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ABSTRACT. Let § be a commutative cancellative semigroup and T,
be a cofinal subsemigroup of S. Let hq be a homomorphism of T, into the
semigroup of nonnegative real numbers under addition. We prove that Koba-
yashi’s condition [2] is necessary and sufficient for hg to be extended to S.
Further, we find a necessary and sufficient condition in order that the exten-
sion be unique. Related to this, the “boundedness condition” is introduced.
For further study, several examples are given.

1. Introduction. A commutative cancellative archimedean idempotent-free
semigroup is called an N-semigroup. Kobayashi [2] proved the following:

THEOREM L.1. Let T, be a subsemigroup of an N-semigroup S and let h,
be a homomorphism of T, into the semigroup Rg_ of nonnegative real numbers
under addition. Then hg, can be extended to @ homomorphism of S into Rg if
and only if the pair (T, h,) satisfies the following condition: if x, y € T, and
xly (x divides y) in S, then hy(x) < hy(y).

One of the authors [4] has studied the homomorphisms of T, into R, from
the viewpoint of positive quasi-orders. In this paper, we treat the homomor-
phisms of T, into the nonnegative real numbers in the case when S is a commu-
tative cancellative semigroup and T is its subsemigroup. Theorem 2.1 will be a
straightforward generalization of the classical result that characters can be ex-
tended from a subgroup of an abelian group G to G itself. In §2, we will show
that Theorem 1.1 holds if T}, is cofinal in S. In §3, we will introduce a “bound-
edness condition” and discuss the relation between this condition and the exten-
sion of a homomorphism beyond a filter. In §4, we will give a few examples,
which show that Theorem 2.1 does not necessarily hold if T, is not cofinal.

A subsemigroup U of a commutative semigroup S is called unitary in S if
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148 M. S. PUTCHA AND TAKAYUKI TAMURA

x€S,a€Uandax € Uimply x € U. U is called cofinal in S if, for every x
€ S, there is a y € S such that xy € U. As is well known, see [1] or [5],a
unitary cofinal subsemigroup U induces a group congruence p; on S defined by
x py y if and only if ax = by for some a, b € U. We denote S/p,, by S/U.
Furthermore the kernel of S — S/U coincides with U.

Let T be a nonempty subsemigroup of S. The smallest unitary subsemi-
group T of S containing the subsemigroup T is called the unitary closure of T
inS. T is given by

T={x€S: xt €T for some t € T},

A nonempty subsemigroup F of S is called a filter of S [3] if x, y € S and xy
€ F implies x, y € F. The smallest filter Tofs containing the subsemigroup T
is called the filter closure of T in S. Then

T ={x € S: xy €T for some y €ES}.

(1.2) The following hold.
(1.2.1) T— T and T — T are closure mappings, thatis, TC T, T C T.
T, CT, implies Ty C T, and T, C T,.

T=T T=T.
(1.2.2) T is unitary in S, T is a filter in S, and T is cofinal in T.
(123) T=T=T.

(1.24) T C T and T is unitary cofinal in 7.

Throughout this paper, R denotes the set of real numbers, R the set of
rational numbers, R, (R_) the set of positive (negative) real numbers; Rg,
(RY) the set of nonnegative (nonpositive) real numbers; Z, (Z_) the set of
positive (negative) integers and Z% (Z°) the set of nonnegative (nonpositive)
integers.

If S is a semigroup and if X is a subsemigroup of the additive group R,
then the notation Hom(S, X) denotes the semigroup of homomorphisms of S
into X under the usual operation. Let X,, X,, Y, and Y, be commutative
semigroups such that X; C X, and Y, C Y,. Let h; € Hom(X,, Y,) and
h, € Hom(X,, Y,). If hyIX; = h,, we say that h, of Hom(X,, Y,) is extend-
ed to h, of Hom(X,, Y,); in particular, if Y, = Y,, we say that &, of
Hom(X;, Y,) is extended to X,. If the extension h, of &, of Hom(X,, Y,)
to X, is unique, we say that k; of Hom(X, Y,) is uniquely extended to X,.
Let h € Hom(S, R). h is called trivial if A(x) = 0 for all x € S.

In this paper the binary operation in a commutative semigroup will be de-
noted by addition, i.e. +.
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COMMUTATIVE CANCELLATIVE SEMIGROUPS 149

2. Extensions from cofinal subsemigroups. In this section, we will prove
the following generalization of Theorem 1.1.

THEOREM 2.1. Let T, be a cofinal subsemigroup of a commutative can-
cellative semigroup S and let hy be a homomorphism of T, into the additive
semigroup R of nonnegative real numbers. Then h,, can be extended to S if
and only if

(K) t, €S +t, implies hy(t,) = hy(t,) forall ty, t, €T,

In this paper, the condition (K) will be called the K -condition. It is ob-
vious that if hy can be extended to S then the K-condition must hold. We will
prove sufficiency. Let X denote the set of pairs (T, h) where T is a subsemi-
group of S containing T, and h € Hom (7, RY) such that k|Ty = kg and (T, h)
satisfies the K-condition.

Let [a] be the cyclic subsemigroup generated by @ and let [7, a] be the
subsemigroup generated by T and g, i.e.,

[T,al=TU(T+[a]) U [a].

LEMMA 2.2. Let (T, h) € X and suppose thata € Sand (T +[a]) N T
F &. Then there exists h': [T, al — R such that (T, a), h") € X. Further,
h' is unique.

PROOF. There exist #;, 1, ET, NEZ, such thatt, =N-a+t,. Then
h(t,) > h(z,) by the K-condition. Define h': [T, a] — RY by

H(t +n-a)=h@) + 3 lht,) - h(,)), tET,nezs,

1(na) = g [(e,) = hzy)), neEZ,.

First we show that 4’ is well defined: ¢t +n-a=¢+n"-a,t, ' €T, n n' €
Z,, impliesN-t+Nn-a+(+n) - t,=N-t +Nn'-a+@m+n)-t,
thatis, N-t+n-t, +n'-ty,=N-t'+n'-t, +n-t,. Thisshowsh'(t +n -a)
=h'(t' +n' - a), hence k' is well defined. From its definition, k' is clearly
a homomorphism into R%, and #'|T = h. Assumet +n-a=s+t +n'-a
forsomea€S. ThenN-t+n-t, +n' -t,=N-s+N-t'+n' -t +
n - t, which implies

N-h) +n-h(t,) +n' - h(t;) > N - h(e) +n' - h(t,) + n - h(t,)

by the K-condition. This gives A'(t + n - a) > h'(t' + n' - a). Hence (T, a],
k'Y € X. If " is any extension of h to a homomorphism of [7, 4] into Rg,, we
must have
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150 M. S. PUTCHA AND TAKAYUKI TAMURA
h(t,) = K"(¢,) = N - K'@) + h"(ty) = N - h"(@) + h(t,)

so that h"(a) =N"'[h(t,) — h(t;)] = h'(a). 1t follows that (¢ + n - a) =
Wit+n-a)forallt €T, aln€Z,, thatis,h” =h'. 0

To consider the case when (T + [a]) N T = &, we need a lemma. From
now on, ¢y, t,, t; and ¢, will denote arbitrary elements of 7.

Let

A@) = {n'[A(t)) —h(t))): 1y +n-a€ty +5),
Ba) = {n"Y[h(t,) - h(t,)): t, €t tn-a+S),

where a € S, A(a) and B(a) mean the sets depending on a. Note that 0 € A(a)
and hence A(a) # 2.

LEMMA 23. Let (T, h) € X and suppose that (S +[a) N T # & Then
Sup A(a) < InfB(a) < ».

PROOF. Since (S+[a]) N T+ &, thereare t,, 1, ET, xESandn€Z,
such that t, = ¢, +n -a +x. Hence B(a) #@and InfB(a) <. Suppose ¢; +
nyca=t,+s,andty=ty+n,-a+s, wheren,n, €Z,,s,,s, €S
Thenn, -ty +n, t; =n, -ty +n,-t, +n, s, +n, -s,. By the Kcondition,
ny - h(ty) +ny - h(t)) >ny - h(t;) + ny - h(t,). Hence ny'[h(t,) — h(t3)] >
n7![A(t,) = h(t,)]. Thus we get SupA(a) < Inf B(a). ©

LEMMA 24. Let (T, h) € X and suppose that (S + [a]) N T ¥ & but
(T +[a]) N T=2. Then h can be extended to a homomorphism h': [T, a]
— R and ([T, a), ") € X. The k' is determined by choosing h'(a) such that
Sup A(a) < h'(a) < InfB(a). Moreover, every extension h" of h to [T, a} such
that ([T, a), h") € X is obtained in this way.

PrOOF. Choose b € RY such that
(4.1 Sup A(a) < b < Inf B(a).
Define

Wt +n-a)=ht)+n-b fort€T,n€ZY
(24.2) ( ) @) +

h'(na) = nb forn€Z,.
Since S is cancellative and (T + [a]) N T = &, every element of T + [a] is
uniquely expressed as ¢ + n - @ and hence h' is well defined. Then A’ is clearly
a homomorphism [T, ] — R$ and #'|IT = h. Suppose that ¢, +n, -a=1, +
n,-a+ts ng,n, €2%, s€S. Then there are three possibilities: n, = n,, n;
>n, andn, <n,. If n; = n,, then, since S is cancellative, £, = ¢, +s, hence
h(t,) > h(t,) by the K-condition. This implies H(t, +n, -a)=h'(t, +ny-a).
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COMMUTATIVE CANCELLATIVE SEMIGROUPS 151
If ny >n,, thent, +(n, —n,) -a=t, +s and, by the choice of b,
This implies
H(ty +ny-a)=h(t,) +ny -b<h(t,)+n, -b=h'(t; +n, -a).
Ifn, <n,,thent, =t, +(n, —n;)-a+s By the choice of b,

This gives
H(t, +ny-a)=h(ty) +ny - b<h(t,)+n, -b=h'(t, +n, -a).

Therefore ([T, a], ") € X.

Assume that h" is an extension of  to [T, a] and that ¢t; +n, ~a=1¢, +
spandt, =t3 +ny-a+s,,n,n, €Z,, 5,5, €S. Using the assumption
that h" obeys the K-condition, t; + n,a = t, +s gives h"(¢,) + n,h"(@) >
h"(t,), so that h"(@) > (h(t,) — h(t,))/n,, hence h"(a) > Sup A(a). Likewise we
have h"(a) < (h(t,) — h(t3))/n,, hence h"(a) < InfB(a). By the former half of
the lemma, ([T, a], A") € X. O

COROLLARY 2.5. In Lemma 2.4, the extension k' is unique if and only if
(2.5.1) Sup A(a) = Inf B(a).

PROOF OF SUFFICIENCY OF THEOREM 2.1. Define the partial order in X
by (Ty, hy) <(T,, h,)if and only if T; C T, and h, is an extension of &, to
T,. Then it is easy to see that X satisfies the condition for Zom’s lemma and
so X has maximal members. To show that any such maximal member has do-
main S, it suffices to show that if (T, A) € X and a € 7, then h can be extended
to h'": [T, a] — RY such that ([T, a], h) € X. Since T is cofinal, (S + [a]) N
T # &, furthermore there are two possibilities: (7 + [a]) N T # Zand (T +
[a]) N T = &. Lemma 2.2 has dealt with the first case; Lemma 2.4 has done
the second case. Thus the theorem has been proved. O

COROLLARY 26. Let S be a commutative cancellative semigroup and T,
a unitary cofinal subsemigroup of S. Then every homomorphism h of T, into
RY can be extended to .

ProoF. Every h satisfies the K-condition.

COROLLARY 2.7. Let T, be an ideal of S. Then every homomorphism h
of T, into RY can be uniquely extended to S.
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152 M. S. PUTCHA AND TAKAYUKI TAMURA

ProOF. Lemma 2.2 is applied to this case since (T, + [a]) N T, # & for
each g €S. The direct alternate proof of this corollary is left for the reader’s
exercise. 0

Since every subsemigroup of a commutative archimedean semigroup is co-
final, Theorem 1.1 is a special case of Theorem 2.1.

THEOREM 2.8. Let T be a cofinal subsemigroup of a commutative can-
cellative subsemigroup S, and let h: T — Rg, be a homomorphism. Then h
admits a unique extension to S if and only if, for each a € S, Sup A(a) =
Inf B(a).

PROOF. Assume h admits a unique extention to S. Then (T, h) satisfies
the K-condition. Suppose that ; and k, are distinct extensions such that
([T, a], h,) and ([T, a], h,) obey the K-condition for some a ¢ T. Then (S +
[a]) N T # Zsince T is cofinal in S; (T + [a]) N T = & by Lemma 2.2. Now
Lemma 2.4 shows that ([T, a], 4, and [T, a], h,) are in X. By Theorem 2.1,
h, and h, can be extended to homomorphisms h: S — R%and h3: S — R re-
spectively; but &} #h3. This contradicts the assumption. Therefore & admits a
unique extension to [7, a] foreacha € T. If (T + [2]) N T +# &, we can easily
show thatifn€Z,,t,,t, €ETandt; +n-a=t,,then

Sup A(a) = InfB(a) = ((t,) — h(t,))/n.
If (T + [a]) N T = &, then Corollary 2.5 shows SupA(a) = Inf B(a).
Conversely, suppose Sup A(a) = Inf B(a) for every a €S. Ift, =t; +s5,
ty, t, €T, s €S, then 2t, €2t, + s + S, which implies

Inf B(s) < 2[A(t,) - h(t,)].
Ast, +2-s€t, +8, SupA(s) = ¥%[h(t;) — h(t,)]. Hence
Ylh(t,) — h(t))] < 2[h(t;) - h(t,)]

It follows that h(t,) = h(t,). Hence h satisfies the K-condition, and so & is ex-
tended to S. By Lemma 2.2 and Corollary 2.5, the extension is unique since
SupA(a) = InfB(a) for eacha € S. O

3. Boundedness condition. In Lemma 2.3, we see that the set 4 is bound-
ed. In light of this, we will introduce the boundedness condition (B-condition).
In this section, we assume that S is a commutative cancellative semigroup and let
P = S\F where P is a prime ideal, P # &, and Fis a filter [3], F# &. Leta €
P. The subsemigroup of S generated by a and F is denoted by Pp(a) or P(a) if
Fis fixed. We define the relation p on P as follows: ¢ p d if and only if m - ¢
+s=n-d+t forsomes, t € Fand some m, n €Z,. Then p is an equiva-
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lence relation on P and each p-class is a subsemigroup of P; i.e., p has the fol-
lowing properties:

(3.1.1) xpy impliesx px +y forallx, y €EP.

(B12) xpm-x+tforalt€EFandallm€EZ,.
Let Q(a) denote the p-class containing @ € P. Let Ug(a) or U(@) = [Q(a), F],
i.e., the subsemigroup of S generated by Q(a) and F. By (3.1.1) and (3.1.2),
wesee Q@) + FCQ@). Ifs,t€EFand b€ Q(@a), thenk-b+s=1-b+1,
(k, 1€ ZY), implies k =l and s =¢. In fact,if k>, (k—10) - b +s =t by can-
cellation, but this is impossible since F is a filter and b € P. Hence k < 1. Like-
wise k = 1. Therefore, k =/, and hence s = ¢ by cancellation. Thus we have

(3.2) Each element of Q(a) + F has a unique expression as the sum of an
element of Q(a) and an element of F.

As defined in §1, X denotes the unitary closure of X and X denotes the
filter closure of X.

LeEMMA 33.
33.1) U@) ={x€E€S: m-x€EP@) forsomem€EZ}
and
(332) PG) € V) = T@) € Pa) = UGa).

PrROOF. (3.3.1) Ifx €F, then x € P(@) C P(@). If x € Q(a), then m - x
+s=n-a+tforsomes, t EF, somem, n€Z,;hence m - x € P(a). There-
fore U(a) is contained in the set at the right-hand side. To prove the other
direction, let m - x € P(g). By definition,n -a +s+m x =1-a + t for some
s, t € F, and some n, IGZS_. Suppose n >1 Thena +z =t for some z €S.
This contradictsa €P. Hencen <I. Ifn=1, thenx €F. If n <[, thenm -
x +s=(—n) *a+t which implies x € Q(a), hence x € U(a). Thus we have
(33.1).

(3.3.2) It immediately follows from (3.3.1) and the definition that P(a)
C U(@) C P(a). Taking their filter closures, we get P(a) U(a) by (1.2.3). It re-
mains to show U(@) C U(@). Let x € U(g). Then b = ¢ + x for some b, ¢ €
U(a). By (3.3.1), we can choose m € Z, such that m - b, m - ¢ € P(@). Since
m-b=m-c+m-x and P(a) is unitary by (1.2.2), we see that m - x € P(a).
So x € U(a). Therefore U(@) C U(e). This completes the proof. 0

Let T be a subsemigroup of a commutative cancellative semigroup S and
let » € Hom(7T, Rg). We say that (T, h) satisfies the B-condition (boundedness
condition) in S if, for each a € S, there is an M € R? such that

(B) x,yET,m€Z%andy + m-aEx + S implies h(x) - h(y) <m - M.
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Here M is required to be independent of x, y and m. The notation 0 - a + y
expresses y itself, and hence the B-condition implies the K-condition. The B-
condition is equivalent to the combination of the K-condition and the following:

For each a € §, the set
(B) {m ' n(x)-r()): x, yET, mEZ,,y+m-a€x +5S}
is bounded.
LEMMA 34. The following are equivalent:
(3.4.1) (T, h) satisfies the K-condition in S.
(3.4.2) h s extended to h € Hom(T, RY).
(34.3) h is extended to h € Hom (T, RY).

PrOOF. (3.4.1) = (3.4.2). This follows from Theorem 2.1 since T is co-
final in T.

(34.2) = (3.4.3). Since T is unitary cofinal in T by (1.2.4), % can be ex-
tended to # € Hom (?, R?,,) by Corollary 2.6, and hence & is extended to T.

(3.4.3) = (3.4.1). This is obvious from the definition of 7. o

LEMMA 3.5. Let T be a filter of S, T # S, and let h € Hom (7, Rg). Leta
€ S\T and r € RY. Define h,: Pr(a) — RS by
{m “r+hs) ifx=m-a+swherem€Zl €T,
h(x) =

m-r ifx=m-awherem€Z,_.
Every extension of h to P(a) is obtained as h, for some r € RS.

PROOF. Since the expression of x is unique, &, is well defined. The
proof of the lemma is easy. O

THEOREM 3.6. Let T be a filter of a commutative cancellative semigroup
S, T#S, and let h € Hom (T, RY). Then the following are equivalent:

(3.6.1) (T, h) satisfies the B-coz@'tion.

(3.6.2) h can be extended to Uy(a) for each a € S\T.

(3.6.3) For each a € S\T, P(a), h,) satisfies the K-condition in S for
somer€R,.

PrOOF. (3.6.1) = (3.6.2). Choose r € R, such that
r=>Sup{m [hx)-h()): y +m-aE€x + S}

and then define A: U,(a) — RO by
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h(b) ifbeT,

h@)={m-r+h) =k ipecou)andn-b+t=m-a+s
n
forsomes, t€T.

By the choice of r, h (b) = 0 for all b € Uy(a). To show R is well defined, let
n-b+tt=m-a+sandn; b+t =my -a+s wheres t,s,,t, ET.
Then we have (mn,) -a +ny s+n-t, =(mmn)-a+n-s;, +n, -t which
implies mn, =mn and ny-s+n-t;=n-s; +ny - tsince T is a filter.
Then it follows that % is well defined. Next we show that 7 is a homomorphism.
Ifb,c€Q@),thenn-b+t=m-a+s,k-c+u=1-a+v for some#y s,
u,vET, nm,k, IGZ_,_,so(nk) G+c)tk-t+n-u=(mk+in)-a+k
*§ + n * v which implies h(b) + h(c) h(b+c¢). If b€ Qa) and ¢ € T, then

n‘b+t=m-a+sandn- (b+c)+t—m a+s+n-c so the same re-
sult follows, and we see h(b) + h(c) h(b + c) for all b, ¢ € Uy(a). Since
UT(a) is umtary cofinal in U,-(a) by Lemma 3.3 and (1.2.4), h can be extended
to # € Hom (UT(a) Rg_) by Corollary 2.6.

(3.6.2) > (3.6.1). Letx,yETandassumeb+x=m-a+y forsome
b E€S. Hence b € Q(a). By assumptlon h is extended to i € Hom (U,.(a) RY),
andm -h(a) + h(y)—=h(x)=h (b) = 0 which lmphes the conclusmn

3.6 2) = (3.6. 3) By Lemma 3.3, UT(a) PTJ(a) Let % be the extension
of h to UT(a) Then & |P(a) = h, for some r € R} by Lemma 3.5. By Lemma
3.4, (Pr(a), h,) satisfies the K-condition.

(3.6.3) = (3.6.2). Again use Lemma 3.3 and Lemma 3.4. 0

4. Examples. Examples 4.1, 4.2 and 4.3 show that the K-condition does
not imply the B-condition; Theorem 2.1 is not true in general if T, is not co-
final.

EXAMPLE 4.1. A commutative cancellative idempotent-free semigroup S
is defined by

S={(xy): ye€Z, ifx=0,y€Zifx€Z,}
in which the operation is

CEN+@uw=x+zy+u).

Let Ty ={(0,y): y €Z,}. T, is not cofinal in S. Define hy € Hom(T,, RY)
by hy(0, ) =y. Suppose h, is extended to h € Hom(S, R}). Letx, € Z, be
fixed and let A = h(x,, 0), A\ € R. Choose y € Z, such that y > \. Then
h(xq, —») + h(0, ) = h(x,, 0) = A, hence h(xy, —y) =A—y = 0. Thisisa con-
tradiction. Therefore hy cannot be extended to any element of Hom (S, RY).
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Let (b, ¢) € S\T, be fixed. Take arbitrarily x, y, m € Z. Let p = mb,
andg=mc+y-x. Thenp€Z,,qE€Zand (0,x)+(@,q)=m-(b,c)+
(0, »). Since (x —y)/m = (hy(0, x) — ho(0, y))/m can be arbitrarily large, (T,
hg) does not satisfy the B-condition. Since T, is a filter of S, the K-condition
is satisfied by (T, hg).

EXAMPLE42. Let S ={(x, y): x €Z%, y €Z y>1-x%}and define
T, and hy by

To={0,y): yE€Z.}, hy(0,y) =.

T, is not cofinal but is a filter in S. Suppose that A, can be extended to a
homomorphism A of S into R,. For each n € Z3, let

@) = hy(n, 1 —n?).

Then (1) + ¢(n — 1) —p(n) = hy(0,2n — 1) =2n — 1 foreachn € Z,. From
this recurrence relation, we have

ne1) + (0) - ) = 3° (i = 1) = n(n + 1) —n = n?.
i=1

Since @(0) = h(0, 1) = 1, it follows that ng(1) — ¢(n) = n?> — 1. By the assump-
tion ¢(n) > 0 for all n € Z, we have

ng(1)>n*-1 foraln€Z,

hence ¢(1) > n — 1/n for all n € Z,. This is impossible. It follows that k, can-
not be extended to an element of Hom (S, R9). We show that the B-condition is
not satisfied. Letm €Z,, m > 1, and choose y, z € Z, such thatz —y = m?
= 1. Then

©,2)+@m 1-m*)=m-(Q1,0)+(0,y)

but (z —y)/m = m — 1/m can be taken arbitrarily large.

ExXAMPLE 43. Let 7 be the transcendental real number and let a = n/4.
Then 0 < /4 < 1, and a is transcendental over the field R of rational numbers.
Ifa, =a* (k=1,2,...) (@ is the usual kth power of a), then 1, a,, a,, . .
are linearly independent over R and 0<¢q, <1(k=1,2,...). Let T be
the additive semigroup of R generated by a,,...,a;, ... . T isactually a
free commutative semigroup overa;, ..., &, ... . Letby =1-¢, >0 (k=
1,2,...),and let S be the subsemigroup of R, generated by T and by, b,, . . .,
by... . T,isafilter of S. Define hy: To — R, by the homomorphism
given by hy(a,) = k. Since T, is free, hg is well defined. Then h, cannot be
extended to # € Hom(S, Rg). For suppose h, is extended to . Then 1 =g
+ b, € S, which implies k(1) = h(a; + b;) = h(a;) = k for all k. This is a
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contradiction. Finally we show that (T, h,) does not satisfy the B-condition.
Letm€Z, anday €ET. Asall,almandsoal(m +a)inSforallmeZ,,
alla, a; €T. Then

(ho(ak) - ho(az))/m = (k- i)im

is not bounded.
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ADDENDUM. The assumption of cancellation does not restrict our dis-
cussion by the following reason. Let S be a commutative semigroup, S, the
greatest cancellative homomorphic image of S, and g,: § — S, the homomor-
phism. If f is a homomorphism of S, into RS, then h = fg, is a homomorphism
of § into RY. Every homomorphism & of S into R can be obtained in this man-
ner. Accordingly the results in this paper are extended to the case in which
cancellation is not assumed.
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