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We met as a group during the Homomorphic Encryption Standardization Workshop on July 13-14, 2017, 

hosted at Microsoft Research in Redmond, and again during the second workshop on March 15-16, 2018 

in MIT. Researchers from around the world represented government, industry, and academia. There are 

several research groups around the world who have made libraries for general-purpose homomorphic 

encryption available for applications and general-purpose use. Some examples include [SEAL], [HElib], 

[PALISADE], [cuHE], [cuFHE], [NFLlib], [HEAAN], and [TFHE].  Most general-purpose libraries for 

homomorphic encryption implement schemes that are based on the ring learning-with-error (RLWE) 

problem, and many of them displayed common choices for the underlying rings, error distributions, and 

other parameters. 

 

Homomorphic Encryption is a breakthrough new technology which can enable private cloud storage and 

computation solutions, and many applications were described in the literature in the last few years. But 

before Homomorphic Encryption can be adopted in medical, health, and financial sectors to protect data 

and patient and consumer privacy, it will have to be standardized, most likely by multiple 

standardization bodies and government agencies. An important part of standardization is broad 

agreement on security levels for varying parameter sets. Although extensive research and benchmarking 

has been done in the research community to establish the foundations for this effort, it is hard to find all 

the information in one place, along with concrete parameter recommendations for applications and 

deployment. 

 

This document is an attempt to capture (at least part of) the collective knowledge regarding the 

currently known state of security of these schemes, to specify the schemes, and to recommend a wide 

selection of parameters to be used for homomorphic encryption at various security levels. We describe 

known attacks and their estimated running times in order to make these parameter recommendations. 

We also describe additional features of these encryption schemes which make them useful in different 

applications and scenarios.  

 

 

 

 

 

 

 



Outline of the document:  

 

HES Section 1.1 standardizes the encryption schemes to be used. Section 1.1 consists of: 

 

Section 1.1.1: introduces notation and definitions. 

Section 1.1.2: defines the security properties for homomorphic encryption. 

Section 1.1.3: describes the BGV and BFV schemes.  

Section 1.1.4: described the GSW scheme.  

Section 1.1.5: mentions some alternative schemes: [YASHE13], [HPS98]/[LTV12], and [CKKS17]. 

Section 1.1.6: describes additional features of the schemes. 

 

HES Section 2.1 recommends parameter choices to achieve security. Section 2.1 consists of: 

 

Section 2.1.1: describes the hard problems: the LWE and RLWE assumptions. 

Section 2.1.2: describes known lattice attacks and their estimated running times. 

Section 2.1.3: mentioned the Arora-Ge attack on LWE. 

Section 2.1.4: discusses algebraic attacks on RLWE. 

Section 2.1.5: recommends concrete parameters to achieve various security levels.  

 

It is expected that future work to update and expand this Homomorphic Encryption Standard will use 

the following numbering convention:  

• updates to the encryption schemes or additional schemes may be added as Sections 1.2, 1.3, … 

• updates to security levels or recommended parameters may be added as Sections 2.2, 2.3, … 

• a new section to cover API design is planned to be added as Section 3.0, and updated as 3.1, … 

• a new section to cover applications may be added as Section 4.0, and updated as 4.1, … 

In the appendix we list some aspects that are not specified in this document and are expected to be 

covered by future documents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Homomorphic Encryption Standard Section 1.1 

Recommended Encryption Schemes 

 

Section 1.1.1 Notation and Definitions 

 

• ParamGen(λ, PT, K, B) → Params 

 

The parameter generation algorithm is used to instantiate various parameters used in the HE algorithms 

outlined below. As input, it takes:  

• 𝜆 denotes the desired security level of the scheme. For instance, 128-bit security (𝜆 = 128) or 

256-bit security.  

• PT denotes the underlying plaintext space. Currently this standard specifies two types of 

parametrized plaintext spaces: modular integers (MI), and extension fields/rings (EX). We expect 

future versions of this document to introduce a third type of approximate numbers (AN). 

o (MI) Modular integers are parametrized by the modulus p of the plaintext numbers to 

be encrypted, namely the plaintext space is Zp. For instance, the parameter p=1024 

means that the plaintext space is Z1024 ,i.e., each individual element of the message 

space is an integer from the range [0, 1023] and all operations on individual elements 

are performed modulo p. 

o (EX) Extension rings/fields are parameterized by a modulus p as above, and in addition 

by a polynomial f(x) over Zp, specifying the plaintext space as Z[x]/(p, f(x)). Namely, each 

element of the message space is an integer polynomial of degree smaller than f(x) with 

coefficients from the range (0, p-1), and all operations over individual elements are 

performed modulo f(x), and modulo p. 

• 𝐾 denotes the dimension of the vectors to be encrypted. For instance,  𝐾 = 100, 𝑃𝑇 =(𝑀𝐼, 1024) means the messages to be encrypted are vectors (𝑉1, … , 𝑉𝐾) where each 𝑉𝑖 is 

chosen from the range (0, 1023) and operations are performed component-wise. That is, by 

defintion, (𝑉1, … , 𝑉𝐾)  +  (𝑉1′, … , 𝑉𝐾′ )  =  (𝑉1  +  𝑉1′, … , 𝑉𝐾  +  𝑉𝐾′ ). The multiplication operation 

over two vectors is defined similarly. The space of all possible vectors (𝑉1, … , 𝑉𝐾) is referred to 

as the message space (MS).  

• 𝐵: denotes an auxiliary parameter that is used to control the complexity of the 

programs/circuits that one can expect to run over the encrypted messages. Lower parameters 

denote “smaller”, or less expressive, or less complex programs/circuits. Lower parameters 

generally mean smaller parameters of the entire scheme. This, as a result, translates into 

smaller ciphertexts and more efficient evaluation procedures. Higher parameters generally 

increase key sizes, ciphertext sizes, and complexity of the evaluation procedures. Higher 

parameters are, of course, necessary to evaluate more complex programs.  

 

• PubKeygen(Params) → SK, PK, EK 

 

The public key-generation algorithm is used to generate a pair of secret and public keys. The public key 

can be shared and used by anyone to encrypt messages. The secret key should be kept private by a user 



and can be used to decrypt messages. The algorithm also generates an evaluation key that is needed to 

perform homomorphic operations over the ciphertexts. It should be given to any entity that will perform 

homomorphic operations over the ciphertexts. Any entity that has only the public and the evaluation 

keys cannot learn anything about the messages from the ciphertexts only.  

 

• SecKeygen(Params) → SK, EK  

 

The secret key-generation algorithm is used to generate a secret key. This secret key is needed to both 

encrypt and decrypt messages by the scheme. It should be kept private by the user. The algorithm also 

generates an evaluation key that is needed to perform homomorphic operations over the ciphertexts. 

The evaluation key should be given to any entity that will perform homomorphic operations over the 

ciphertexts. Any entity that has only the evaluation key cannot learn anything about the messages from 

the ciphertexts only.  

 

• PubEncrypt(PK, M) → C 

 

The public encryption algorithm takes as input the public key of the scheme and any message M from 

the message space. The algorithm outputs a ciphertext C. This algorithm generally needs to be 

randomized (that is, use random or pseudo-random coins) to satisfy the security properties.  

 

• SecEncrypt(SK, M) → C  

 

The secret encryption algorithm takes as input the secret key of the scheme and any message M from 

the message space. The algorithm outputs a ciphertext C. This algorithm generally needs to be 

randomized (that is, use random or pseudo-random coins) to satisfy the security properties.  

 

• Decrypt(SK, C) → M  

 

The decryption algorithm takes as input the secret key of the scheme, SK, and a ciphertext C. It outputs a 

message M from the message space. The algorithm may also output special symbol FAIL, if the 

decryption cannot successfully recover the encrypted message M.  

 

• EvalAdd(Params, EK, C1, C2) → C3.  
 

EvalAdd is a randomized algorithm that takes as input the system parameters Params, the evaluation 

key EK, two ciphertexts C1 and C2, and outputs a ciphertext C3.  

 

The correctness property of EvalAdd is that if C1 is an encryption of plaintext element M1 and C2 is an 

encryption of plaintext element M2, then C3 should be an encryption of M1+M2. 

 

• EvalAddConst(Params, EK, C1, M2) → C3. 



 

EvalAddConst is a randomized algorithm that takes as input the system parameters Params, the 

evaluation key EK, a ciphertext C1, and a plaintext M2, and outputs a ciphertext C3.  

 

The correctness property of EvalAddConst is that if C1 is an encryption of plaintext element M1, then C3 

should be an encryption of M1+M2. 

 

• EvalMult(Params, EK, C1, C2) → C3.  
 

EvalMult is a randomized algorithm that takes as input the system parameters Params, the evaluation 

key EK, two ciphertexts C1 and C2, and outputs a ciphertext C3.  

 

The correctness property of EvalMult is that if C1 is an encryption of plaintext element M1 and C2 is an 

encryption of plaintext element M2, then C3 should be an encryption of M1*M2. 

 

• EvalMultConst(Params, EK, C1, M2) → C3. 
 

EvalMultConst is a randomized algorithm that takes as input the system parameters Params, the 

evaluation key EK, a ciphertexts C1, and a plaintext M2, and outputs a ciphertext C3.  

 

The correctness property of EvalMultConst is that if C1 is an encryption of plaintext element M1, then 

C3 should be an encryption of M1*M2. 

 

• Refresh(Params, flag, EK, C1) → C2. 
 

Refresh is a randomized algorithm that takes as input the system parameters Params, a multi-valued flag 

(which can be either one of “Relinearize”, “ModSwitch” or “Bootstrap”), the evaluation key EK, and a 
ciphertext C1, and outputs a ciphertext C2.  

 

The correctness property of Refresh is that if C1 is an encryption of plaintext element M1, then C2 

should be an encryption of M1 as well. 

 

The desired property of the Refresh algorithm is that it turns a “complex” ciphertext of a message into a 
“simple” one encrypting the same message. Two embodiments of the Refresh algorithm are (a) the 

bootstrapping procedure, which takes a ciphertext with large noise and outputs a ciphertext of the same 

message with a fixed amount of noise; and (b) the key-switching procedure, which takes a ciphertext 

under one key and outputs a ciphertext of the same message under a different key. 

 

• ValidityCheck(Params, EK, [C], COMP) → flag.  



ValidityCheck is an algorithm that takes as input the system parameters Params, the evaluation key 

EK, an array of ciphertexts [C], and a specification of the homomorphic computation encoded as a 

straight-line program COMP, and outputs a Boolean flag.  

 

The correctness property of ValidityCheck is that if ValidityCheck outputs flag = 1, then doing the 

homomorphic computation COMP on the vector of ciphertexts [C] produces a ciphertext that decrypts 

to the correct answer. 

 

Section 1.1.2 Properties 

 

Semantic Security or IND-CPA Security:  At a high level, a homomorphic encryption scheme is said to be 

secure if no adversary has an advantage in guessing (with better than 50% chance) whether a given 

ciphertext is an encryption of either one of two equally likely distinct messages. This requires encryption 

to be randomized so that two different encryptions of the same message do not look the same.  

 

Suppose a user runs the parameter and the key-generation algorithms to provide the key tuple. An 

adversary is assumed to have the parameters, the evaluation key EK, a public key PK (only in the public-

key scheme) and can obtain encryptions of messages of its choice. The adversary is then given an 

encryption of one of two messages of its choice, computed by the above encryption algorithm, without 

knowing which message the encryption corresponds to. The security of HE then guarantees that the 

adversary cannot guess which message the encryption corresponds to with significant advantage better 

than a 50% chance. This captures the fact that no information about the messages is revealed in the 

ciphertext.  

 

Compactness:  The compactness property of a homomorphic encryption scheme guarantees that 

homomorphic operations on the ciphertexts do not expand the length of the ciphertexts. That is, any 

evaluator can perform an arbitrary supported list of evaluation function calls and obtain a ciphertext in 

the ciphertext space (that does not depend on the complexity of the evaluated functions).  

 

Efficient decryption: Efficient decryption property says that the homomorphic encryption scheme 

always guarantees that the decryption runtime does not depend on the functions which was evaluated 

on the ciphertexts.  

 

Section 1.1.3. The BGV and BFV Homomorphic Encryption Schemes  

 

In this section, we describe the two primary schemes for implementation of homomorphic encryption, 

[BGV12] and [B12]/[FV12], these two schemes are very similar. In Section 1.1.4. below we describe the 

GSW scheme, which is somewhat different. In Section 1.1.5, we also mention some alternative schemes 

[YASHE13], [HPS98]/[LTV12], and [CKKS17], but they are not described in this standard.  

 

 

 



a. Brakerski-Gentry-Vaikuntanathan (BGV) 

 

We focus here on describing the basic version of the BGV encryption scheme. Optimizations to the basic 

scheme will be discussed at the end of this section. 

 

• BGV.ParamGen(λ, PT, K, B) → Params. 

 

Recall that λ is the security level parameter, for BGV the plaintext space PT is either of type MI or EX 

with integer modulus p > 1, and K ≥ 1 is an integer vector length.  

 

In the basic BGV scheme, the auxiliary input 𝐵 is an integer that determines the maximum multiplicative 

depth of the homomorphic computation. This is simply the maximum number of sequential 

multiplications required to perform the computation. For example, the function 𝑔(𝑥1, 𝑥2 , 𝑥3, 𝑥4)  = 𝑥1𝑥2  +  𝑥3𝑥4 has multiplicative depth 1. 

 

In the basic BGV scheme, the parameters param include the ciphertext modulus parameter 𝑞 and a ring 𝑅 = 𝑍[𝑥]/𝑓(𝑥) and corresponding plaintext ring 𝑅/𝑝𝑅 and ciphertext ring 𝑅/𝑞𝑅. The parameters 

param also specify a “key distribution” 𝐷1 and an “error distribution” 𝐷2 over 𝑅, the latter is based on a 

Gaussian distribution with standard deviation   set according to the security guidelines specified in 

Section 2.1.5.  

 

• BGV.SecKeygen(params) → SK, EK  

 

In the basic BGV scheme, the secret key 𝑆𝐾 is an element 𝑠 in the ring 𝑅, chosen from distribution 𝐷1. 

 

In the basic BGV scheme, there is no evaluation key EK. 

 

• BGV.PubKeygen(params) → SK, PK, EK. 

 

In the basic BGV scheme, PubKeygen first runs SecKeygen and obtains (𝑆𝐾, 𝐸𝐾) where 𝑆𝐾 is an element 𝑠 that belongs to the ring 𝑅. 

 

PubKeygen chooses a uniformly random element a from the ring 𝑅/𝑞𝑅 and outputs the public key 𝑃𝐾 

which is a pair of ring elements (𝑝𝑘0, 𝑝𝑘1)  =  (−𝑎, 𝑎𝑠 + 𝑝𝑒) where 𝑒 is chosen from the error 

distribution 𝐷2. 

 

• BGV.SecEncrypt(SK, M) → C 

 

In the basic BGV scheme, SecEncrypt first maps the message 𝑀 which comes from the plaintext space 

(either Zp
r  or (Zp[x]/f(x))r)  into an element �̂� of the ring 𝑅/𝑝𝑅.  

 



SecEncrypt then samples a uniformly random element 𝑎 from the ring 𝑅/𝑞𝑅 and outputs the pair of ring 

elements (𝑐0, 𝑐1)  =  (−𝑎, 𝑎𝑠 + 𝑝𝑒 + �̂�) where 𝑒 is chosen from the error distribution 𝐷2. (See 

Comments 1, 2 below for more general methods of encoding the message during encryption. The same 

comments apply also to public-key encryption with BGV.) 

 

• BGV.PubEncrypt(PK, M) → C 

 

In the basic BGV scheme, Pub.Encrypt first maps the message 𝑀 which comes from the plaintext space 𝑍𝑝𝑘 into an element �̂� of the ring 𝑅/𝑝𝑅. Recall that the public key 𝑃𝐾 is a pair of elements (𝑝𝑘0, 𝑝𝑘1). 

 

PubEncrypt then samples three elements 𝑢  from distribution 𝐷1 and 𝑒1, 𝑒2 from the error distribution 𝐷2 and outputs the pair of ring elements (𝑐0, 𝑐1)  =  (𝑝𝑘0𝑢 + 𝑝𝑒1, 𝑝𝑘1𝑢 + 𝑝𝑒2 + �̂�).  

 

• BGV.Decrypt(SK, C) → M 

 

In the basic BGV scheme, Decrypt takes as input the secret key which is an element 𝑠 of the ring 𝑅, and a 

ciphertext 𝐶 =  (𝑐0, 𝑐1) which is a pair of elements from the ring 𝑅/𝑞𝑅.  

 

We remark that a ciphertext 𝐶 produced as the output of the encryption algorithm has two elements in 𝑅/𝑞𝑅, but upon homomorphic evaluation, ciphertexts can grow to have more ring elements. The 

decryption algorithm can be modified appropriately to handle such ciphertexts. 

 

Decrypt first computes the ring element 𝑐0𝑠 + 𝑐1 over 𝑅/𝑞𝑅 and interprets it as an element 𝑐’ in the 

ring 𝑅. It then computes 𝑐’ (mod 𝑝), an element of 𝑅/𝑝𝑅, which it outputs. 

 

• BGV.EvalAdd(Params, EK, C1, C2) → C3.  

 

In the basic BGV scheme, EvalAdd takes as input ciphertexts 𝐶1 =  (𝑐1,0, 𝑐1,1) and 𝐶2 =  (𝑐2,0, 𝑐2,1 ) and 

outputs 𝐶3 =  (𝑐1,0  +  𝑐2,0,  𝑐1,1  +  𝑐2,1), where the operations are done in 𝑅/𝑞𝑅. 

 

• BGV.EvalMult(Params, EK, C1, C2) → C3. 

 

In the basic BGV scheme, EvalMult takes as input ciphertexts 𝐶1 =  (𝑐1,0, 𝑐1,1) and 𝐶2 =  (𝑐2,0, 𝑐2,1) 

and outputs 𝐶3 = (𝑐1,0𝑐2,0,  𝑐1,0𝑐2,1 + 𝑐1,1𝑐2,0, 𝑐1,1𝑐2,1), where the operations are done in 𝑅/𝑞𝑅. 

 

Comment 1. The noise term 𝑝𝑒 + �̂� in the encryption procedure can be generalized to an error term 

drawn from the coset �̂� + 𝑝𝑅, according to an error-sampling procedure. All the considerations 

discussed below for the error distribution 𝐷2, apply equally to the error-sampling procedure in this more 

general implementation. 

 



Comment 2. There is also an equivalent “MSB encoding” of the message for BGV encryption, where the 
message is encoded as 𝑊�̂�+e (with 𝑊 = ⌊𝑞/𝑝⌋, similarly to the BFV scheme below). There are lossless 

conversions between these two encoding methods, as long as the plaintext modulus p is co-prime with 

the ciphertext modulus q. 

 

The Full BGV Scheme 

 

In the basic BGV scheme, ciphertexts grow as a result of EvalMult. For example, given two ciphertexts 

each composed of two ring elements, EvalMult as described above results in three ring elements. This 

can be further repeated, but has the disadvantage that upon evaluating a degree-𝑑 polynomial on the 

plaintexts, the resulting ciphertext has 𝑑 + 1 ring elements. 

 

This deficiency is mitigated in the full BGV scheme, with two additional procedures. The first is called 

“Key Switching” or “Relinearization” which is implemented by calling the Refresh subroutine with flag = 

“KeySwitch”, and the second is “Modulus Switching” or “Modulus Reduction” which is implemented by 
calling the Refresh subroutine with flag = “ModSwitch”. Support for key switching and modulus 
switching also necessitates augmenting the key generation algorithm. 

 

For details on the implementation of the full BGV scheme, we refer the reader to [BGV12]. 

 

Properties Supported.  The BGV scheme supports many features described in Section 6, including 

packed evaluations of circuits and can be extended into a threshold homomorphic encryption scheme. 

In terms of security, the BGV homomorphic evaluation algorithms can be augmented to provide 

evaluation privacy (with respect to semi-honest adversaries). 

 

b. Brakerski/Fan-Vercauteren (BFV) 

 

We follow the same notations as the previous section.  

 

• BFV.ParamGen(λ, PT, K, B) → Params. 
 

We assume the parameters are instantiated following the recommendations outlined in Section 5. 

Similarly to BGV, the parameters include: 

• Key- and error-distributions 𝐷1, 𝐷2  

• a ring 𝑅 and its corresponding integer modulus 𝑞 

• Integer modulus 𝑝 for the plaintext 

In addition, the BFV parameters also include: 

• Integer 𝑇, and 𝐿 = log𝑇 𝑞. T is the bit-decomposition modulus.  

• Integer 𝑊 =  ⌊𝑞/𝑝⌋ 

 

• BFV.SecKeygen(Params) -> SK, EK 



 

The secret key 𝑆𝐾 of the encryption scheme is a random element𝑠 from the distribution 𝐷1 defined as 

per Section 5. The evaluation key consists of 𝐿 LWE samples encoding the secret 𝑠 in a specific fashion.  

In particular, for 𝑖 =  1, … , 𝐿, sample a random 𝑎𝑖 from 𝑅/𝑞𝑅 and error 𝑒𝑖 from 𝐷2, compute 

 𝐸𝐾𝑖  =  (−(𝑎𝑖𝑠 +  𝑒𝑖) +  𝑇𝑖𝑠2, 𝑎𝑖), 
and set 𝐸𝐾 =  (𝐸𝐾1, … , 𝐸𝐾𝐿). 

 

• BFV.PubKeygen(params) -> SK, PK, EK. 

 

The secret key SK of the encryption scheme is a random element 𝑠 from the distribution 𝐷1. The public 

key is a random LWE sample with the secret 𝑠. In particular, it is computed by sampling a random 

element 𝑎 from 𝑅/𝑞𝑅 and an error 𝑒 from the distribution 𝐷2 and setting:  𝑃𝐾 =  (−(𝑎𝑠 +  𝑒), 𝑎), where all operations are performed over the ring 𝑅/𝑞𝑅.  

 

The evaluation key is computed as in BFV.SecKeygen.  

 

• BFV.PubEncrypt(PK, M) -> C 

 

BFV.Pub.Encrypt first maps the message 𝑀 which comes from the message space into an element in the 

ring 𝑅/𝑝𝑅 .  
 

To encrypt a message 𝑀 from 𝑅/𝑝𝑅, parse the public key as a pair (𝑝𝑘0, 𝑝𝑘1). Encryption consists of 

two LWE samples using a secret 𝑢 where (𝑝𝑘0, 𝑝𝑘1) is treated as public randomness. The first LWE 

sample encodes the message 𝑀, whereas the second sample is auxiliary.  

 

In particular, 𝐶 = (𝑝𝑘0𝑢 +  𝑒1  +  𝑊𝑀, 𝑝𝑘1𝑢 + 𝑒2) where 𝑢 is a sampled from 𝐷1 and 𝑒1, 𝑒2 are 

sampled from 𝐷2.  

 

• BFV.SecEncrypt(PK, M) -> C 

 

• BFV.Decrypt(SK, C) -> M 

 

The main invariant of the BFV scheme is that when we interpret the elements of a ciphertext 𝐶 as the coefficients of a polynomial then, 𝐶(𝑠)  =  𝑊 𝑀 + 𝑒 for some “small” error 𝑒. The message 𝑀 

can be recovered by dividing the polynomial 𝐶(𝑠) by 𝑊 , rounding each coefficient to the nearest 

integer, and reducing each coefficient modulo 𝑝.  

 

• BFV.EvalAdd(EK, C1, C2) -> C3 

 



Parse the ciphertexts as 𝐶𝑖 =  (𝑐𝑖,0, 𝑐𝑖,1). Then, addition corresponds to component-wise addition of two 

ciphertext components. That is, 𝐶3 =  (𝑐1,0  +  𝑐2,0,  𝑐1,1  +  𝑐2,1). 

It is easy to verify that 𝐶3(𝑠)  =  𝑊 (𝑀1  + 𝑀2)  +  𝑒, where 𝑀1, 𝑀2 are messages encrypted in 𝐶1, 𝐶2 

and 𝑒 is the new error component.  

 

• BFV.EvalMult(EK, C1, C2) -> C3 

 

EvalMult takes as input ciphertexts 𝐶1 = (𝑐1,0, 𝑐1,1) and 𝐶2 = (𝑐2,0, 𝑐2,1). First, it computes  𝐶3′ =  (𝑐1,0𝑐2,0,  𝑐1,0𝑐2,1 + 𝑐1,1𝑐2,0, 𝑐1,1𝑐2,1)  over the integers (instead of mod 𝑞 as in BGV scheme 

above). Then set 𝐶3 =  𝑟𝑜𝑢𝑛𝑑((𝑝𝑞) 𝐶3′)  𝑚𝑜𝑑 𝑞. 

One can verify that 𝐶3(𝑠)  =  𝑊(𝑀1 ∗ 𝑀2) +  𝑒, for some error term 𝑒.  

 

Note that the ciphertext size increases in this operation. One may apply a Relinearization algorithm as in 

the BGV scheme to obtain a new ciphertext of the original size encrypting the same message 𝑀1 ∗ 𝑀2.  

 

Properties Supported.  The complete BFV scheme supports many features described in Section 6, 

including packed evaluations of circuits and can be extended into a threshold homomorphic encryption 

scheme. In terms of security, the BFV homomorphic evaluation algorithms can be augmented to provide 

evaluation privacy. 

 

For details on the implementation of the full BFV scheme, we refer the reader to [B12], [FV12].  

 

c. Comparison between BGV and BFV 

 

When implementing HE schemes, there are many choices which can be made to optimize performance 

for different architectures and different application scenarios. This makes a direct comparison of these 

schemes quite challenging. A paper by Costache and Smart [CS16] gives some initial comparisons 

between BGV, BFV and two of the schemes described below: YASHE and LTV/NTRU. A paper by Kim and 

Lauter [KL15] compares the performance of the BGV and YASHE schemes in the context of applications. 

Since there is further ongoing work in this area, we leave this comparison as an open research question. 

 

Section 1.1.4. The GSW Scheme and bootstrapping 

Currently, the most practical homomorphic encryption schemes only allow to perform bounded depth 

computations. These schemes can be transformed into fully homomorphic ones (capable of arbitrary 

computations) using a “bootstrapping” technique introduced by Gentry [G09], which essentially consists 

of a homomorphic evaluation of the decryption algorithm given the encryption of the secret key. 

Bootstrapping is a very time-consuming operation and improving on its efficiency is still a very active 

research area. So, it may still not be ready for standardization, but it is the next natural step to be 

considered.  

 



Bootstrapping using the BGV or BFV schemes requires assuming that lattice problems are 

computationally hard to approximate within factors that grow superpolynomially in the lattice 

dimension n. This is a stronger assumption than the inapproximability within polynomial factors 

required by standard (non-homomorphic) lattice-based public key encryption. 

 

In [GSW13], Gentry, Sahai and Waters proposed a new homomorphic encryption scheme (still based on 

lattices) that offers a different set of trade-offs than BGV and BFV. An important feature of this scheme 

is that it can be used to bootstrap homomorphic encryption based on the assumption that lattice 

problems are hard to approximate within polynomial factors. Here we briefly describe the GSW 

encryption and show how both its security and applicability to bootstrapping are closely related to LWE 

encryption, as used by the BGV and BFV schemes. So, future standardization of bootstrapping (possibly 

based on the GSW scheme) could build on the current standardization effort. 

For simplicity, we focus on secret key encryption, as this is typically enough for applications to 

bootstrapping. The GSW secret key encryption scheme (or, more specifically, its secret key, ring-based 

variant presented in [AP14, DM15]) can be described as follows: 

 

• GSW.Keygen(params): 

This is essentially the same as the key generation procedure of the BGV or BFV schemes, taking 

a similar set of security parameters, and producing a random ring element S which serves as a 

secret key. 

 

• GSW.SecEncrypt(S,M): 

Choose an uniformly random vector 𝐴 in 𝑅2 log(𝑞), a small random vector 𝐸 (with entries chosen 

independently at random from the error distribution), and output the ciphertext 𝐶 =  (𝐴, 𝐴 ∗𝑆 + 𝐸)  +  𝑀 ∗ 𝐺 where 𝐺 = [𝐼, 2 𝐼, … , 2𝑘−1𝐼] is a gadget matrix consisting of 𝑘 = 𝑙𝑜𝑔(𝑞) copies 

of the 2x2 identity matrix 𝐼 (over the ring), scaled by powers of 2. 

 

We note that there are other possibilities for choosing the gadget matrix G above (for example the 

constants 2,4, … , 2𝑘−1 can be replaced by others). Other choices may be described in future documents.  

 

We omit the description of the decryption procedure, as it is not needed for bootstrapping. Notice that: 

 

• The secret key generation process is the same as most other LWE-based encryption schemes, 

including BGV and BFV. 

• The encryption procedure essentially consists of 2 𝑙𝑜𝑔(𝑞) independent application of the basic 

LWE/BGV/BFV encryption: choose random key elements 𝑎 and 𝑒, and outputs (𝑎, 𝑎𝑠 + 𝑒 + 𝑚), 

but applied to scaled copies of the message 𝑚 =  2𝑖 𝑀. (The even rows of the GSW ciphertext 

encrypt the message as (𝑎 + 𝑚, 𝑎𝑠 + 𝑒), but this is just a minor variant on LWE encryption, and 

equivalent to it from a security standpoint.) 

• Security rests on the standard LWE assumption, as used also by BGV and BFV, which says that 

the distribution (𝐴, 𝐴 ∗ 𝑆 + 𝐸)  is pseudorandom.  



 

So, GSW can be based on LWE security estimates similar to those used to instantiate the BGV or BFV 

cryptosystems. 

 

In [GSW13] it is shown how (a public key version of) this cryptosystem supports both addition and 

multiplication, without the need for an evaluation key, which has applications to identity-based and 

attribute-based homomorphic encryption. Later, in [BV14] it was observed how the GSW multiplication 

operation exhibits an asymmetric noise growth that can be exploited to implement bootstrapping based 

on the hardness of approximating lattice problems within polynomial factors. Many subsequent papers 

(e.g., [AP14, DM15, GINX16, CGGI16]) improve on the efficiency of [BV14], but they all share the 

following features with [BV14]:  

• They all use variants of the GSW encryption to implement bootstrapping. 

• Security only relies on the hardness of approximating lattice problems within polynomial factors. 

• They are capable of bootstrapping any LWE-based encryption scheme, i.e., any scheme which 

includes an LWE encryption of the message as part of the ciphertext. LWE-based schemes 

include BGV, BFV and GSW. 

In particular, GSW can be used to implement the bootstrapping procedure for BGV and BFV and turn 

them into fully homomorphic encryption (FHE) schemes. 

 

Section 1.1.5. Other Schemes 

 

Yet Another Somewhat Homomorphic Encryption ([YASHE13]) is similar to the BGV and BFV schemes 

and offers the same set of features.  

 

The scheme NTRU/Lopez-Alt-Tromer-Vaikuntanathan ([HPS98]/[LTV12]) relies on the NTRU assumption 

(also called the “small polynomial ratios assumption”). It offers all the features of BGV and BFV, and in 

addition, also offers an extension that supports multi-key homomorphism. However, it must be used 

with a much wider error distribution than the other schemes that are described in this document (or 

else it becomes insecure), and therefore it should only be used with a great deal of care. This standard 

does not cover security for these schemes.  

 

Another scheme, called CKKS, with plaintext type approximate numbers, was recently proposed by 

Cheon, Kim, Kim and Song [CKKS17]. This scheme is not described here, but we expect future version of 

this standard to include it. 

 

Section 1.1.6. Additional Features & Discussion 

 

a. Distributed HE 

 

Homomorphic Encryption is especially suitable to use for multiple users who may want to run 

computations on an aggregate of their sensitive data. For the setting of multiple users, an additional 



property which we call threshold-HE is desirable. In threshold-HE the key-generation algorithms, 

encryption and decryption algorithms are replaced by a distributed-key-generation (DKG) algorithm, 

distributed-encryption (DE) and distributed-decryption (DD) algorithms. Both the distributed-key-

generation algorithm and the distributed-decryption algorithm are executed via an interactive process 

among the participating users. The evaluation algorithms EvalAdd, EvalMult, EvalMultConst, 

EvalAddConst and Refresh remain unchanged. 

 

We will now describe the functionality of the new algorithms. 

 

We begin with the distributed-key-generation (DKG) algorithm to be implemented by an interactive 

protocol among 𝑡 parties 𝑝1, … , 𝑝𝑡 . The DKG algorithm is a randomized algorithm. The inputs to DKG are: 

security parameter, number of parties 𝑡, and threshold parameter 𝑑. The output of DKG is a vector of 

secret keys 𝑠 = (𝑠1, . . . . , 𝑠𝑡) of dimension 𝑡 and a public evaluation key Ek where party 𝑝𝑖  receives 

(Ek,𝑠𝑖).  We remark that party 𝑝𝑖  doesn’t receive 𝑠𝑗 for 𝑖 ≠ 𝑗 and party 𝑖 should maintain the secrecy of 

its secret key 𝑠𝑖. 
 

Next, the distributed-encryption (DE) algorithm is described. The DE algorithm is a randomized 

algorithm which can be run by any party 𝑝𝑖.  The inputs to DE run by party 𝑝𝑖  are: the secret key 𝑠𝑖 and 

the plaintext 𝑀.  The output of DE is a ciphertext C 

 

Finally, we describe the distributed-decryption (DD) algorithm to be implemented by an interactive 

protocol among a subset of the 𝑡 parties 𝑝1, … , 𝑝𝑡.  The DD algorithm is a randomized algorithm.  

The inputs to DD are: a subset of secret keys 𝑠 = (𝑠1, . . . . , 𝑠𝑡), the threshold parameter 𝑑, and a 

ciphertext C.   In particular, every participating party 𝑝𝑖  provides the input𝑠𝑖. The ciphertext C can be 

provided by any party.  The output of DD is: plaintext 𝑀. 

 

The correctness requirement that the above algorithms should satisfy is as follows. 

If at least 𝑑 of the parties correctly follow the prescribed interactive protocol that implements the DD 

decryption algorithm, then the output of the decryption algorithm will be correct. 

The security requirement is for semantic security to hold as long as fewer than 𝑑 parties collude 

adversarially. 

 

An example usage application for (DKG,DE,DD) is for two hospitals, 𝑡 = 2 and 𝑑 = 2 with sensitive data 

sets 𝑀1 and 𝑀2(respectively) who want to compute some analytics 𝐹 on the joint data set without 

revealing anything about 𝑀1 and 𝑀2 except for what is revealed by 𝐹(𝑀1, 𝑀2). 

 

In such a case the two hospitals execute the interactive protocol for DKG and obtain their respective 

secret keys 𝑠1 and 𝑠2 and the evaluation key EK. They each use DE on secret key 𝑠𝑖 and data 𝑀𝑖 to 

produce ciphertext Ci. The evaluation algorithms on C1, C2 and the evaluation key EK allow the 

computation of a ciphertext C which is an encryption of 𝐹(𝑀1, 𝑀2). Now, the hospitals execute the 

interactive protocol DD using their secret keys and ciphertext C to obtain 𝐹(𝑀1, 𝑀2). 
 



b. Active Attacks 

 

One can consider stronger security requirements beyond semantic security. For example, consider an 

attack on a client that holds data 𝑀 and wishes to compute 𝐹(𝑀) for a specified algorithm 𝐹, and wants 

to outsource the computation of 𝐹(𝑀) to a cloud, while maintaining the privacy of 𝑀. The client 

encrypts 𝑀 into ciphertext C and hands C to the cloud server. The server is supposed to use the 

evaluation algorithms to compute a ciphertext C’ which is an encryption of 𝐹(𝑀) and return this to the 

client for decryption. 

Suppose that instead the cloud computes some other C’’ which is the encryption of 𝐺(𝑀) for some 

other function 𝐺. This may be problematic to the client as it would introduce errors of potentially 

significant consequences. This is an example of an active attack which is not ruled out by semantic 

security.  

 

Another, possibly even more severe attack, is the situation where the adversary somehow gains the 

ability to decrypt certain ciphertexts, or glean some information about their content (perhaps by 

watching the external behavior of the client after decrypting them). This may make it possible to the 

attacker to mount (perhaps limited) chosen-ciphertext attacks, which may make it possible to 

compromise the security of encrypted data. Such attacks are not addressed by the semantic security 

guarantee, countering them requires additional measures beyond the use of homomorphic encryption. 

 

c. Evaluation Privacy 

 

A desirable additional security property beyond semantic security would be that the ciphertext C hides 

which computations were performed homomorphically to obtain C. We call this security requirement 

Evaluation Privacy. 

For example, suppose a cloud service offers a service in the form of computing a proprietary machine 

learning algorithm 𝐹 on the client’s sensitive data. As before, the client encrypts its data 𝑀 to obtain C 

and sends the cloud C and the evaluation key EK. The cloud now computes C’ which is an encryption of 𝐹(𝑀) to hand back to the client. Evaluation privacy will guarantee that C’ does not reveal anything 
about the algorithm 𝐹 which is not derivable from the pair (𝑀, 𝐹(𝑀)). Here we can also distinguish 

between semi-honest and malicious evaluation privacy depending on whether the ciphertext C is 

generated correctly according to the Encrypt algorithm. 

 

A weaker requirement would be to require evaluation privacy only with respect to an adversary who 

does not know the secret decryption key. This may be relevant for an adversary who intercepts 

encrypted network traffic. 

 

d. Key Evolution 

 

Say that a corpus of ciphertexts encrypted under a secret key SK is held by a server, and the client who 

owns SK realizes that SK may have been compromised. 



It is desirable for an encryption scheme to have the following key evolution property. Allow the client to 

generate a new secret key SK’ which replaces SK, a new evaluation key EK’, and a transformation key TK 
such that: the server, given only TK and EK’, may convert all ciphertexts in the corpus to new ciphertexts 
which (1) can be decrypted using SK’ and (2) satisfy semantic security even for an adversary who holds 
SK. 

 

Any sufficiently homomorphic encryption scheme satisfies the key evolution property as follows. Let TK 

be the encryption of SK under SK’. Namely, TK is a ciphertext which when decrypted using secret key SK’ 
yields SK. A server given TK and EK’, can convert a ciphertext C in the corpus into C’ by homomorphically 
evaluating the decryption process. Security follows from semantic security of the original homomorphic 

encryption scheme. 

 

e. Side Channel Attacks 

 

Side channel attacks consider adversaries who can obtain partial information about the secret key of an 

encryption scheme, for example by running timing attacks during the execution of the decryption 

algorithm. A desirable security requirement from an encryption scheme is resiliency against such 

attacks, often referred to as leakage resiliency. That is, it should be impossible to violate semantic 

security even in presence of side channel attacks. Naturally, leakage resilience can hold only against 

limited information leakage about the secret key.  

 

An attractive feature of encryption schemes based on intractability of integer lattice problems, and in 

particular known HE schemes based on intractability of integer lattice problems, is that they satisfy 

leakage resilience to a great extent. This is in contrast to public-key cryptosystems such as RSA. 

 

f. Identity Based Encryption 

 

In an identity based encryption scheme it is possible to send encrypted messages to users without 

knowing either a public key or a secret key, but only the identity of the recipient where the identity can 

be a legal name or an email address. 

 

This is possible as long as there exists a trusted party (TP) that publishes some public parameters PP and 

holds a master secret key MSK. A user with identity X upon authenticating herself to the TP (e.g. by 

showing a government issued ID), will receive a secret key SKx that the user can use to decrypt any 

ciphertext that was sent to the identity X. To encrypt message M to identity X, one needs only to know 

the public parameters PP and X. 

 

Identity based homomorphic encryption is a variant of public key homomorphic encryption which may 

be desirable. 

 

Remark: A modification of GSW supports identity based homomorphic encryption. 
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Recommended Security Parameters 

 

Section 2.1.1. Hard Problems 

 

This section describes the computational problems whose hardness form the basis for the security of 

the homomorphic encryption schemes in this document. Known security reductions to other problems 

are not included here. Section 2.1.2 below describes the best currently known attacks on these 

problems and their concrete running times. Section 2.1.5 below recommends concrete parameter 

choices to achieve various security levels against currently known attacks. 

 

a. The Learning with Errors (LWE) Problem 

 

The LWE problem is parametrized by four parameters (𝑛, 𝑚, 𝑞, 𝜒), where 𝑛 is a positive integer referred 

to as the “dimension parameter”, m is “the number of samples”, 𝑞 is a positive integer referred to as the 

“modulus parameter” and 𝜒 is a probability distribution over rational integers referred to as the “error 
distribution”.  
 

The LWE assumption requires that the following two probability distributions are computationally 

indistinguishable: 

 

Distribution 1. Choose a uniformly random matrix 𝑚 × 𝑛 matrix 𝐴, a uniformly random vector 𝑠 from 

the vector space 𝑍𝑞𝑛, and a vector 𝑒 from 𝑍𝑚 where each coordinate is chosen from the error 

distribution 𝜒. Compute 𝑐 ∶=  𝐴𝑠 + 𝑒, where all computations are carried out modulo 𝑞. Output (𝐴, 𝑐). 

 

Distribution 2. Choose a uniformly random 𝑚 × 𝑛 matrix 𝐴, and a uniformly random vector 𝑐 from 𝑍𝑞𝑚. 

Output (𝐴, 𝑐). 

 

The error distribution 𝜒 can be either a discrete Gaussian distribution over the integers, a continuous 

Gaussian distribution rounded to the nearest integer, or other distributions supported on small integers. 

We refer the reader to Section 2.1.5 for more details on particular error distributions, algorithms for 

sampling from these distributions, and the associated security implications. We also mention that the 

secret vector s can be chosen from the error distribution. 

 

b. The Ring Learning with Errors (RLWE) Problem 

 

The RLWE problem can be viewed as a specific case of LWE where the matrix 𝐴 is chosen to have special 

algebraic structure. RLWE is parametrized by parameters (𝑚, 𝑞, 𝜒) where 𝑚 is the number of samples, 

as in the LWE problem above, 𝑞 is a positive integer (the “modulus parameter”) and 𝜒 is a probability 

distribution over the ring 𝑅 = 𝑍[𝑋]/𝑓(𝑋) (the “error distribution”). 

 



The RLWE assumption requires that the following two probability distributions are computationally 

indistinguishable: 

 

Distribution 1. Choose 𝑚 + 1 uniformly random elements 𝑠, 𝑎1, … , 𝑎𝑚 from the ring 𝑅/𝑞𝑅, and 𝑚  more 

elements 𝑒1, … , 𝑒𝑚 from the ring 𝑅 chosen from the error distribution 𝜒. Compute 𝑏𝑖 ∶=  𝑠𝑎𝑖 + 𝑒𝑖, all 

computations carried out over the ring 𝑅/𝑞𝑅. Output {(𝑎𝑖, 𝑏𝑖) ∶  𝑖 = 1, … 𝑚}. 

 

Distribution 2. Choose 2m uniformly random elements 𝑎1, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑚 from the ring 𝑅/𝑞𝑅. Output {(𝑎𝑖, 𝑏𝑖) ∶  𝑖 = 1, … 𝑚}. 

 

The error distribution χ must be supported on “small” elements in the ring R (with geometry induced by 

the canonical embedding). For RLWE, it is important to use an error distribution that matches the 

specific ring 𝑅. See Section 2.1.5 for more details on the error distributions, algorithms for sampling 

from these distributions, and the associated security implications. Here too, the secret element s can be 

chosen from the error distribution. 

 

c. The Module Learning with Errors (RLWE) Problem 

 

We mention here that there is a general formulation of the learning with errors problem that captures 

both LWE and RLWE, as well as many other settings. In this formulation, rather than 𝑛-vectors over 𝑍 (as 

in LWE) or 1-vectors over 𝑅 = 𝑍[𝑥]/𝑓(𝑋) (as in RLWE), we work with vectors of dimension 𝑛1 over a 

ring of dimension 𝑛2, where the security parameter is related to 𝑛1 ⋅ 𝑛2. This document only deals with 

LWE and RLWE, but we expect future versions to be extended to deal with more settings. 

 

Section 2.1.2 Attacks on LWE and their Complexity 

 

We review algorithms for solving the LWE problem and use them to suggest concrete parameter 

choices. The schemes described above all have versions based on the LWE and the RLWE assumptions. 

When the schemes based on RLWE are instantiated with error distributions that match the cyclotomic 

rings (as described later in this document), we do not currently have attacks on RLWE that are 

meaningfully better than the attacks on LWE. The following estimates and attacks refer to attacks on the 

LWE problem with the specified parameters. 

Much of this section is based on the paper by Albrecht, Player, and Scott (Albrecht, Player, & Scott, 

2015), the online Estimator tool which accompanies that paper, and (Albrecht, 2017; Albrecht, Göpfert, 

Virdia, & Wunderer, 2017). Indeed, we reuse text from those works here. Estimated security levels in all 

the tables in this section were obtained by running the Estimator based on its state in March 2018. The 

tables in this section give the best attacks (in terms of running time expressed in 𝑙𝑜𝑔2) among all known 

attacks as implemented by the Estimator tool. As attacks or implementations of attacks change, or as 

new attacks are found, these tables will need to be updated. First, we describe all the attacks which give 

the best running times when working on parameter sizes in the range which are interesting for 

Homomorphic Encryption. 



The LWE problem asks to recover a secret vector 𝑠 ∈ 𝑍𝑞𝑛, given a matrix 𝐴 ∈ 𝑍𝑞𝑚×𝑛 and a vector 𝑐 ∈ 𝑍𝑞𝑚 

such that 𝐴𝑠 + 𝑒 = 𝑐 𝑚𝑜𝑑 𝑞 for a short error vector 𝑒 ∈ 𝑍𝑞𝑚 sampled coordinate-wise from an error 

distribution 𝜒. The decision variant of LWE asks to distinguish between an LWE instance (𝐴, 𝑐) and 

uniformly random (𝐴, 𝑐) ∈ 𝑍𝑞𝑚×𝑛 × 𝑍𝑞𝑚. To assess the security provided by a given set of parameters 𝑚, 𝜒, 𝑞, two strategies are typically considered. 

The primal strategy finds the closest vector to 𝑐 in the integral span of columns of 𝐴 mod 𝑞, i.e. it solves 

the corresponding Bounded Distance Decoding problem (BDD) directly as is explained in [LP11] and 

[LL15]. 

 

a. Primal (uSVP variant) 

Assume that m > n, i.e. the number of samples available is greater than the dimension of the lattice.  

Writing [𝐼𝑛|𝐴′] for the reduced row echelon form of 𝐴𝑇 ∈ 𝑍𝑞𝑛×𝑚 (with high probability and after 

appropriate permutation of columns), this task can be reformulated as solving the unique Shortest 

Vector Problem (uSVP) in the 𝑚 + 1 dimensional 𝑞-ary lattice 

𝛬 = 𝑍𝑚+1 ⋅ (𝐼𝑛 𝐴′ 00 𝑞𝐼𝑚−𝑛 0𝑐𝑇 𝑡). 
by Kannan’s embedding, with embedding factor 𝑡. 

The lattice 𝛬 has volume 𝑡 ⋅ 𝑞𝑚−𝑛 and contains a vector of norm √∥ 𝑒 ∥2+ 𝑡2 which is unusually short, 

i.e. the gap between the first and second Minkowski minimum 𝜆2 (𝛬) 𝜆1⁄ (𝛬) is large. If the secret 

vector 𝑠 is also short, there is a second established embedding reducing LWE to uSVP.  By inspection, it 

can be seen that the vector (𝜈𝑠|𝑒|1), for some 𝜈 ≠ 0, is contained in the lattice 𝛬 of dimension 𝑑 = 𝑚 + 𝑛 + 1 𝛬 = {𝑥 ∈ (𝜈𝑍)𝑛 × 𝑍𝑚+1| 𝑥 ⋅ (1𝜈 𝐴|𝐼𝑚| − 𝑐)⊤ ≡ 0 mod 𝑞}, 
where 𝜈 allows to balance the size of the secret and the noise. An (𝑛 + 𝑚 + 1) × (𝑛 + 𝑚 + 1) basis 𝑀 

for 𝛬 can be constructed as 

𝑀 = (𝜈𝐼𝑛 −𝐴⊤ 00 𝑞𝐼𝑚 00 𝑐 1). 
To find short vectors, lattice reduction can be applied. Thus, to establish the cost of solving an LWE 

instance, we may consider the cost of lattice reduction for solving uSVP. In (Alkim, Ducas, Pöppelmann, 

& Schwabe, 2016) it is predicted that 𝑒 can be found if: √𝛽 𝑑⁄ ∥ (𝑒|1) ∥≈ √𝛽𝜎 ≤ 𝛿02𝛽−𝑑𝑉𝑜𝑙(𝛬)1 𝑑⁄ , 
where 𝛿0 denotes the root Hermite factor achievable by BKZ, which depends on 𝛽 which is the block 

size of the underlying blockwise lattice reduction algorithm. This prediction was experimentally verified 

in (Albrecht et al., 2017). 



b. Primal by BDD Enumeration (decoding). 

This attack is due to Lindner and Peikert [LP11]. It starts with a sufficiently reduced basis, e.g., using BKZ 

in block size 𝛽, and then applies a modified version of the recursive Nearest Plane algorithm due to 

Babai [Bab86]. Given a basis 𝐵 and a target vector 𝑡, the Nearest Plane algorithm finds a vector such that 

the error vector lies in the fundamental parallelepiped of the Gram-Schmidt orthogonalization (GSO) of 𝐵. 

Lindner and Peikert note that for a BKZ-reduced basis 𝐵, the fundamental parallelepiped is long and 

thin, by the Geometric Series Assumption (GSA) due to Schnorr that the GSO of a BKZ-reduced basis 

decay geometrically and this makes the probability that the Gaussian error vector 𝑒 falls in the 

corresponding fundamental parallelepiped very low. To improve this success probability, they “fatten” 
the parallelepiped by essentially scaling its principal axes. They do this by running the Nearest Plane 

algorithm on several distinct planes at each level of recursion. For a Gaussian error vector, the 

probability that it falls in this fattened parallelepiped is expressed in terms of the scaling factors and the 

lengths of the GSO of 𝐵. This can be seen as a form of pruned CVP enumeration (Liu & Nguyen, 2013). 

The run time of the Nearest Planes algorithm mainly depends on the number of points enumerated, 

which is the product of the scaling factors. The run time of the basis reduction step depends on the 

quality of the reduced basis, expressed, for instance, by the root Hermite factor 𝛿0. The scaling factors 

and the quality of the basis together determine the success probability of the attack. Hence to maximize 

the success probability, the scaling factors are determined based on the (predicted) quality of the BKZ-

reduced basis. There is no closed formula for the scaling factors. The Estimator uses a simple greedy 

algorithm to find these parameters due to ([LP11]), but this is known to not be optimal. The scaling 

factors and the quality of the basis are chosen to achieve a target success probability and to minimize 

the running time (by balancing the running time of BKZ reduction and the final enumeration step). 

 

c. Dual.  

The dual strategy finds short vectors in the lattice 𝑞𝛬∗ = {𝑥 ∈ 𝑍𝑞𝑚 | 𝑥 ⋅ 𝐴 ≡ 0 𝑚𝑜𝑑 𝑞}, 
i.e. it solves the Short Integer Solutions problem (SIS). Given such a short vector 𝑣, we can decide if an 

instance is LWE by computing ⟨𝑣, 𝑐⟩ = ⟨𝑣, 𝑒⟩ which is short whenever 𝑣 and 𝑒 are sufficiently short 

(Micciancio & Regev, 2009). 

We must however ensure that ⟨𝑣, 𝑒⟩ indeed is short enough, since if is too large, the (Gaussian) 

distribution of will be too flat to distinguish from random. Following ([LP11]), for an LWE instance with 

parameters 𝑛, 𝛼, 𝑞 and a vector 𝑣 of length ∥ 𝑣 ∥ such that 𝑣 ⋅ 𝐴 ≡ 0 𝑚𝑜𝑑 𝑞, the advantage of 

distinguishing ⟨𝑣, 𝑒⟩ from random is close to 𝑒𝑥𝑝(−𝜋(∥ 𝑣 ∥⋅ 𝛼)2). 
To produce a short enough 𝑣, we may again call a lattice-reduction algorithm. In particular, we may call 

the BKZ algorithm with block size 𝛽. After performing BKZ-𝛽 reduction the first vector in the 

transformed lattice basis will have norm 𝛿0𝑚 ⋅ 𝑉𝑜𝑙(𝑞𝛬∗)1 𝑚⁄ . In our case, the expression above simplifies 



to ∥ 𝑣 ∥≈ 𝛿0𝑚 ⋅ 𝑞𝑛 𝑚⁄  whp. The minimum of this expression is attained at 𝑚 = √𝑛𝑙𝑜𝑔𝑞𝑙𝑜𝑔𝛿0  (Micciancio & 

Regev, 2009). The attack can be modified to take small or sparse secrets into account (Albrecht, 2017). 

 

Lattice Reduction algorithm: BKZ 

BKZ is an iterative, block-wise algorithm for basis reduction. It requires solving the SVP problem (using 

sieving or enumeration, say) in a smaller dimension 𝛽, the block size. First, the input lattice 𝛬 is LLL 

reduced, giving a basis 𝑏0, … , 𝑏𝑛−1. For 0 ≤ 𝑖 < 𝑛, the vectors 𝑏𝑖, … , 𝑏𝑚𝑖𝑛(𝑖+𝛽−1,𝑛−1) are projected onto 

the orthogonal complement of the span of 𝑏0, … 𝑏𝑖−1; this projection is called a local block. In the local 

block, we find a shortest vector, view it as a vector 𝑏 ∈ 𝛬 of and perform LLL on the list of vectors 𝑏𝑖, … , 𝑏𝑚𝑖𝑛(𝑖+𝛽−1,𝑛−1), 𝑏 to remove linear dependencies. We use the resulting vectors to update 𝑏𝑖, … , 𝑏𝑚𝑖𝑛(𝑖+𝛽−1,𝑛−1). This process is repeated until a basis is not updated after a full pass. 

There have been improvements to BKZ, which are collectively referred to BKZ 2.0 (see [CN11] for 

example).  There are currently several different assumptions in the literature about the cost of running 

BKZ, distinguished by how conservative they are, the “sieve” and “ADPS16” cost models, as explained 

below.  In our use of the Estimator we rely on the cost model in the “sieve” implementation, as it seems 

the most relevant to the parameter sizes which we use for Homomorphic Encryption. 

a. Block Size. 

To establish the required block size 𝛽, we solve log 𝛿0 = 𝑙𝑜𝑔 ( 𝛽2𝜋𝑒 (𝜋𝛽)1𝛽) ⋅ 12(𝛽 − 1) 

for 𝛽, see the PhD Thesis of Yuanmi Chen (Chen, 2013) for a justification of this. 

b. Cost of SVP. 

Several algorithms can be used to realize the SVP oracle inside BKZ. Asymptotically, the fastest known 

algorithms are sieving algorithms. The fastest, known classical algorithm runs in time  20.292𝛽+𝑜(𝛽) (Becker, Ducas, Gama, & Laarhoven, 2016). 

The fastest, known quantum algorithm runs in time  20.265𝛽+𝑜(𝛽) (Laarhoven, 2015). 

The “sieve” estimate approximates 𝑜(𝛽) by 16.4 based on some experimental evidence in (Becker et al., 

2016). The “ADPS16” from (Alkim et al., 2016) suppresses the 𝑜(𝛽) term completely. All times are 

expressed in elementary bit operations. 

c. Calls to SVP. 

The BKZ algorithm proceeds by repeatedly calling an oracle for computing a shortest vector on a smaller 

lattice of dimension 𝛽. In each “tour” on a 𝑑-dimensional lattice, 𝑑 such calls are made and the 

algorithm is typically terminated once it stops making sufficient progress in reducing the basis. 

Experimentally, it has been established that only the first few tours make significant progress (Chen, 



2013), so the “sieve” cost model assumes that one BKZ call costs as much as 8𝑑 calls to the SVP oracle. 

However, it seems plausible that the cost of these calls can be amortized across different calls, which is 

why the “ADPS16” cost model from (Alkim et al., 2016) assumes the cost of BKZ to be the same as one 

SVP oracle call, which is a strict underestimate of the attack cost. 

d. BKZ Cost.  

In summary: 

sieve 

a call to BKZ-𝛽 costs 8𝑑 ⋅ 20.292𝛽+16.4 operations classically and 8𝑑 ⋅ 20.265𝛽+16.4 operations quantumly. 

ADPST16 

a call to BKZ-𝛽 costs 20.292𝛽 operations classically and 20.265𝛽 operations quantumly. 

We stress that both of these cost models are very conservative, and that no known implementation of 

lattice reduction achieves these running times. Furthermore, these estimates completely ignore 

memory consumption, which, too, is 2𝛩(𝛽). 

e. Calls to BKZ. 

To pick parameters, we normalize running times to a fixed success probability. That is, all our expected 

costs are for an adversary winning with probability 51%. However, as mentioned above, it is often more 

efficient to run some algorithm many times with parameters that have a low probability of success 

instead of running the same algorithm under parameter choices which ensure a high probability of 

success.  

 

2.1.3 The Arora-Ge Attack. 

The effectiveness of the lattice attacks above depend on the size of the error and the modulus 𝑞, in 

contrast Arora and Ge described in [AG11] an attack whose complexity depends only on the size of the 

error and poly-logarithmically on the modulus 𝑞. Very roughly, for dimension 𝑛 and noise of magnitude 

bounded by some positive integer 𝑑 in each coordinate, the attack uses 𝑛𝑂(𝑑) samples and takes 𝑛𝑂(𝑑) 

operations in the ring of integers modulo 𝑞. For the relevant range of parameters for homomorphic 

encryption, this attack performs worse than the above lattice attacks even when the error standard 

deviation is a small constant (e.g., 𝜎 = 2). 

 

2.1.4 Algebraic Attacks on instances of Ring-LWE 

In practice the ring R is taken to be the ring of integers in a cyclotomic field, 𝑅 = 𝑍[𝑥]/𝑘(𝑥), where 𝑘 

is the cyclotomic polynomial for the cyclotomic index 𝑘, and the degree of 𝑘 is equal to the dimension 

of the lattice, 𝑛 = (𝑘) where  is the Euler totient function.  

As mentioned above, for ring-LWE the choice of the error distribution matters, and there are known 

examples of natural high-entropy error distributions that are insecure to use in certain rings. Such 

examples were first given in [ELOS15] and [CLS15], and were subsequently improved in [CIV16a], 

[CIV16b], and [CLS16]. For example, in [CLS15] it was shown that for a prime cyclotomic index 𝑚, 

choosing the coefficients of the error polynomial 𝑒 ∈ 𝑍[𝑥]/Φ𝑘(𝑥) independently at random from a 



distribution of standard deviation sufficiently smaller than √𝑘, can sometimes make this instance of 

RLWE easy to solve. It is therefore crucial to select an error distribution that “matches” the ring at hand. 

The form of the error distribution for general cyclotomic rings was investigated, e.g., in [LPR13, DD12, 

LPR13b, P16]. We summarize these results in Section 2.1.5 below, but the current document only 

specifies concrete parameters for power-of-two cyclotomic fields, i.e. 𝑘 = 2ℓ. We expect future versions 

of this document to extend the treatment also for generic cyclotomic rings. We stress that when the 

error is chosen from a sufficiently wide and “well spread” distributions that match the ring at hand, we 

do not have meaningful attacks on RLWE that are better than LWE attacks, regardless of the ring. For 

power-of-two cyclotomics, it is sufficient to sample the noise in the polynomial basis, namely choosing 

the coefficients of the error polynomial 𝑒 ∈ 𝑍[𝑥]/Φ𝑘(𝑥) independently at random from a very “narrow” 
distribution.  

 

2.1.5 Secure Parameter Selection for Ring LWE 

Specifying a Ring-LWE scheme for encryption requires specifying a ring, 𝑅, of a given dimension, 𝑛, along 

with a ciphertext modulus 𝑞, and a choice for the error distribution and a choice for a secret 

distribution.  

Ring.  In practice, we take the ring 𝑅 to be a cyclotomic ring 𝑅 = 𝑍[𝑥]/Φ𝑘(𝑥), where 𝑚 is the 

cyclotomic index and 𝑛 = 𝜙(𝑘) is the ring dimension. For example, a power of 2 cyclotomic with index 𝑘 = 2ℓ is 𝑅 = 𝑍[𝑥]/(𝑥𝑘/2 + 1), of degree 𝑛 = 𝑘/2 = 2ℓ−1.   

Error distribution, power-of-two cyclotomics. For the special case of power-of-two cyclotomics, it is 

safe to sample the error in the polynomial basis, namely choosing the coefficients of the error 

polynomial 𝑒(𝑥) ∈ 𝑍[𝑥]/(𝑥𝑘/2 + 1) independently at random from a very “narrow” distribution. 

Specifically, it is sufficient to choose each coefficient from a Discrete Gaussian distribution (or even 

rounded continuous Gaussian distribution) with a small constant standard deviation 𝜎. Selecting the 

error according to a Discrete Gaussian distribution is described more often in the literature, but 

choosing from a rounded continuous Gaussian is easier to implement (in particular when timing attacks 

need to be countered). 

The LWE attacks mentioned above, however, do not take advantage of the shape of the error 

distribution, only the standard deviation. Moreover, the security reductions do not apply to the case 

where the error standard deviation is a small constant and would instead require that the error standard 

deviation grows at least as 𝑛𝜖 for some constant 𝜖 > 1/2 (or even 𝜖 > 3/4). The analysis of the security 

levels given below relies on running time estimates which assume that the shape of the error 

distribution is Gaussian. 

The standard deviation that we use below is chosen as 𝜎 = 8/√2𝜋 ≈ 3.2, which is a value that is used in 

many libraries in practice and for which no other attacks are known. (Some proposals in the literature 

suggest even smaller values of 𝜎.) Over time, if our understanding of the error standard deviation 

improves, or new attacks are found, the standard deviation of the error may have to change. 



Error distribution, general cyclotomics. For non-power-of-two cyclotomics, choosing a spherical error in 

the polynomial basis (i.e., choosing the coefficients independently) may be insecure. Instead, there are 

two main methods of choosing a safe error polynomial for the general case: 

• The method described in [DD12] begins by choosing an “extended” error polynomial 𝑒′ ∈𝑸[𝑋]/(Θ𝑘(𝑥)), where Θ𝑘(𝑥) = 𝑥𝑘 − 1  if 𝑘 is odd, and 𝑥𝑘/2 + 1 if 𝑘 is even. The rational 

coefficients of 𝑒′ are chosen independently at random from the continuous Gaussian of standard 

deviation 𝜎√𝑘  (for the same 𝜎 as above), and with sufficient precision, e.g., using double float 

numbers. Then, the error is computed as  𝑒 = Round(𝑒′ mod Φ𝑘(𝑥)) 

 

• The method described in [CP16] chooses an error of the form 𝑒 = Round(𝑒′ ⋅ 𝑡𝑘), where 𝑡𝑘 ∈ 𝑅 is a 

fixed ring element (see below), and 𝑒′ is chosen from a spherical continuous Gaussian distribution in 

the canonical embedding, of standard deviation 𝜎  (for the same 𝜎 as above). One way of sampling 

such error polynomial is to choose a spherical 𝑒′ in the canonical embedding, then multiply by 𝑡𝑘 

and round, but there are much more efficient methods of sampling the error (cf. [CP16]). 

 

Note that the error so generated may not be very small, since 𝑡𝑘 is not tiny. It is possible to show 

that 𝑒 is somewhat small, but moreover it is shown in [CP16] that homomorphic computations can 

be carried out to maintain the invariant that 𝑒/𝑡𝑘 is small (rather than the invariant that 𝑒 itself is 

small). 

 

The element 𝑡𝑘 is a generator of the “different ideal”, and it is only defined up to multiplication by a 

unit, so implementations have some choice for which specific element to use. One option is 𝑡𝑘(𝑥) =Φ𝑘′ (𝑥) (i.e., the formal derivative of Φ𝑘(𝑥)), but other options may lead to more efficient 

implementations. 

We stress that this document does not make recommendations on the specific parameters to use for 

non-power-of-two cyclotomic rings, in particular Tables 1-4 below only apply to power-of-two 

cyclotomic rings. 

 

Secret key.  For most homomorphic encryption schemes, not only the error but also the secret key must 

be small. The security reductions ensure that choosing the key from the same distribution as the error 

does not weaken the scheme. However, for many homomorphic encryption schemes (including BGV and 

BFV), choosing an even smaller secret key has a significant performance advantage. For example, one 

may choose the secret key from the ternary distribution (i.e., each coefficient is chosen uniformly from {−1,0,1}). In the recommended parameters given below, we present tables for three choices of secret-

distribution: uniform, the error distribution, and ternary. 

In some extreme cases, there is a reason to choose an even smaller secret key, e.g., one with sparse 

coefficient vector. However, we will not present tables for sparse secrets because the security 

implications of using such sparse secrets is not well understood yet. We expect to specify concrete 

parameters for sparse secret keys in future versions of this standard. 



 

Number of samples.  For most of the attacks listed in the tables below, the adversary needs a large 

number of LWE samples to apply the attack with maximum efficiency. Collecting many samples may be 

feasible in realistic systems, since from one ring-LWE sample one can extract many “LWE-like” samples. 
The evaluation keys may also contain some samples. 

 

Sampling Methods.  All the error distributions mentioned above require choosing the coefficients of 

some initial vector independently at random from either the discrete or the continuous Gaussian with 

some standard deviation 𝜎 >  0. Sampling from a continuous Gaussian with small parameter is quite 

straightforward, but sampling from a discrete Gaussian distribution is harder. There are several known 

methods to sample from a discrete Gaussian, including rejection sampling, inversion sampling, Discrete 

Zuggurat, Bernoulli-type, Knuth-Yao and Von Neumann-type. For efficiency, we recommend the Von 

Neumann-type sampling method introduced by Karney in [Kar16].  

 

Constant-time sampling.  In some of the aforementioned sampling methods, the time it takes to 

generate one sample could leak information about the actual sample. In many applications, it is 

therefore important that the entire error-sampling process is constant-time. This is easier to do when 

sampling from the continuous Gaussian distribution, but harder for the discrete Gaussian. One possible 

method is to fix some upper bound 𝑇 >  0 such that sampling all the 𝑛 coordinates 𝑒𝑖  sequentially 

without interruption takes time less than 𝑇 time with overwhelming probability. Then after these 

samples are generated, using time 𝑡, we wait for (𝑇 − 𝑡) time units, so that the entire error-generating 

time always takes time 𝑇. In this way, the total time does not reveal information about the generated 

error polynomial. 

 

TABLES of RECOMMENDED PARAMETERS 

In practice, in order to implement homomorphic encryption for a particular application or task, the 

application will have to select a dimension 𝑛, and a ciphertext modulus 𝑞, (along with a plaintext 

modulus and a choice of encoding which are not discussed here). For that reason, we give pairs of (𝑛, 𝑞) 

which achieve different security levels for each 𝑛. In other words, given 𝑛, the table below recommends 

a value of 𝑞 which will achieve a given level of security (e.g. 128 bits) for the given error standard 

deviation 𝜎 ≈ 3.2. 

We have the following tables for 3 different security levels, 128-bit, 192-bit, and 256-bit security, where 

the secret follows the uniform, error, and ternary distributions. For applications, we give values of 𝑛 

from 𝑛 = 2𝑘  where 𝑘 = 10, … ,15. We note that we used commit (560525) of the LWE-estimator of 

[APS15], which the authors continue to develop and improve. The tables give estimated running times 

(in bits) for the three attacks described in Section 5.1: uSVP, dec (decoding attack), and dual.  

 

 



Table 1: Cost model = BKZ.sieve 

distribution n security 

level 

logq uSVP dec dual 

uniform 1024 128 29 131.2 145.9 161.0 

  192 21 192.5 225.3 247.2 

  256 16 265.8 332.6 356.7 

 2048 128 56 129.8 137.9 148.2 

  192 39 197.6 217.5 233.7 

  256 31 258.6 294.3 314.5 

 4096 128 111 128.2 132.0 139.5 

  192 77 194.7 205.5 216.4 

  256 60 260.4 280.4 295.1 

 8192 128 220 128.5 130.1 136.3 

  192 154 192.2 197.5 205.3 

  256 120 256.5 267.3 277.5 

 16384 128 440 128.1 129.0 133.9 

  192 307 192.1 194.7 201.0 

  256 239 256.6 261.6 269.3 

 32768 128 880 128.8 129.1 133.6 

  192 612 193.0 193.9 198.2 

  256 478 256.4 258.8 265.1 

 

 

distribution n security 

level 

logq uSVP dec dual 

error 1024 128 29 131.2 145.9 141.8 

  192 21 192.5 225.3 210.2 

  256 16 265.8 332.6 300.5 

 2048 128 56 129.8 137.9 135.7 

  192 39 197.6 217.5 209.6 

  256 31 258.6 294.3 280.3 

 4096 128 111 128.2 132.0 131.4 

  192 77 194.7 205.5 201.5 

  256 60 260.4 280.4 270.1 

 8192 128 220 128.5 130.1 130.1 

  192 154 192.2 197.5 196.9 

  256 120 256.5 267.3 263.8 

 16384 128 440 128.1 129.3 130.2 

  192 307 192.1 194.7 196.2 

  256 239 256.6 261.6 264.5 

 32768 128 883 128.5 128.8 130.0 

  192 613 192.7 193.6 193.4 

  256 478 256.4 258.8 257.9 

 



distribution n security 

level 

logq uSVP dec dual 

(-1, 1) 1024 128 27 131.6 160.2 138.7 

  192 19 193.0 259.5 207.7 

  256 14 265.6 406.4 293.8 

 2048 128 54 129.7 144.4 134.2 

  192 37 197.5 233.0 207.8 

  256 29 259.1 321.7 273.5 

 4096 128 109 128.1 134.9 129.9 

  192 75 194.7 212.2 198.5 

  256 58 260.4 292.6 270.1 

 8192 128 218 128.5 131.5 129.2 

  192 152 192.2 200.4 194.6 

  256 118 256.7 273.0 260.6 

 16384 128 438 128.1 129.9 129.0 

  192 305 192.1 196.2 193.2 

  256 237 256.9 264.2 259.8 

 32768 128 881 128.5 129.1 128.5 

  192 611 192.7 194.2 193.7 

  256 476 256.4 260.2 258.2 

 

 

       

Post-quantum security.  The BKZ.qsieve model assumes access to a quantum computer and gives lower 

estimates than BKZ.sieve. In what follows, we give tables of recommended (“Post-quantum”) 
parameters which achieve the desired levels of security against a quantum computer. We also present 

tables computed using the ``quantum” mode of the BKZ.ADPS16 model, which contain more 
conservative parameters.  

 

Table 2: Cost model = BKZ.qsieve 

distribution n security 

level 

logq uSVP dec dual 

uniform 1024 128 27 132.2 149.3 164.5 

  192 19 199.3 241.6 261.6 

  256 15 262.9 341.1 360.8 

 2048 128 53 128.1 137.6 147.6 

  192 37 193.6 215.8 231.4 

  256 29 257.2 297.9 316.6 

 4096 128 103 129.1 134.2 141.7 

  192 72 193.8 206.2 217.2 

  256 56 259.2 281.9 296.5 

 8192 128 206 128.2 130.7 136.6 

  192 143 192.9 199.3 207.3 

  256 111 258.4 270.8 280.7 



 16384 128 413 128.2 129.0 132.7 

  192 286 192.1 195.3 201.4 

  256 222 257.2 263.1 270.6 

 32768 128 829 128.1 128.4 130.8 

  192 573 192.0 193.3 197.5 

  256 445 256.1 259.0 265.2 

 

distribution n security 

level 

logq uSVP dec dual 

error 1024 128 27 132.2 149.3 144.5 

  192 19 199.3 241.6 224.0 

  256 15 262.9 341.1 302.3 

 2048 128 53 128.1 137.6 134.8 

  192 37 193.6 215.8 206.7 

  256 29 257.2 297.9 281.4 

 4096 128 103 129.1 134.2 133.1 

  192 72 193.8 206.2 201.8 

  256 56 259.2 281.9 270.4 

 8192 128 206 128.2 130.7 130.1 

  192 143 192.9 199.3 198.5 

  256 111 258.4 270.8 266.6 

 16384 128 413 128.2 129.0 130.1 

  192 286 192.1 195.3 196.6 

  256 222 257.2 263.1 265.8 

 32768 128 829 128.1 128.4 129.8 

  192 573 192.0 193.3 192.8 

  256 445 256.1 259.0 260.4 

 

distribution n security 

level 

logq uSVP dec dual 

(-1, 1) 1024 128 25 132.6 165.5 142.3 

  192 17 199.9 284.1 222.2 

  256 13 262.6 423.1 296.6 

 2048 128 51 128.6 144.3 133.4 

  192 35 193.5 231.9 205.2 

  256 27 257.1 327.8 274.4 

 4096 128 101 129.6 137.4 131.5 

  192 70 193.7 213.6 198.8 

  256 54 259.7 295.2 270.6 

 8192 128 202 129.8 130.7 128.0 

  192 141 192.9 202.5 196.1 

  256 109 258.3 276.6 263.1 

 16384 128 411 128.2 129.5 129.0 

  192 284 192.0 196.8 193.7 

  256 220 257.2 265.8 260.7 

 32768 128 827 128.1 128.7 128.4 



  192 571 192.0 194.1 193.1 

  256 443 256.1 260.4 260.4 
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Anticipated Extensions to this Document 

 

This document is only a first step in standardizing various aspects of homomorphic encryption, and we 

expect many other aspects to be standardized in future documents. Some aspects that were not 

specified here and we expect to be specified in future versions include the following: 

• The homomorphic encryption scheme for approximate numbers by Cheon, Kim, Kim and Song 

[CKKS17], which is mentioned in Section 1.1.5. 

• Homomorphic encryption based on Module LWE, mentioned in Section 2.1.1. 

• Concrete parameters and sampling methods for non-power-of-two cyclotomic rings, as 

discussed in Section 2.1.3. 

• Parameter choices when using sparse secret key, as mentioned in Section 2.1.3. 
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