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ABSTRACT.   Let S be a commutative cancellative semigroup and Tq

be a cofinal subsemigroup of S.   Let Aq be a homomorphism of Tq into the

semigroup of nonnegative real numbers under addition. We prove that Koba-

yashi's condition [2] is necessary and sufficient for h0 to be extended to 5.

Further, we find a necessary and sufficient condition in order that the exten-

sion be unique.   Related to this, the "boundedness condition" is introduced.

For further study, several examples are given.

1.  Introduction.  A commutative cancellative archimedean idempotent-free

semigroup is called an 9Í-semigroup. Kobayashi [2] proved the following:

Theorem 1.1.  Let T0 be a subsemigroup of an ̂ -semigroup S and let A0

be a homomorphism of T0 into the semigroup R°_ of nonnegative real numbers

under addition.   Then A0 can be extended to a homomorphism of S into R+ if

and only if the pair (T0, A0> satisfies the following condition: ifx, y £ T0 and

x \y (x divides y) in S, then hQ(x) < hQ(y).

One of the authors [4] has studied the homomorphisms of T0 into R+ from

the viewpoint of positive quasi-orders.  In this paper, we treat the homomor-

phisms of T0 into the nonnegative real numbers in the case when 5 is a commu-

tative cancellative semigroup and T is its subsemigroup.  Theorem 2.1 will be a

straightforward generalization of the classical result that characters can be ex-

tended from a subgroup of an abelian group G to G itself. In §2, we will show

that Theorem 1.1 holds if T0 is cofinal in 5.  In §3, we will introduce a "bound-

edness condition" and discuss the relation between this condition and the exten-

sion of a homomorphism beyond a filter. In §4, we will give a few examples,

which show that Theorem 2.1 does not necessarily hold if T0 is not cofinal.

A subsemigroup U of a commutative semigroup S is called unitary in S if
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148 M. S. PUTCHA AND TAKAYUKI TAMURA

xES, a G U and ax E U imply x EU.   U is called cofinal in S if, for every x

G S, there is a y G S such that xy EU.  As is well known, see [1] or [5], a

unitary cofinal subsemigroup U induces a group congruence pv on S defined by

x pv y if and only if ax = by for some a, b E U.  We denote S/pu by S¡U.

Furthermore the kernel of S —*■ S/U coincides with U.

Let T be a nonempty subsemigroup of S. The smallest unitary subsemi-

group T of S containing the subsemigroup T is called the unitary closure of T

in S.   T is given by

T = {xES: xtET for some t G F}.

A nonempty subsemigroup F of S is called a filter of S [3] if x, y E S and xy

G F implies x.yEF.  The smallest filter F of S containing the subsemigroup T

is called the filter closure of T in S.  Then

f ={xES:xyET for some y G S}.

(1.2) The following hold.

(1.2.1) T —* f and T —* T are closure mappings, that is, F ç f, TET.

T\ÇT2 implies fx Ç f2 and ?,çr2.

F = F, F= F.

(1.2.2) F is unitary in 5, F is a filter in 5, and T is cofinal in f.

(1.2.3) F^f^F.

(1.2.4) F Ç f and F is unitary cofinal in f.

Throughout this paper, R denotes the set of real numbers, R the set of

rational numbers, R+ (R_) the set of positive (negative) real numbers; R+

(Kl) the set of nonnegative (nonpositive) real numbers; Z+ (Z_) the set of

positive (negative) integers and Z°_ (Z2) the set of nonnegative (nonpositive)

integers.

If S is a semigroup and if AT is a subsemigroup of the additive group R,

then the notation Hom(S, X) denotes the semigroup of homomorphisms of S

into X under the usual operation. Let Xx, X2, Yx and Y2 be commutative

semigroups such that Xx CX2 and Yx CY2. Let hx G Hornig, Yx) and

h2 E HomCY2, Y2). If h2\XX =hx, we say that hx of Hom(Zlf Yx) is extend-

ed to A2 of Hom(X2, Y2); in particular, if Yx = Y2, we say that hx of

Hornig, Yx) is extended to X2.   If the extension A2 of hx of Hom(^Tj, Yx)

to X2 is unique, we say that hx of HomCYj, Yx) is uniquely extended to X2.

Let ft G Hom(5, R). A is called trivial if ft(x) = 0 for all x G S.

In this paper the binary operation in a commutative semigroup will be de-

noted by addition, i.e. +.
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2. Extensions from cofinal subsemigroups. In this section, we will prove

the following generalization of Theorem 1.1.

Theorem 2.1. Let T0 be a cofinal subsemigroup of a commutative can-

cellative semigroup S and let h0 be a homomorphism of TQ into the additive

semigroup R+ of nonnegative real numbers.   Then A0 can be extended to S if

and only if

(K) f, e S + f2 implies A0(ij) > A0(f2) for all tv t2eT0.

In this paper, the condition (K) will be called the K-condition. It is ob-

vious that if A0 can be extended to S then the K -condition must hold. We will

prove sufficiency. Let X denote the set of pairs < T, h) where T is a subsemi-

group of S containing T0 and A £ Horn (F, RÍJ) such that A \T0 = A0 and <T, h)

satisfies the /(-condition.

Let [a] be the cyclic subsemigroup generated by a and let [T, a] be the

subsemigroup generated by Tand a, i.e.,

[r,a] = ru(r+[a])U[a].

Lemma 2.2. Let < T, h) £ X and suppose that a eSand(T + [a]) n T

# 0. Then there exists tí: [T, a] —*■ R% such that <[T, a], tí) £ X. Further,

tí is unique.

Proof. There exist tv t2 £ T, N£Z+ such that tt = N-a + t2. Then

A(fx) > h(t2) by the K-condition. Define tí: [T, a] —*■ Rj by

h'(t + « • a) = A(0 + ̂ [A(ii) - A(f2)],     t £ T, n £ Z%,

A'(«a)=^[A(í1)-A(í2)l «eZ+.

First we show that tí is well defined:  t + n • a = t' + n' • a, t, t' £ T, n, tí £

Z+, implies N-t + Nn-a + (n+n')'t2=N-t'+Nn'-a + (n+n')'t2,

thatis.JvW-»-«-?! +n'-t2=N-t' + n'-t1 +n-t2. This shows A'(r + n -a)

= h'(t' + n ■ a), hence tí is well defined. From its definition, tí is clearly

a homomorphism into R°_, and A'|r = A. Assume t + n-a = s + t' + n''a

for some a £ 5.  Then N • t + n • tt + n • t2 = N • s + N • t' + n' • tx +

n • r2 which implies

N-h(t) + n- hitj + n • h(t2) >N• A(f') + «' • A(it) + n • A(f2)

by the K-condition. This gives A'(r + n • a)>h'(t' + n • a).   Hence <[T, a\

tí) e X. If A" is any extension of A to a homomorphism of [T, a] into R° , we

must have
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150 M. S. PUTCHA AND TAKAYUKI TAMURA

h(tx) = h"(tx) = N ■ h"(a) + h"(t2) « N ■ A"(a) + A(f2)

so that ft"(a) =W-1 [h(t,) - ft(f2)] = ft'(a)- It follows that h"(t + n-a) =

h'(t + n • a) for ail r G r, ail n G Z+, that is, ft" = h'. □

To consider the case when (T + [a]) n F = 0, we need a lemma.  From

now on, fj, f2, f3 and f4 will denote arbitrary elements of T.

Let

¿(a) - {n~l[h(t2) - h(tx)):  tx + n ■ aE t2 + S},

B(a) m {rTx[h{t2) - h(tx)\.  t2Etx+n-a + S},

where a ES, A(a) and B(a) mean the sets depending on a. Note that 0 G.4(a)

and hence A(a) ± 0

Lemma 2.3. Let <T,h)EXand suppose that (S + [a]) C\T±0.   Then

Supvl(a) < Inf 5(a) < °°.

Proof.  Since (5 + [a]) C\T + 0, there are tx, t2 G F, x G S and « G Z+

such that f2 = fj + « • a + x.  Hence 5(a) #0and Inf 5(a) < °°.  Suppose tx +

«j • a = t2 + sx and t4 = t3 + n2 • a + s2 where «j, n2 G Z+, s1( s2 G 5.

Thenrtj -f4 +n2 -ix =«x -f3 +n2 't2 +n2 -sx +nx -s2. By the Condition,

nx ■ h(t4) + n2 ■ h(tx) > nx • h(t3) + n2 ■ h(t2).  Hence n2l[h(tA) - h(t3)] >

n~il[h(t2) -h(tx)]. Thus we get SupA(a) < Inf B(a). a

Lemma 2.4.  Let < F, h) E X and suppose that (S + [a]) C\T + 0but

(T + [a]) C\T = 0.  Then h can be extended to a homomorphism h': [T, a]

-* R°_ a«cf <[F a], ft'> G X.   77ie ft' is determined by choosing h'(a) such that

Sup .¿(a) < h'(a) < Inf 5(a). Moreover, every extension h" of h to [T, a] such

that <[F, a], ft"> G X is obtained in this way.

Proof. Choose b E R0. such that

(2.4.1) Sup A(a) < b < Inf B(a).

Define
h'(t+n-a)=h(t) + n-b   for t E T, n E Z0.'

(2.4.2)
h'(na) = nb for«GZ+.

Since 5 is cancellative and (T + [a]) CiT= 0, every element of F + [a] is

uniquely expressed as t + n • a and hence tí is well defined. Then tí is clearly

a homomorphism [F, a] —*■ R+ and ft'|F = h.  Suppose that tx + nx • a = t2 +

n2 ' a + s, nx, n2 62^., s GS. Then there are three possibilities: nx = n2, nx

> n2 and n, < n2. If nx = n2, then, since S is cancellative, tx = t2 + s, hence

h(tx)>h(t2) by the K-condition.  This implies h'(tx +nx ■ a) > h'(t2 + n2 • a).
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If «j > «2, then ij + («j - «2) • a = t2 + s and, by the choice of b,

A(i2)-A(f,)<(«j-«2)A.

This implies

A'(r2 + «2 • a) = A(r2) + «2 • A <h(tl) + «j • A = h'(t1 + nx • a).

If «j < «2, then f j = t2 + («2 - «j) ■ a + s.   By the choice of b,

(n2-nl)-b<h(ti)-h(t2).

This gives

A'(f2 + «2 • a) = A(i2) + «2 • A <A(fj) + «! • A = A'^ + nx • a).

Therefore ([T, a\, tí) £ X.

Assume that A" is an extension of A to [T, a] and that fj + nx • a = t2 +

Sj and i4 = t3 + n2 ■ a + s2, nv «2 £ Z+, sv s2 £ 5.   Using the assumption

that A" obeys the K-condition, tx + «ja = t2 + s gives A"^) + njA"(a) >

A"(/2), so that A"(a) > (A(r2) - h(t1))/n1, hence A"(a) > Sup>l(a). Likewise we

have A"(a) < (A(i4) - h(t3))/n2, hence A"(a) < Inf5(a).  By the former half of

thelemma, <[r, a], A">£X.o

Corollary 2.5. In Lemma 2.4, the extension tí is unique if and only if

(2.5.1) Sup¿(a) = MB(a).

Proof of sufficiency of Theorem 2.1. Define the partial order in X

by <Tj, Aj> < {T2, A2> if and only if Tx C T2 and A2 is an extension of hx to

T2. Then it is easy to see that X satisfies the condition for Zorn's lemma and

so X has maximal members. To show that any such maximal member has do-

main S, it suffices to show that if <T, A> £ X and a£T, then A can be extended

to tí: [T, a] —► R0. such that ([T, a], tí) £ X. Since T is cofinal, (5 + [a]) n

T # 0, furthermore there are two possibilities:  (T + [a]) n T & 0 and (T +

[a]) n 7 = 0. Lemma 2.2 has dealt with the first case; Lemma 2.4 has done

the second case. Thus the theorem has been proved. °

Corollary 2.6. Let S be a commutative cancellative semigroup and T0

a unitary cofinal subsemigroup ofS.  Then every homomorphism A of T0 into

R°_ can be extended to S.

Proof. Every A satisfies the K-condition.

Corollary 2.7. Let T0 be an ideal of S.  Then every homomorphism A

of T0 into R+ can be uniquely extended to S.
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Proof.  Lemma 2.2 is applied to this case since (F0 + [a]) H F0 =£ 0 for

each a G 5.  The direct alternate proof of this corollary is left for the reader's

exercise, o

Since every subsemigroup of a commutative archimedean semigroup is co-

final, Theorem 1.1 is a special case of Theorem 2.1.

Theorem 2.8. Let Tbe a cofinal subsemigroup of a commutative can-

cellative subsemigroup S, and let h: T —*■ R°_ be a homomorphism.   Then A

admits a unique extension to S if and only if, for each a ES, Sup 4(a) =

InfF(a).

Proof.  Assume A admits a unique extention to S.   Then (T, A> satisfies

the K-condition. Suppose that hx and A2 are distinct extensions such that

<[F a], hx) and <[F a], A2> obey the K-condition for some a£T. Then (S +

[a]) r\T& 0 since F is cofinal in S; (T + [a]) n F = 0 by Lemma 2.2. Now

Lemma 2.4 shows that <[F, a], hx) and <[F, a], A2> are in X. By Theorem 2.1,

Aj and A2 can be extended to homomorphisms A', : S —► R°_ and A2 : S —* R+ re-

spectively; but h'x =htí2. This contradicts the assumption. Therefore A admits a

unique extension to [F, a] for each a$T. If (T + [a] ) O F # 0, we can easily

show that if « G Z+, fp f2 GFandit + n -a = f2, then

Sup A(a) = Inf 5(a) = (A(f2) - h(tx))/n.

If (F + [a]) n r = 0, then Corollary 2.5 shows Sup A(a) = Inf 5(a).

Conversely, suppose Sup .4(a) = Inf B(a) for every a ES.  If f2 = tx + s,

tv t2 E T, s E S, then 2i2 E2tx + s + S, which implies

InfF(s)<2[A(í2)-A(íj)].

As r, + 2 • s G f2 4- S, SupA(s) > Vt[h(t2) - h(tx)]. Hence

%[A(í2)-A(f1)]<2[A(f2)-A(í1)].

It follows that A(r2) > h(tx). Hence A satisfies the K-condition, and so A is ex-

tended to S.  By Lemma 2.2 and Corollary 2.5, the extension is unique since

Sup^(a) = Inf B(a) for each a ES. a

3. Boundedness condition. In Lemma 2.3, we see that the set A is bound-

ed. In light of this, we will introduce the boundedness condition (8-condition).

In this section, we assume that S is a commutative cancellative semigroup and let

F = S\F where F is a prime ideal, F =£ 0, and F is a filter [3], F ¥= 0.  Let a G

F.  The subsemigroup of 5 generated by a and F is denoted by P^a) or P(a) if

F is fixed. We define the relation p on F as follows: c p d if and only if m • c

+ s = n-d + t for some s, t E F and some m,nEZ+. Then p is an equiva-
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lence relation on P and each p-class is a subsemigroup of P; i.e., p has the fol-

lowing properties:

(3.1.1) x p y implies x p x +y for all x, y £ P.

(3.1.2) x p m • x + t for all t £ F and all m £ Z+.

Let 0(a) denote the p-class containing a £ P.  Let UF(a) or U(a) = [0(a), F],

i.e., the subsemigroup of S generated by Q(a) and F.  By (3.1.1) and (3.1.2),

we see Q(a) + F Ç ß(a). If s, í £ F and A £ ß(a), then Jfc-A+s = /-A + r,

(it, / £ Zj), implies Jk = / and s = t.  In fact, if k>l, (k-t) • b + s = tby can-

cellation, but this is impossible since F is a filter and A £ P.  Hence k < /. Like-

wise & > /. Therefore, k = I, and hence s = r by cancellation. Thus we have

(3.2) Each element of ß(a) + F has a unique expression as the sum of an

element of Q(a) and an element of F

As defined in §1, X denotes the unitary closure of X and X denotes the

filter closure of X.

Lemma 33.

(3.3.1) U(a) = {x e S: m-xe V(a) for some mez+]

and

(3.3.2) P¡5) Ç U(a) = W) C P(a) = Ufa).

Proof. (3.3.1)  If x £ F, then x £ P(a) C ?(a). If jc £ ß(a), then m • x

+ s — « • a + t for some s, teF, some m, ne Z+; hence m ' xe P(a). There-

fore U(a) is contained in the set at the right-hand side. To prove the other

direction, let m • x £ P(a). By definition, «•a + s4-m,JC = /-a + ifor some

s, r £F, and some n, leZ+. Suppose « >/.  Then a + z = t for some z £ 5.

This contradicts a £ P.  Hence n < /.  If « = /, then x £ F.  If « < /, then m •

x + s = (/ - «) • a + / which implies x £ g(a), hence x £ U(a). Thus we have

(3.3.1).
(3.3.2^ It immediately follows from (3.3.1) and the definition that P(a)

Ç U(a) Ç P(a). Taking their filter closures, we get f(a) = U(á) by (1.2.3). It re-

mains to show U(a) Ç U(a). Let jc £ U(a). Then A = c + x for some A, c £

U(a). By (3.3.1), we can choose mez+ such that m • b, m • c £ P(a). Since

m-A = m-c + m-xand Pia) is unitary by (1.2.2), we see that m-xe V(a).

So x e U(a). Therefore Wa) C U(a). This completes the proof, o

Let T be a subsemigroup of a commutative cancellative semigroup S and

let A £ Hom(T, R+). We say that <T, h) satisfies the B-condition (boundedness

condition) in S if, for each a £ S, there is an M £ R0. such that

(B)   jc, y £ T, m £ Zj and ̂  + m • a £ * + S implies /j(jc) - A(y) <m-M.
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Here M is required to be independent of x, y and m. The notation 0 • a + y

expresses y itself, and hence the B-condition implies the K-condition. The 8-

condition is equivalent to the combination of the K-condition and the following:

For each a G 5, the set

(8') im_1[A(x) - AO)]: x, y E T, m E Z+, y + m ■ a E x + S}

is bounded.

Lemma 3.4.   The following are equivalent:

(3.4.1) (T, h) satisfies the K-condition in S.

(3.4.2) A is extended tohE Hom(f, R£).

(3.4.3) A is extended tohE Horn (if, Rj).

Proof.  (3.4.1) •* (3.4.2). This follows from Theorem 2.1 since F is co-

final in f.

(3.4.2) ■* (3.4.3). Since f is unitary cofinal in F by (1.2.4), A~ can be ex-

tended to »? G Horn (F, R°_) by Corollary 2.6, and hence ft is extended to F.

(3.4.3) => (3.4.1).  This is obvious from the definition of f. °

Lemma 3.5. Let T be a filter ofS,T¥= S, and let h E Horn (T, R0.). Let a

; S\Tand r G R°. Define hr: ?T(a) —> R% by

h(s)   ifx = m-a + s where m EZ\,s E T,

ifx = m • a where m E Z+.

im • r +

m • r

Every extension of h to PT(a) is obtained as hr for some r E R°_.

Proof.  Since the expression of x is unique, hr is well defined. The

proof of the lemma is easy. □

Theorem 3.6. Let T be a filter of a commutative cancellative semigroup

S,T±S, and let ft G Horn (F, RÍE).  77ie« the following are equivalent:

(3.6.1) <F, ft) satisfies the B-condition.

(3.6.2) A can be extended to U^a) for each a E S\T.

(3.6.3) For each a E S\T, <PT(a), hr) satisfies the K-condition in S for

some r E R+.

Proof. (3.6.1) => (3.6.2). Choose r E R+ such that

r > Sup {ffrlrft(x) - AO)]: y+m-aEx+S}

and then define A: UT(a) —» R°_ by
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A(A) if A £ T,

h(b)=lm-r + h(s)-h{t)    l{beQ(a)&ndn-b + t = m-a + s
n

for some s, teT.

By the choice of r, A (A) > 0 for all A £ Ur(a). To show Ä is well defined, let

H'A + i = m-a+s and nt • b + tx = mx • a + sx where s, t, s1,tl £ T.

Then we have (mnx) • a + nx ■ s + n • tx = (mxn) • a +n • sx + nt • t which

implies «i«! = «ij« and nt • s + n • tx = n • sx + nx • t since T is a filter.

Then it follows that A is well defined. Next we show that A is a homomorphism.

If A, c e ß(a), then n-b + t = m-a+s, k-c+u=l-a + v fot some t, s,

u, veT, n, m,k,ie Z+ ; so (nk) -(b+c) + k-t + n-u = (mk + In) ■ a + k

■s+n -v which implies A(A) + h(c) = A(A + c). If A £ Q(a) and c £ T, then

n-b + t = m-a+s and « • (A + c) + t = m • a + s + n • c, so the same re-

sult follows, and we see A°(A) + A(c) = A(A + c) for all A, c £ Ur(a). Since

Ur(a) is unitary cofinal in Ur(a) by Lemma 3.3 and (1.2.4), A can be extended

to tí e Horn (Ur(a), R°_) by Corollary 2.6.

(3.6.2) ■» (3.6.1).  Let x, y £ T and assume A+JC=«J-a+,yfor some

A £ S.   Hence A £ ß(a).  By assumption, A is extended to A £ Horn (Ur(a), R+),

and m • A (a) + A(y) - A(x) = A(A) > 0 which implies the conclusion.

(3.6.2) => (3.6.3). By Lemma 3.3, Ur(a) = Pj<a). Let A be the extension

of A to Ur(a). Then A |PT(a) = hr for some r £ R0. by Lemma 3.5. By Lemma

3.4, iPfia), hr) satisfies the K-condition.

(3.6.3) =* (3.6.2). Again use Lemma 3.3 and Lemma 3.4. n

4. Examples. Examples 4.1, 4.2 and 4.3 show that the K-condition does

not imply the B-condition; Theorem 2.1 is not true in general if T0 is not co-

final.

Example 4.1. A commutative cancellative idempotent-free semigroup S

is defined by

S = {(x, y): yez+ifx = 0,yez if x £ Z+}

in which the operation is

(x, y) + (z, u) = (x +z,y + u).

Let r0 = {(0,^): y £ Z+}. T0 is not cofinal in S. Define A0 £ Hom(r0, R$)

by Ao(0, y) = y. Suppose A0 is extended to A £ Horn (5, R°_). Let xQ £ Z+ be

fixed and let X = A(x0, 0), X £ R°. Choose y £ Z+ such that 7 > X. Then

Afro» ~y) + A(°> JO = ^(^0' °) = A»hence n(xo> ~y) = X - v > 0. This is a con-

tradiction. Therefore A0 cannot be extended to any element of Horn (5, R+).
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Let (b, c) G S\T0 be fixed. Take arbitrarily x, y, m G Z+. Let p = mb,

and <7 = me 4- y - x. Then p G Z+, ?G2 and (0, x) + (p, q) = m • (b, c) +

(0, y). Since (x - y)/m = (Ao(0, x) - Ao(0, y))/m can be arbitrarily large, <F0,

A0> does not satisfy the 8-condition. Since F0 is a filter of S, the K-condition

is satisfied by <F0, A0>.

Example4.2. Let S = {(x,7): x GZ£, v£Z,v>l -x2}anddefine

F0 and A0 by

To={(0,y): yEZ+},     ho(0,y)=y.

T0 is not cofinal but is a filter in S.  Suppose that A0 can be extended to a

homomorphism A of S into R+. For each « G Z+, let

<p(n) = hQ(n, \-n2).

Then \p(\) + <p(n - 1) - <¿</2) = Ao(0, 2« - 1) = 2n - 1 for each n E Z+. From

this recurrence relation, we have

««¿(1) + <p(0) -<,<")=£ (2/ - 1) = n(n + 1) - n = n2.
/=i

Since <p(0) = A(0, 1) = 1» it follows that mp(l) - </<«) = n2 - 1. By the assump-

tion ^)(w) > 0 for all « G Z+, we have

«V<1) > m2 - 1    for all « G Z+

hence <p(l) > n - \\n for all n G Z+. This is impossible.   It follows that A0 can-

not be extended to an element of Horn (5, R0.). We show that the B-condition is

not satisfied. Let m G Z+, m > 1, and choose y, z EZ+ such that z -y = m2

- 1. Then

(0, z) + (w, 1 -m2) = m • (1, 0) + (0, v)

but (z -y)\m = m- \\m can be taken arbitrarily large.

Example 43. Let it be the transcendental real number and let a = 7r/4.

Then 0 < 7r/4 < 1, and a is transcendental over the field R of rational numbers.

If ak = ak (k = 1, 2,. . .) (a* is the usual Ath power of a), then 1, ax, a2,...

are linearly independent over R and 0 < ak < 1 (k = 1, 2,... ). Let F0 be

the additive semigroup of R+ generated by ax,.. . , ak,. . . .  F0 is actually a

free commutative semigroup over ax.ak.Let bk = 1 - ak > 0 (k =

1,2,...), and let S be the subsemigroup of R+ generated by T and bx, b2,.. .

bk . . .  .  F0 is a filter of 5.  Define A0:   F0 —► R+ by the homomorphism

given by h0(ak) = k. Since T0 is free, A0 is well defined. Then A0 cannot be

extended to A G Horn (5, RÍJ). For suppose A0 is extended to A. Then 1 = ak

+ bkES, which implies A(l) = h(ak + bk) > h(ak) = k for all k.  This is a
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contradiction. Finally we show that <F0, A0> does not satisfy the B-condition.

Let m E Z+ and akET. As ak\\, ak\m and so ak\(m 4- a¡) in S for all m G Z+,

all a¡, ak E T. Then

(h0(ak)-h0(ai))lm = (k-Olm

is not bounded.

Acknowledgement.  The authors thank the referee for his kind sugges-

tion on this paper.

Addendum. The assumption of cancellation does not restrict our dis-

cussion by the following reason. Let S be a commutative semigroup, S0 the

greatest cancellative homomorphic image of S, and g0: S —*■ S0 the homomor-

phism. If/is a homomorphism of S0 into R+, then A =fg0 is a homomorphism

of S into R°_. Every homomorphism A of S into R0. can be obtained in this man-

ner. Accordingly the results in this paper are extended to the case in which

cancellation is not assumed.
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