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Homomorphisms of Knot Groups on Finite Groups

By Robert Riley

Abstract. We describe trial and error computer programs for finding certain homo-
morphisms of a knot group on a special projective group LF(2, p), p prime, and programs
to evaluate #i(3TC ; Z) where 9TC is a finitely sheeted branched covering space of S3 associated
with such a homomorphism. These programs have been applied to several collections of
examples, in particular to the Kinoshita-Terasaka knots, and we state numerous conjectures
based on these experiments.

About forty years ago a universal method for obtaining algebraic invariants of
knot type was proposed and became standard. The method, as applied to a knot k
of type K and having group irK = xi(S3 — k; *), begins with the determination of
the homomorphisms of irK on a given group G. These homomorphisms fall into
equivalence classes under the action of the automorphisms of G, and a crude pre-
liminary invariant of K is the number of homomorphism classes. In the next stage
of the method, we fix a transitive permutation representation of G, perhaps of infinite
degree. Each homomorphism class of vK on G is associated with a covering space
It of S3 — k such that the number of sheets in the covering is the degree of the
permutation representation, and the group H^CM; Z) is an algebraic invariant of the
knot type K. In this paper, we shall discuss the means and results of implementing
the universal method on a computer when the group G is chosen to be one of the
special projective groups Lp = LF(2, p) = PSL(2, p), where p is a prime integer.

The universal method has been most thoroughly examined in the case where the
group G is cyclic. The determination of the homomorphism classes becomes com-
pletely trivial, and all the homology invariants can be deduced from a single matrix,
the Alexander matrix. These "cyclic invariants" have been applied with good effect
to just about every problem in knot theory, but, alas, when the Alexander polynomial
A(x) of the knot reduces to the constant 1 these invariants degenerate and are
worthless. It is no good choosing a solvable group for G in such a case; to get useful
results from the universal method, we must use nonsolvable groups. Of course,
simple groups receive first consideration in this context, and of the families of classical
finite simple groups, the family {/_„} is the most manageable. As further encourage-
ment for this study, the group Ls is isomorphic to the alternating group A&, and
R. H. Fox has shown in several papers ([5] is a good example) that the homomorphisms
of a knot group on Ah have some interesting applications. There are, however, very
few clues to suggest what the best method for finding homomorphisms on the special
projective groups could be. In addition, almost nothing is known about the homology
invariants of homomorphisms on noncyclic groups G. It therefore seems reasonable
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604 ROBERT   RILEY

to explore the subject initially by applying the most humble methods to a large
number of examples. This leads directly to the development of computer programs
to do the work and to large tables of output data. These are the subject of this paper.

Our method for finding the homomorphisms of a knot group irK on a finite
group G is simple trial and error. Suppose that irK is given to us in the form

(0) irK =  \xi, ■■■ ,xn: rite) = r2(x) =  ■■■  = 1|.

Let a = (au • • • , an) be a set of elements of G which together generate G. The assign-
ment Xi —► at, for i = 1, • • • , n, can be extended to a homomorphism 6 : wK —» G
such that (Xi)8 = a, if and only if ^(a) = r2(a) = • • • = 1. Hence the determination
of the homomorphisms (and later their arrangement into classes) is a finite process.
But before we actually carry out this process even on a computer, we should find
ways of reducing the number of experiments to the irreducible minimum. When the
presentation (0) is an over-presentation (see [5] or [7]), the generators x¡ are all
conjugate in irK. This is such a great aid to the classification that we use only over-
presentations for knot groups. In Section 4, we discuss a version of the over-
presentation that is especially well adopted to our methods and programs.

In Section 2, we determine the irreducible set of experiments needed to determine
the homomorphism classes of tK on A5 when n in (0) is 2 or 3. It turns out that there
are three possible kinds of such homomorphisms, and that the search for one kind
is much easier to describe and implement in a computer program than the others.
The characteristic property of these homomorphisms is that the image of an over-
generator of (0) is an element of order 5 in A5. In addition, we found that such
homomorphisms are more numerous than the others for our test cases. Hence, when
we generalize the Ah case to Lv in Section 3, we restrict ourselves to the homo-
morphisms which carry an over-generator of wK to an element of order p in Lp. We
call such homomorphisms "reps" for brevity, and note that the property of being a
rep is invariant, that is, it does not depend on the over-presentation (0) used in
the definition. In Section 5, we discuss how to implement the second stage of the
universal method on a computer when G is an arbitrary finite group. Our tools are
now ready.

In Section 6, we discuss the outcome of applying our programs to various collec-
tions of test cases. We have concentrated most of our effort on the groups G = Lp
where p ^ 11, with the greatest emphasis on p = 5 because the results are all new
and the computation time per knot is still reasonable. The first set of test knots that
we discuss are the prime knots with at most 9 crossing points, conveniently drawn
on pp. 70-72 of Reidemeister [13]. We call these the classical knots and we have two
tables in the microfiche section for them. The first table is of over-presentations for
their groups which may be used as a standard reference by anyone doing computation
in knot theory. The second table is of the invariants of these knots associated with
their homomorphisms on A-0 = L5. We state a large number of conjectures about
the homology invariants associated with reps of an arbitrary knot group on Lv that
are backed up by numerous tables of data which are not all discussed here. We hope
that the reader shares the author's faith that only a small amount of wit and dis-
crimination is needed to extract good conjectures from modest amounts of numerical
data in this subject. The homology invariants for a certain special sort of reps are
also discussed in Conjecture B, and we believe that this may be the best clue to the
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whole subject. The section ends with a discussion of three particular knots having
Alexander polynomial A(x) = 1, namely Seifert's knot, the 11-crossing Kinoshita-
Terasaka knot [10], and a third 11-crossing knot discovered by J. Conway [2]. These
three knots are shown to have different types.

In Section 7, we demonstrate the power and limitations of our programs by
trying them on an infinite collection of knots that can be described by two integral
parameters. These knots were discovered by Kinoshita and Terasaka [10] and shown
to be nontrivial with A(x) = 1. We shall show that a homomorphism of the group
of one of these knots on A5 determines a corresponding homomorphism for the
groups of an infinity of other knots whose integral parameters vary in certain arith-
metic progressions. If we vary one of these integral parameters in its progression, we
get interesting formulas for the corresponding homology invariants. If these formulas
were proven (but it is not worth the effort to do this), they would show that these
knots determine infinitely many types. As it is, we have only proven that they deter-
mine at least 200 types.

The work described in this paper has led to a later paper, "Parabolic representa-
tions of knot groups" that we are submitting for publication elsewhere. In it, we
prove that many of the knot groups discussed here have representations on subgroups
of PP(2, C), from each of which one can derive an infinity of reps on the groups Lp.

I am indebted to Dr. G. Edmunds for his useful comments and constructive
criticism, and to Professor W. Magnus for his kind encouragement of this project
at a time when its continuation was in doubt.

1. Throughout this paper we shall use a standard notation for groups and homo-
morphisms taken from Huppert [9]. In particular, we write operators on the right
so that products of permutations are read from left to right, when x, y are elements
of a group x" = y'1xy, and G = (xu ■ ■ • , x„) means that G is the group generated
by xu • • • , xn.

All knots and knot types discussed in this paper are tame. We shall use the
notation k for a knot in S3, K for its isotopy type, K' for the isotopy type of a mirror
image of k and K for the type of k, i.e. two knots ku k2 in S3 have the same type if
there exists an autohomeomorphism of S3 such that a(ki) = k2. This notation is
obviously consistent with subscripts and we use it with the understanding that
mentioning any of kt, K{, K'i or A", makes clear what the other symbols mean. The
group of a knot, iri(S3 — k; *), depends only on K and we denote it irK. If T is the
boundary of a nice tubular neighbourhood of k and *T is a point on T the group
Ti(P; *r) determines a conjugacy class of subgroups of irK, and irK with this con-
jugacy class specified will be called the marked group of K. The simplest way to mark
tK is to name a longitude commuting with a chosen over-generator of vK, in practice
always with the first named over generator.

Consider an over-presentation

(1) irK = |*i, ••• , xn : /-i, ••• , r»_i|

of the knot group tK. Each relation ri, = 1 can be written as x. = W~1xtW where
W G vK. We can use such a relation to eliminate the generator x, whenever W can
be written without using x,. By this means the original presentation (1) can be
changed to a new presentation of the same form as (1), but with a smaller number of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



606 ROBERT   RILEY

generators n. Of course, the remaining generators are still over-generators of irK so
they are still conjugate. We shall call such a presentation a normal presentation and
we shall use only normal presentations in this paper. In Section 4 we will describe
a modified version of a normal presentation which is more convenient in practice.

Among all the normal presentations of wK, there must be some written on the
least number of generators. If this least number is v, then v depends only on K and
we denote it by vK = v. It is not hard to see that vK is the minimal bridge number
[14] of K, but we make no use of its known properties. We do not know how to
calculate vK; however, it is usually possible to find its true value by inspection even
when there is no proof available. vK must not be confused with the minimal number
of generators for irK. For example, when K is a torus knot, this minimal number of
generators  is  2,  but  vK can  be  arbitrarily large  [14,  Satz   10].

The only knot K with vK = 1 is the trivial knot K = 0. The class of knots K with
vK = 2 has been completely classified in [15] and differently in [2]. These knots are
also known as rational knots (Viergeflechte) and they are all of alternating type.
There is probably no reasonable scheme to classify the knots with vK = 3. A wild
knot K would have vK = <».

Let irK be a knot group, G a group, and consider the various homomorphisms
öi, 62, • • ■ of wK on G. We shall say that 0t is equivalent to 82, in symbols di = 02,
when there exists an automorphism co of G such that d2 = Öjco. We shall also say
that 8i is weakly equivalent to B2 if there is an automorphism a of vK such that
B2= adi. Because the determination of the automorphism group of a knot group is
an unsolved and presumably very knotty problem, we are forced to use equivalence
much more than weak equivalence.

Let G be a group of permutations of the numbers 1, • • • , n. We will write the
elements g of G as permutations in two different ways. In the first way, we write
[ai, • • • , a„] for the element g G G such that ig = a(, for i = 1, • • • , n. In the
second way, we write g as a product of disjoint cycles.

(2)        g = (¿ii, bi2, ■ ■ ■ , bi r,)(b2i, b22, • • • , b2 rJ ■ ■ ■ (b,i, b,2, • ■ ■ , b. r.)

where n + r2 + ■ ■ ■ + r, = n, è,,g = b{ i+, (second index (mod r<))> and each of
1, • • • ,n occurs in exactly one cycle. We shall omit cycles of length 1 from (2), and
when s — 1 we shall also omit the parentheses. In fact, we shall omit the commas
from both representations wherever possible, e.g. [23451] = 12345. We shall write E
for the identity [123 • • • «].

2. Let wK be a knot group presented by a normal presentation (1) on n = 2 or 3
generators. In this section, we shall reduce the problem of classifying the equivalence
classes of homorphisms of irK on Ab to a reasonable number of experiments, viz. 3
when n = 2, and 93 when n = 3. We begin with some assertions about A5 which are
best proven by direct calculation.

The group A5 has 60 elements, viz. 1 of order 1, 15 of order 2, 20 of order 3 and
24 of order 5. All the elements of a given order except 5 are conjugate and the
elements of order 5 lie in two conjugacy classes. If C G A5 has order 5, then a is
conjugate to C, C~l but not to C2, C2. The automorphism group of A6 is the sym-
metric group S5 acting by conjugation, viz. let a G S5,g G A¡¡, then ga = g". All the
elements of A5 of a given order are equivalent under the action of S5. The maximal
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subgroups of A6 are the stabilizers of a symbol 1, • • • , 5 (these subgroups are
isomorphic to At), and dihedral groups of order 10. If two elements of A5 commute,
they either lie in a cyclic subgroup or they have order 2 and lie in the stabilizer of a
symbol.

In this section, 0 always means a homomorphism of irK on As. Since the over-
generators of irK in any normal presentation (1) are all conjugate, the elements
Xid G A¡¡ all have the same order, say r. If yt is a generator in a second normal
presentation of irK, then yx is conjugate to xx or xT/1, therefore yxQ has order r. This
means that the number r depends only on 0 and not on the presentation, and this
allows us to define the order of 0 as r. Equivalent homomorphisms obviously have
the same order, so that the problem of classifying the various homomorphisms is
split into three cases. From now on, we assume that the number of generators n in
the normal presentation (1) is 2 or 3.

If 0 has order 5, then xrf is a 5-cycle in A5. For some a G S¡¡, a~1(xi6)a =
12345 = C so that 0 is equivalent to a homomorphism 0j such that jcx0: = C. We
may assume 0 = 0,. Next, x2B is one of the 12 elements of Ah conjugate to C. These
are C, C1, and 10 other elements which do not commute with C. These 10 elements
lie in two sets, each of 5 elements, on which conjugation by C is a cyclic permutation.
If one of these elements is a, then {C'aC \ j = 0, • • • , 4} is one set and
[C~ia~1Ci | j = 0, • • • , 4} is the other. Thus, jc20 = C, C~x, or the automorphism
of A6, defined by conjugation by a suitable power of C, carries x29 to a or a'1. Hence,
we may assume x2d = C, C_1, a or a'1. No automorphism of Ah that leaves C fixed
carries a to a-1, so that two homomorphisms 0lt 02, thus normalized with x2di ¿¿ x30a,
are inequivalent. If n = 2, then (C, x26) = A5 so that x2B = a or a-1. We shall fix
the element a to be (13254) = [35214].

Suppose n = 3 and *30 = C±l. We can apply the above argument to x38 and get
x39 = a or a'1. However, if x26 = a*1 then (C, x28) = As so that the only auto-
morphism which leaves Xid and x26 fixed is the identity. This means that x3d can be
any of the 12 elements conjugate to C and that two homomorphisms normalized so
*i0i = *i02 = C, x2di = x262 = a*1, but x30i 5¿ x3d2, are inequivalent. Hence, when
n = 3 the original homomorphism 0 is equivalent to a homomorphism defined by one
of 2-2 + 2-12 = 28 choices for the images of xu x2, x3.

Now let 0 be a homomorphism of order 3. We may assume Xi0 = 123. We have
two cases, either 123 and x2d generate Ab, or they do not. If they do, then x20 cannot
leave 4 or 5 fixed and therefore x2d = a45 or a54 where a = 1,2 or 3. When x29 = a5A,
the automorphism defined by (45) G Ss leaves 123 fixed and transforms a54 to a45,
so that 0 may be replaced by an equivalent homomorphism (still called) 0 where
jc20 = a45. If a is a suitable power of 123, then a45° = 145 so that we may finally
assume x26 = 145. Note that (123, 145) = As and that this argument shows that if ß
is a 3-cycle moving both 4 and 5 then (123, ß) = As.

When n = 2 we must have (xj, jca0) = As so that the normalized homomorphism
can only be x^ = 123, *20 = 145. However, when n = 3 and Bu 02 are two homo-
morphisms thus normalized, then Qx= d2<^ x38i = x3d2. Therefore, our original 0
is equivalent to a homomorphism defined by one of 20 choices for the images of
Xi, x2, x3 when {xid, x26) = A¡¡.

Next, suppose that 0 is a homomorphism of order 3 such that *x0 = 123 and
(123) < {xid, x26) < As. Then x26 must move at least one of 4, 5, but not both.
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If x26 moves 5, the automorphism defined by (45) G Ss transforms 0 to an equivalent
homomorphism such that x2d moves 4, therefore, we can assume x28 moves 4. Now
x28 = abA where a and b are 1, 2, 3. We wish to normalize 0 so that a = 1, in which
event x26 = 124 or 134. If a ¿¿ 1 already, the appropriate automorphism is defined
by lac G S5 where c = 2 or 3 as a = 3 or 2. It is easy to check that if x^ = x262 =
123, jc20! = 124, x262 = 134, then 0, ^ 02. Furthermore, (123, 124) = (123, 134) =
the subgroup of Ah leaving 5 fixed. This subgroup is maximal so that if f is a 3-cycle
moving 5 then (xxQ, x2d, f ) = A5. When n = 3, x36 must be one of these 12 3-cycles
f = ab5. There is no freedom in the choice of 0 in its equivalence class left to move
x3B, so that two homomorphisms 8U 02 normalized so that x^ = x202 = 123,
*20i = *202 = 124 or 134, but x3di ^ x362, are inequivalent. Therefore, our original 0
is equivalent to a homomorphism defined by one of 2-12 = 24 choices for the images
of Xi, x2, x3 when n = 3, 0 has order 3, and (xx0) < (xid, x26) < As.

Finally for order 3 assume that x26 = 123 or 132. Then (123, x36) = AB and the
normalization argument above shows that we may replace 0 by a new 0 such that
x3d = 145. Our original 0 is equivalent to a homomorphism defined by one of 2
choices for the images of xu x2, x3.

Last and least we consider homomorphisms of order 2. It is well known (and
easy to check for A5) that a nonabelian group generated by two elements of order 2
is dihedral, hence such homomorphisms do not exist for n = 2. We omit the case by
case argument for n = 3 and simply tabulate the results in Table 1 at the end which
summarizes the discussion of this section.

Now that we have a normal form for each equivalence class of homomorphisms
we can test for the existence of each equivalence class of homomorphisms by testing
the assignments xxB, ■ ■ ■ , xvd of its normal form to see if 0 actually defines a homo-
morphism, as remarked in the introduction.

3. We now generalize in a naive manner some of the results of the last section to
a classification of homomorphisms of knot groups on the linear projective groups
L„ m LF(2, p) = PSL(2, p) where p is a rational prime. For Lh = As, we found that
the easiest case to handle was the homomorphisms of order 5. Accordingly, we shall
fix our attention on the homomorphisms of order p on Lv, and for brevity, we shall
call such a homomorphism a "rep". We refer to Chapter XIV of Burnside [1] for
the relevant background. The group L2 is somewhat exceptional so we shall assume
p is an odd prime in the classification arguments that follow.

The group Lv has order p-(p2 — l)/2 and is simple except when p = 3 where
L3 œ Ai. It containsp2 — 1 elements of order p and these lie in two conjugacy classes.
If a G Lv has order p, then a is conjugate to a" iff n is a square (mod p). If ß also has
order p, either ß = a" for some «or (a, ß) = LP. All elements of order p are either
powers of a or lie in one of p — 1 orbits of p elements under conjugation by a. The
only automorphisms of Lv that leave a fixed are conjugations by powers of a. For
any pair ßu ß2 of elements of order p there is an automorphism f of Lp such that
ß2   =   ßlt.

Let (1) be a normal presentation of the knot group irK and assume the number of
generators n is 2 or 3. To begin the classifications of the reps of irK on Lp, we fix
a G Lv of order p and alter each rep by an automorphism of Lp so that the image of
Xi is a. Next, consider the (p — l)/2 orbits of elements of order p which are conjugate
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to a. If we choose an element a¡ in the y'th of these for j = 1, • • ■ , (p — l)/2, then
every element ß of order p which is not a power of a has the form ß = a~*a,a' for
some j and some s. This means that every rep 0 can be altered so that *!0 = a,
x28 = a" for some s or x2B = a¡ for some j. When n = 2 the equivalence class of 0
is completely determined by j.

When « = 3, we have two cases. If x26 = a¡ for some j, then (xi0, x20) = Lp so
that the equivalence class of 0 is completely determined by j and x30. However, if
x28 = a" for some s, (s/p) = 1, then we can alter 0 by an automorphism of Lv so
that x36 = a j for some j. In this event, the equivalence class of 0 is determined by
s and j.

This shows that when n = 2 the equivalence classes of reps can be found by
(p — l)/2 experiments and when n = 3 by

P-1/-1 +(^)'-o+^y
experiments. The method generalizes immediately to « > 3 generators and the general
formula for the number of experiments is

(tr (p + ir1 -1

We can determine the existence of reps on the solvable groups L2 and L3 from
the Alexander polynomial AK(x) of K. Since P2 is dihedral of order 6, the argument
of Section 10 of [6] shows that irK has a rep on L2 iff 3 divides AK(— 1). By a variation
of this argument, we can show -kK has a rep on L3 iff 2 divides AK(co) AK(Ô>) where co
is a nonreal cube root of 1. (This strange number is the product of the "Torsionszahlen
dritter Stufe" in Reidemeister [13] which are tabulated there on p. 25 for the classical
knots. We note that his table is wrong for the knots 9j and 9a, the entries in both
cases under h = 3 should read 2, 2. The rest of his table is correct.)

As a first hint that there is a better way to find reps, we will show that some
knots have a rep on Lp for every prime p. Let M be the group 5P(2,Z), then every Lp
is a homomorphic image of M. Furthermore, the image of (J \) in Lp is an element
of order p. This means that it is sufficient to find a homomorphism 0 of ■kK on M
such that Xid = (J }). The elements A = (J J) and B = (_} J) are conjugate and generate
M, in fact BAB = C - (_J J), ^P = (_J J) = A and we know from Section 1.4,
Exercise 19, of [11], that M = (C, D). Using the presentations in Table 2, we find
the following homomorphisms 0 of wK on M such that Xi 0 => (J J).

^T *20 *3 0

3i, 9„ 96, 923    (* = 2)

1    0
85, 8„, 916 V-l     1

"18»   °21»   "2

G ¡)
(continued)
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K.                                    x26 x3B

820                             \-l     1/ \-l         1/

Uî) (-î ¡)
U9 (-Î 5)

°18)   92g

°10>   °15>   8is,   "40

819

The above list is complete up to equivalence for the classical knots. Because a neces-
sary condition for such a homomorphism 0 on M is the existence of a rep on Lv for
every p, the nonexistence of other 0 follows from the above mentioned table in
Reidemeister or from Table 3 in the microfiche section in this issue.

4. If (1) is a normal presentation of tK on a small number n of generators, the
relators are frequently very long words in xu ■ ■ ■ , xn. For example, for some rational
knots with 9 crossings, the relator is a word in xu x2 of length > 100. This difficulty
can be avoided by introducing new generators x„+i, • • • , xm, and new relations
expressing x„+{ as a word in xu ■ ■ ■ , x»+<_i, for i = n + 1, • • • , m. The resulting
presentation of irK now has the form:

generators   xu • ■ • , xm,

(3)       relations      xn+i = word inxu ■ ■ • , xn+i-u i = 1, • • • , m — n,

relators        rx(xu ■•• , xm), •■■ , rn-i(xu ■■■ , xm).

This is still a normal presentation on n generators xu ■ ■ ■ , xn and much more con-
venient in practice. Note that the subordinate generators xn+i, • ■■ , x„ are arbitrary
elements of tK and not necessarily over generators of irK.

If one is given a model knot k for K, a presentation (3) is defined implicitly by
orienting k and selecting n arcs of the picture to correspond to xu ■ ■ ■ , xn. Next, the
other arcs are numbered n + 1, • • • , m in such a way that at one end arc(J) is crossed
by an arc(/) with i < j and on the other side of arc(z') the continuation of arc(z') is
arc(s) with s < j,j = n+ I, • • ■ ,m. (This rule is stated for the Wirtinger presentation,
but for an over-presentation for a nonalternating knot the rule is only slightly more
complex. See the example below.)

Presentation vK = \xu x2, x3 : ru r2\

_ -1
X\   — *3 X2 X3,

_     -1 -1X5  — X3    X2    Xi x2 x3,

Ti = X5 Xi X2     Xi    ,

_ -1  -1  -1r2  — X4 X\ x2 x3   x2 Xi  ,

longitude   x2 x3 Xl x3 Xi X2 x4 *5 ^18 •
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Figure 1

Table 2 in the microfiche section of this issue is a list of normal presentations of
the marked groups of the classical knots. These presentations have been checked in
numerous ways and are almost certainly correct. Table 3 of homomorphisms of
these knot groups on As is based on Table 2.

5. Associated with a homomorphism 0 of a knot group wK on a finite group G
are certain topological spaces whose homotopy types are invariants of the knot type
K. In particular, suppose G is a transitive group of permutations of the symbols
I, • • • , s, and let H be the subgroup of irK whose image in G keeps the symbol 1
fixed. Let It be the covering space of S3 — k corresponding to the subgroup H, then
11 is a noncompact s-sheeted covering manifold of S3 — k. Furthermore, as explained
in Section 8 of [6], It has a certain natural closure 3TC which is a compact manifold
known as the s-sheeted cover of S3 branched over k (belonging to H). The spaces
II, SíTC are the topological spaces in question, they depend (up to homeomorphism)
only on vK, the permutation representation of the group G, and the weak equivalence
class of 0. In particular, their integral homology groups H^M = H^HL; Z), Hi'Sïl =
HiÇïïl; Z) are invariants of K. A general algorithm to compute integral presentation
matrices for these homology groups is informally derived in Section 8 of [6] as a
consequence of a presentation for the fundamental groups vj/M, xi3TC.

We have translated this algorithm into a Fortran subroutine, Homology, which
goes into action given a presentation (2) and the images of the generators {x,0, / =
1, • • • , n\ expressed as permutations. It returns the groups H^, H$(L as Betti
numbers and torsion coefficients. The subroutine has the same generality as the
original algorithm (except for practical limitations) and so can be used to study more
general groups than knot groups. A more complete description and a listing of
Homology have been deposited in the UMT file; cf. the review in the review section
of this issue.

To apply Homology to a homomorphism 0 of irK on Lv, p prime, we need a
permutation representation for LP. The different permutation representations of Lp
will give rise to different spaces It, 9T£, but the smaller the number of sheets s, the
smaller the presentation matrices for H^, H-&ÏL. It is known ([1] or [9]) that LP
always has a permutation representation of degree p + 1 but none of lower degree,
except forp = 5, 7, 11, where there are representations of degree p. So for all/? ^ 5,
7,11, we restrict our attention to the representation of degree/» + 1 but for p = 5, 7,
11 we shall use both representations. When irK, p and 0 are understood, we shall
write Otp+i, 31ZP+1, lip, 3TCj, for the corresponding covering spaces.
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For the exceptional primes 5, 7, 11, we took particular permutation groups of
degree p for the groups Lp. For p = 5, we used As as discussed in Section 2. For
p = 7, we took the elements a, au a2, a3 of Section 3 to be

a = (1234567),        ay = (1675243),        a2 = a\,        a3 = ax.

This representation of L7 is taken from p. 208, line 5 of [1]. We took the elements
a, {a¡, j = 1, • • • , 5} for Lu to be

a = (123456789a/3),       ß = (la)(37)(56)(89)(2)(¿>),       a, = /3a'/3,    j =  1, •••  ,5.

This representation came from 7.8 of [3]. In addition, for p = 5,1, we wrote out
specific isomorphisms between the above permutation groups and permutation
groups of degrees 6, 8 resp. We may someday do the same for p = 11.

For the nonexceptional primes p, we find it convenient to deal with the groups Lp
directly as matrix groups and derive our permutations from the matrices. Our work
in this direction is not complete except for the primes p si 19.

Given the permutation group G of degree s and the homomorphism 0 of irK on
G, suppose that Xid has c disjoint cycles. Then, as Professor Fox shows, the number
of generators for 7^311 (and consequently for /^EITC) is bounded above by ns — nc —
(s — 1); cf. [7]. When this bound is 0, 311 is a homotopy sphere. When vK = 2 this is
true for 31Z3 when 0 is a rep on L2 [7] and for 9TC5 when 0 is a homomorphism of order
3 on A5. Consequently, we do not compute Hi%, //i3TC in these cases. When the upper
bound is 1, Ti'SïL = i/jSTC is cyclic and this happens for G = L2, vK = 3, and for
G = L3, vK = 2. (The number c is always 2 for the permutation representation of
Lp of degree p +1.)

The space It can be considered as the complementary space of the link / = 311 — 'M
in 3TC. The link type of / in 3TC is an invariant of the knot type K and the group Hi'M
is only the crudest of a set of link invariants of / analogous to the Alexander poly-
nomials and the Hosokawa polynomial [8]. We have not pursued this matter beyond
the calculation (by hand) of one specific example. The rational knot 5X has a homo-
morphism of degree 3 on Ab (Table 3), consequently 3TC5 is a homotopy sphere and /
is a link in this sphere. We found that the Alexander matrix of / (in one variable x)
reduces to

where a = 1 — x, ß = 1 + x5 and y = 1 + x + x2 + x3 + x*. Consequently, the
Hosokawa polynomial is V(x) = ß2y.

6. The algorithms of the preceding sections have been completely or partially
coded as Fortran programs and put to work on up to 250 knots. In this and the next
section we consider the results. They fill quite a few tables, some rather lengthy,
so we will include just one in microfiche and merely discuss the conclusions to be
drawn from the rest.

In this and the next section, we describe a homology group HXX = Hi(X; Z) by
the diagonal entries of a square presentation matrix for H-JC. If convenient, some of
these entries may be 1. When the coefficient group is not Z, it will be Z„ = Z/nZ for
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some n. For example, HXX = 0, 1, 3 means HiX = Z 0 Z3, and if HiX = 3 then
Hi(X;Z2)= 1.

We begin with the reps on L2. After this paper was submitted for publication,
the paper "Metacyclic invariants of knots and links" by R. H. Fox appeared in
Canad. J. Math., v. 22, 1970, pp. 193-201, and parts of that paper are very relevant
to our work. In the first place, Fox points out that the longitudes of a knot group irK
lie in the second commutator subgroup of irK, hence if 0 : irK —» G where G is a
group whose second commutator subgroup is trivial, the longitudes are in the kernel
of 0. This applies when G = L2 or L3 and supersedes a more cumbersome argument
of mine. Secondly, Fox includes a table (which agrees with mine) of the groups /^STI«
associated with the reps of the groups of the classical knots on L2. More interesting
is the linking number v of the two components of 3TC3 — 113 for each rep which Fox
includes in his table. Although I do not know how to calculate v, I found on com-
parison with one of my tables that in certain cases there seems to be a strict relation
between u and a number I can calculate. Namely, if 0 is a rep of wK on M = SL(2, Z)
where xt0 = (J }), and 7 G irKis a longitude commuting with xu then yd necessarily
has the form ±(J [) for some g G Z. In fact, g = 0 (mod 6) because the image of 7
in L2 or L3 is E. Then, in the 15 cases where Fox's homomorphism is the mod 2
reduction of such a homomorphism on M, we have

g = ±3r.

The sign depends on the normalizations and we cannot settle it here. This relation
is probably at the heart of the reason why in all known cases v is a rational fraction
with an even numerator.

For As = Ls, we tabulate the detailed results for the classical knots in Table 3
in microfiche. All permutations in that table are in the bracket [ ] notation. There
are altogether 51 reps, 26 homomorphisms of order 3, and 9 of order 2, for a
total of 86 homomorphisms. There are 30 knots with no homomorphism of which
only 932, 933, 934 are not rational. Five knots, viz. 916, 922, 926, 930, 936, are proven
nonrational by the number or types of their homomorphisms but not by any simpler
method that I know. Most of the nonamphicheiral knots are proven to be such by
Fox's argument [5].

The cases p = 7 and p = 11 have been run on the computer for the classical
knots. We found 102 reps on L7 for these knots and that 27 knots have no rep, of
which 6 are not rational. The maximal number of reps for any knot is 13 for 940 and
these appear to lie in 6 weak equivalence classes. There are 100 reps on Ln and 29
knots with no reps, 8 of these are not rational. This time the maximal number of
reps per knot is only 5, attained for K = 941, 947 and 948.

This is as far as we have gone for the block of classical knots and as far as we
have computed the homology. We have gone further to find at least one rep on some
Lp for every classical knot. The largest prime needed for the first rep was 23 which
was required for 75 and 812. All the nonrational knots, save 933, have a rep on Lp for
p g 11, but for 933 we need p = 17.

Out of the detailed results of the calculation of around 1000 homology groups
Hi')ih, //i31ZA, we have found three general conjectures that appear certain, and two
more which are very likely. The discussion splits naturally into the cases h = p + 1,
h = p, and we exclude p = 2 because 2 is quite exceptional in this context. As
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notation, write BÇ\Lk), P(3TC4) for the Betti numbers of 11», 3TC4, respectively. We begin
with h = p + 1.

Conjecture A. If 0 is a rep and p 2: 3,

P(3TC„+i) + 2 ^ P(1tp+i) ^ P(3H,+1) + 1,

and when BÇm,p+1) = 0, P(1lp.n) = 2. Furthermore //iSTCp-n has a torsion generator
of even order.

The usual value for P(3TCp+1) is zero. We know that HiMp+i is a factor group of
/Tillp+i, but apart from that and Conjecture A there seems to be no further universal
assertion to be made about the comparison of /Tittp+i with Pfr1£flZ„+1. However, when
0 happens to be the reduction of a homomorphism on M the situation is much
clearer. We have:

Conjecture B. For each prime p ^ 2, there are integers bp and dp, where dp is a
divisor of p + 1, which have the following properties. Let 0 : itK —» Lv be the
reduction modulo p of a homomorphism <b : xAT —> SL(2, Z) such that Xi4> = (J J).
Let the torsion subgroups of the corresponding homology groups Hi'M^i, Hi'MP+1
have orders u, m, respectively. Then, P(3TCp+1) ^ b„ and m/u is an integer which
divides dP. If P(3Ttp+1) = 6„ then m/u = a1,.

We have verified this when/> ^ 19 for the homomorphisms on M listed in Section
3. The numbers bp, dpforp^ 19 are

p     2    3    5    7    11    13    17    19
¿>p    0    0    0    0      2      0      2      2
A-,    1    2    2    4      2    14      6    10

It should be emphasized that Conjecture B only concerns the orders u, m of the
torsion subgroups, not the relations between the actual torsion coefficients. The
tables show that the passage from It to 3U will do the wildest things to these torsion
numbers, subject to the known or conjectured restrictions. We have also considered
the question of patterns in the groups Hic\lp+U HiW,v+1 for a fixed K and varying p
(corresponding to a homomorphism on M), but the results are too vague to be
commented on here.

There is a conjecture similar to conjecture A for the groups /Tille, i?i3TC9 corre-
sponding to a homomorphism of order 2 or 3 on Ls = A5. For order 3, the conjecture
is the same as Conjecture A, and for order 2 the only change is

5(3H6) + 1 ^ P(1l6) á P(3TC6) + 4.

In all known cases, P(3Ha) = 0, PCllj) = 4, but this is not a conjecture.
Now for the groups H^, HiMp when p = 5, 7 or 11. We only discuss the cases

where 0 is a rep because the other cases are very different.
Conjecture C. If 0 : ttK^> Lp is a rep and p = 5,7 or 11 then B^) = B(WlP) + 1.

lfHic\Lp = 0, au ■ • ■ , an with 1 i£ at á <h Ú • ' ' ^n. then for some y G {1, •••>«},
i/TSTCp = au ■ ■ • ,pa,-, ■■■ ,an.

In Conjecture C the torsion number a¡ may or may not be already divisible by p.
The hypothesis P(1lp) = 1 is essential.

The two minor conjectures are that if i^illp = 0, a¡, ■ ■ ■ , a„ as in Conjecture C,
then 3 divides an when p = 5 and 2 divides a„ when p = 7. The evidence for these is
quite strong, but because there is no corresponding rule for p = 11, we hesitate to
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be too dogmatic about them. As an example, the knot 74 has a unique rep on Ln,
and Hi'Uu = 0, H^dn = 11.

To conclude this section, consider the three knots of Fig. 2, of interest because
they have Alexander polynomial A(x) = 1. The knot kx is

ki hi ki
Figure 2

Seifert's classical example of such a nontrivial knot. The knot k2 was constructed by
Kinoshita and Terasaka [10] and further studied in [12]. The knot k3 was discovered
by J. Conway [2] in his classification of the nonalternating 11 crossing knots. He has
shown that k2 and k3 are the only 11-crossing knots with A(x) = 1. (In Con way's
notation, k2 = . —(2, 3).2 and k3 = . —(3, 2).2.) We first try the homomorphisms
on A5.

Ki       XiO = (12345), x.2B = (15432),        x36 = (14523).

flails = 0, 2, 6. #13rc5 = 2, 30.        Hi^e = 0, 0, 2, 4.     ff,3TC6 = 2, 2, 16.
K2      Xl0 = (123), x20 = (145),           *30 - (123),    (longitude) 0 = E.

K3       XiB = (123), x20 = (145),            *30 = (142),   (longitude) 0 = E.

For both K2 and K3:

Hi%5 = 0, 0, 0. #7311! = 7.         #1^ = 0, 0, 12.        ^STÏ, = 180.
This shows that all three knots are nontrivial and that üfi is different from the

other two. We have not yet shown K2 9a K3. It is possible that the deeper Alexander
invariants of the link 3TC — 11 in 311 can do that, but I bet not.

We now try reps on L7 for K2 and K3. For convenience, write C = (1234567).
Each rep satisfies xx0 = C and each knot has two reps.

x20i = (1675243),       at30! = (1452736),    (longitude) 0, = C.

_   ffi1l7 = 0, 4, 28.       HA = 28, 28.    .Ír7.1l8 = 0, 0, 3.    #,3118 = 1920.
A2-

*202 = C, *302 = (1675243),    (longitude) 02 = C2.

All, = 0, 2, 238.     HiV(l7 = 14, 238.    #118 = 0, 0, 6.    tfÄ = 3, 228.

x26i = (1675243), *30! = (1723654),    (longitude) 0, = C.
Hi%7 = 0, 2, 2, 4, 12.    #3117 = 2, 2, 4, 84.      #118 = 0, 0, 4, 24.

I #i3E8 = 4, 8, 24.
3    x202 = C, x362 = (1264735),    (longitude) 0X = C2.

#,1l7 = 0, 2, 2, 8, 40.    #13IÎ7 = 2, 2, 8, 280.    #118 = 0, 0, 2, 36.
#,3U8 = 2, 6, 324.
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This shows that K2 ^ K3 and that neither knot is amphicheiral. The results for P„
are very similar: two reps per knot but the groups #i1lu, H$&n prove the knots
are different.

We tried to prove that K2 ̂  K3 by counting the reps on Lp forp = 13, 17, 19, 23,
29 and 31 to see if there was ever a difference between the corresponding numbers
for K2, K3. (This experiment took more than 3J hours on the Southampton computer.)
The results suggest the irK2 and irK3 have the same number of reps on LP for every
prime/? and that these knots cannot be distinguished this way. In [12], Magnus and
Peluso proved that icK2 has reps on Lp for an infinity of p, but because they only
netted a small proportion of the true set of reps their results cannot help us. We hope
to return to this question in a later paper.

7. One of the best ways to understand the behavior of our knot invariants is to
calculate them for a family of knots where the presentations of the knot groups
depend on integral parameters. As a final collection of examples, we consider the
rather complicated family of Kinoshita-Terasaka (KT) knots. The KT knot k(p, n)
is drawn in Fig. 3 in the case

Figure 3.  «Sj>, n)

where p and n are positive integers. When n < 0, the sense of rotation in the integral
tangle (winding) y is reversed. In [10] Kinoshita and Terasaka proved that n(p, n) is a
nontrivial knot with Alexander polynomial A(x) = 1 if p ^ 2 and n ^ 0.* Obviously,
k(p, ri) = 0 if p = 0 or 1 or if n = 0. The knot K2 of the last section is k(2, 1).

We may also define k(j>, n) for p < 0 by reversing the sense of rotation in the
tangles a, ß, 8, t in Fig. 3. (Beware that 5 and e now have \p\ — 1 = \(p + 1)| cross-
ings.) If we turn the knot over and reflect in a mirror, we see k(j>, ri) = k(j>, —ri).
Furthermore, we can turn the knot over and apply the Edmunds Flip to show n(p, ri) =
k(—p — 1, ri) for all/?, n. This allows us to assume/) is even and n > 0 from now on.

Let ir(p, ri) be the group of k(j>, ri). Since we have taken p even, we may write
p = 2p0, p+ = po + 1. Then w(p, ri) has a normal presentation (4) of the form
l^i» x2, x3 : ru r2\ where

* Our k(p, n) is written k(p, 2«) in [10].
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. ~p°a = x2   Xi xt = a    Xi a xb = a    x2 a

ß = x<1 xV    Xs = ß" Xi ß~p°    x7 = ßp° x3 ß-*°

, .N y = *6 *rs       *s = 7" *i t~"
(4)

ô = x2   Xg x9 = 5"° x2 5"So        a;10 = S** jc8 S~*+

_ —1 —1 Po —Po
€   —   JC9     ^C3 Xn   —   6       JCg 6

/"i = ^5 JCjo r2 = Xj Xli

Suppose for some fixed (p, ri) that n(p, ri) has a homomorphism 0 of order s on A5.
Say that the elements ad, ßd, yd, 86, ed of As have orders a, b, g, d, e, respectively.
Let q be the l.c.m. of a, b, d, e, and let xt0 = £«, / «■ 1, 2, 3. From (4) it is easy to see
that the assignment xrf = f¡, »' = 1, 2, 3, defines a homomorphism $ of *(/>', «') of
order s on A5 whenever p = p' (mod 2q) and n = n' (mod g). Because «(/>, 0) = 0 we
must have g = 2, and because k(0, n) = k(—2, ri) = 0 we must have 2q ^ 6 (in fact
2g is 30 or 60 in every case). We shall say that the homomorphisms 0 and <b are in
the same clan of homomorphisms ©.

Because the numbers g and q for a clan of homomorphisms must be divisors of
30, we know in advance that infinitely many KT knots have no homomorphisms on
As. Clearly, the same difficulty will occur whatever finite (nonabelian) group G we
may use in place of Ah. Therefore, if we wish to resolve all the different types among
the KT knots, we must either use an infinite group G or an infinite set of finite groups
[G„v= 1,2, •••}.

We can show however, that infinitely many of the knots n(p, ri) are different by
considering the homology groups #iHa, Hv$fLk, h = 5,6, associated with a clan of
homomorphisms 0. We examined a number of these clans and found by looking
at 10 to 40 cases that these homology groups can usually be predicted by simple
formulas. We must admit we have not tried to prove these formulas—the groups
are complicated and the presentation matrices are rather large. However the method
of proof (a giant calculation!) is clear and the results stated below should be con-
vincing as they are. (Sceptics might try a simpler case of a clan 0 where the knots
are alternating torus knots.) We present our formulas for five cases which illustrate
most of what we should expect.

I. xid = (123), x20 = (123), x30 = (145) when/» = 2 (mod 30), n = 1 (mod 3).
Since k(j>, ri) = k(j>, —ri), this clan also allows n = 2 (mod 3), but using the standard
normalization of 0 in its equivalence class we then write it ^0 = (123), x2d = (145),
x36 = (235). When/? = 2 and n = 3s + 1:

Hi%5 = 0, 0, 0.    #3115=17 + 2451.    #116 = 0,0,12.    H^ = |180 + 648s|.

II. Xld = (12345), x2d = (13254), x30 = (15324) when p = 2 (mod 30),
n = 2 (mod 5). When n = 3 (mod 5), we normalize 0 to x2d = (14523), x3d = (15324).
(This clan is one of three clans of reps which exist for the same set of (p, ri).) When
p = 2 write « = 55 + 2, t = 2 if 11 \ s, r - 22 if 11 | s,

#% = 0, 2, 18.    #3115 = 2, 90.    «ills = 0, 0, t.    #73TC8 = |1100 + 2616s|.

III. Xid = (12)(34), *20 = (12)(35), *30 = (13)(25) when p m A (mod 30),
n m 1 (mod 3). For « s 2 (mod 3) we write jc20 = (13)(24), x3d = (12)(35). When
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p = A, n = 35 + 1 and r = |78 + 240s| we get:

#115 = 0, 0, 0, t.        #i3TC5 = r. #%, = 0, 0, 0, 0, 2. H^ = A.

IV. jc,0 = (12)(34), jc20 = (13)(24), x30 = (14)(25) when p = 2 (mod 30),
n = 2 (mod 5). For n = 3 (mod 5) we write x30 = (13)(25), x30 = (15)(34). When
p = 2 the groups are:

#i1l5 = 0, 0, 0, 3.        #i3H5 = 3.        #i1l6 = 0, 0, 0, 0.        #73H6 = 2.

V. xx0 = (123), x2d = (134), x30 = (135) when p = 4 (mod 60), n = 1 (mod 2).
(This clan is one of four such which lie in pairs, the corresponding homology groups
for the homomorphisms in a pair being the same.) When p = 4 write n = 2s + 1,
p = 18 \s + 1|, and let t = 9 if 3\s, r = 3 if 3 X s. Then:

#!ll5 = 0, 0, 0, t.        #i3TC5 = 2, p.

//iH6 = 0, 0, a(s), b(s) where a(s) = 4r(s), b(s) = 1 when s is even, b(s) = 4 if
s = 1 (mod 4), and b(s) = 2 if s = 3 (mod 4). i/A = c(s), d(s), t(s)
where c(s) = 3 if s is even, c(s) = 2, otherwise, and rf(s) = 1 if s is even, d(s) = 3 ■ b(s)
otherwise. The final summand t(s) varies so wildly that I cannot guess a formula for it.

Table 1. The images *i0, x2d, x3d of the generators of a normal presentation on
three generators for the equivalence classes of homomorphisms on As. See Section 1
for the [ ] notation.

I. Order 5. jcj.0 = [23451]. 28 combinations
*20 = [35214]    or    [43152].    *30 = [23451], [51234], or one of

[35214], [41532], [54213], [31524], [54132],
[43152], [25413], [43521], [24153], [35421].

x2d = [23451]    or    [51234].    x36 = [35214]    or    [43152].
II. Order?,. Xid = [23145]. 46 combinations

x2d — [42351].    x30 = any 3-cycle.

x20 = [24315]   or    [32415].   *30 = any 3-cycle which moves 5.

*30 = [23145]    or    [31245].    *30 = [42351].

III. Order 2. xyd = [21435]. 19 combinations
x2d = [21543].    x30 = one of [35142], [32154], [34125], [42513],

[45312], [52431].
x20 = [35142].   X3d = one of [21543], [21354], [34125], [32154],

[43215], [45312], [53241], [52431],

[14523], [15432].
x.2d = [34125].   *30 = one of [21543], [35142], [45312].

Department of Mathematics
The University of Southampton
Southampton, England

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOMOMORPHISMS OF  KNOT  GROUPS  ON  FINITE  GROUPS 619

1. W. S. Burnside, Theory of Groups of Finite Order, Cambridge Univ. Press, 1897; 2nd
ed., Dover, New York, 1955. MR 16, 1086.

2. J. H. Conway, An Enumeration of Knots and Links, and Some of Their Algebraic
Properties, Computational Problems in Abstract Algebra, Pergamon Press, New York, 1970,
pp. 329-358.

3. H. S. M. Coxeter & W. O. J. Moser, Generators and Relations for Discrete Group,
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 14, Springer-Verlag, Berlin, 1965.
MR 30 #4818.

4. R. H. CrOWEll & R. H. Fox, Introduction to Knot Theory, Ginn, Boston, Mass., 1963.
MR 26 #4348.

5. R. H. Fox, "On the complementary domains of a certain pair of inequivalent knots,"
Nederl. Akad. Wetensch. Proc. Ser. A., v. 55 = Indag. Math., v. 14, 1952, pp. 37-40. MR 13,
966.

6. R. H. Fox, A Quick Trip Through Knot Theory, Topology of 3-Manifolds and Related
Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp.
120-167. MR 25 #3522.

7. R. H. Fox, Construction of Simply Connected 3-Manifolds, Topology of 3-Manifolds
and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs,
N. J., 1962, pp. 213-216. MR 25 #3539.

8. F. Hosokawa, "On V-polynomials of links," Osaka Math. J., v. 10, 1958, pp. 273-
282. MR 21 #1606.

9. B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin and New York, 1967. MR
37 #302.

10. S. Kinoshita & H. Terasaka, "On unions of knots," Osaka Math. J., v. 9, 1957, pp.
131-153. MR 20 #4846.

11. W. Magnus, A. Karrass & D. Solitar, Combinatorial Group Theory: Presentations of
Groups in Terms of Generators and Relations, Pure and Appl. Math., vol. 13, Interscience,
New York, 1966. MR 34 #7617.

12. W. Magnus & A. Peluso, "On knot groups," Comm. Pure Appl. Math., v. 20, 1967,
pp. 749-770. MR 36 #5930.

13. K. Reidemeister, Knotentheorie, Chelsea, New York, 1948.
14. H. Schubert, "Über eine numerische Knoten Invariante," Math. Z., v. 61, 1954, pp.

245-288. MR 17, 292.
15. H. Schubert, "Knoten mit zwei Brücken," Math. Z., v. 65, 1956, pp. 133-170. MR

18, 498.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


