected to be

covered by future documents.

Homomorphic Encryption Standard Section 1.1

Recommended Encryption Schemes

Section 1.1.1 Notation and Definitions

• ParamGen(λ, PT, K, B) → Params

The parameter generation algorithm is used to instantiate various parameters used in the HE algorithms

outlined below. As input, it takes:

• 𝜆 denotes the desired security level of the scheme. For instance, 128-bit security (𝜆 = 128) or

256-bit security.

• PT denotes the underlying plaintext space. Currently this standard specifies two types of

parametrized plaintext spaces: modular integers (MI), and extension fields/rings (EX). We expect

future versions of this document to introduce a third type of approximate numbers (AN).

o (MI) Modular integers are parametrized by the modulus p of the plaintext numbers to

be encrypted, namely the plaintext space is Zp. For instance, the parameter p=1024

means that the plaintext space is Z1024 ,i.e., each individual element of the message

space is an integer from the range [0, 1023] and all operations on individual elements

are performed modulo p.

o (EX) Extension rings/fields are parameterized by a modulus p as above, and in addition

by a polynomial f(x) over Zp, specifying the plaintext space as Z[x]/(p, f(x)). Namely, each

element of the message space is an integer polynomial of degree smaller than f(x) with

coefficients from the range (0, p-1), and all operations over individual elements are

performed modulo f(x), and modulo p.

• 𝐾 denotes the dimension of the vectors to be encrypted. For instance, 𝐾 = 100, 𝑃𝑇 =(𝑀𝐼, 1024) means the messages to be encrypted are vectors (𝑉1, … , 𝑉𝐾) where each 𝑉𝑖 is

chosen from the range (0, 1023) and operations are performed component-wise. That is, by

defintion, (𝑉1, … , 𝑉𝐾) + (𝑉1′, … , 𝑉𝐾′) = (𝑉1 + 𝑉1′, … , 𝑉𝐾 + 𝑉𝐾′). The multiplication operation

over two vectors is defined similarly. The space of all possible vectors (𝑉1, … , 𝑉𝐾) is referred to

as the message space (MS).

• 𝐵: denotes an auxiliary parameter that is used to control the complexity of the

programs/circuits that one can expect to run over the encrypted messages. Lower parameters

denote “smaller”, or less expressive, or less complex programs/circuits. Lower parameters

generally mean smaller parameters of the entire scheme. This, as a result, translates into

smaller ciphertexts and more efficient evaluation procedures. Higher parameters generally

increase key sizes, ciphertext sizes, and complexity of the evaluation procedures. Higher

parameters are, of course, necessary to evaluate more complex programs.

• PubKeygen(Params) → SK, PK, EK

The public key-generation algorithm is used to generate a pair of secret and public keys. The public key

can be shared and used by anyone to encrypt messages. The secret key should be kept private by a user

and can be used to decrypt messages. The algorithm also generates an evaluation key that is needed to

perform homomorphic operations over the ciphertexts. It should be given to any entity that will perform

homomorphic operations over the ciphertexts. Any entity that has only the public and the evaluation

keys cannot learn anything about the messages from the ciphertexts only.

• SecKeygen(Params) → SK, EK

The secret key-generation algorithm is used to generate a secret key. This secret key is needed to both

encrypt and decrypt messages by the scheme. It should be kept private by the user. The algorithm also

generates an evaluation key that is needed to perform homomorphic operations over the ciphertexts.

The evaluation key should be given to any entity that will perform homomorphic operations over the

ciphertexts. Any entity that has only the evaluation key cannot learn anything about the messages from

the ciphertexts only.

• PubEncrypt(PK, M) → C

The public encryption algorithm takes as input the public key of the scheme and any message M from

the message space. The algorithm outputs a ciphertext C. This algorithm generally needs to be

randomized (that is, use random or pseudo-random coins) to satisfy the security properties.

• SecEncrypt(SK, M) → C

The secret encryption algorithm takes as input the secret key of the scheme and any message M from

the message space. The algorithm outputs a ciphertext C. This algorithm generally needs to be

randomized (that is, use random or pseudo-random coins) to satisfy the security properties.

• Decrypt(SK, C) → M

The decryption algorithm takes as input the secret key of the scheme, SK, and a ciphertext C. It outputs a

message M from the message space. The algorithm may also output special symbol FAIL, if the

decryption cannot successfully recover the encrypted message M.

• EvalAdd(Params, EK, C1, C2) → C3.

EvalAdd is a randomized algorithm that takes as input the system parameters Params, the evaluation

key EK, two ciphertexts C1 and C2, and outputs a ciphertext C3.

The correctness property of EvalAdd is that if C1 is an encryption of plaintext element M1 and C2 is an

encryption of plaintext element M2, then C3 should be an encryption of M1+M2.

• EvalAddConst(Params, EK, C1, M2) → C3.

EvalAddConst is a randomized algorithm that takes as input the system parameters Params, the

evaluation key EK, a ciphertext C1, and a plaintext M2, and outputs a ciphertext C3.

The correctness property of EvalAddConst is that if C1 is an encryption of plaintext element M1, then C3

should be an encryption of M1+M2.

• EvalMult(Params, EK, C1, C2) → C3.

EvalMult is a randomized algorithm that takes as input the system parameters Params, the evaluation

key EK, two ciphertexts C1 and C2, and outputs a ciphertext C3.

The correctness property of EvalMult is that if C1 is an encryption of plaintext element M1 and C2 is an

encryption of plaintext element M2, then C3 should be an encryption of M1*M2.

• EvalMultConst(Params, EK, C1, M2) → C3.

EvalMultConst is a randomized algorithm that takes as input the system parameters Params, the

evaluation key EK, a ciphertexts C1, and a plaintext M2, and outputs a ciphertext C3.

The correctness property of EvalMultConst is that if C1 is an encryption of plaintext element M1, then

C3 should be an encryption of M1*M2.

• Refresh(Params, flag, EK, C1) → C2.

Refresh is a randomized algorithm that takes as input the system parameters Params, a multi-valued flag

(which can be either one of “Relinearize”, “ModSwitch” or “Bootstrap”), the evaluation key EK, and a
ciphertext C1, and outputs a ciphertext C2.

The correctness property of Refresh is that if C1 is an encryption of plaintext element M1, then C2

should be an encryption of M1 as well.

The desired property of the Refresh algorithm is that it turns a “complex” ciphertext of a message into a
“simple” one encrypting the same message. Two embodiments of the Refresh algorithm are (a) the

bootstrapping procedure, which takes a ciphertext with large noise and outputs a ciphertext of the same

message with a fixed amount of noise; and (b) the key-switching procedure, which takes a ciphertext

under one key and outputs a ciphertext of the same message under a different key.

• ValidityCheck(Params, EK, [C], COMP) → flag.

ValidityCheck is an algorithm that takes as input the system parameters Params, the evaluation key

EK, an array of ciphertexts [C], and a specification of the homomorphic computation encoded as a

straight-line program COMP, and outputs a Boolean flag.

The correctness property of ValidityCheck is that if ValidityCheck outputs flag = 1, then doing the

homomorphic computation COMP on the vector of ciphertexts [C] produces a ciphertext that decrypts

to the correct answer.

Section 1.1.2 Properties

Semantic Security or IND-CPA Security: At a high level, a homomorphic encryption scheme is said to be

secure if no adversary has an advantage in guessing (with better than 50% chance) whether a given

ciphertext is an encryption of either one of two equally likely distinct messages. This requires encryption

to be randomized so that two different encryptions of the same message do not look the same.

Suppose a user runs the parameter and the key-generation algorithms to provide the key tuple. An

adversary is assumed to have the parameters, the evaluation key EK, a public key PK (only in the public-

key scheme) and can obtain encryptions of messages of its choice. The adversary is then given an

encryption of one of two messages of its choice, computed by the above encryption algorithm, without

knowing which message the encryption corresponds to. The security of HE then guarantees that the

adversary cannot guess which message the encryption corresponds to with significant advantage better

than a 50% chance. This captures the fact that no information about the messages is revealed in the

ciphertext.

Compactness: The compactness property of a homomorphic encryption scheme guarantees that

homomorphic operations on the ciphertexts do not expand the length of the ciphertexts. That is, any

evaluator can perform an arbitrary supported list of evaluation function calls and obtain a ciphertext in

the ciphertext space (that does not depend on the complexity of the evaluated functions).

Efficient decryption: Efficient decryption property says that the homomorphic encryption scheme

always guarantees that the decryption runtime does not depend on the functions which was evaluated

on the ciphertexts.

Section 1.1.3. The BGV and BFV Homomorphic Encryption Schemes

In this section, we describe the two primary schemes for implementation of homomorphic encryption,

[BGV12] and [B12]/[FV12], these two schemes are very similar. In Section 1.1.4. below we describe the

GSW scheme, which is somewhat different. In Section 1.1.5, we also mention some alternative schemes

[YASHE13], [HPS98]/[LTV12], and [CKKS17], but they are not described in this standard.

a. Brakerski-Gentry-Vaikuntanathan (BGV)

We focus here on describing the basic version of the BGV encryption scheme. Optimizations to the basic

scheme will be discussed at the end of this section.

• BGV.ParamGen(λ, PT, K, B) → Params.

Recall that λ is the security level parameter, for BGV the plaintext space PT is either of type MI or EX

with integer modulus p > 1, and K ≥ 1 is an integer vector length.

In the basic BGV scheme, the auxiliary input 𝐵 is an integer that determines the maximum multiplicative

depth of the homomorphic computation. This is simply the maximum number of sequential

multiplications required to perform the computation. For example, the function 𝑔(𝑥1, 𝑥2 , 𝑥3, 𝑥4) = 𝑥1𝑥2 + 𝑥3𝑥4 has multiplicative depth 1.

In the basic BGV scheme, the parameters param include the ciphertext modulus parameter 𝑞 and a ring 𝑅 = 𝑍[𝑥]/𝑓(𝑥) and corresponding plaintext ring 𝑅/𝑝𝑅 and ciphertext ring 𝑅/𝑞𝑅. The parameters

param also specify a “key distribution” 𝐷1 and an “error distribution” 𝐷2 over 𝑅, the latter is based on a

Gaussian distribution with standard deviation set according to the security guidelines specified in

Section 2.1.5.

• BGV.SecKeygen(params) → SK, EK

In the basic BGV scheme, the secret key 𝑆𝐾 is an element 𝑠 in the ring 𝑅, chosen from distribution 𝐷1.

In the basic BGV scheme, there is no evaluation key EK.

• BGV.PubKeygen(params) → SK, PK, EK.

In the basic BGV scheme, PubKeygen first runs SecKeygen and obtains (𝑆𝐾, 𝐸𝐾) where 𝑆𝐾 is an element 𝑠 that belongs to the ring 𝑅.

PubKeygen chooses a uniformly random element a from the ring 𝑅/𝑞𝑅 and outputs the public key 𝑃𝐾

which is a pair of ring elements (𝑝𝑘0, 𝑝𝑘1) = (−𝑎, 𝑎𝑠 + 𝑝𝑒) where 𝑒 is chosen from the error

distribution 𝐷2.

• BGV.SecEncrypt(SK, M) → C

In the basic BGV scheme, SecEncrypt first maps the message 𝑀 which comes from the plaintext space

(either Zp
r or (Zp[x]/f(x))r) into an element �̂� of the ring 𝑅/𝑝𝑅.

SecEncrypt then samples a uniformly random element 𝑎 from the ring 𝑅/𝑞𝑅 and outputs the pair of ring

elements (𝑐0, 𝑐1) = (−𝑎, 𝑎𝑠 + 𝑝𝑒 + �̂�) where 𝑒 is chosen from the error distribution 𝐷2. (See

Comments 1, 2 below for more general methods of encoding the message during encryption. The same

comments apply also to public-key encryption with BGV.)

• BGV.PubEncrypt(PK, M) → C

In the basic BGV scheme, Pub.Encrypt first maps the message 𝑀 which comes from the plaintext space 𝑍𝑝𝑘 into an element �̂� of the ring 𝑅/𝑝𝑅. Recall that the public key 𝑃𝐾 is a pair of elements (𝑝𝑘0, 𝑝𝑘1).

PubEncrypt then samples three elements 𝑢 from distribution 𝐷1 and 𝑒1, 𝑒2 from the error distribution 𝐷2 and outputs the pair of ring elements (𝑐0, 𝑐1) = (𝑝𝑘0𝑢 + 𝑝𝑒1, 𝑝𝑘1𝑢 + 𝑝𝑒2 + �̂�).

• BGV.Decrypt(SK, C) → M

In the basic BGV scheme, Decrypt takes as input the secret key which is an element 𝑠 of the ring 𝑅, and a

ciphertext 𝐶 = (𝑐0, 𝑐1) which is a pair of elements from the ring 𝑅/𝑞𝑅.

We remark that a ciphertext 𝐶 produced as the output of the encryption algorithm has two elements in 𝑅/𝑞𝑅, but upon homomorphic evaluation, ciphertexts can grow to have more ring elements. The

decryption algorithm can be modified appropriately to handle such ciphertexts.

Decrypt first computes the ring element 𝑐0𝑠 + 𝑐1 over 𝑅/𝑞𝑅 and interprets it as an element 𝑐’ in the

ring 𝑅. It then computes 𝑐’ (mod 𝑝), an element of 𝑅/𝑝𝑅, which it outputs.

• BGV.EvalAdd(Params, EK, C1, C2) → C3.

In the basic BGV scheme, EvalAdd takes as input ciphertexts 𝐶1 = (𝑐1,0, 𝑐1,1) and 𝐶2 = (𝑐2,0, 𝑐2,1) and

outputs 𝐶3 = (𝑐1,0 + 𝑐2,0, 𝑐1,1 + 𝑐2,1), where the operations are done in 𝑅/𝑞𝑅.

• BGV.EvalMult(Params, EK, C1, C2) → C3.

In the basic BGV scheme, EvalMult takes as input ciphertexts 𝐶1 = (𝑐1,0, 𝑐1,1) and 𝐶2 = (𝑐2,0, 𝑐2,1)

and outputs 𝐶3 = (𝑐1,0𝑐2,0, 𝑐1,0𝑐2,1 + 𝑐1,1𝑐2,0, 𝑐1,1𝑐2,1), where the operations are done in 𝑅/𝑞𝑅.

Comment 1. The noise term 𝑝𝑒 + �̂� in the encryption procedure can be generalized to an error term

drawn from the coset �̂� + 𝑝𝑅, according to an error-sampling procedure. All the considerations

discussed below for the error distribution 𝐷2, apply equally to the error-sampling procedure in this more

general implementation.

Comment 2. There is also an equivalent “MSB encoding” of the message for BGV encryption, where the
message is encoded as 𝑊�̂�+e (with 𝑊 = ⌊𝑞/𝑝⌋, similarly to the BFV scheme below). There are lossless

conversions between these two encoding methods, as long as the plaintext modulus p is co-prime with

the ciphertext modulus q.

The Full BGV Scheme

In the basic BGV scheme, ciphertexts grow as a result of EvalMult. For example, given two ciphertexts

each composed of two ring elements, EvalMult as described above results in three ring elements. This

can be further repeated, but has the disadvantage that upon evaluating a degree-𝑑 polynomial on the

plaintexts, the resulting ciphertext has 𝑑 + 1 ring elements.

This deficiency is mitigated in the full BGV scheme, with two additional procedures. The first is called

“Key Switching” or “Relinearization” which is implemented by calling the Refresh subroutine with flag =

“KeySwitch”, and the second is “Modulus Switching” or “Modulus Reduction” which is implemented by
calling the Refresh subroutine with flag = “ModSwitch”. Support for key switching and modulus
switching also necessitates augmenting the key generation algorithm.

For details on the implementation of the full BGV scheme, we refer the reader to [BGV12].

Properties Supported. The BGV scheme supports many features described in Section 6, including

packed evaluations of circuits and can be extended into a threshold homomorphic encryption scheme.

In terms of security, the BGV homomorphic evaluation algorithms can be augmented to provide

evaluation privacy (with respect to semi-honest adversaries).

b. Brakerski/Fan-Vercauteren (BFV)

We follow the same notations as the previous section.

• BFV.ParamGen(λ, PT, K, B) → Params.

We assume the parameters are instantiated following the recommendations outlined in Section 5.

Similarly to BGV, the parameters include:

• Key- and error-distributions 𝐷1, 𝐷2

• a ring 𝑅 and its corresponding integer modulus 𝑞

• Integer modulus 𝑝 for the plaintext

In addition, the BFV parameters also include:

• Integer 𝑇, and 𝐿 = log𝑇 𝑞. T is the bit-decomposition modulus.

• Integer 𝑊 = ⌊𝑞/𝑝⌋

• BFV.SecKeygen(Params) -> SK, EK

The secret key 𝑆𝐾 of the encryption scheme is a random element𝑠 from the distribution 𝐷1 defined as

per Section 5. The evaluation key consists of 𝐿 LWE samples encoding the secret 𝑠 in a specific fashion.

In particular, for 𝑖 = 1, … , 𝐿, sample a random 𝑎𝑖 from 𝑅/𝑞𝑅 and error 𝑒𝑖 from 𝐷2, compute

 𝐸𝐾𝑖 = (−(𝑎𝑖𝑠 + 𝑒𝑖) + 𝑇𝑖𝑠2, 𝑎𝑖),
and set 𝐸𝐾 = (𝐸𝐾1, … , 𝐸𝐾𝐿).

• BFV.PubKeygen(params) -> SK, PK, EK.

The secret key SK of the encryption scheme is a random element 𝑠 from the distribution 𝐷1. The public

key is a random LWE sample with the secret 𝑠. In particular, it is computed by sampling a random

element 𝑎 from 𝑅/𝑞𝑅 and an error 𝑒 from the distribution 𝐷2 and setting: 𝑃𝐾 = (−(𝑎𝑠 + 𝑒), 𝑎), where all operations are performed over the ring 𝑅/𝑞𝑅.

The evaluation key is computed as in BFV.SecKeygen.

• BFV.PubEncrypt(PK, M) -> C

BFV.Pub.Encrypt first maps the message 𝑀 which comes from the message space into an element in the

ring 𝑅/𝑝𝑅 .

To encrypt a message 𝑀 from 𝑅/𝑝𝑅, parse the public key as a pair (𝑝𝑘0, 𝑝𝑘1). Encryption consists of

two LWE samples using a secret 𝑢 where (𝑝𝑘0, 𝑝𝑘1) is treated as public randomness. The first LWE

sample encodes the message 𝑀, whereas the second sample is auxiliary.

In particular, 𝐶 = (𝑝𝑘0𝑢 + 𝑒1 + 𝑊𝑀, 𝑝𝑘1𝑢 + 𝑒2) where 𝑢 is a sampled from 𝐷1 and 𝑒1, 𝑒2 are

sampled from 𝐷2.

• BFV.SecEncrypt(PK, M) -> C

• BFV.Decrypt(SK, C) -> M

The main invariant of the BFV scheme is that when we interpret the elements of a ciphertext 𝐶 as the coefficients of a polynomial then, 𝐶(𝑠) = 𝑊 𝑀 + 𝑒 for some “small” error 𝑒. The message 𝑀

can be recovered by dividing the polynomial 𝐶(𝑠) by 𝑊 , rounding each coefficient to the nearest

integer, and reducing each coefficient modulo 𝑝.

• BFV.EvalAdd(EK, C1, C2) -> C3

Parse the ciphertexts as 𝐶𝑖 = (𝑐𝑖,0, 𝑐𝑖,1). Then, addition corresponds to component-wise addition of two

ciphertext components. That is, 𝐶3 = (𝑐1,0 + 𝑐2,0, 𝑐1,1 + 𝑐2,1).

It is easy to verify that 𝐶3(𝑠) = 𝑊 (𝑀1 + 𝑀2) + 𝑒, where 𝑀1, 𝑀2 are messages encrypted in 𝐶1, 𝐶2

and 𝑒 is the new error component.

• BFV.EvalMult(EK, C1, C2) -> C3

EvalMult takes as input ciphertexts 𝐶1 = (𝑐1,0, 𝑐1,1) and 𝐶2 = (𝑐2,0, 𝑐2,1). First, it computes 𝐶3′ = (𝑐1,0𝑐2,0, 𝑐1,0𝑐2,1 + 𝑐1,1𝑐2,0, 𝑐1,1𝑐2,1) over the integers (instead of mod 𝑞 as in BGV scheme

above). Then set 𝐶3 = 𝑟𝑜𝑢𝑛𝑑((𝑝𝑞) 𝐶3′) 𝑚𝑜𝑑 𝑞.

One can verify that 𝐶3(𝑠) = 𝑊(𝑀1 ∗ 𝑀2) + 𝑒, for some error term 𝑒.

Note that the ciphertext size increases in this operation. One may apply a Relinearization algorithm as in

the BGV scheme to obtain a new ciphertext of the original size encrypting the same message 𝑀1 ∗ 𝑀2.

Properties Supported. The complete BFV scheme supports many features described in Section 6,

including packed evaluations of circuits and can be extended into a threshold homomorphic encryption

scheme. In terms of security, the BFV homomorphic evaluation algorithms can be augmented to provide

evaluation privacy.

For details on the implementation of the full BFV scheme, we refer the reader to [B12], [FV12].

c. Comparison between BGV and BFV

When implementing HE schemes, there are many choices which can be made to optimize performance

for different architectures and different application scenarios. This makes a direct comparison of these

schemes quite challenging. A paper by Costache and Smart [CS16] gives some initial comparisons

between BGV, BFV and two of the schemes described below: YASHE and LTV/NTRU. A paper by Kim and

Lauter [KL15] compares the performance of the BGV and YASHE schemes in the context of applications.

Since there is further ongoing work in this area, we leave this comparison as an open research question.

Section 1.1.4. The GSW Scheme and bootstrapping

Currently, the most practical homomorphic encryption schemes only allow to perform bounded depth

computations. These schemes can be transformed into fully homomorphic ones (capable of arbitrary

computations) using a “bootstrapping” technique introduced by Gentry [G09], which essentially consists

of a homomorphic evaluation of the decryption algorithm given the encryption of the secret key.

Bootstrapping is a very time-consuming operation and improving on its efficiency is still a very active

research area. So, it may still not be ready for standardization, but it is the next natural step to be

considered.

Bootstrapping using the BGV or BFV schemes requires assuming that lattice problems are

computationally hard to approximate within factors that grow superpolynomially in the lattice

dimension n. This is a stronger assumption than the inapproximability within polynomial factors

required by standard (non-homomorphic) lattice-based public key encryption.

In [GSW13], Gentry, Sahai and Waters proposed a new homomorphic encryption scheme (still based on

lattices) that offers a different set of trade-offs than BGV and BFV. An important feature of this scheme

is that it can be used to bootstrap homomorphic encryption based on the assumption that lattice

problems are hard to approximate within polynomial factors. Here we briefly describe the GSW

encryption and show how both its security and applicability to bootstrapping are closely related to LWE

encryption, as used by the BGV and BFV schemes. So, future standardization of bootstrapping (possibly

based on the GSW scheme) could build on the current standardization effort.

For simplicity, we focus on secret key encryption, as this is typically enough for applications to

bootstrapping. The GSW secret key encryption scheme (or, more specifically, its secret key, ring-based

variant presented in [AP14, DM15]) can be described as follows:

• GSW.Keygen(params):

This is essentially the same as the key generation procedure of the BGV or BFV schemes, taking

a similar set of security parameters, and producing a random ring element S which serves as a

secret key.

• GSW.SecEncrypt(S,M):

Choose an uniformly random vector 𝐴 in 𝑅2 log(𝑞), a small random vector 𝐸 (with entries chosen

independently at random from the error distribution), and output the ciphertext 𝐶 = (𝐴, 𝐴 ∗𝑆 + 𝐸) + 𝑀 ∗ 𝐺 where 𝐺 = [𝐼, 2 𝐼, … , 2𝑘−1𝐼] is a gadget matrix consisting of 𝑘 = 𝑙𝑜𝑔(𝑞) copies

of the 2x2 identity matrix 𝐼 (over the ring), scaled by powers of 2.

We note that there are other possibilities for choosing the gadget matrix G above (for example the

constants 2,4, … , 2𝑘−1 can be replaced by others). Other choices may be described in future documents.

We omit the description of the decryption procedure, as it is not needed for bootstrapping. Notice that:

• The secret key generation process is the same as most other LWE-based encryption schemes,

including BGV and BFV.

• The encryption procedure essentially consists of 2 𝑙𝑜𝑔(𝑞) independent application of the basic

LWE/BGV/BFV encryption: choose random key elements 𝑎 and 𝑒, and outputs (𝑎, 𝑎𝑠 + 𝑒 + 𝑚),

but applied to scaled copies of the message 𝑚 = 2𝑖 𝑀. (The even rows of the GSW ciphertext

encrypt the message as (𝑎 + 𝑚, 𝑎𝑠 + 𝑒), but this is just a minor variant on LWE encryption, and

equivalent to it from a security standpoint.)

• Security rests on the standard LWE assumption, as used also by BGV and BFV, which says that

the distribution (𝐴, 𝐴 ∗ 𝑆 + 𝐸) is pseudorandom.

So, GSW can be based on LWE security estimates similar to those used to instantiate the BGV or BFV

cryptosystems.

In [GSW13] it is shown how (a public key version of) this cryptosystem supports both addition and

multiplication, without the need for an evaluation key, which has applications to identity-based and

attribute-based homomorphic encryption. Later, in [BV14] it was observed how the GSW multiplication

operation exhibits an asymmetric noise growth that can be exploited to implement bootstrapping based

on the hardness of approximating lattice problems within polynomial factors. Many subsequent papers

(e.g., [AP14, DM15, GINX16, CGGI16]) improve on the efficiency of [BV14], but they all share the

following features with [BV14]:

• They all use variants of the GSW encryption to implement bootstrapping.

• Security only relies on the hardness of approximating lattice problems within polynomial factors.

• They are capable of bootstrapping any LWE-based encryption scheme, i.e., any scheme which

includes an LWE encryption of the message as part of the ciphertext. LWE-based schemes

include BGV, BFV and GSW.

In particular, GSW can be used to implement the bootstrapping procedure for BGV and BFV and turn

them into fully homomorphic encryption (FHE) schemes.

Section 1.1.5. Other Schemes

Yet Another Somewhat Homomorphic Encryption ([YASHE13]) is similar to the BGV and BFV schemes

and offers the same set of features.

The scheme NTRU/Lopez-Alt-Tromer-Vaikuntanathan ([HPS98]/[LTV12]) relies on the NTRU assumption

(also called the “small polynomial ratios assumption”). It offers all the features of BGV and BFV, and in

addition, also offers an extension that supports multi-key homomorphism. However, it must be used

with a much wider error distribution than the other schemes that are described in this document (or

else it becomes insecure), and therefore it should only be used with a great deal of care. This standard

does not cover security for these schemes.

Another scheme, called CKKS, with plaintext type approximate numbers, was recently proposed by

Cheon, Kim, Kim and Song [CKKS17]. This scheme is not described here, but we expect future version of

this standard to include it.

Section 1.1.6. Additional Features & Discussion

a. Distributed HE

Homomorphic Encryption is especially suitable to use for multiple users who may want to run

computations on an aggregate of their sensitive data. For the setting of multiple users, an additional

property which we call threshold-HE is desirable. In threshold-HE the key-generation algorithms,

encryption and decryption algorithms are replaced by a distributed-key-generation (DKG) algorithm,

distributed-encryption (DE) and distributed-decryption (DD) algorithms. Both the distributed-key-

generation algorithm and the distributed-decryption algorithm are executed via an interactive process

among the participating users. The evaluation algorithms EvalAdd, EvalMult, EvalMultConst,

EvalAddConst and Refresh remain unchanged.

We will now describe the functionality of the new algorithms.

We begin with the distributed-key-generation (DKG) algorithm to be implemented by an interactive

protocol among 𝑡 parties 𝑝1, … , 𝑝𝑡 . The DKG algorithm is a randomized algorithm. The inputs to DKG are:

security parameter, number of parties 𝑡, and threshold parameter 𝑑. The output of DKG is a vector of

secret keys 𝑠 = (𝑠1, , 𝑠𝑡) of dimension 𝑡 and a public evaluation key Ek where party 𝑝𝑖 receives

(Ek,𝑠𝑖). We remark that party 𝑝𝑖 doesn’t receive 𝑠𝑗 for 𝑖 ≠ 𝑗 and party 𝑖 should maintain the secrecy of

its secret key 𝑠𝑖.

Next, the distributed-encryption (DE) algorithm is described. The DE algorithm is a randomized

algorithm which can be run by any party 𝑝𝑖. The inputs to DE run by party 𝑝𝑖 are: the secret key 𝑠𝑖 and

the plaintext 𝑀. The output of DE is a ciphertext C

Finally, we describe the distributed-decryption (DD) algorithm to be implemented by an interactive

protocol among a subset of the 𝑡 parties 𝑝1, … , 𝑝𝑡. The DD algorithm is a randomized algorithm.

The inputs to DD are: a subset of secret keys 𝑠 = (𝑠1, , 𝑠𝑡), the threshold parameter 𝑑, and a

ciphertext C. In particular, every participating party 𝑝𝑖 provides the input𝑠𝑖. The ciphertext C can be

provided by any party. The output of DD is: plaintext 𝑀.

The correctness requirement that the above algorithms should satisfy is as follows.

If at least 𝑑 of the parties correctly follow the prescribed interactive protocol that implements the DD

decryption algorithm, then the output of the decryption algorithm will be correct.

The security requirement is for semantic security to hold as long as fewer than 𝑑 parties collude

adversarially.

An example usage application for (DKG,DE,DD) is for two hospitals, 𝑡 = 2 and 𝑑 = 2 with sensitive data

sets 𝑀1 and 𝑀2(respectively) who want to compute some analytics 𝐹 on the joint data set without

revealing anything about 𝑀1 and 𝑀2 except for what is revealed by 𝐹(𝑀1, 𝑀2).

In such a case the two hospitals execute the interactive protocol for DKG and obtain their respective

secret keys 𝑠1 and 𝑠2 and the evaluation key EK. They each use DE on secret key 𝑠𝑖 and data 𝑀𝑖 to

produce ciphertext Ci. The evaluation algorithms on C1, C2 and the evaluation key EK allow the

computation of a ciphertext C which is an encryption of 𝐹(𝑀1, 𝑀2). Now, the hospitals execute the

interactive protocol DD using their secret keys and ciphertext C to obtain 𝐹(𝑀1, 𝑀2).

b. Active Attacks

One can consider stronger security requirements beyond semantic security. For example, consider an

attack on a client that holds data 𝑀 and wishes to compute 𝐹(𝑀) for a specified algorithm 𝐹, and wants

to outsource the computation of 𝐹(𝑀) to a cloud, while maintaining the privacy of 𝑀. The client

encrypts 𝑀 into ciphertext C and hands C to the cloud server. The server is supposed to use the

evaluation algorithms to compute a ciphertext C’ which is an encryption of 𝐹(𝑀) and return this to the

client for decryption.

Suppose that instead the cloud computes some other C’’ which is the encryption of 𝐺(𝑀) for some

other function 𝐺. This may be problematic to the client as it would introduce errors of potentially

significant consequences. This is an example of an active attack which is not ruled out by semantic

security.

Another, possibly even more severe attack, is the situation where the adversary somehow gains the

ability to decrypt certain ciphertexts, or glean some information about their content (perhaps by

watching the external behavior of the client after decrypting them). This may make it possible to the

attacker to mount (perhaps limited) chosen-ciphertext attacks, which may make it possible to

compromise the security of encrypted data. Such attacks are not addressed by the semantic security

guarantee, countering them requires additional measures beyond the use of homomorphic encryption.

c. Evaluation Privacy

A desirable additional security property beyond semantic security would be that the ciphertext C hides

which computations were performed homomorphically to obtain C. We call this security requirement

Evaluation Privacy.

For example, suppose a cloud service offers a service in the form of computing a proprietary machine

learning algorithm 𝐹 on the client’s sensitive data. As before, the client encrypts its data 𝑀 to obtain C

and sends the cloud C and the evaluation key EK. The cloud now computes C’ which is an encryption of 𝐹(𝑀) to hand back to the client. Evaluation privacy will guarantee that C’ does not reveal anything
about the algorithm 𝐹 which is not derivable from the pair (𝑀, 𝐹(𝑀)). Here we can also distinguish

between semi-honest and malicious evaluation privacy depending on whether the ciphertext C is

generated correctly according to the Encrypt algorithm.

A weaker requirement would be to require evaluation privacy only with respect to an adversary who

does not know the secret decryption key. This may be relevant for an adversary who intercepts

encrypted network traffic.

d. Key Evolution

Say that a corpus of ciphertexts encrypted under a secret key SK is held by a server, and the client who

owns SK realizes that SK may have been compromised.

It is desirable for an encryption scheme to have the following key evolution property. Allow the client to

generate a new secret key SK’ which replaces SK, a new evaluation key EK’, and a transformation key TK
such that: the server, given only TK and EK’, may convert all ciphertexts in the corpus to new ciphertexts
which (1) can be decrypted using SK’ and (2) satisfy semantic security even for an adversary who holds
SK.

Any sufficiently homomorphic encryption scheme satisfies the key evolution property as follows. Let TK

be the encryption of SK under SK’. Namely, TK is a ciphertext which when decrypted using secret key SK’
yields SK. A server given TK and EK’, can convert a ciphertext C in the corpus into C’ by homomorphically
evaluating the decryption process. Security follows from semantic security of the original homomorphic

encryption scheme.

e. Side Channel Attacks

Side channel attacks consider adversaries who can obtain partial information about the secret key of an

encryption scheme, for example by running timing attacks during the execution of the decryption

algorithm. A desirable security requirement from an encryption scheme is resiliency against such

attacks, often referred to as leakage resiliency. That is, it should be impossible to violate semantic

security even in presence of side channel attacks. Naturally, leakage resilience can hold only against

limited information leakage about the secret key.

An attractive feature of encryption schemes based on intractability of integer lattice problems, and in

particular known HE schemes based on intractability of integer lattice problems, is that they satisfy

leakage resilience to a great extent. This is in contrast to public-key cryptosystems such as RSA.

f. Identity Based Encryption

In an identity based encryption scheme it is possible to send encrypted messages to users without

knowing either a public key or a secret key, but only the identity of the recipient where the identity can

be a legal name or an email address.

This is possible as long as there exists a trusted party (TP) that publishes some public parameters PP and

holds a master secret key MSK. A user with identity X upon authenticating herself to the TP (e.g. by

showing a government issued ID), will receive a secret key SKx that the user can use to decrypt any

ciphertext that was sent to the identity X. To encrypt message M to identity X, one needs only to know

the public parameters PP and X.

Identity based homomorphic encryption is a variant of public key homomorphic encryption which may

be desirable.

Remark: A modification of GSW supports identity based homomorphic encryption.

Homomorphic Encryption Standard Section 2.1

Recommended Security Parameters

Section 2.1.1. Hard Problems

This section describes the computational problems whose hardness form the basis for the security of

the homomorphic encryption schemes in this document. Known security reductions to other problems

are not included here. Section 2.1.2 below describes the best currently known attacks on these

problems and their concrete running times. Section 2.1.5 below recommends concrete parameter

choices to achieve various security levels against currently known attacks.

a. The Learning with Errors (LWE) Problem

The LWE problem is parametrized by four parameters (𝑛, 𝑚, 𝑞, 𝜒), where 𝑛 is a positive integer referred

to as the “dimension parameter”, m is “the number of samples”, 𝑞 is a positive integer referred to as the

“modulus parameter” and 𝜒 is a probability distribution over rational integers referred to as the “error
distribution”.

The LWE assumption requires that the following two probability distributions are computationally

indistinguishable:

Distribution 1. Choose a uniformly random matrix 𝑚 × 𝑛 matrix 𝐴, a uniformly random vector 𝑠 from

the vector space 𝑍𝑞𝑛, and a vector 𝑒 from 𝑍𝑚 where each coordinate is chosen from the error

distribution 𝜒. Compute 𝑐 ∶= 𝐴𝑠 + 𝑒, where all computations are carried out modulo 𝑞. Output (𝐴, 𝑐).

Distribution 2. Choose a uniformly random 𝑚 × 𝑛 matrix 𝐴, and a uniformly random vector 𝑐 from 𝑍𝑞𝑚.

Output (𝐴, 𝑐).

The error distribution 𝜒 can be either a discrete Gaussian distribution over the integers, a continuous

Gaussian distribution rounded to the nearest integer, or other distributions supported on small integers.

We refer the reader to Section 2.1.5 for more details on particular error distributions, algorithms for

sampling from these distributions, and the associated security implications. We also mention that the

secret vector s can be chosen from the error distribution.

b. The Ring Learning with Errors (RLWE) Problem

The RLWE problem can be viewed as a specific case of LWE where the matrix 𝐴 is chosen to have special

algebraic structure. RLWE is parametrized by parameters (𝑚, 𝑞, 𝜒) where 𝑚 is the number of samples,

as in the LWE problem above, 𝑞 is a positive integer (the “modulus parameter”) and 𝜒 is a probability

distribution over the ring 𝑅 = 𝑍[𝑋]/𝑓(𝑋) (the “error distribution”).

The RLWE assumption requires that the following two probability distributions are computationally

indistinguishable:

Distribution 1. Choose 𝑚 + 1 uniformly random elements 𝑠, 𝑎1, … , 𝑎𝑚 from the ring 𝑅/𝑞𝑅, and 𝑚 more

elements 𝑒1, … , 𝑒𝑚 from the ring 𝑅 chosen from the error distribution 𝜒. Compute 𝑏𝑖 ∶= 𝑠𝑎𝑖 + 𝑒𝑖, all

computations carried out over the ring 𝑅/𝑞𝑅. Output {(𝑎𝑖, 𝑏𝑖) ∶ 𝑖 = 1, … 𝑚}.

Distribution 2. Choose 2m uniformly random elements 𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑚 from the ring 𝑅/𝑞𝑅. Output {(𝑎𝑖, 𝑏𝑖) ∶ 𝑖 = 1, … 𝑚}.

The error distribution χ must be supported on “small” elements in the ring R (with geometry induced by

the canonical embedding). For RLWE, it is important to use an error distribution that matches the

specific ring 𝑅. See Section 2.1.5 for more details on the error distributions, algorithms for sampling

from these distributions, and the associated security implications. Here too, the secret element s can be

chosen from the error distribution.

c. The Module Learning with Errors (RLWE) Problem

We mention here that there is a general formulation of the learning with errors problem that captures

both LWE and RLWE, as well as many other settings. In this formulation, rather than 𝑛-vectors over 𝑍 (as

in LWE) or 1-vectors over 𝑅 = 𝑍[𝑥]/𝑓(𝑋) (as in RLWE), we work with vectors of dimension 𝑛1 over a

ring of dimension 𝑛2, where the security parameter is related to 𝑛1 ⋅ 𝑛2. This document only deals with

LWE and RLWE, but we expect future versions to be extended to deal with more settings.

Section 2.1.2 Attacks on LWE and their Complexity

We review algorithms for solving the LWE problem and use them to suggest concrete parameter

choices. The schemes described above all have versions based on the LWE and the RLWE assumptions.

When the schemes based on RLWE are instantiated with error distributions that match the cyclotomic

rings (as described later in this document), we do not currently have attacks on RLWE that are

meaningfully better than the attacks on LWE. The following estimates and attacks refer to attacks on the

LWE problem with the specified parameters.

Much of this section is based on the paper by Albrecht, Player, and Scott (Albrecht, Player, & Scott,

2015), the online Estimator tool which accompanies that paper, and (Albrecht, 2017; Albrecht, Göpfert,

Virdia, & Wunderer, 2017). Indeed, we reuse text from those works here. Estimated security levels in all

the tables in this section were obtained by running the Estimator based on its state in March 2018. The

tables in this section give the best attacks (in terms of running time expressed in 𝑙𝑜𝑔2) among all known

attacks as implemented by the Estimator tool. As attacks or implementations of attacks change, or as

new attacks are found, these tables will need to be updated. First, we describe all the attacks which give

the best running times when working on parameter sizes in the range which are interesting for

Homomorphic Encryption.

The LWE problem asks to recover a secret vector 𝑠 ∈ 𝑍𝑞𝑛, given a matrix 𝐴 ∈ 𝑍𝑞𝑚×𝑛 and a vector 𝑐 ∈ 𝑍𝑞𝑚

such that 𝐴𝑠 + 𝑒 = 𝑐 𝑚𝑜𝑑 𝑞 for a short error vector 𝑒 ∈ 𝑍𝑞𝑚 sampled coordinate-wise from an error

distribution 𝜒. The decision variant of LWE asks to distinguish between an LWE instance (𝐴, 𝑐) and

uniformly random (𝐴, 𝑐) ∈ 𝑍𝑞𝑚×𝑛 × 𝑍𝑞𝑚. To assess the security provided by a given set of parameters 𝑚, 𝜒, 𝑞, two strategies are typically considered.

The primal strategy finds the closest vector to 𝑐 in the integral span of columns of 𝐴 mod 𝑞, i.e. it solves

the corresponding Bounded Distance Decoding problem (BDD) directly as is explained in [LP11] and

[LL15].

a. Primal (uSVP variant)

Assume that m > n, i.e. the number of samples available is greater than the dimension of the lattice.

Writing [𝐼𝑛|𝐴′] for the reduced row echelon form of 𝐴𝑇 ∈ 𝑍𝑞𝑛×𝑚 (with high probability and after

appropriate permutation of columns), this task can be reformulated as solving the unique Shortest

Vector Problem (uSVP) in the 𝑚 + 1 dimensional 𝑞-ary lattice

𝛬 = 𝑍𝑚+1 ⋅ (𝐼𝑛 𝐴′ 00 𝑞𝐼𝑚−𝑛 0𝑐𝑇 𝑡).
by Kannan’s embedding, with embedding factor 𝑡.

The lattice 𝛬 has volume 𝑡 ⋅ 𝑞𝑚−𝑛 and contains a vector of norm √∥ 𝑒 ∥2+ 𝑡2 which is unusually short,

i.e. the gap between the first and second Minkowski minimum 𝜆2 (𝛬) 𝜆1⁄ (𝛬) is large. If the secret

vector 𝑠 is also short, there is a second established embedding reducing LWE to uSVP. By inspection, it

can be seen that the vector (𝜈𝑠|𝑒|1), for some 𝜈 ≠ 0, is contained in the lattice 𝛬 of dimension 𝑑 = 𝑚 + 𝑛 + 1 𝛬 = {𝑥 ∈ (𝜈𝑍)𝑛 × 𝑍𝑚+1| 𝑥 ⋅ (1𝜈 𝐴|𝐼𝑚| − 𝑐)⊤ ≡ 0 mod 𝑞},
where 𝜈 allows to balance the size of the secret and the noise. An (𝑛 + 𝑚 + 1) × (𝑛 + 𝑚 + 1) basis 𝑀

for 𝛬 can be constructed as

𝑀 = (𝜈𝐼𝑛 −𝐴⊤ 00 𝑞𝐼𝑚 00 𝑐 1).
To find short vectors, lattice reduction can be applied. Thus, to establish the cost of solving an LWE

instance, we may consider the cost of lattice reduction for solving uSVP. In (Alkim, Ducas, Pöppelmann,

& Schwabe, 2016) it is predicted that 𝑒 can be found if: √𝛽 𝑑⁄ ∥ (𝑒|1) ∥≈ √𝛽𝜎 ≤ 𝛿02𝛽−𝑑𝑉𝑜𝑙(𝛬)1 𝑑⁄ ,
where 𝛿0 denotes the root Hermite factor achievable by BKZ, which depends on 𝛽 which is the block

size of the underlying blockwise lattice reduction algorithm. This prediction was experimentally verified

in (Albrecht et al., 2017).

b. Primal by BDD Enumeration (decoding).

This attack is due to Lindner and Peikert [LP11]. It starts with a sufficiently reduced basis, e.g., using BKZ

in block size 𝛽, and then applies a modified version of the recursive Nearest Plane algorithm due to

Babai [Bab86]. Given a basis 𝐵 and a target vector 𝑡, the Nearest Plane algorithm finds a vector such that

the error vector lies in the fundamental parallelepiped of the Gram-Schmidt orthogonalization (GSO) of 𝐵.

Lindner and Peikert note that for a BKZ-reduced basis 𝐵, the fundamental parallelepiped is long and

thin, by the Geometric Series Assumption (GSA) due to Schnorr that the GSO of a BKZ-reduced basis

decay geometrically and this makes the probability that the Gaussian error vector 𝑒 falls in the

corresponding fundamental parallelepiped very low. To improve this success probability, they “fatten”
the parallelepiped by essentially scaling its principal axes. They do this by running the Nearest Plane

algorithm on several distinct planes at each level of recursion. For a Gaussian error vector, the

probability that it falls in this fattened parallelepiped is expressed in terms of the scaling factors and the

lengths of the GSO of 𝐵. This can be seen as a form of pruned CVP enumeration (Liu & Nguyen, 2013).

The run time of the Nearest Planes algorithm mainly depends on the number of points enumerated,

which is the product of the scaling factors. The run time of the basis reduction step depends on the

quality of the reduced basis, expressed, for instance, by the root Hermite factor 𝛿0. The scaling factors

and the quality of the basis together determine the success probability of the attack. Hence to maximize

the success probability, the scaling factors are determined based on the (predicted) quality of the BKZ-

reduced basis. There is no closed formula for the scaling factors. The Estimator uses a simple greedy

algorithm to find these parameters due to ([LP11]), but this is known to not be optimal. The scaling

factors and the quality of the basis are chosen to achieve a target success probability and to minimize

the running time (by balancing the running time of BKZ reduction and the final enumeration step).

c. Dual.

The dual strategy finds short vectors in the lattice 𝑞𝛬∗ = {𝑥 ∈ 𝑍𝑞𝑚 | 𝑥 ⋅ 𝐴 ≡ 0 𝑚𝑜𝑑 𝑞},
i.e. it solves the Short Integer Solutions problem (SIS). Given such a short vector 𝑣, we can decide if an

instance is LWE by computing ⟨𝑣, 𝑐⟩ = ⟨𝑣, 𝑒⟩ which is short whenever 𝑣 and 𝑒 are sufficiently short

(Micciancio & Regev, 2009).

We must however ensure that ⟨𝑣, 𝑒⟩ indeed is short enough, since if is too large, the (Gaussian)

distribution of will be too flat to distinguish from random. Following ([LP11]), for an LWE instance with

parameters 𝑛, 𝛼, 𝑞 and a vector 𝑣 of length ∥ 𝑣 ∥ such that 𝑣 ⋅ 𝐴 ≡ 0 𝑚𝑜𝑑 𝑞, the advantage of

distinguishing ⟨𝑣, 𝑒⟩ from random is close to 𝑒𝑥𝑝(−𝜋(∥ 𝑣 ∥⋅ 𝛼)2).
To produce a short enough 𝑣, we may again call a lattice-reduction algorithm. In particular, we may call

the BKZ algorithm with block size 𝛽. After performing BKZ-𝛽 reduction the first vector in the

transformed lattice basis will have norm 𝛿0𝑚 ⋅ 𝑉𝑜𝑙(𝑞𝛬∗)1 𝑚⁄ . In our case, the expression above simplifies

to ∥ 𝑣 ∥≈ 𝛿0𝑚 ⋅ 𝑞𝑛 𝑚⁄ whp. The minimum of this expression is attained at 𝑚 = √𝑛𝑙𝑜𝑔𝑞𝑙𝑜𝑔𝛿0 (Micciancio &

Regev, 2009). The attack can be modified to take small or sparse secrets into account (Albrecht, 2017).

Lattice Reduction algorithm: BKZ

BKZ is an iterative, block-wise algorithm for basis reduction. It requires solving the SVP problem (using

sieving or enumeration, say) in a smaller dimension 𝛽, the block size. First, the input lattice 𝛬 is LLL

reduced, giving a basis 𝑏0, … , 𝑏𝑛−1. For 0 ≤ 𝑖 < 𝑛, the vectors 𝑏𝑖, … , 𝑏𝑚𝑖𝑛(𝑖+𝛽−1,𝑛−1) are projected onto

the orthogonal complement of the span of 𝑏0, … 𝑏𝑖−1; this projection is called a local block. In the local

block, we find a shortest vector, view it as a vector 𝑏 ∈ 𝛬 of and perform LLL on the list of vectors 𝑏𝑖, … , 𝑏𝑚𝑖𝑛(𝑖+𝛽−1,𝑛−1), 𝑏 to remove linear dependencies. We use the resulting vectors to update 𝑏𝑖, … , 𝑏𝑚𝑖𝑛(𝑖+𝛽−1,𝑛−1). This process is repeated until a basis is not updated after a full pass.

There have been improvements to BKZ, which are collectively referred to BKZ 2.0 (see [CN11] for

example). There are currently several different assumptions in the literature about the cost of running

BKZ, distinguished by how conservative they are, the “sieve” and “ADPS16” cost models, as explained

below. In our use of the Estimator we rely on the cost model in the “sieve” implementation, as it seems

the most relevant to the parameter sizes which we use for Homomorphic Encryption.

a. Block Size.

To establish the required block size 𝛽, we solve log 𝛿0 = 𝑙𝑜𝑔 (𝛽2𝜋𝑒 (𝜋𝛽)1𝛽) ⋅ 12(𝛽 − 1)

for 𝛽, see the PhD Thesis of Yuanmi Chen (Chen, 2013) for a justification of this.

b. Cost of SVP.

Several algorithms can be used to realize the SVP oracle inside BKZ. Asymptotically, the fastest known

algorithms are sieving algorithms. The fastest, known classical algorithm runs in time 20.292𝛽+𝑜(𝛽) (Becker, Ducas, Gama, & Laarhoven, 2016).

The fastest, known quantum algorithm runs in time 20.265𝛽+𝑜(𝛽) (Laarhoven, 2015).

The “sieve” estimate approximates 𝑜(𝛽) by 16.4 based on some experimental evidence in (Becker et al.,

2016). The “ADPS16” from (Alkim et al., 2016) suppresses the 𝑜(𝛽) term completely. All times are

expressed in elementary bit operations.

c. Calls to SVP.

The BKZ algorithm proceeds by repeatedly calling an oracle for computing a shortest vector on a smaller

lattice of dimension 𝛽. In each “tour” on a 𝑑-dimensional lattice, 𝑑 such calls are made and the

algorithm is typically terminated once it stops making sufficient progress in reducing the basis.

Experimentally, it has been established that only the first few tours make significant progress (Chen,

2013), so the “sieve” cost model assumes that one BKZ call costs as much as 8𝑑 calls to the SVP oracle.

However, it seems plausible that the cost of these calls can be amortized across different calls, which is

why the “ADPS16” cost model from (Alkim et al., 2016) assumes the cost of BKZ to be the same as one

SVP oracle call, which is a strict underestimate of the attack cost.

d. BKZ Cost.

In summary:

sieve

a call to BKZ-𝛽 costs 8𝑑 ⋅ 20.292𝛽+16.4 operations classically and 8𝑑 ⋅ 20.265𝛽+16.4 operations quantumly.

ADPST16

a call to BKZ-𝛽 costs 20.292𝛽 operations classically and 20.265𝛽 operations quantumly.

We stress that both of these cost models are very conservative, and that no known implementation of

lattice reduction achieves these running times. Furthermore, these estimates completely ignore

memory consumption, which, too, is 2𝛩(𝛽).

e. Calls to BKZ.

To pick parameters, we normalize running times to a fixed success probability. That is, all our expected

costs are for an adversary winning with probability 51%. However, as mentioned above, it is often more

efficient to run some algorithm many times with parameters that have a low probability of success

instead of running the same algorithm under parameter choices which ensure a high probability of

success.

2.1.3 The Arora-Ge Attack.

The effectiveness of the lattice attacks above depend on the size of the error and the modulus 𝑞, in

contrast Arora and Ge described in [AG11] an attack whose complexity depends only on the size of the

error and poly-logarithmically on the modulus 𝑞. Very roughly, for dimension 𝑛 and noise of magnitude

bounded by some positive integer 𝑑 in each coordinate, the attack uses 𝑛𝑂(𝑑) samples and takes 𝑛𝑂(𝑑)

operations in the ring of integers modulo 𝑞. For the relevant range of parameters for homomorphic

encryption, this attack performs worse than the above lattice attacks even when the error standard

deviation is a small constant (e.g., 𝜎 = 2).

2.1.4 Algebraic Attacks on instances of Ring-LWE

In practice the ring R is taken to be the ring of integers in a cyclotomic field, 𝑅 = 𝑍[𝑥]/𝑘(𝑥), where 𝑘

is the cyclotomic polynomial for the cyclotomic index 𝑘, and the degree of 𝑘 is equal to the dimension

of the lattice, 𝑛 = (𝑘) where is the Euler totient function.

As mentioned above, for ring-LWE the choice of the error distribution matters, and there are known

examples of natural high-entropy error distributions that are insecure to use in certain rings. Such

examples were first given in [ELOS15] and [CLS15], and were subsequently improved in [CIV16a],

[CIV16b], and [CLS16]. For example, in [CLS15] it was shown that for a prime cyclotomic index 𝑚,

choosing the coefficients of the error polynomial 𝑒 ∈ 𝑍[𝑥]/Φ𝑘(𝑥) independently at random from a

distribution of standard deviation sufficiently smaller than √𝑘, can sometimes make this instance of

RLWE easy to solve. It is therefore crucial to select an error distribution that “matches” the ring at hand.

The form of the error distribution for general cyclotomic rings was investigated, e.g., in [LPR13, DD12,

LPR13b, P16]. We summarize these results in Section 2.1.5 below, but the current document only

specifies concrete parameters for power-of-two cyclotomic fields, i.e. 𝑘 = 2ℓ. We expect future versions

of this document to extend the treatment also for generic cyclotomic rings. We stress that when the

error is chosen from a sufficiently wide and “well spread” distributions that match the ring at hand, we

do not have meaningful attacks on RLWE that are better than LWE attacks, regardless of the ring. For

power-of-two cyclotomics, it is sufficient to sample the noise in the polynomial basis, namely choosing

the coefficients of the error polynomial 𝑒 ∈ 𝑍[𝑥]/Φ𝑘(𝑥) independently at random from a very “narrow”
distribution.

2.1.5 Secure Parameter Selection for Ring LWE

Specifying a Ring-LWE scheme for encryption requires specifying a ring, 𝑅, of a given dimension, 𝑛, along

with a ciphertext modulus 𝑞, and a choice for the error distribution and a choice for a secret

distribution.

Ring. In practice, we take the ring 𝑅 to be a cyclotomic ring 𝑅 = 𝑍[𝑥]/Φ𝑘(𝑥), where 𝑚 is the

cyclotomic index and 𝑛 = 𝜙(𝑘) is the ring dimension. For example, a power of 2 cyclotomic with index 𝑘 = 2ℓ is 𝑅 = 𝑍[𝑥]/(𝑥𝑘/2 + 1), of degree 𝑛 = 𝑘/2 = 2ℓ−1.

Error distribution, power-of-two cyclotomics. For the special case of power-of-two cyclotomics, it is

safe to sample the error in the polynomial basis, namely choosing the coefficients of the error

polynomial 𝑒(𝑥) ∈ 𝑍[𝑥]/(𝑥𝑘/2 + 1) independently at random from a very “narrow” distribution.

Specifically, it is sufficient to choose each coefficient from a Discrete Gaussian distribution (or even

rounded continuous Gaussian distribution) with a small constant standard deviation 𝜎. Selecting the

error according to a Discrete Gaussian distribution is described more often in the literature, but

choosing from a rounded continuous Gaussian is easier to implement (in particular when timing attacks

need to be countered).

The LWE attacks mentioned above, however, do not take advantage of the shape of the error

distribution, only the standard deviation. Moreover, the security reductions do not apply to the case

where the error standard deviation is a small constant and would instead require that the error standard

deviation grows at least as 𝑛𝜖 for some constant 𝜖 > 1/2 (or even 𝜖 > 3/4). The analysis of the security

levels given below relies on running time estimates which assume that the shape of the error

distribution is Gaussian.

The standard deviation that we use below is chosen as 𝜎 = 8/√2𝜋 ≈ 3.2, which is a value that is used in

many libraries in practice and for which no other attacks are known. (Some proposals in the literature

suggest even smaller values of 𝜎.) Over time, if our understanding of the error standard deviation

improves, or new attacks are found, the standard deviation of the error may have to change.

Error distribution, general cyclotomics. For non-power-of-two cyclotomics, choosing a spherical error in

the polynomial basis (i.e., choosing the coefficients independently) may be insecure. Instead, there are

two main methods of choosing a safe error polynomial for the general case:

• The method described in [DD12] begins by choosing an “extended” error polynomial 𝑒′ ∈𝑸[𝑋]/(Θ𝑘(𝑥)), where Θ𝑘(𝑥) = 𝑥𝑘 − 1 if 𝑘 is odd, and 𝑥𝑘/2 + 1 if 𝑘 is even. The rational

coefficients of 𝑒′ are chosen independently at random from the continuous Gaussian of standard

deviation 𝜎√𝑘 (for the same 𝜎 as above), and with sufficient precision, e.g., using double float

numbers. Then, the error is computed as 𝑒 = Round(𝑒′ mod Φ𝑘(𝑥))

• The method described in [CP16] chooses an error of the form 𝑒 = Round(𝑒′ ⋅ 𝑡𝑘), where 𝑡𝑘 ∈ 𝑅 is a

fixed ring element (see below), and 𝑒′ is chosen from a spherical continuous Gaussian distribution in

the canonical embedding, of standard deviation 𝜎 (for the same 𝜎 as above). One way of sampling

such error polynomial is to choose a spherical 𝑒′ in the canonical embedding, then multiply by 𝑡𝑘

and round, but there are much more efficient methods of sampling the error (cf. [CP16]).

Note that the error so generated may not be very small, since 𝑡𝑘 is not tiny. It is possible to show

that 𝑒 is somewhat small, but moreover it is shown in [CP16] that homomorphic computations can

be carried out to maintain the invariant that 𝑒/𝑡𝑘 is small (rather than the invariant that 𝑒 itself is

small).

The element 𝑡𝑘 is a generator of the “different ideal”, and it is only defined up to multiplication by a

unit, so implementations have some choice for which specific element to use. One option is 𝑡𝑘(𝑥) =Φ𝑘′ (𝑥) (i.e., the formal derivative of Φ𝑘(𝑥)), but other options may lead to more efficient

implementations.

We stress that this document does not make recommendations on the specific parameters to use for

non-power-of-two cyclotomic rings, in particular Tables 1-4 below only apply to power-of-two

cyclotomic rings.

Secret key. For most homomorphic encryption schemes, not only the error but also the secret key must

be small. The security reductions ensure that choosing the key from the same distribution as the error

does not weaken the scheme. However, for many homomorphic encryption schemes (including BGV and

BFV), choosing an even smaller secret key has a significant performance advantage. For example, one

may choose the secret key from the ternary distribution (i.e., each coefficient is chosen uniformly from {−1,0,1}). In the recommended parameters given below, we present tables for three choices of secret-

distribution: uniform, the error distribution, and ternary.

In some extreme cases, there is a reason to choose an even smaller secret key, e.g., one with sparse

coefficient vector. However, we will not present tables for sparse secrets because the security

implications of using such sparse secrets is not well understood yet. We expect to specify concrete

parameters for sparse secret keys in future versions of this standard.

Number of samples. For most of the attacks listed in the tables below, the adversary needs a large

number of LWE samples to apply the attack with maximum efficiency. Collecting many samples may be

feasible in realistic systems, since from one ring-LWE sample one can extract many “LWE-like” samples.
The evaluation keys may also contain some samples.

Sampling Methods. All the error distributions mentioned above require choosing the coefficients of

some initial vector independently at random from either the discrete or the continuous Gaussian with

some standard deviation 𝜎 > 0. Sampling from a continuous Gaussian with small parameter is quite

straightforward, but sampling from a discrete Gaussian distribution is harder. There are several known

methods to sample from a discrete Gaussian, including rejection sampling, inversion sampling, Discrete

Zuggurat, Bernoulli-type, Knuth-Yao and Von Neumann-type. For efficiency, we recommend the Von

Neumann-type sampling method introduced by Karney in [Kar16].

Constant-time sampling. In some of the aforementioned sampling methods, the time it takes to

generate one sample could leak information about the actual sample. In many applications, it is

therefore important that the entire error-sampling process is constant-time. This is easier to do when

sampling from the continuous Gaussian distribution, but harder for the discrete Gaussian. One possible

method is to fix some upper bound 𝑇 > 0 such that sampling all the 𝑛 coordinates 𝑒𝑖 sequentially

without interruption takes time less than 𝑇 time with overwhelming probability. Then after these

samples are generated, using time 𝑡, we wait for (𝑇 − 𝑡) time units, so that the entire error-generating

time always takes time 𝑇. In this way, the total time does not reveal information about the generated

error polynomial.

TABLES of RECOMMENDED PARAMETERS

In practice, in order to implement homomorphic encryption for a particular application or task, the

application will have to select a dimension 𝑛, and a ciphertext modulus 𝑞, (along with a plaintext

modulus and a choice of encoding which are not discussed here). For that reason, we give pairs of (𝑛, 𝑞)

which achieve different security levels for each 𝑛. In other words, given 𝑛, the table below recommends

a value of 𝑞 which will achieve a given level of security (e.g. 128 bits) for the given error standard

deviation 𝜎 ≈ 3.2.

We have the following tables for 3 different security levels, 128-bit, 192-bit, and 256-bit security, where

the secret follows the uniform, error, and ternary distributions. For applications, we give values of 𝑛

from 𝑛 = 2𝑘 where 𝑘 = 10, … ,15. We note that we used commit (560525) of the LWE-estimator of

[APS15], which the authors continue to develop and improve. The tables give estimated running times

(in bits) for the three attacks described in Section 5.1: uSVP, dec (decoding attack), and dual.

Table 1: Cost model = BKZ.sieve

distribution n security

level

logq uSVP dec dual

uniform 1024 128 29 131.2 145.9 161.0

 192 21 192.5 225.3 247.2

 256 16 265.8 332.6 356.7

 2048 128 56 129.8 137.9 148.2

 192 39 197.6 217.5 233.7

 256 31 258.6 294.3 314.5

 4096 128 111 128.2 132.0 139.5

 192 77 194.7 205.5 216.4

 256 60 260.4 280.4 295.1

 8192 128 220 128.5 130.1 136.3

 192 154 192.2 197.5 205.3

 256 120 256.5 267.3 277.5

 16384 128 440 128.1 129.0 133.9

 192 307 192.1 194.7 201.0

 256 239 256.6 261.6 269.3

 32768 128 880 128.8 129.1 133.6

 192 612 193.0 193.9 198.2

 256 478 256.4 258.8 265.1

distribution n security

level

logq uSVP dec dual

error 1024 128 29 131.2 145.9 141.8

 192 21 192.5 225.3 210.2

 256 16 265.8 332.6 300.5

 2048 128 56 129.8 137.9 135.7

 192 39 197.6 217.5 209.6

 256 31 258.6 294.3 280.3

 4096 128 111 128.2 132.0 131.4

 192 77 194.7 205.5 201.5

 256 60 260.4 280.4 270.1

 8192 128 220 128.5 130.1 130.1

 192 154 192.2 197.5 196.9

 256 120 256.5 267.3 263.8

 16384 128 440 128.1 129.3 130.2

 192 307 192.1 194.7 196.2

 256 239 256.6 261.6 264.5

 32768 128 883 128.5 128.8 130.0

 192 613 192.7 193.6 193.4

 256 478 256.4 258.8 257.9

distribution n security

level

logq uSVP dec dual

(-1, 1) 1024 128 27 131.6 160.2 138.7

 192 19 193.0 259.5 207.7

 256 14 265.6 406.4 293.8

 2048 128 54 129.7 144.4 134.2

 192 37 197.5 233.0 207.8

 256 29 259.1 321.7 273.5

 4096 128 109 128.1 134.9 129.9

 192 75 194.7 212.2 198.5

 256 58 260.4 292.6 270.1

 8192 128 218 128.5 131.5 129.2

 192 152 192.2 200.4 194.6

 256 118 256.7 273.0 260.6

 16384 128 438 128.1 129.9 129.0

 192 305 192.1 196.2 193.2

 256 237 256.9 264.2 259.8

 32768 128 881 128.5 129.1 128.5

 192 611 192.7 194.2 193.7

 256 476 256.4 260.2 258.2

Post-quantum security. The BKZ.qsieve model assumes access to a quantum computer and gives lower

estimates than BKZ.sieve. In what follows, we give tables of recommended (“Post-quantum”)
parameters which achieve the desired levels of security against a quantum computer. We also present

tables computed using the ``quantum” mode of the BKZ.ADPS16 model, which contain more
conservative parameters.

Table 2: Cost model = BKZ.qsieve

distribution n security

level

logq uSVP dec dual

uniform 1024 128 27 132.2 149.3 164.5

 192 19 199.3 241.6 261.6

 256 15 262.9 341.1 360.8

 2048 128 53 128.1 137.6 147.6

 192 37 193.6 215.8 231.4

 256 29 257.2 297.9 316.6

 4096 128 103 129.1 134.2 141.7

 192 72 193.8 206.2 217.2

 256 56 259.2 281.9 296.5

 8192 128 206 128.2 130.7 136.6

 192 143 192.9 199.3 207.3

 256 111 258.4 270.8 280.7

 16384 128 413 128.2 129.0 132.7

 192 286 192.1 195.3 201.4

 256 222 257.2 263.1 270.6

 32768 128 829 128.1 128.4 130.8

 192 573 192.0 193.3 197.5

 256 445 256.1 259.0 265.2

distribution n security

level

logq uSVP dec dual

error 1024 128 27 132.2 149.3 144.5

 192 19 199.3 241.6 224.0

 256 15 262.9 341.1 302.3

 2048 128 53 128.1 137.6 134.8

 192 37 193.6 215.8 206.7

 256 29 257.2 297.9 281.4

 4096 128 103 129.1 134.2 133.1

 192 72 193.8 206.2 201.8

 256 56 259.2 281.9 270.4

 8192 128 206 128.2 130.7 130.1

 192 143 192.9 199.3 198.5

 256 111 258.4 270.8 266.6

 16384 128 413 128.2 129.0 130.1

 192 286 192.1 195.3 196.6

 256 222 257.2 263.1 265.8

 32768 128 829 128.1 128.4 129.8

 192 573 192.0 193.3 192.8

 256 445 256.1 259.0 260.4

distribution n security

level

logq uSVP dec dual

(-1, 1) 1024 128 25 132.6 165.5 142.3

 192 17 199.9 284.1 222.2

 256 13 262.6 423.1 296.6

 2048 128 51 128.6 144.3 133.4

 192 35 193.5 231.9 205.2

 256 27 257.1 327.8 274.4

 4096 128 101 129.6 137.4 131.5

 192 70 193.7 213.6 198.8

 256 54 259.7 295.2 270.6

 8192 128 202 129.8 130.7 128.0

 192 141 192.9 202.5 196.1

 256 109 258.3 276.6 263.1

 16384 128 411 128.2 129.5 129.0

 192 284 192.0 196.8 193.7

 256 220 257.2 265.8 260.7

 32768 128 827 128.1 128.7 128.4

 192 571 192.0 194.1 193.1

 256 443 256.1 260.4 260.4

Appendix A

Organizers

Kristin Lauter klauter@microsoft.com

Vinod Vaikuntanathan vinod.nathan@gmail.com

Contributors

Martin Albrecht martinralbrecht@googlemail.com

Melissa Chase melissac@microsoft.com

Hao Chen haoche@microsoft.com

Jintai Ding jintai.ding@gmail.com

Shafi Goldwasser shafi@theory.csail.mit.edu

Sergey Gorbunov sgorbunov100@gmail.com

Shai Halevi shaih@alum.mit.edu

Jeffrey Hoffstein hoffsteinjeffrey@gmail.com

Satya Lokam Satya.Lokam@microsoft.com

Daniele Micciancio daniele@cs.ucsd.edu

Dustin Moody dustin.moody@nist.gov

Travis Morrison txm950@psu.edu

Amit Sahai amitsahai@gmail.com

References

[Alb17] Albrecht, M. R. (2017). On dual lattice attacks against small-secret LWE and parameter choices in

HElib and SEAL. In J. Coron & J. B. Nielsen (Eds.), EUROCRYPT 2017, part ii (Vol. 10211, pp. 103–129).

Springer, Heidelberg.

[AFG14] Martin R. Albrecht, Robert Fitzpatrick, and Florian Gopfert: On the Efficacy of Solving

LWE by Reduction to Unique-SVP. In Hyang-Sook Lee and Dong-Guk Han, editors, ICISC 13,

volume 8565 of LNCS, pages 293-310. Springer, November 2014.

[AGVW17] Albrecht, M. R., Göpfert, F., Virdia, F., & Wunderer, T. (2017). Revisiting the expected cost of

solving uSVP and applications to LWE. In T. Takagi & T. Peyrin (Eds.), ASIACRYPT 2017, part i (Vol. 10624,

pp. 297–322). Springer, Heidelberg.

[APS15] Martin R. Albrecht, Rachel Player and Sam Scott. On the concrete hardness of Learning with

Errors. Journal of Mathematical Cryptology. Volume 9, Issue 3, Pages 169–203, ISSN (Online) 1862-2984,

October 2015.

[ADPS16] Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. (2016). Post-quantum key exchange - A

new hope. In T. Holz & S. Savage (Eds.), 25th USENIX security symposium, USENIX security 16 (pp. 327–
343). USENIX Association. Retrieved from

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim

[AP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A.,

Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in the presence of errors. In ICALP,

volume 6755 of Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

[Bab86] László Babai: On Lovász’ lattice reduction and the nearest lattice point problem, Combinatorica,

6(1):1-3, 1986.

[BDGL16] Becker, A., Ducas, L., Gama, N., & Laarhoven, T. (2016). New directions in nearest neighbor

searching with applications to lattice sieving. In R. Krauthgamer (Ed.), 27th soda (pp. 10–24). ACM-SIAM.

https://doi.org/10.1137/1.9781611974331.ch2

[BGV12]: Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption

without bootstrapping. In ITCS '12 Proceedings of the 3rd Innovations in Theoretical Computer Science

Conference. Pages 309-325.

[B12] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical

GapSVP, In CRYPTO 2012. Pages 868 – 886.

[CIV16a] W. Castryck, I. Iliashenko, F. Vercauteren, Provably weak instances of ring-lwe revisited. In:

Eurocrypt 2016. vol. 9665, pp. 147–167. Springer (2016)

[CIV16b] W. Castryck, I. Iliashenko, F. Vercauteren, On error distributions in ring-based LWE. LMS Journal

of Computation and Mathematics 19(A), 130–145 (2016) 7.

[Che13] Chen, Y. (2013). Réduction de réseau et sécurité concrète du chiffrement complètement

homomorphe (PhD thesis). Paris 7.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, Yongsoo Song. Homomorphic encryption for

arithmetic of approximate numbers, In International Conference on the Theory and Applications of

Cryptology and Information Security, pp. 409–437. Springer, Cham. 2017.

[CLS15] Hao Chen, Kristin Lauter, Katherine E. Stange, Attacks on the Search RLWE Problem with Small

Errors, SIAM J. Appl. Algebra Geometry, Society for Industrial and Applied Mathematics, Vol. 1, pp. 665–
682. (2017) https://eprint.iacr.org/2015/971

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1137/1.9781611974331.ch2
http://dl.acm.org/author_page.cfm?id=81322508192&coll=DL&dl=ACM&trk=0&cfid=790587702&cftoken=47193319
http://research.microsoft.com/en-us/um/newengland/events/ITCS2012/
https://eprint.iacr.org/2015/971

[CLS16] Hao Chen, Kristin Lauter, Katherine E. Stange. Security Considerations for Galois Non-dual RLWE

Families, SAC 2016: Selected Areas in Cryptography – SAC 2016 Lecture Notes in Computer Science, Vol.

10532. Springer pp 443-462.

[CN11] Y. Chen, P.Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In: Lee D.H., Wang X. (eds)

Advances in Cryptology – ASIACRYPT 2011. ASIACRYPT 2011. Lecture Notes in Computer Science, vol.

7073. Springer, Berlin, Heidelberg.

[CGGI16] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption:

bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.

10031, pp. 3–33.

[CS16] Ana Costache, Nigel P. Smart, Which Ring Based Somewhat Homomorphic Encryption Scheme is

Best? Topics in Cryptology - CT-RSA 2016, LNCS, volume 9610, Pages 325-340.

[CP16] Eric Crockett and Chris Peikert. Λ∘λ: Functional Lattice Cryptography. In ACM-CCS 2016.

[DM15] Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second.

In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640.

[ELOS15] Yara Elias, Kristin Lauter, Ekin Ozman, Katherine E. Stange, Provably weak instances of Ring-

LWE, CRYPTO 2015

[FV12] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint

Archive, Report 2012/144, 2012. http://eprint.iacr.org/2012/144.pdf

[GINX16] Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: generalized worst-

case to average-case reductions. In: EUROCRYPT 2016, https://eprint.iacr.org/2014/283.pdf

[GSW] C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from Learning with Errors:

Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In CRYPTO 2013 (Springer).

[Kar16] C.F.F. Karney, Sampling Exactly from the Normal Distribution. ACM Transactions on Mathematical

Software, 42, Article No. 3.

[KL15] Miran Kim and Kristin Lauter, Private Genome Analysis through Homomorphic Encryption,

BioMedCentral Journal of Medical Informatics and Decision Making 2015 15 (Suppl 5): S3.

[LL15] Kim Laine and Kristin Lauter, Key Recovery for LWE in Polynomial Time.

https://eprint.iacr.org/2015/176

[Laa15] Laarhoven, T. (2015). Search problems in cryptography: From fingerprinting to lattice sieving

(PhD thesis). Eindhoven University of Technology.

https://link.springer.com/book/10.1007/978-3-319-69453-5
http://eprint.iacr.org/2012/144.pdf
https://eprint.iacr.org/2014/283.pdf

[LMvP13] Laarhoven T., Mosca M., van de Pol J. (2013) Solving the Shortest Vector Problem in Lattices

Faster Using Quantum Search. In: Gaborit P. (eds) Post-Quantum Cryptography. PQCrypto 2013. Lecture

Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg.

[LP11] Richard Lindner and Chris Peikert: Better key sizes (and attacks) for LWE-based encryption. In

Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, Aggelos

Kiayias, Editor, volume 6558 of LNCS, pages 319—339.

[LN13] Liu, M., & Nguyen, P. Q. (2013). Solving BDD by enumeration: An update. In E. Dawson (Ed.), CT-

rsa 2013 (Vol. 7779, pp. 293–309). Springer, Heidelberg. https://doi.org/10.1007/978-3-642-36095-4_19

[LTV12] A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev : On Ideal Lattices and Learning with Errors

over Rings. Journal of the ACM (JACM), Volume 60, Issue 6, November 2013, Article No. 43.

[LPR13b] Vadim Lyubashevsky, Chris Peikert, and Oded Regev : A toolkit for ring-LWE cryptography.

Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer,

Berlin, Heidelberg, 2013.

[MR09] Micciancio, D., & Regev, O. (2009). Lattice-based cryptography. In D. J. Bernstein, J. Buchmann,

& E. Dahmen (Eds.), Post-quantum cryptography (pp. 147–191). Berlin, Heidelberg, New York: Springer,

Heidelberg.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In J.

Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer Science, pages 267–288. Springer,

1998.

[P16] C. Peikert, How Not to Instantiate Ring-LWE, in SCN’16, volume 9841 of LNCS, Springer, 2016.

[YASHE13] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security for a

Ring-Based Fully Homomorphic Encryption Scheme, in IMA CC 2013.

http://eprint.iacr.org/2013/075.pdf

Software references for publicly available Homomorphic Encryption libraries:

[cuFHE] https://github.com/vernamlab/cuFHE

[cuHE] https://github.com/vernamlab/cuHE

[HEAAN] https://github.com/snucrypto/HEAAN

[HElib] https://github.com/shaih/HElib

[NFLlib] https://github.com/CryptoExperts/FV-NFLlib

[PALISADE] https://git.njit.edu/groups/PALISADE

https://doi.org/10.1007/978-3-642-36095-4_19
http://eprint.iacr.org/2013/075.pdf
https://github.com/vernamlab/cuFHE
https://github.com/vernamlab/cuHE
https://github.com/shaih/HElib
https://github.com/CryptoExperts/FV-NFLlib
https://git.njit.edu/groups/palisade

[SEAL] http://sealcrypto.org

[TFHE] https://tfhe.github.io/tfhe/

Homomorphic Encryption Standard Appendix

Anticipated Extensions to this Document

This document is only a first step in standardizing various aspects of homomorphic encryption, and we

expect many other aspects to be standardized in future documents. Some aspects that were not

specified here and we expect to be specified in future versions include the following:

• The homomorphic encryption scheme for approximate numbers by Cheon, Kim, Kim and Song

[CKKS17], which is mentioned in Section 1.1.5.

• Homomorphic encryption based on Module LWE, mentioned in Section 2.1.1.

• Concrete parameters and sampling methods for non-power-of-two cyclotomic rings, as

discussed in Section 2.1.3.

• Parameter choices when using sparse secret key, as mentioned in Section 2.1.3.

http://sealcrypto.org/
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftfhe.github.io%2Ftfhe%2F&data=04%7C01%7Cklauter%40microsoft.com%7C3d67333e1fb849cf831808d589232bf8%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636565706514536661%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwifQ%3D%3D%7C-1&sdata=Cv3k4Mx5oU7ppdTlY2TxyVlQauF5OzCHiauk%2BriADdM%3D&reserved=0

