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HOMOMORPHISMS AND CONGRUENCES OF MEDIAL

SEMIGROUPS WITH AN ASSOCIATE SUBGROUP

PAULA M. MARTINS AND MARIO PETRICH

Abstract. Let S be the model of a semigroup with an associate subgroup whose

identity is a medial idempotent constructed by Blyth and Martins considered

as a unary semigroup. For another such semigroup T , we construct all unary

homomorphisms of S into T in terms of their parameters. On S we construct all

unary congruences again directly from its parameters. This construction leads to

a characterization of congruences in terms of kernels and traces. We describe the

K, T , L, U and V relations on the lattice of all unary congruences on S, again in

terms of parameters of S.

1. Introduction and Summary

The knowledge of homomorphisms and congruences of semigroups belonging to a

particular class C is often essential for understanding their structure. This is even

more so if there is a suitable structure theorem for semigroups in C. In such a case,

we attempt to construct all the homomorphisms and congruences on the model

which greatly facilitates their manipulation.

Let S be a semigroup. For s, t ∈ S, t is an associate of s if s = sts; denote by

A(s) the set of all associates of s. Let E(S) be the set of all idempotents of S and

C(S) the core of S, that is the subsemigroup of S generated by E(S). For z ∈ E(S),

Green’s H-class Hz is an associate subgroup of S if for every s ∈ S, the set A(s)∩Hz

is a singleton, say {s∗}; the mapping s → s∗ is a unary operation on S. In such

a case, we call z the zenith of S. Also, z is called a medial idempotent if for all

s ∈ C(S), we have s = szs, in which case we call S medial.

Under these hypotheses, a structure theorem for such semigroups was established

in [1] in terms of an idempotent generated semigroup, a group and a single homo-

morphism. The purpose of this paper is to construct unary homomorphisms of,
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and congruences on, their model. Section 2 contains some special symbolism, the

model of the semigroups from [1], and several lemmas giving certain properties of

the model which will be used later. A description of unary homomorphisms between

the models comprises Section 3. The main construction of unary congruences on the

model can be found in Section 4. Unary congruences in terms of kernels and traces

are briefly described in Section 5. Section 6 contains a characterization of the K,

T , L, U and V relations on the lattice of unary congruences on the model.

2. Preparation

Let S be a semigroup. Then A(S) denotes the group of automorphisms of S. If

s, t ∈ S are such that s = sts and t = tst, we write s ∈ V (t). When G is a group, 1

denotes its identity. The remaining notation can be found in [5].

It was proved in [1] that a medial semigroup S with an associate subgroup G can

be constructed by an action of G on a part of the core C (S) of S. We state this

construction below and establish a number of its properties. This will be needed in

the main body of the paper.

Construction. Let C be an idempotent generated semigroup with a medial idem-

potent w, G be a group and ζ : G → A (wCw) be a homomorphism with the notation

ζ : g → ζg (g ∈ G).

On the set

{(x, g, a) ∈ Cw × G × wC | ζg (aw) = wx}

define a multiplication by

(x, g, a) (y, h, b) = (xζg (ay) , gh, ζh−1 (ay) b) .

Denote the resulting groupoid by [C, G; w, ζ] and let z = (w, 1, w).

Blyth and Martins [1] have shown that [C,G; w, ζ] is a semigroup with the as-

sociate subgroup Hz where z is a medial idempotent and conversely, that every

semigroup S with an associate subgroup G whose identity z is medial is isomorphic

to [C(S), Hz; z, ζ], where for g ∈ Hz,

ζg : u → gug−1 (u ∈ C(S)).

Following [2], on S = [C, G; w, ζ] we define a unary operation by letting

(x, g, a)∗ = (w, g−1, w).
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We also set c∗ = w for all c ∈ C. This makes both S and C unary semigroups; for

both we will consider unary homomorphisms and congruences. Note that groups

are unary for both of these relative to the operation of inversion. For axioms char-

acterizing the unary operation on S, see [2].

In this section we fix S = [C,G, w, ζ] .

Recall that the natural partial order ≤ on a regular semigroup S is defined by

s ≤ t ⇐⇒ s = et = tf for some e, f ∈ E(S) (s, t ∈ S).

The next three lemmas state certain properties of S. The first one describes

Green’s relations and the natural partial order.

Lemma 2.1. Let s = (x, g, a), t = (y, h, b) ∈ S.

(i) ss∗ = (x, 1, wx), s∗s = (aw, 1, a).

(ii) s L t ⇔ a L b.

(iii) s R t ⇔ x R y.

(iv) s ≤ t ⇐⇒ x ≤ y, g = h, a ≤ b.

Proof. (i) Trivial.

(ii) By ([2], Lemma 4.2(i)) and part (i), we have

s L t ⇐⇒ s = st∗t, t = ts∗s

⇐⇒ s = s(bw, 1, b), t = t(aw, 1, a)

⇐⇒ (x, g, a) = (xζg (abw) , g, ab) , (y, h, b) = (yζh (baw) , h, ba)

⇐⇒ a = ab, b = ba ⇐⇒ a L b.

(iii) Dual.
3



(iv) Using ([2], Lemma 4.6) and part (i), we get

s ≤ t ⇐⇒ s = ss∗t = ts∗s

⇐⇒ (x, g, a) = (x, 1, wx)(y, h, b) = (y, h, b)(aw, 1, a)

⇐⇒ (x, g, a) = (xw, h, ζh−1(wxy)b) = (yζh(baw), h, ba)

⇐⇒ x = xy = yζh(bw)ζh(aw), g = h, a = ζh−1(wx)ζh−1(wy)b = ba

⇐⇒ x = xy = ywywx, g = h, a = awbwb = ba

⇐⇒ x = xy = yx, g = h, a = ab = ba

⇐⇒ x ≤ y, g = h, a ≤ b.

¤

We will generally use Lemma 2.1(i) without express mention. The second lemma

identifies idempotents, the core and the associate subgroup of the model.

Lemma 2.2.

(i) E (S) = {(x, 1, a) ∈ S | x ∈ V (a)} .

(ii) C(S) = {(x, 1, a) ∈ S} .

(iii) Hz = {(w, g, w) | g ∈ G} .

Proof. (i) For (x, g, a) ∈ S, we have

(x, g, a) (x, g, a) = (x, g, a) ⇐⇒
(

xζg (ax) , g2, ζg−1 (ax) a
)

= (x, g, a)

⇐⇒ xζg (ax) = x, g2 = g, ζg−1 (ax) a = a

⇐⇒ xax = x, g = 1, axa = a

⇐⇒ x ∈ V (a), g = 1.

(ii) Let s ∈ C (S) . We have s = (sz) (zs) and so every element in C (S) is a

product of two idempotents. Let (x, 1, a), (y, 1, b) ∈ E (S) . By part (i), we have

x ∈ V (a) and y ∈ V (b). Now (x, 1, a) (y, 1, b) = (xay, 1, ayb) and

C (S) ⊆ {(x, 1, a) ∈ S} .

Conversely, let (x, 1, a) ∈ S. Since

(x, 1, wx) (aw, 1, a) = (xwxaw, 1, wxawa) = (xwx, 1, awa) = (x, 1, a)

where (x, 1, wx) , (aw, 1, a) ∈ E (S) , we have that (x, 1, a) ∈ C (S) .
4



(iii) For g ∈ G, we have

(w, g, w) z = (w, g, w) = z (w, g, w) ,

(w, g, w)
(

w, g−1, w
)

= z =
(

w, g−1, w
)

(w, g, w) ,

and (w, g, w) ∈ Hz.

Conversely, let (x, g, a) ∈ Hz. Then (x, g, a) R (w, 1, w) and by Lemma 2.1(iii),

w R x so that x = xw = w. Similarly, from (w, 1, w) L (x, g, a) we conclude that

w = a. Hence (x, g, a) ∈ {(w, h, w) | h ∈ G} . ¤

The following lemma establishes isomorphisms between C(S) and C, and between

Hz and G.

Lemma 2.3.

(i) The mappings

σS : (x, 1, a) 7−→ xa, σ : p 7−→ (pw, 1, wp)

are mutually inverse unary isomorphisms between C (S) and C.

(ii) The mappings

τS : (w, g, w) 7−→ g, τ : g 7−→ (w, g, w)

are mutually inverse isomorphisms between Hz and G.

Proof. (i) Let (x, 1, a), (y, 1, b) ∈ C(S). Since ay ∈ wCw ⊆ E (C) , we have

σS ((x, 1, a) (y, 1, b)) = σS (xay, 1, ayb) = xayayb = xayb = σS (x, 1, a) σS (y, 1, b) ,

and clearly

σS((x, 1, a)∗) = σS(z) = w = (σS(x, 1, a))∗.

Moreover,

σσS (x, 1, a) = σ (xa) = (xaw, 1, wxa) = (xwx, 1, awa) = (x, 1, a)

and, for every p ∈ C,

σSσp = σS (pw, 1, wp) = pwwp = p.

Clearly σS(z) = w.

(ii) Obvious. ¤
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3. Homomorphisms

In this section S = [C, G; w, ζ] and T = [D,H; v, π].

We prove first that unary homomorphisms of S into T can be expressed by means

of unary homomorphisms of C into D and of G into H satisfying a certain compat-

ibility condition. Recall the notation σS and τS from Lemma 2.3.

Theorem 3.1. Let ϕ : C → D and ψ : G → H be unary homomorphisms such that

ϕζg = πψ(g)ϕ (g ∈ G).

Define

χ : (x, g, a) → (ϕ(x), ψ(g), ϕ(a)) ((x, g, a) ∈ S).

Then χ is an unary homomorphism of S into T , to be denoted by [ϕ, ψ]. Moreover,

[ϕ, ψ] = [ϕ′, ψ′] if and only if ϕ = ϕ′, ψ = ψ′.

Conversely, if χ : S → T is an unary homomorphism, then χ = [σT χσ−1
S , τT χτ−1

S ].

Proof. Direct part. Let (x, g, a), (y, h, b) ∈ S. Then

χ((x, g, a)(y, h, b)) = χ((xζg(ay), gh, ζh−1(ay)b))

= (ϕ(xζg(ay)), ψ(gh), ϕ(ζh−1(ay)b))

= (ϕ(x)ϕζg(ay), ψ(g)ψ(h), ϕζh−1(ay)ϕ(b))

= (ϕ(x)πψ(g)ϕ(ay), ψ(g)ψ(h), πψ(h)−1ϕ(ay)ϕ(b))

= (ϕ(x)πψ(g)(ϕ(a)ϕ(y)), ψ(g)ψ(h), πψ(h)−1(ϕ(a)ϕ(y))ϕ(b))

= (ϕ(x), ψ(g), ϕ(a))(ϕ(y), ψ(h), ϕ(b))

= χ(x, g, a)χ(y, h, b).

Since also

χ((x, g, a)∗) = χ(w, g−1, w) = (v, ψ(g)−1, v) = (ϕ(x), ψ(g), ϕ(a))∗ = (χ(x, g, a))∗,

we conclude that χ is an unary homomorphism.

Assume that [ϕ, ψ] = [ϕ′, ψ′] and let x ∈ C. Then

[ϕ, ψ](xw, 1, wx) = [ϕ′, ψ′](xw, 1, wx)

which means that ϕ(xw) = ϕ′(xw) and ϕ(wx) = ϕ′(wx) and thus

ϕ(x) = ϕ(xwwx) = ϕ(xw)ϕ(wx) = ϕ′(xw)ϕ′(wx) = ϕ′(xwwx) = ϕ′(x).

Furthermore, if g ∈ G, then

[ϕ, ψ](w, g, w) = [ϕ′, ψ′](w, g, w)
6



and so ψ(g) = ψ′(g). Hence ϕ = ϕ′ and ψ = ψ′. Conversely, if ϕ = ϕ′ and ψ = ψ′,

then trivially [ϕ, ψ] = [ϕ′, ψ′].

Converse. Let χ : S → T be an unary homomorphism, (x, g, a) ∈ S and χ(x, g, a) =

(y, h, b). Then

σT χσ−1
S (x) = σT χ(x, 1, wx) = σT χ((x, g, a)(x, g, a)∗)

= σT (χ(x, g, a)(χ(x, g, a)∗) = σT ((y, h, b)(y, h, b)∗)

= σT (y, 1, wy) = yvy = y,

and analogously σT χσ−1
S (a) = b; further,

τT χτ−1
S (g) = τT χ(w, g, w) = τT χ((x, g, a)∗∗) = τT ((χ(x, g, a))∗∗)

= τT ((y, h, b)∗∗) = τT (v, h, v) = h.

Obviously σT χσ−1
S is an unary homomorphism. ¤

It is convenient to introduce a new concept at this point.

Definition 3.2. Let χ : S → T be a semigroup homomorphism. We say that χ is

core pure if χ(a) ∈ C(T ) implies a ∈ C(S).

The next proposition establishes some properties that χ may may have relative

to injectivity in terms of its restrictions to C(S) and Hz, respectively.

Proposition 3.3. Let χ = [ϕ, ψ] : S → T with the notation as in Theorem 3.1.

(i) χ|C(S) is injective ⇐⇒ ϕ is injective.

(ii) χ is core pure ⇐⇒ χ |Hz
is injective ⇐⇒ ψ is injective.

(iii) χ is injective ⇐⇒ both ϕ and ψ are injective.

Proof. In each part we denote by A, B, ... the different statements.

(i) A implies B. Let x, y ∈ C be such that ϕ(x) = ϕ(y). Then

(xw, 1, wx), (yw, 1, wy) ∈ C(S)

and

χ(xw, 1, wx) = (ϕ(xw), 1, ϕ(wx)) = (ϕ(yw), 1, ϕ(wy)) = χ(yw, 1, wy).

The hypothesis implies that (xw, 1, wx) = (yw, 1, wy) so that

x = (xw)(wx) = (yw)(wy) = y.

Therefore ϕ is injective.
7



B implies A. Let (x, 1, a), (y, 1, b) ∈ C(S) be such that χ(x, 1, a) = χ(y, 1, b).

Then ϕ(x) = ϕ(y) and ϕ(a) = ϕ(b). The hypothesis implies that x = y and a = b

and so χ |C(S) is injective.

(ii) A implies B. Let (w, g, w), (w, h, w) ∈ H(w,1,w) be such that χ(w, g, w) =

χ(w, h, w). Then

χ((w, g, w)(w, h−1, w)) = (v, 1, v) ∈ C(T )

and the hypothesis implies that

(w, g, w)(w, h−1, w) ∈ C(S).

Therefore (w, g, w)(w, h−1, w) = (w, 1, w) so that (w, g, w) = (w, h, w).

B implies C. Let g, h ∈ G be such that ψ(g) = ψ(h). Then χ(w, g, w) = χ(w, h, w)

and thus (w, g, w) = (w, h, w) which gives g = h.

C implies A. Let (x, g, a) ∈ S be such that χ(x, g, a) ∈ C(T ). Then ψ(g) = 1 and

the hypothesis implies that g = 1. Hence (x, g, a) ∈ C(S).

(iii) Straightforward. ¤

For surjectivity , we do not have satisfactory equivalent statements, except, triv-

ially, for an analogue of part (iii) of Proposition 3.3.

4. Congruences

In this section S = [C, G; w, ζ].

Let T be any semigroup. We denote by C(T ) the lattice of all congruences on T .

If T is a unary semigroup, UC(T ) denotes the lattice of all unary congruences on T

(recall that ρ is unary if s ρ t implies that s∗ ρ t∗ for all s, t ∈ T ).

In a semigroup S with a unary operation a → a∗, it is customary to call a multi-

plicative congruence ρ on S normal if for any x, y, a ∈ S, x ρ y implies axa∗ ρ aya∗.

Applying this to S = [C, G; w, ζ] and restricting x and y to C(S) and a to Hz, in

view of the proof of ([1], Theorem 4), it is natural to introduce

Definition 4.1. A congruence ξ on C is normal if for all u, v ∈ wCw and g ∈ G,

u ξ v implies ζg(u) ξ ζg(v). Denote by NC(C) the set of all normal congruences on

C.

Lemma 4.2. The lattices NC(C) and UC(S) are complete sublattices of C(C) and

C(S), respectively.
8



We need one more basic concept.

Definition 4.3. A normal congruence ξ on C and a congruence η on G are linked

if for any g, h ∈ G and u ∈ C, g η h implies ζg(u) ξ ζh(u). By saying that ξ and η

are linked we will imply all these conditions.

Lemma 4.4. Let ξ ∈ C(C) and η ∈ C(G). Then ξ and η are linked if and only if

u ξ v, g η h =⇒ ζg(wuw) ξ ζh(wvw).

In order to characterize unary congruences on S, we will need the following nota-

tion.

Definition 4.5. Let ξ ∈ NC(C) and η ∈ C(G) be linked. Define ρ = [ξ, η] on S by

(x, g, a) ρ (y, h, b) ⇐⇒ x ξ y, g η h, a ξ b.

It comes out directly from the definition that ρ is a relation having the following

properties.

Lemma 4.6. [ξ, η] ⊆ [ξ′, η′] ⇐⇒ ξ ⊆ ξ′, η ⊆ η′.

Proof. Necessity. Let u ξ v. Then (uw, 1, wu) [ξ, η] (vw, 1, wv). The hypothesis

implies that (uw, 1, wu) [ξ′, η′] (vw, 1, wv) so that uw ξ′ vw and wu ξ′ wv. Therefore

u = uwwu ξ′ vwwv = v.

Let g η h. Then (w, g, w) [ξ, η] (w, h, w) and the hypothesis implies that

(w, g, w) [ξ′, η′] (w, h, w).

Hence g η′ h.

Sufficiency. Let (x, g, a) [ξ, η] (y, h, b). Then x ξ y, g η h, a ξ b and the hypoth-

esis implies that x ξ′ y, g η′ h and a ξ′ b. Thus (x, g, a) [ξ′, η′] (y, h, b). ¤

Corollary 4.7. [ξ, η] = [ξ′, η′] ⇐⇒ ξ = ξ′, η = η′.

We are now in a position to establish the central result of this and the succeeding

sections. Recall the notation σS and τS from Lemma 2.3.

Theorem 4.8. If ξ ∈ NC(C) and η ∈ C(G) are linked, then [ξ, η] ∈ UC(S). Con-

versely, if ρ ∈ UC(S), then ρ = [ξρ, ηρ], where ξρ and ηρ are given by

u ξρ v ⇔ σ−1
S (u) ρ σ−1

S (v) (u, v ∈ C),

g ηρ h ⇔ τ−1
S (g) ρ τ−1

S (h) (g, h ∈ G).

9



Proof. Direct part. Let ρ = [ξ, η]. Clearly ρ is an equivalence relation. Let

s = (x, g, a), t = (y, h, b), s1 = (x1, g1, a1), t1 = (y1, h1, b1) ∈ S

be such that s ρ t and s1 ρ t1. Then

x ξ y, g η h, a ξ b, x1 ξ y1, g1 η h1, a1 ξ b1.

First a ξ b and x1 ξ y1 give ax1 ξ by1 so that ζg(ax1) ξ ζh(by1). Since x ξ y, we get

xζg(ax1) ξ yζh(by1). In a similar way, we get ζg−1

1

(ax1)a1 ξ ζh−1

1

(by1)b1. Hence

(xζg(ax1), gg1, ζg−1

1

(ax1)a1) ρ (yζh(by1), hh1, ζh−1

1

(by1)b1)

and thus ss1 ρ tt1, and so ρ is a congruence. Note that ρ preserves the unary

operation since (x, g, a)∗ = (w, g−1, w). Therefore ρ is unary a congruence.

Converse. Let s = (x, g, a), t = (y, h, b) ∈ S be such that

σ−1
S (x) ρ σ−1

S (y), τ−1
S (g) ρ τ−1

S (h), σ−1
S (a) ρ σ−1

S (b),

that is,

(x, 1, wx) ρ (y, 1, wy), (w, g, w) ρ (w, h, w), (aw, 1, a) ρ (bw, 1, b).

Then

s = (x, 1, wx)(w, g, w)(aw, 1, a) ρ (y, 1, wy)(w, h, w)(bw, 1, b) = t

and thus [ξρ, ηρ] ⊆ ρ.

Let s ρ t. Then s∗ ρ t∗ and hence

σ−1
S (x) = (x, 1, wx) = ss∗ ρ tt∗ = (y, 1, yw) = σ−1

S (y),

τ−1
S (g) = (w, g, w) = s∗∗ ρ t∗∗ = (w, h, w) = τ−1

S (h),

σ−1
S (a) = (aw, 1, a) = s∗s ρ t∗t = (bw, 1, b) = σ−1

S (b).

Therefore s [ξρ, ηρ] t and thus ρ ⊆ [ξρ, ηρ]. ¤

Corollary 4.9. Let ρ = [ξ, η] ∈ C(S) and define

s ρξ t ⇐⇒ σS(s) ξ σS(t) (s, t ∈ C(S)),

s ρη t ⇐⇒ τS(s) η τS(t) (s, t ∈ Hz).

Then ρ is the unique unary congruence on S which extends the congruences ρξ on

C(S) and ρη on Hz.

Proof. This follows easily from the converse in Theorem 4.8. ¤

10



Corollary 4.10. Let ρ = [ξ, η] ∈ C(S). Then

S/ρ ∼= [C/ξ, G/η; wξ, ζ ′]

as unary semigroups where, for every g ∈ G,

ζ ′

gη(uξ) = (ζg(u)) ξ (u ∈ wCw).

Let LP(S) = {(ξ, η) | ξ and η are linked} with coordinatewise inclusion.

Theorem 4.11. With the notation of Theorem 4.8, the mappings

α : (ξ, η) → [ξ, η], β : ρ → (ξρ, ηρ)

are mutually inverse lattice isomorphisms between LP(S) and UC(S). Moreover, β

is an isomorphism from LP(S) onto a subdirect product of NC(C) and C(G).

Proof. The fact that α and β preserve order follows easily from Lemma 4.6. By

Corollary 4.7, we have αβ = ιC(S) and βα = ιLP(S). Finally, by Theorem 4.8, we

conclude that β is onto a subdirect product of NC(C) and C(G). ¤

Corollary 4.12. Let (ξi, ηi) ∈ LP(S) for i ∈ I. Then
⋂

i∈I

[ξi, ηi] = [
⋂

i∈I

ξi,
⋂

i∈I

ηi],
∨

i∈I

[ξi, ηi] = [
∨

i∈I

ξi,
∨

i∈I

ηi].

5. Kernels and traces

Let S be a regular semigroup and ρ ∈ C(S). The kernel of ρ is defined by

ker ρ = {s ∈ S | s ρ e for some e ∈ E(S)},

the trace of ρ by tr ρ = ρ|E(S), and (ker ρ, tr ρ) is the congruence pair of ρ.

For S = [C,G; w, ζ], we have seen that an unary congruence on S is given by a

pair (ξ, η). We can transfer ξ and η to congruences on C(S) and Hz by means of

σS and τS, respectively. Hence our unary congruence ρ is given by the restrictions

ρ |C(S) and ρ |Hz
. We may thus call ρ |C(S) the core trace of ρ and ker (ρ|Hz

) the

restricted kernel of ρ, in notation ctr ρ and rker ρ, respectively. Abstractly, we let ξ

be a normal congruence on C, K be a normal subgroup of G related by the condition:

g ∈ K, u ∈ wCw =⇒ ζg(u) ξ u.

We call (K, ξ) a special congruence pair and define a relation ρ(K,ξ) by

(x, g, a) ρ(K,ξ) (y, h, b) ⇐⇒ x ξ y, gh−1 ∈ K, a ξ b.

As usual, see ([4],Theorem 2.13) and Theorem 4.8, one proves
11



Theorem 5.1. If (K, ξ) is a special congruence pair for S, then ρ(K,ξ) is an unary

congruence on S. Conversely, if ρ is an unary congruence on S, then (rkerρ, ctrρ)

is a special congruence pair for S and ρ = ρ(rkerρ, ctrρ).

6. Relations K, T , L, U and V

Let T be an unary semigroup. If ρ is a relation on T , then ρ♮ denotes the con-

gruence in T generated by ρ. For any relation P on UC(T ), ρP (respectively ρP )

denotes the least (respectively greatest) congruence on T which is P -related to ρ, if

it exists. We denote by ǫX the equality relation on any nonempty set X.

In this section S = [C, G; w, ζ], ρ = [ξ, η] and ρ′ = [ξ′, η′].

Recall that the kernel relation K is defined by

ρ K ρ′ ⇐⇒ ker ρ = ker ρ′ (ρ, ρ′ ∈ C(S)).

We first find an expression for ker ρ in the present setting.

Lemma 6.1. Let ρ ∈ UC(S). Then

ker ρ = {(x, g, a) ∈ S | wx ξ ax ξ aw, g ∈ ker η}.

Proof. For (x, g, a) ∈ S we have

(x, g, a) ρ (x, g, a)2 ⇐⇒ x ξ xζg(ax), g η g2, a ξ ζg−1(ax)a

⇐⇒ ζg−1(wx) ξ ζg−1(wx)ax, g ∈ ker η, ζg(aw) ξ axζg(aw)

⇐⇒ aw ξ ax, g ∈ ker η, wx ξ ax.

¤

A description of the K-relation follows.

Theorem 6.2. We have

ρ K ρ′ ⇐⇒ ξ K ξ′, η = η′.

Proof. Assume that ρ K ρ′ and let u ∈ ker ξ. Then for s = (uw, 1, wu), we have

s ρ s2 so that s ∈ ker ρ. The hypothesis implies that s ∈ ker ρ′ whence s ρ′ s2 and

thus uw ξ′ u2w and wu ξ′ wu2. Hence

u = (uw)(wu) ξ′ (u2w)(wu2) = u2

12



and u ∈ ker ξ′. Therefore ker ξ ⊆ ker ξ′ and equality follows by symmetry, so that

ξ K ξ′.

Next let g, h ∈ G be such that g η h. Then (w, g, w) ρ (w, h, w) whence

(w, gh−1, w) ∈ ker ρ.

Thus (w, gh−1, w) ∈ ker ρ′ so that gh−1 ∈ ker η′. But then g η′ h. Therefore η ⊆ η′

and equality follows by symmetry.

Conversely, suppose that ξ K ξ′ and η = η′, and let s = (x, g, a) ∈ ker ρ. By

Lemma 6.1, we have

aw ξ ax ξ wx, g ∈ ker η.

Then g ∈ ker η′ so that, by the linking condition,

wx = ζg(aw) ξ′ ζ1(aw) = aw.

Moreover, from xa = x(wx)a ξ x(ax)a we have that xa ∈ ker ξ and the hypothesis

implies that xa ∈ ker ξ′. Thus xa ξ′ (xa)2 and then

aw = (aw)aw ξ′ w(xa)w ξ′ (wx)ax(aw) ξ′ awaxwx = ax.

Hence s ∈ ker ρ′ and thus ker ρ ⊆ ker ρ′. The opposite inclusion follows by symmetry.

Therefore ρ K ρ′. ¤

According to ([3], Theorem 3.2),

ρK = {(x, x2) | x ∈ ker ρ}♮,

and ρK is the principal congruence on ker ρ, that is

s ρK t ⇐⇒ (xsy ∈ ker ρ ⇔ xty ∈ ker ρ for all x, y ∈ S1).

It does not seem that in our case either ρK or ρK can be expressed in a reasonable

way by means of ξ and η. As a consequence, for the bounds for V in Corollary 6.7,

all we can say that, in general for relations P and Q on UC(S), whose classes are

intervals, we have

ρP∩Q = ρP ∨ ρQ, ρP∩Q = ρP ∩ ρQ.

Recall that the trace relation T is defined by

ρ T ρ′ ⇐⇒ tr ρ = tr ρ′ (ρ, ρ′ ∈ C(S)).

In order to characterize the T -relation we first state

Lemma 6.3. Let ξ ∈ NC(C). Define

g ξmax h ⇐⇒ ζg(x) ξ ζh(x) for all x ∈ wCw (g, h ∈ G).

Then ξmax is the greatest congruence on G linked to ξ.
13



We are now in a position to establish

Theorem 6.4. We have

ρ T ρ′ ⇐⇒ ξ = ξ′; ρT = [ξ, ǫG], ρT = [ξ, ξmax].

Proof. Assume that ρ T ρ′ and let u, v ∈ C be such that u ξ v. Then

(uw, 1, wu) ρ (vw, 1, wv)

where (uw, 1, wu), (vw, 1, wv) ∈ E(S). The hypothesis implies that

(uw, 1, wu) ρ′ (vw, 1, wv).

Thus uw ξ′ vw and wu ξ′ wv and hence

u = (uw)(wu) ξ′ (vw)(wv) = v.

Therefore ξ ⊆ ξ′ and the opposite inclusion follows by symmetry.

Assume now that ξ = ξ′ and let (x, 1, a), (y, 1, b) ∈ E(S) be such that

(x, 1, a) ρ (y, 1, b).

Then x ξ y and a ξ b. Hence (x, 1, a) ρ′ (y, 1, b) and thus tr ρ ⊆ tr ρ′. The opposite

inclusion follows by symmetry. Therefore ρ T ρ′.

The congruences ξ and ǫG are obviously linked and we obtain [ξ, ǫG] T [ξ, η]. By

Lemma 4.6, we get that ρT = [ξ, ǫG]. By Lemma 6.3, the congruences ξ and ξmax

are linked. In view of Lemma 4.6, we conclude that ρT = [ξ, ξmax]. ¤

Recall that the L-relation is defined by

ρ L ρ′ ⇐⇒ ρ|eSe = ρ′|eSe for all e ∈ E(S).

The desired characterization follows.

Theorem 6.5. We have

ρ L ρ′ ⇐⇒ ξ L ξ′, η = η′; ρL = [(ξ |wCw)♮, η], ρL = [ξL, η].

Proof. Assume that ρ L ρ′ and let e ∈ E(C) and u, v ∈ eCe be such that u ξ v. For

f = (ew, 1, we), we get f ∈ E(S) and

(uw, 1, wu), (vw, 1, wv) ∈ fSf

with (uw, 1, wu) ρ (vw, 1, wv). The hypothesis implies that

(uw, 1, wu) ρ′ (vw, 1, wv),
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whence

u = (uw)(wu) ξ′ (vw)(wv) = v.

Hence ρ|eCe ⊆ ρ′|eCe and the opposite inclusion follows by symmetry. Therefore

ξ L ξ′.

Let g, h ∈ G be such that g η h. For s = (w, g, w), t = (w, h, w) ∈ zSz, we obtain

s ρ t. By hypothesis, we get s ρ′ t whence g η′ h. Hence η ⊆ η′ and the equality

prevails by symmetry.

Conversely, suppose that ξ L ξ′ and η = η′. Let e = (u, 1, c) ∈ E(S) and s =

(x, g, a), t = (y, h, b) ∈ eSe. Then x = ucx, y = ucy, a = auc and b = buc. Let

s ρ t. Then x ξ y, g η h, a ξ b and thus wx ξ wy, g η h, aw ξ bw. The hypothesis

implies that wx ξ′ wy, g η′ h, aw ξ′ bw so that

ucwx ξ′ ucwy, g η′ h, awuc ξ′ bwuc.

Hence x ξ′ y, g η′ h, a ξ′ b and s ρ′ t. Hence ρ|eSe ⊆ ρ′|eSe and the equality prevails

by symmetry.

First note that (ξ |wCw)♮ is normal since, for u, v ∈ wCw, we have

u (ξ |wCw)♮ v ⇐⇒ u ξ v =⇒ ζg(u) ξ ζg(v) ⇐⇒ ζg(u) (ξ |wCw)♮ ζg(v).

If g η h, then ζg(u) ξ ζh(u) for every u ∈ wCw. Since ζg(u), ζh(u) ∈ wCw, we

get that ζg(u) (ξ |wCw)♮ ζh(u). Hence (ξ|wCw)♮ and η are linked. In order to prove

that [(ξ |wCw)♮, η] L [ξ, η], let e ∈ E(C) and u, v ∈ eCe be such that u ξ v. Then

wuw ξ wvw so that wuw ξ |wCw wvw. Hence wuw (ξ |wCw)♮ wevew and

u = ewuwe (ξ |wCw)♮ ewvwe = v.

Therefore ξ |eCe⊆ (ξ |wCw)♮ |eCe and equality follows by symmetry.

In order to prove that ρL = [ξL, η], we will use the fact that ξ|wCw = ξL|wCw

several times. Let u, v ∈ wCw be such that u ξL v. Since ξL|wCw = ξ|wCw, we

have u ξ v so that ζg(u) ξ ζg(v). Again, since ζg(u), ζg(v) ∈ wCw, we have that

ζg(u) ξL ζg(v). Hence ξL is normal. Let g η h. For u ∈ wCw, we have ζg(u) ξ ζh(u)

and thus ζg(u) ξL ζh(u). Therefore ξL and η are linked. Moreover, since ξL L ξ,

we have that [ξL, η] L [ξ, η]. Finally, let [ξ′, η′] ∈ C(S) be such that [ξ′, η′] L [ξ, η].

Then ξ′ L ξ and η = η′. Hence ξ′ ⊆ ξL and, by Lemma 4.6, we get [ξ′, η′] ⊆ [ξL, η].

Let ξ′ ∈ C(C) be such that ξ′ and η are linked and ξ′ L ξ. Then ξ′ |wCw= ξ |wCw

so that (ξ |wCw)♮ ⊆ ξ′. Therefore, by Lemma 4.6, we conclude that

ρL = [(ξ |wCw)♮, η]. ¤
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The U -relation was defined in [4] by

ρ U ρ′ ⇐⇒ (ρ∩ ≤) = (ρ′ ∩ ≤) (ρ, ρ′ ∈ C(S)).

In our case the wanted characterization is

Theorem 6.6. We have

ρ U ρ′ ⇐⇒ ξ U ξ′; ρU = [λ, ǫG], ρU = [θ, θmax],

where

λ = ∩{γ ∈ NC(C) | (ξ ∩ ≤) ⊆ γ},

θ = ∨{γ ∈ NC(C) | (γ ∩ ≤) = (ξ ∩ ≤)}.

Proof. We will use Lemma 2.1(iv) without express mention.

Assume that ρ U ρ′ and let u, v ∈ C be such that u (ξ ∩≤) v. We have

uw ξ vw and u = ev = vf for some e, f ∈ E(C). Then

e(vw) = uw = vfw = vw(vfw)

where vfw ∈ E(C) so that uw (ξ ∩ ≤) vw; analogously wu (ξ ∩ ≤) wv. Now

(uw, 1, wu) (ρ∩ ≤) (vw, 1, wv)

which by hypothesis yields

(uw, 1, wu) (ρ′ ∩ ≤) (vw, 1, wv)

and thus uw ξ′ vw and wu ξ′ wv. Hence

u = uwwu ξ′ vwwv = v

which proves that u (ξ′ ∩ ≤) v. Thus (ξ ∩ ≤) ⊆ (ξ′ ∩ ≤) and equality follows by

symmetry. Therefore ξ U ξ′.

Conversely suppose that ξ U ξ′ and let (x, g, a) (ρ∩ ≤) (y, h, b). Then

x (ξ ∩ ≤) y, g = h, a (ξ ∩ ≤) b

and thus

x (ξ′ ∩ ≤) y, g = h, a (ξ′ ∩ ≤) b

so that (x, g, a) (ρ′ ∩ ≤) (y, h, b). Therefore (ρ∩ ≤) ⊆ (ρ′ ∩ ≤) and equality follows

by symmetry. Consequently ρ U ρ′.

Let u, v ∈ C. If u (ξ ∩ ≤) v and γ ∈ NC(C) is such that (ξ ∩ ≤) ⊆ γ, then

trivially u (γ ∩ ≤) v.

Conversely, assume that for every γ ∈ NC(C) such that (ξ ∩ ≤) ⊆ γ, we have

u (γ ∩ ≤) v. For γ = ξ, we trivially have that ξ ∈ NC(C) and (ξ ∩ ≤) ⊆ ξ. Thus
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u (ξ ∩ ≤) v and u ξ v.

First λ ∈ NC(C) by Lemma 4.2 and hence λ and ǫG are linked. It suffices to

prove that

(2) (ρ∩ ≤) = ([λ, ǫG]∩ ≤).

Since

(x, g, a) ([λ, ǫG]∩ ≤) (y, h, b) ⇐⇒ g = h and for every γ ∈ NC(C) such that

(ξ ∩ ≤) ⊆ γ, we have x (γ ∩ ≤) y, a (γ ∩ ≤) b

and

(x, g, a) (ρ∩ ≤) (y, h, b) ⇐⇒ x (ξ ∩ ≤) y, g = h, a (ξ ∩ ≤) b,

relation (2) holds. Therefore ρU = [λ, ǫG].

Finally, by Lemmas 4.2 and 6.3, θ ∈ NC(C) and θmax are linked and ρU =

[θ, θmax]. ¤

Recall that the V -relation was defined in [4] by V = K ∩ U . From Theorems 6.2

and 6.6 we deduce

Corollary 6.7. We have

ρ V ρ′ ⇐⇒ ξ V ξ′, η = η′.

We can express the above relations in a uniform way as follows.

Corollary 6.8 (to Theorems 6.2, 6.4, 6.5, 6.6 and Corollary 6.7). For P ∈ {K, T, L, U, V },

we have

ρ P ρ′ ⇐⇒ ξ P ξ′, η P η′.

Proof. P = K. This follows directly from Theorem 6.2.

P = T . By Theorem 6.4, we have

ρ T ρ′ ⇐⇒ ξ = ξ′.

Since obviously η T η′, the assertion follows.

P = L. By Theorem 6.5, we have

ρ L ρ′ ⇐⇒ ξ L ξ′, η = η′.

Clearly on the group G, η L η′ implies η = η′, and the claim follows.

P = U . By Theorem 6.6, we have

ρ U ρ′ ⇐⇒ ξ U ξ′.
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The natural partial order on G is trivial. Hence η U η′ which proves the assertion.

P = V . This follows directly from Corollary 6.7. ¤

We are grateful to the referee for careful reading of the paper.
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