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The Problem

Non-malleability is traditionally all (CCA) or nothing (CPA)

Desired Security Requirement

Scheme is non-malleable, except for explicitly allowed features.

Challenges:

I Rigorously, convincingly define “partial non-malleability”

I Achieve definition via construction

In this work:

I Address problem in context of homomorphic encryption

I New general-purpose non-malleability definition

I New family of constructions
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Unary Homomorphic Encryption

Desired features:

I Anyone can change Enc(m) into fresh Enc(f (m)).

I Scheme parameterized by set of allowed f ’s

Example: Rerandomizable Replayable-CCA (RCCA)
[ckn03,g04,pr07]:

I Only allowed f is identity function

I Non-malleable in any ways that alter message

Example: Only allowed f ’s are group operations α βα:

I Possible to change any message to any other message

I Infeasible to change Enc(α) into Enc(αk)

I Infeasible to change Enc(α),Enc(β) into Enc(αβ)
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Security Definitions – Approach

We define security with two complementary definitions:

Homomorphic-CCA (HCCA) security

Scheme is non-malleable, except possibly via unary operations
f ∈ F

Unlinkability

One can transform Enc(m) to “fresh” Enc(f (m)) for any f ∈ F , as
a feature of the scheme.
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Generalizing CCA to HCCA

Start by modifying CCA experiment:

1. Generate keypair, give PK .

2. Provide Dec oracle.

3. Adversary chooses m0, m1.

4. Give C ← Enc(m0).

5. Provide Dec oracle, except:
I Refuse if given C .

1. Generate keypair, give PK .

2. Provide Dec oracle.

3. Adversary chooses m0, m1.

4. Give C ← Enc(m1).

5. Provide Dec oracle, except:
I Refuse if given C .

Idea for Generalization

Dec oracle should compensate for derivatives of C .
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Derivative Ciphertexts

Derivatives of C

Ciphertexts that could have been legitimately derived from C (i.e.,
via scheme’s allowed features).

Different security levels for different derivative condition:

CCA: C ′ is derivative iff C ′ = C

gCCA: C ′ is derivative iff R(C ′,C ) = 1 [s01,adr02]

RCCA: C ′ is derivative iff Dec(C ′) = Dec(C ) [ckn03]
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Can We Always Identify Derivative Ciphertexts?

For certain F , these distributions could be identical:

I Enc(β) obtained by encrypting known β

I Enc(β) derived by legitimately multiplying Enc(α) by β/α

Problem:

I Strong homomorphic operation demands identical distributions

I Impossible to identify derived ciphertexts

What we want:

I Ciphertexts derived from C have different distribution than
independently encrypted ciphertexts
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Rigged Ciphertexts

Key idea: C need not be actual encryption of some m1:

1. Generate keypair, give PK .

2. Provide Dec oracle.

3. Adversary chooses m0.

4. Give C ← Enc(m0).

5. Provide Dec oracle.

1. Generate keypair, give PK .

2. Provide Dec oracle.

3. Adversary chooses m0.

4. Give C ← Enc(m1).

5. Provide Dec oracle, except:
I “compensate for

derivatives of C ”

“Rigged” Ciphertexts

Challenge “ciphertext” can have embedded tracking information.
Extraction procedure determines how C ′ derived from C .
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Interpreting Security Guarantee

1. Generate keypair, give PK .

2. Provide Dec oracle.

3. Adversary chooses m0.

4. Give C ← Enc(m0).

5. Provide Dec oracle.

1. Generate keypair, give PK .

2. Provide Dec oracle.

3. Adversary chooses m0.

4. Give C ← RigEnc( ).

5. Provide Dec oracle, except:
I If f ← RigExtract(C ′),

then answer f (m0).

Suppose scheme is “malleable”: can generate C ′ whose value
depends on (possibly many) other ciphertexts.

Submit C ′ to get Dec(C ′) Response is f (m0) for some f .

=⇒ this malleability “looks like” m f (m)
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A Limit on Malleability

Suppose RigExtract never outputs f ′:

I Scheme must not be malleable via f ′ operation.

I In particular, operations that nontrivially combine multiple
ciphertexts.

? Homomorphic-CCA (HCCA) Security

Scheme is non-malleable except for unary operations f ∈ F if there
is a good (RigEnc,RigExtract), where range(RigExtract) ⊆ F .

Disclaimer:

I Oracles for RigEnc and RigExtract should be provided, too.
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Relationships with other definitions

Theorem

CCA, gCCA, RCCA are all special cases of HCCA

In each of these cases:

I The only allowed transformation is identity function

I RigEnc simply uses Enc honestly

HCCA more expressive when its full power is used.
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Natural UC Security Definition

Theorem

HCCA and unlinkability imply UC-secure protocol for “natural”
ideal functionality

Analogous to [c01,ckn03], use UC model to define encryption
security.

In our UC functionality:, parties post messages, represented as
“formal ciphertexts”

Message privacy: Formal ciphertexts reveal nothing; only
recipient can obtain underlying message

Homomorphic feature: Anyone can generate a “derived post” by
giving f and existing ciphertext

Unlinkability: Same internal behavior for both kinds of posts

Non-malleability: No one can use unauthorized f
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Encapsulation Theorem

Theorem

Any unlinkable-HCCA + (plain) CCA = rerandomizable RCCA

I RCCA demands: identity function is only legal operation

I HCCA scheme could have any set of allowed operations.

Proof.

Encapsulate CCA scheme inside any unlinkable HCCA scheme

I New scheme inherits outer unlinkability

I Inner CCA scheme “cancels” everything except identity
function
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Construction

Parameterized family of constructions achieving our definitions:

I Message space: Gn, where G is cyclic group.

I H is any subgroup of Gn.

I Allowed transformations: m 7→ f ∗m, for all f ∈ H.

Example instantiations:

I Allow all group operations in Gn

I Allow only “scalar multiplication” of vectors:

(m1, . . . ,mn) 7→ (f ·m1, . . . , f ·mn)

I Allow group operations only on particular components – other
components non-malleable

I Allow only identity function (Rerandomizable RCCA)
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Construction

Our construction significantly generalizes rerandomizable RCCA
scheme of [pr07].

I Obtain [pr07] scheme as special case

I Uses techniques from [g+04,cs01].

Theorem

Our construction is unlinkable & HCCA-secure under DDH
assumption in 2 groups of related size.
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Summary

The problem: Encryption schemes with both:

I Robust computational features, and

I Non-malleability guarantee

I “Non-malleable except for explicitly allowed features”

Our contributions:

I New definitions for case of unary homomorphic encryption

I Justify definitions by relating to existing ones

I Family of constructions that achieve definitions
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Open problems

Extend to binary operations: Enc(α),Enc(β) Enc
(
f (α, β)

)
I We show that natural generalization is impossible!

I Some slight relaxation possible (work in progress)

I Even new security definitions would be non-trivial.

“Key-activated” homomorphic encryption:

I Scheme is CCA secure . . .

I . . . unless you have a token that “activates” only selected
homomorphic features.
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?: Thank you (Icelandic)
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