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Introduction. In the study of spectral synthesis and symbolic calculus for
tensor algebras, certain homomorphisms of tensor algebras play a crucial role
([21], [23]; see also [8]). Thus the problem of determining homomorphisms of
tensor algebras naturally arises. C. C. Graham [7] has recently characterized
all automorphisms of tensor algebras under certain topological conditions. On the
other hand, some authors (e.g. [5], [11], [12], and [14]) have obtained several
interesting results on the homomorphism problem for restriction algebras of the
Fourier algebra A(T). Their works are, however, incomplete as compared with
Cohen’s theorem on homomorphisms of group algebras ([2]; see also [16]). Since
every tensor algebra can be regarded as a restriction algebra of a Fourier algebra
(191, [21], and [23]), it thus seems reasonable that one should treat the homomorp-
hism problem for tensor algebras as a step in the direction of identifying
homomorphisms of restriction algebras of Fourier algebras.

In this paper, we shall consider that problem for tensor algebras over two
compact spaces, and, in particular, entirely describe all homomorphisms of such
algebras with norm 1.

In §1, we determine the structures of all idempotent functions and unimodular
functions in such algebras with norm smaller than certain constants.

§ 2 contains our main results on the homomorphism problem. We introduce
the notion of “piecewise product mappings”, and characterize by it all homomorphisms
with norm smaller than a certain constant.

In §3, we determine the isomorphisms between two tensor algebras over
compact connected spaces, which improves a result of C. C. Graham [7].

§4 is devoted to obtain certain properties of tensor algebras as restriction
algebras of Fourier algebras.

Finally, in §5, we make the calculus of some constant and estimate another
constant obtained in § 1.

1. Idempotent and unimodular functions. Let X, and X, be two compact
(Hausdorff, and nonempty) spaces, and let

V = V(X X)) = C(X) ®CX,)
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be the tensor algebra over the spaces X, and X, with the projective norm (see
[23]). We shall always regard V =V(X) as a linear subalgebra of the Banach
algebra C(X), where X=X, X X,. Let us denote by =; the canonical projection
from X onto X;(j =1,2), and by Iz =1I[E] the indicator of any set E. If f is a
function on X, and if E is a subset of X, we define

1A vy = inf{lgly: g V,gle=/}.

For any point p of X, p; denotes the j-th coordinate of p(j=1,2): p= (P p.)-
Finally, V' =V'(X) denotes the conjugate space of the Banach space V, each
element of which is called a bimeasure on X.

Let now f be any idempotent function in C(X). It is then easy to see that
f admits a decomposition of the form

f=1E]l+---+IE],

where the sets E, are pairwise disjoint, clopen, and rectangular subsets of X; in
particular, we see that every idempotent function in C(X) belongs to V(X).

It is known ([17]; see also [18]) that {|pul»>1 implies |ull»=(L + 2"*)/2 for
any idempotent measure g on a locally compact abelian group. An analogous
result also holds for idempotent functions in C(X). In fact, ||fllr>1 implies
| Flyr=2/3"* for any such functions. To show this, we need a lemma.

LEMMA 1.1. Let D= {p,q,7,s} be a set of four points of X such that
bhh=n+Fq =535, andp2= g F7T3=3S,.

Suppose also that f is any function on X such that f =0 at a point of D and
|f1 =1 at the other three points of D, then we have | f|rw = 2/3Y~

PROOF. In general, we shall denote by C,(K), for any compact space K, the
multiplicative group consisting of all unimodular functions in C{K) {that is, g € C(K)
with |g| =1). Let pe M(D) be any measure on D, and put

w{p}) = a, pliq}) = b, w({r}) = o, p({s}) = d.

It is then easy to see that

ey = sup{ f gl-ggd,u[: 9:¢ C(X;), j = 1,2}

=sup{la +bz|+|c+dz|:|z| =1} = Ala, b, ¢, d).
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Suppose now that f is any function on X satisfying the condition in the above
statement ; without loss of generality, we may assume that f(s)=0. Then we
have

I fuly = Ala,b,¢,0) = la| +1b] +|c].
Since || fully = £ 1rm - gl it follows that
Ala, b,¢,0) = flivir » Alas b, ¢, d) -
Therefore, setting
(1.1) u, = sup{A(a, b,¢,0)/Ala, b,c,d) : abed + 0},

we have || flvm=u, But, as is easily seen from the Hahn-Banach theorem, the
equality | flvw = #, holds. We have also

u,=A(2,2,2,0)/A(2,2,2, —1) = 2/3%.
The equality #, = 2/3"* will be proved in §5, and this establishes our lemma.
Throughout the remainder parts of this paper, #, denotes the constant 2/3Y%
Following Graham [ 7], we say that two subsets E and F of X are bidisjoint if

n;(E) and m,(F) are disjoint for j=1 and 2.

THEOREM 1.2. For any idempotent function f in C(X), | fly>1 implies
| Fllv=uy and we have | fly=1 if and only if f has the form

(1.2) f=I1E]+---+1E,] (n=1),

where the sets E, are pairwise bidisjoint, clopen, nonempty, and rectangular

subsets of X.

PROOF. Suppose that | f|ly <u, and let E be any maximal rectanglar subset
of S(f)={xeX: f(x)=1}. We then claim that

(1) m(E) N m(SANE) =6 (7=1,2).

To get a contradiction, suppose the contrary ; we have, say, 7,(E) N m (S(f)\E) # @ .
Let r be any point of S(f)\E such that », is in = ,(E), and choose an arbitrary
point s of the set m(E) x {r,}. Taking any point p, of m,(E), we see that all
the points p = (7, ps)» ¢ = (s, $.), and 7 are in S(f). It follows from Lemma 1.1
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and the assumption ||f|,< %, that s must be in S(f). Therefore we have
m(E) x {rs} € S(f), and so

E & m(E) X (7y(E) U {rs}) C S(f)»
which contradicts the maximality of E, and hence (1) holds. Note now that E
is clopen since S(f) is both open and compact, and that the family of such
sets E covers S(f). Thus we can easily conclude that f has the desired form,
provided that f is nonzero.

Conversely, suppose that f admits a decomposition of the form (1.2). Setting
Fy=m(E;) and Gy = ms(Ey), we define

gx = 5~ [L+ (IF] - TEANIG - TG}

for k=1,2,-++,n; it is easy to see that every ¢, is idempotent and has V-norm
1, and that f= g, +++ g, In where E=m(S(f)) X 7s(S(f)). Therefore f(=+0)
is an idempotent function with V-norm 1, and this completes the proof.

LEMMA 1.3. Let D be a subset of X as in Lemma 1.1, and let f be a
Sunction in C\(X) such that

F(o) =S =flr)=1+f(s),
then we have
(1.3) lim sup|l f*lvim = supll f* vy Z 21>
where u, is an absolute constant larger than u,.
PROOF. As in the proof of Lemma 1.1, we have
1f™lvoy = sup{Ala, b, ¢, 2,"d)/A(a, by ¢, d)} = Blz,")

where 2z, =f1(s) and the supremum is taken over all complex numbers a,b,¢, and
d with abcd +0. Therefore, setting ‘

U, = irlf{Slnlp B(zon) Dol = Lizg#1}
we have

S‘ip”fnnv(n) =



HOMOMORPHISMS OF TENSOR ALGEBRAS 177

and, as is proved in §5, %, >u, The equality in (1.3) is obvious, and the proof
is complete.

We now obtain an analogue of a theorem of Beurling and Helson [1].
THEOREM 1.4. Suppose that f is a function in C\(X). Then we have

(1. 4) lhgjgpllf"llv<p> <u,

for all subsets D of X as in Lemma 1.1 if and only if f has the form
F=f1Qf: for some f1e Ci(X;) (j=1,2). In this case f is in V(X) and its
V-norm is 1.

PROOF. The last assertion and the sufficient condition are obvious, and it
suffices to show only the necessary condition. Fix any point p of X; replacing f
by F(p)f> we may assume that f(p)=1. We then define

fl(xl) =f(x1’P2)’ fz(x2) =f(P1’ xz) (xi €eX;;7=1, 2)

and claim that f =f; ®f, Otherwise, there would exist a point s of X such
that f(s) #f1(s1) » fo(ss). Choose any function ¢; in Cy{X;) so that

gi(ps) = 1, and g;(s5) = fils;) (i=12).

Setting A=f (g, ® g.), we then see that (1.4) holds with f replaced by 4, and
that

h(p) = h(q) = h(r) = L # h(s),
where ¢ = (s, ) and 7 = (P, S5). Thus, by Lemma 1.3, we have

lirggoumlh" H o) = Uy

where D= {p,q,7,s}. This contradiction implies f=f; ®f: and the proof is
complete.

COROLLARY 1.5. Suppose that f is any non-zero function in C(X) such
that \f\2=|f|. Then we have

(1. 5) lirgosaumlf" ”V(D) <,
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for all subsets D of X as in Lemma 1.1 if and only if f has the form

(1.6) f= z (£19 @ £2®) - I1E] »

where ;% € C(X;) and the sets E (1 =k=n) are pairwise bidisjoint, clopen,
nonempty, and rectangular subsets of X.

PrROOF. If f satisfies (1.5), it follows from Lemma 1.1 and Theorem 1.2
that- || is an idempotent function whose V-norm is smaller than %, Thus
Theorem 1.2 assures that | f| admits a decomposition of the form (1.2). Applying
Theorem 1.4 for X replaced by E;, we see that f has the form f =/ ®f,*®
on each se E, for some f;* in C\{X;) (j=1,2; k=1,--,n), which yields the
required decomposition of f.

Conversely, suppose that f* has the form (1.6). Defining

fi= 2@ Im(EN (G=12),
we see that

f: (fl®f2)'éI[Ek],

which together with Theorem 1.2 shows that |f|,=1. The proof is now
complete.

REMARK. That (1.6) implies || f|l=1 is also contained in [24] (see also
[6]and [7]).

2. Homomorphisms of tensor algebras. In this section let us fix four
compact spaces X; and Y;(7=1,2), and put X=X, X X,, Y=Y, xY,. By the
same notation n; we denote both of the canonical projections from X onto X; and
from Y onto Y;(j=1,2). If @ is a mapping from a subset E of X into Y, and
if f is a function on Y,fo® denotes the function on X defined by

_ (fle) (< E)
(fep)(x) = I < X\E).

Let also @;=mjop: E—Y;, and so @ = (@, ;). We say that @ is a piecewise
product mapping, provided that :
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(A) The domain E of @ has the form E = UJE,, where the sets E, are
pairwise disjoint, clopen, nonempty, and rectangular subsets of X.

(B) For each 7=1,2, and k=1,-++,n, the mapping @; restricted to E,
depends only on one of the variables x, and =z,.

Suppose now that @ is a continuous piecewise product mapping from X into

Y with domain E, and let {E.}} be as in (A) and (B). Defining
(2.1) H(f)=fep (feV(Y)),
we easily see that

LHf)- HEN v =1 flvey (feVY)s k=1,---,n).

Therefore H is an algebra homomorphism from V(Y) to V(X), and its operator
norm does not exceed n. As is proved below, all homomorphisms of tensor algebras
satisfying a certain norm condition are of the above type.

Let now H be any non-zero homomorphism from V(Y) to V(X), then H(1) is
an idempotent function in C(X), and so the set

E=Ey,= {(zeX: Hl)(z) = 1}

is clopen. By a familiar argument [13] there exists a continuous mapping @ = @4
from E into Y for which (2.1) holds. Hereafter, we shall fix H arbitrarily, and
associate with it the set £ and the mapping ¢ as above.

- LEMMA 2.1. Let D be a subset of X as in lemma 1.1, and let f be a
function on D such that =1 at some three points of D and f= —1 at the
remainder point of D, then we have | f| vy =2""

PrROOF. Using the notation A(a,b,c,d) in the proof of Lemma 1.1, we have

£y = sup{A(a, b, ¢, —d)/Ala, b, ¢, d) : abed + 0}
=A(LLLL/AQLLIL —1) =2,

LEMMA 2.2. Let {E]}} be pairwise bidisjoint, clopen, and rectangular
subsets of X. Then for every bimeasure P in V'(X), we have

(2.2) 1Pl = H[EIP]y = ; IIEPly 5
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where E = UEk
k=1

PROOF. For any functions f3%° in C\(X;) (j=1,2; k=1,---,n), we have
by Corollary 1.5

n

\Ply = [ILEIP], zlP( i ®f2<k>)z[E,,])]

k=1

n

2 IEIP) (/1% ®@f2%)

k=1

Taking the supremum over all such f;*°/S, we obtain (2. 2).

THEOREM 2.3. If |H(1)|y<w and if |H| <2, then @ is a piecewise
product mapping such that the sets {E,}} as in (A) and (B) can be so chosen
as to be bidisjoint. In this case the operator norm of H is 1.

PROOF. Since H(1) is a non-zero idempotent function whose V-norm is
smaller than #,, we have E= UTE(n=1), where the sets {E;}7 are as in Theorem
1.2. We then claim that (B) holds for these sets {F;}?. To prove this, fix j
and k(j=1,2; k=1,---,7n), and assume that there exist two points p and 7 in
E, such that p, =7, but @;(p) # @;(r). We can then verify that @; restricted to
E, does not depend on the variable 2, as follows.

Step 1. To get a contradiction, suppose that there exists a point ¢ in E,
such that q,=p, but @;(¢) # @;(p). Setting s=(g,,7s), note that s is in Ej
since E; is rectangular. If @;(p)+ @;(s), we choose an f e C,(Y;) so that fo@;(p)
= —1 and f=1 on @;({g. 7 s}); if @i(p) = @;i(s), we choose an f < C,(Y;) so that
fops{p)=1 and f=17 on @;{({q,7}). Then we have

| Z | H () =2

by Lemma 2.2, where we have regarded C(Y;) as a subalgebra of V(Y). This
contradiction assures that @; is constant on m(E;) X {p,}.

Step 2. Replacing p and » in Step 1, we see that @; is constant on =,(F;)
x {rsy}, too. Let ¢ be any point of E, with ¢, = p,. Since @,(p} # @;(r), we then
have either @;(¢) = @;(p) or @,(t) # @s(r). Thus the preceeding argument applies,
and hence @; is constant on m;(E;) X {£,}.

Similarly, we can show that, if there exist two points p and ¢ of E, such
that p, = g, but @;(p) # ®;(q), then @; restricted to E, does not depend on the
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variable x,. Therefore @ is a piecewise product mapping by definition.
We now prove that |H| =1 if H has the form described in our theorem.
To do this, it suffices to verify for any f e V(X)

(2' 3) ”I[E]fHV = SUP{HI[EIc] 'f“V: k=1,... ,n};

but this follows from Lemma 2.2 and the Hahn-Banach theorem (cf.[24],[6],
and [7]):

IILE)-f v = sup{| P(I[E]-f)|: PeV,|P], =1}

= sup Zl [Po(f)|: Pye V,(Ek),ZHPkl[wél
k= k=1
= Sup{|[I[Ek]f[IV k= 1. ’n} -
The proof is now complete.

COROLLARY 2.4 (cf.[14]). Every isometric homomorphism H with H(1)
=1 is essentially of the type

(2. 4) H(f) = fo (¥ X y) (feV(Y)),

where each r; is a continuous mapping from X; onto Y;(j =1, 2). Conversely,
a pair of such mappings (Wi, Vrs) defines by (2.4) an isometric homomorphism
H with H(1)=1. In this case, the range of H consists of all functions g
in V(X) such that g =f oY, X {ry) for some f in C(Y).

PROOF. Note that E= X, since H(1)=1. By Theorem 2.3, each mapping
@; depends on only one of the variables z, and x,. Suppose first that both
mappings @, and @, depend on (only) the some variable, say, ;. We then have

£ lvaey = 1TH(A)lvery = TH( Mo =N fllewy  (FeVY)),
because H is isometric. But this is the case only if at least one of the spaces Y,

and Y,, say Y, consists of a single point (see Lemma 2.1). Therefore, if we

define

(1 ) "i’l(xl) = 7’1(331’3:2)’ and ‘Pz(xz) = @z, 2s) (56 X5:5=1, 2),

it is easy to see that each yr; continuously maps X; onto Y;(j =1,2), and that H
is given by (2.4). Suppose next that each ¢; depends on (only) the variable
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x;(7=1,2). It then suffices to define ¥, and ¥, by (1), again. Thus the first
statement is established. The remainder two statements are contained in [20],
and the proof is complete.

COROLLARY 2.5. Every isomorphism H from V(Y) onto V(X) with max
(1H |, | H) < 2"% is isometric, and essentially of the type (2.4), where each
\r; IS a homeomorphism from X; onto Y;(j=1,2).

PROOF. Trivial from the proof of Corollary 2. 4.

REMARKS. (a) The identity (2.3) is also a consequence of Lemma 2 in [24].
But the author cannot understand the proof given there.

(b) It is not true that every homomorphism of tensor algebras is induced by
a piecewise product mapping.

Let {I,}T be a sequence of disjoint closed intervals I, =[a,,b,] of the real
line such that

0=a <ay;<+++, and lim @, = lim 6,=1.

Let K be the union of all I, with the limit point {1}. We define a mapping v
from K x K to K by

x, if rel, x I, and n is odd,
Y(x) ={x, f xel,x I, and n is even,

1 otherwise.

Then, using (2. 3), we can easily prove that, if @{x)= (Y(x), ¥(x)), @ induces a
homomorphism H of V(K, K) (into itself) by (2.1) (see [24]).

3. Isomorphisms of tensor algebras. Throughout this section, we shall
assume that H is an isomorphism from V(Y) onto V(X), and that both the spaces
X, and X, are perfect. [t follows, in particular, that @ is a homeomorphism
from X onto Y.

Let now E be any subset of X. We say that E is diagonal if the sets {z},
x in E, are pairwise bidisjoint, and that E is parallel to X, (resp. X,) if #y(E)
(resp. m,(E)) consists of a single point. Finally, let

D(E) = sup{Card D: D is a diagonal subset of E}.
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LEMMA 3.1. Let K, and K, be two finite spaces each of which consists
of n distinct points, and let K=K, X K,. Then there is a function f in V(K)
such that

fla)l =1 (x<K), and | flruo =",

PrROOF. It is known [23; pp.87-88] that there exists a measure g in M(K)
such that

Ip({x})| =n7? (xe K), and |lull, =n12.

Define flx)=sgn u{{x}) for £ in K; then we have

L= [ Fau=1f1 luly S 11 n,
K
which completes the proof.
LEMMA 3.2. We have

Dip({xd x Xl = (1H|-[H™)? (1 € Xi),

and
Dip(X, x W =(HIHM?  (@eXy).

PROOF. Suppose that 7 is a positive integer larger than 1, and that there
exists a point x; in X; such that

Digp({x} x Xo)l=n.

Let Ky = {x,”, 2,”,+«+, 2,”} be any subset of X, such that ¢({zx,} X K,) is
diagonal. Since x, is an accumulation point of X, and since @ is continuous, we
can then find a subset K, of X, with Card K; =7 so that the n subsets of Y

P(K; x {z,}) (r:¢ K,)

are pairwise bidisjoint. By Lemma 3.1, there is a function f in V(K, X Kj,) such
that

If(@)] =1 (ze K, x Ky), and [ flr=n".
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For each £=1,2,--+,n, choose a neighborhood U* of K, x {x,} so that the
sets @(U®) are pairwise bidisjoint. It is then easy to find 7z functions £ in
V(X) such that:

f(k) :f on Kl X {x2(k)} R “f(k)”V(X) — 1, supp f(k) C U(k) .

It follows that the supports of H™'(f‘*’) are pairwise bidisjoint and hence (see
(2.3), [24], and [6])

| n i

H—l(f(k))

k=1

wWy) — v(y)

Jer (&)

= sup{|H {f®)pw): b=1,2,--+,n} =< |H™.

Therefore we have

W= |31 i = VH [H (Zf) -
= |H|-|H,
which is trivial when #=1. We thus obtain
Dlgl {2} x X)) = (IH|-[H): (@€ X1,
and similarly
DplX, x (2= (|H]-|H): (@ X,).

This completes the proof.

LEMMA 3.3. Both the spaces Y, and Y, are perfect.

PROOF. Suppose that y, is an isolated point of Y,, and so {w} XY, is
clopen in Y. Since @ is a homromorphism, it follows that @ ({y:} xY,) is
clopen, and hence @ *({y,} xY,) contains a non-empty, clopen rectangle E. If
Card n;(E) = o (j=1,2), we could show that ||[H|| = + oo, using the fact that
V(E)+ C(E) for such an E. Since =;(E) is clopen in X;(j=1,2), it follows
that at least one of the spaces X; and X, contains an isolated point. This
contradiction completes the proof.

LEMMA 3.4. For any point x = (xy, x,) of X, there exists a neighborhood
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U of x such that
AUN ({2} x Xo) U(X: x {z}))] = @U) O ({31} X Yo) U(Y1 X {:3)) 5
where y = (y1,y:) = @(x1, Z5)-

PROOF. By Lemma 3.2, there is a neighborhood V,->of x5 J=1,2, such
that

(1) ol({z1} X V2)U(V1 X {-Tz})]c({yl} XY ) U(Y, x {y.}).

On the other hand, Lemma 3.3 assures that an analogous conclusion as in Lemma
3.2 also holds for @™, and hence there is a neighborhood W of y;j =1,2, such
that

(2) e ({n} x W) u (W, x {y)]C ({2} X Xi) U (X)X {x3}) .

Using (1) and (2), we can easily show the existence of a neighborhood U of =z
with the required property.

LEMMA 3.5. Let x = (x,,x,) be any point of X, and let y and U be as
in Lemma 3.4. Then every point x, in wlUN({x,} X X,)], possibly except
Zy has a neighborhood V., such that @|{x\} X V,] is parallel to Y, orY,) and
such that m(p[{x:} X V3]) (or m(pliz:} X V,])) is open in Yy(or Y,). A similar
assertion holds for every point x, in = [U N ({x,} X X,)], possibly except zx,.

PROOF. 1t is easy to see that @[UnN({x} X {x:}°)] is a relatively open
subset of the set ({y,} X Y,)U(Y, X {¥s}), from which our lemma follows.

We can now improve Lemma 3.2 as follows.
LEMMA 3.6. We have
Dlp({x,} x X)I=|H|?, and Dlp(X, x {x])]=[ H|?*
for all points x; in X;(j=1,2).
PROOF. Let 7, x;, and K, be as in the proof of Lemma 3.2. By using
Lemma 3.5 and replacing each x,*’ by a point of X, sufficiently near to x,*,
we may assume that every point x, of K, satisfies the following condition; there

is a neighborhood V', of x, such that @({zx;} X V,) is parallel to Y,for Y,} and
relatively open in {y,} XY, (or Y, X {y:}), where (y:,¥:)=@(x,, x,). It then
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follows from Lemma 3.4 that to every point x, of K, corresponds a neighborhood
V. of a2, such that ¢(V| X {x,}) is parallel to Y; or Y,. Thus the set K, as in
the proof of Lemma 3.2 can be taken so that the set ¢(K, x {x,}) is parallel to
Y, or Y, for every point x; of K,. Let f be any function in V(K x K,) as in
the proof of Lemma 3.2; it is easy to see that the function fo@™' can be
extended to a function g in V(Y) such that |glyw, =1. It follows that
=< |H(g)lym=1H] .

Thus we have

Dlp({x,} x Xo)= |H|? (216 X1),s
and similarly

DX, x W= |H|E  (me X)),

THEOREM 3.7. If the spaces X, and X, are connected, then @ is
essentially of the form

3.1 @(x1; 1,) = (Pi(21), Po(s)) (¢ X;;,7=12),
where each @; is a homeomorphism from X; onto Y,(j =1,2).

PROOF. We may assume that both of X, and X, are perfect,since otherwise
the required conclusion is trivial. Let

N = sup{Dlg({x:} X Xy)]; x1€ Xi}
which is finite by Lemma 3.6. Let us fix any point p, of X, so that
Dig({p} x Xa)] =N,
and take a subset K, of X, so that
Card K, = N = D[p({p,} x K,)].

To get a contradiction, we shall assume that N# 1. Since X, is connected, so is
@({x;} X X,). Thus there must be a point p = (p, ) such that the sets

P({p} x Xo)N({yi} x Wy) and @({p1} x Xp) 0 (W X {y.})
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are infinite for any rectangular neighborhood W, x W, of (v;,3.) = @(#). (In such
a case, we shall say that (y.,y,) is a corner of @({p} X X,)). It follows from
the definition of N and the choice of K, that {p} X K, contains two (distinct)
points ¢ = (p1, q,) and r = (p,,7s) such that

(1) (e, x {y:}, and p(r)e {y1} X ¥,.

Let K, = K,N {g. 15} ¢; there is a rectangular neighborhood U, xU, of p such
that the N —1 sets

(2) pU, xU,) and p(U, X {x3}), 2:€ Ky,

are pairwise bidisjoint. Taking U, x U, sufficiently small and replacing ¢ and r
by some other points of {p,} x U, we may assume that:

(3) Pl({p1} x UL U, X {p))] = U X Un) ({31} XY o)UYy X {3:}));
(4)  @U, x {g}) and (U, x {rs}) are bidisjoint ;

(5)  9(U, x {g3}) is parallel to Y, and zy((U; X {gs})) is open in Y;;
(6)  @(U, x {ry}) is parallel to Y, and z(p(U, X {r3})) is open in Y.

These requirements are guaranteed by Lemma 3.4 and 3.5.
The proof now proceeds in five steps.

(1) The point @(p) is a corner of @(X; X {p:}). To show this, suppose the
contrary. We can then take a neighborhood V,(CU,) of p, so that o(V,x {p,})
is parallel to either Y; or Y,. Without loss of generality, suppose that it is
parallel to Y,. We then claim that V, contains a point x; such that

m[p(y, 7)) # milxy, ?2)].
Otherwise, @(V,; x {p,}) would be a neighborhood of @(p) in the relative topology

of Y, X {y,}, by (6); hence, @(p) could not be a corner of @({p} X X,). It
follows from (4), (5) and (6) that the set

P({x,} x {D2 9o 7))

is diagonal. Since the sets in (2) are pairwise bidisjoint, and since x, is in U,
we see that
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Dpi{z} X ({poqurl UK =N+1,

which contradicts the definition of N.
(I1) There is an infinite connected subset C; of X; such that
(7 P1€ C,cU,, and @(C, X {p:} CY, X {v:}.

To show this, let
F=@U, x {p})NY1 X {3:})>

and suppose that the connected component of @(p) in F is {@(p)}. Then @(p)
has a basis of neighborhoods (in F) each of which is open and compact in the
relative topology of F (see the proof of [9; (3.5)]). It follows from (1) that
there are (relatively) open and compact neighborhoods S and 7T of @(p) with
SNT*+ @g. Then SNT* is compact in F, and so in @(X; X {p,}). On the other
hand, since SNT* does not contain @(p), (3) assures that SNT*° is open in
@(X; X {ps}). But then, (SN T*) is a non-empty set which is both open and
closed in X; X {p,}, which contradicts the connectedness of X;. It follows that
the connected component C of @(p) in F is infinite. Thus it suffices to set

Ci = m(e™C)).

(III) There is a point s = (1, s,) with s, in Uy {p.}° such that @(s) is in
Y, X {y,}) but @(C, X {s,}) is not parallel to Y,. In fact, let

Vo= {52 U 53 # o, @(P1r5) € Y1 X {331}

and observe that p, is in the closure of V,, since @(p) is a corner of @({p,} X X}).
It follows at once from (7) that if s, in V, is sufficiently near to p, then
@(C, X {s,}) is not parallel to Y.

(IV) Let s=(py,5,) be any point as in (III). (3) assures that s, has a
neighborhood V(s,) such that @({p,} x V(s,)) is contained and open in Y, X {y,}.
It follows from Lemma 3.4 that there is a neighborhood V; of p,(V,CU,) such
that @(V; x {s,}) is parallel to Y,. This, combined with the facts that C, is a
connected, infinite set containing p, and that @(C; X {s,}) is not parallel to Y,,
guarantees that there is a point s = (s,’,s,) with s;" in C; such that m(@(s))
=m(p(s)) and @(s) is a corner of @(C; X {s5}). Let p =(s.,02), g =(s15 qn);
and note that
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(q), @(s), and @(p’)

are distinct points in Y, X {y,}.

Suppose first that 7y(@(q")) # 7s(@(s)). Then it is readily seen that the set
?({p,q’ss'}) is diagonal. Thus we have

Dip({s'} X ({Ppo g 52} UK, ))] = N+1,

which contradicts the definition of N.

Suppose next that z,(@(q')) = my(@(s)). There is a neighborhood V; of s’
such that @(V," x {p,})CY; X {y,}. Since @(s’) is a corner of @(C; x {s,}), there
is a point v,” in V" such that v, #s," and #(@(v,’,s,)) = my(®(s)). Note then
that 7y(@(v,, 55)) # ma(@(v15q.)) by (5). Since such a point v, can be taken
arbitrarily near to s,", we have for a suitable point v," in U,

Dip({vy'} X ({£2s @0 S} UKD = N +1,
which again contradicts the definition of N.
(V) Summarizing up, we have concluded that N=1, i.e,, that
Dip({z:} x Xa)] =1 (e X3).

Similarly, we have

Dp(X, x {2})] = Dip (Y1 X {y3}) = Dlp7({y} x Y] =1

for all points x; of X, and y; of Y;(j =1,2). From these facts, we can easily
show that @ is essentially of the form (3.1), which completes the proof.

THEOREM 3.8. Suppose that each X; is the union of finitely many,
pairwise disjoint, compact, connected subsets C;(j=1,2; k=1,++,N;). Then,
on each rectangle C,,, X Cs,n @ is essentially of the form (3.1).

PROOF. Since D, ,=@{(C,,, X C,,,) is an open, compact, connected subset
of Y, it is easy to see that D, , is rectangular. Thus the required conclusion
follows from Theorem 3.7.

4., Certain propertier of tensor algebras. In this section we shall use,
without explanation, some well-established and standardized notations; most of
them are adopted from [23] and [19].

Let G be a non-discrete locally compact abelian group with dual (/;\, and let
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X, and X, be two disjoint compact subsets of G. We set

X*=XUXn X=X, +X, and X=X, x X,.

If X* is a K-set (that Is, either a Kronecker set or a K,-set for some natural
number p==2), it is known ([21], [23], [19]; see also [3] and [4]) that X is an
S-set (for the algebra A(G)), and that X is an SR-set if and only if at least

one of the sets X; does not contain any perfect subset. We have also A(X)
= V(X) isometrically and algebraically if X* is a Kronecker set ; and topologically
if X* is a K,-set for scme p=2; furthermore, in the later case, we have

(4.1) 1 v = 1 fllaw = 41 f v (fe AX)).

Varopoulos [23] has proved these facts for compact groups, but the conclusions
are still true for general locally compact abelian groups. We can verify these
using the principal structure theorem of locally compact abelian groups [9] and

the well-known relationship between A(R") and A(T™) [16].

THEOREM 4.1, Suppose that X* is a Kronecker set (resp. a K,-set for
some p==2), then we have:

(a) If f is a non-zero idempotent function in C(X), and if | fllawm <t
for all subsets D of X with Card (D)=4, then | flamn=1 (resp. 1=|flam
=4)

(b) If f is a unimodular function in C(X), and if

lim sup|| f™| 4y <21 (Dc X: Card(D) = 4),

then we have

Sl + ) = fulz) - fols) (¢ X537 =1,2)

for some f; in C(X;) (j =1,2). Conversely, every function f on X expressible
in the above form is in A(X) and has AX)norm 1 (resp. L= ||| =4).

(¢) Iffis a non-zero function in ((X) such that |f|*= |f|, and if

lim sup|l f")| 4oy < %o (DcX: Card (D) = 4),
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then f has the form

f(x1 +xy) = Zi:fl(k)(xl) ’fz(k)(xz) < IE,% + E2(k)](x1 +x2) ’

where the sets E; (1 =k=mn) are pairwise disjoint, non-empty, clopen (in X;)
subsets of X; and the functions f;%(1 < k=n) are in C(X;) (j=1,2). Conversely,
every function f on X expressible in the above form is in A(X) and has
AX)-norm 1 (resp. 1= flla = 4.

PROOF. Every statement follows from the results in §1 and the above
observations,

LEMMA 4.2 (cf.[5] and [11]). Let K be any compact subset of G, and
suppose that there exists a pseudomeasure P in N(K)= (I(K)* such that

(4.2) | Pllow > lim sup| ()| = inf fsupl P} ,

the infimum being taken over all compact sebsets E of /G\ Then every function
fin AK) such that | fllax,=1 and |f(x)|=1, has the form f=c¥ on K for

some complex number ¢ with |c| =1 and some character ¥ in G.

PROOF. Let P be as above. Without loss of generality, we may assume
that

IPlex = P(O) =1
(note that Pis uniformly continuous). Then it is easy to see that
. -5 . 5
lim sup| (7 PY)| = 191l aso  lim supl P)|

for all functiong ¢ in A(K). Therefore if £ is a function in A(K) such that
| fllaxy=1 and |f| =1, we have

| FPlrx=1, and limsup|(fP)\()| <1,

and also
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(FP)f) = P(1)= P0)=1.

Applying a slightly modified form of Proposition 4.1 in [ 5], we obtain the required
conclusion,

THEOREM 4. 3. Suppose that X* is a Kronecker set, then we have
(4.3) |Plrx = limsupl )] (Pe PM(X)),

provided that there exist points x; in X; such that G,NG, # {0}, where Gy is
the closed subgroup generated by the set X; —xy (j=1,2).

PROOF. Suppose that (4.3) does not hold : we can find a pseudomeasure P
in PM(X) for which we have (4.2) (note that N(X)— PM(X) since X is an

S-set). Let 7; and ¥, be any characters in G; then the function f in ¢(X)
defined by

S, + x3) = Vi(xy) « Vo(xs) (;e X5, 7=1,2)

is in A(X) and has A(X)norm 1 by Theorem 4.1. Thus Lemma 4.2 applies,

. N
and we see that there exist a complex number ¢ and a character ¥ in G such
that

Yi(zy) « Volxy) = c¥(x; + 24) (x;¢ X;; j=1,2).
Tt follows at once that
Yi(x; — x;") = VWax; — ;') (;¢ X5, 7=1,2),

and so we see that 7, =%, on G;NG,. Since ¥, and Y, were arbitrary characters
in G, this implies G,NG,= {0}. The proof is now complete.

LEMMA 4.4, Let E; be any dense subset of X)(j=1,2), E=E, X E,, and
M(E) the space of all measures on E whose supports are finite. Then there
exists a directed family of linear operators Lx, A I, from V' (X)into My(X)
such that:

(a) The range of each operator L, is finite dimensional.

(b) For every P in V (X), we have

(b.1) sup|l-Lu(P) i = Pl s
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(b.2) supp(La(P)) —supp(P) ;
(b.3) L\(P)— P in the weak-* topology of V'(X).

(c) The statement (b) holds even if V(X) is repalced by M(X).

PrROOF. Fix j=1,2, and let 9J; be the directed family of all finite open
coverings of X; (for any A and A" in U5 A <A’ implies that A’ is a refinement
of A). For every covering A= {U,,U,,-+-,U,} in U, we can find a subset
{91 g2+ +» ga} of C(X;) so that [9];

(1) > 9gx =1 on the whole space X;;
k=1
(2) 0= g:, and g, =0 outside U (k=1,2,---,n),

Choosing any points g, in U,NEk=1,2,+«+,n), we define a linear operator 4,
on C(X;) by

(3) I =S pdes  (FeCX).

It is then easy to see that

(4) supl Jal =1, and lim| £ — SNl =0 (Fe C(Xy).

Put now J= U, X U, the product space with the product order, and for

any A=(A,A;) in I, let =Y @é’m be the operator on V(X) canonically
induced by 4a, and 4s, (see [23]). It follows at once from (4) that

supllILa| =1, and lim] £ — Il = O

for all fin V(X). It is also easy to see from (3) that

(5) I(f) = Zk:zlf(l)lu 2)9: Qh, (fe VX)),

where the p, (resp. q,) are points in E; (resp. E;) and the g, (resp. ;) are
functions in C(X,) (resp. C(X,)) associated with A; (resp. A,) as before.

Define now Lx: V(X)—V'(X) to be the conjugate operator of Hix, Ac J.
It is easy to verify that so-defined operators £, have all the required properties,
which establishes our lemma.
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Let us now consider the Banach algebra V(X) introduced by Varopoulos [24].
He proved that the natural imbedding V(X)c V(X) is isometric if the spaces X
are either totally disconnected or homemorphic to compact metrizable groups ([24] ;
see also [25]), and Graham asked in [ 6] whether this is true for every tensor
algebra. As is shown below, the answer is Yes.

THEOREM 4.5. Let E be any rectangular dense subset of X. Then, for
any function f in V(X) (resp. in C(X)), we have

1A lveo(resp. [ lpwn) = supllf Iy »

where the supremum is taken over all finite rectangular subsets F of E. In
particular, the imbedding V(X)cV(X) is isometric.

PROOF. Let f be any function in V(X). Then, by Lemma 4.4 we have

1Ay = sup{| P(f)] : Pe V(X), |Pl, =1}

- sup{ [ Fau]: we e, npnwgl}
= sup{|| fllym : FCE, Card F<oo} .

Similarly, for any f in C(X), we have the required equality, and this completes
the proof.

Let now K be any compact subset of G, and consider two Banach algebras
B(K) and B'(K) introduced by Katznelson and McGehee [10]. We have

1 sy Z N sy = 1 f oy Z | f oy (fe C(K)),
and so A(K)cB(K)cB(K)cC(K). It is known ([15], [22]) that every non-
discrete locally compact abelian group contains a compact set K for which we
have

A(K)# B(K) = ((K).

THEOREM 4.6 (cf.[10],[24]). Suppose that X* is a K-set, and that K is
a clopen subset of X, then we have

1 law = 1/ s (fe AK)),
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and

1 lz00 = 1flsw (fe CK)).
In particular, we have B(K)= B(K) isometrically.

PROOF. If X* is a Kronecker set, our statements follow from Lemma 4.4
and the fact that the canonical identification A(X )=V(X) is isometric. If X* is
a K,-set for some p==2, then the spaces X, are totally disconnected. Therefore
the functions g; and A, used in (5) of the proof of Lemma 4.4 can be chosen to
be idempotent. Using this, we obtain the required conclusions.

REMRK. Under the assumption of part (a) in Theorem 4.1, we have
| fllagy =1 even if X* is a K,-set. This can be easily proved, and we omit the
details.

5. The constants u, and u,. Let «, be the constant defined by (1.1) in
8§1. Professor Leblanc calculated the exact value of #, to obtain u, =2/3"%2 We
should like to thank him for allowing us to use his calculus.

There are only modulus in this calculus, and so, we can suppose that a and ¢
are real positive, and so is b if we change the origin of z. Thus, it is obvious
that #, is obtained when d is real and negative, and we can choose d= —1
because the result is independent of a constant factor. Then we have

Ala,b,¢c,0) =a+b+c;

Ala, b, c, —1) = sup{(@® + b* + 2abt)”* + (c® + 1 — 2ct)V*}
t

where —1=#=<1. We now define two functions # and s by

u = Ala,b,c,0)/Aa, b, ¢, —1);
s = {a®¥c? + 1) — c*(a® + bY)} /2abc(ab +¢),

and divide the positive cone {{a,d,¢): a>0, 5>0,¢>0} into three parts: D,
={|s|=1},D,= {s=1},and D, = {s= —1}.

(1) Suppose here that the point (a,,¢) ranges over D;. It is then easy
to see that

Ala, b, c, — 1) = (@® + b + 2abs)”* + (¢ + 1 — 2cs)”
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b atc+bc+ab(c? +1) | n CS ab(c?+ 1) +c(a® +b%))"”
abc(ab +c) { abclab+c)

= {(ab + c)(abc? + a’c + a*b + ab) /(abc)} 7

= {(ab + )b + a)ca + b)/(abc)} ¥ .

Therefore, setting

x=a+b+c,y=ab+bc+ca z=abc,
we have

u=x{z/(22 + 22 — 22y + y* — 2zx + 2)} V2.
But ou/0x = %u/0y = 2u/0z =0 implies x=1 and y = 2, that is
a+bt+c=a*+btr+ct=1,

which is impessible. So

=S o+ Ghbe =0
u_ e,
ob ac
is possible only if
1b+c bc
lct+acal=(@—-b)b—-ca—c)=0,
la+bab

and we can suppose for instance a =&, Then

" a(2a+c)c*”
T (@ +o)*ac+a) ’

and we see that Ju/da = ou/9c =0 implies

2c = ac

Ca+e)t*+2o) =2 a?+c)y 't +(c+ 1)
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1

that is, a=c¢=2. Then we have s= 5 and %(2,2,2) = 2/3"%, which is the largest

value of # in the region Dj.

(IT1) Suppose now that the point (a,b,¢) ranges over D, The inequality
s=1 implies

{a?b? — (a + b)*} c? — 2a%h*c + a*h? =0
that is
11/c—11=1/a+1/b.
Suppose first that ¢=1; we then have
lja+1/b+1/c=1
and
u=(a+b+c)/la+b+c—1).

It follows that the maximum value of # in D,N {c=1} is obtained when
a=b=c=3 and equals 9/8(<2/3"*). Suppose next that ¢=1, and so we have

l/c—1=1/a +1/b,
u=(@+b+c)la+b+1-c).

Since # is an increasing function of ¢ for fixed @ and b, we may assume that
1/c ~1=1/a+1/b. Therefore, it is easy to check that the maximum value of
in DyN {c=1} is obtained when a=56=>5 and ¢ =5/7, and equals 25/24.

(III) Suppose finally that the point (a, b, c) ranges over D;. We then have
1/a—1/61=1+1/c,
and
u={(a+b+c)(la—b| +c+1).

As in (II), we can show that the maximum value of # in D; is

u(5,5/7,5) = u(5/7,5,5) = 25/24.
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If follows from (I ), (II), and (III) that u«, =2/3"% the required conclusion.
We now estimate the constant #, defined in the proof of Lemma 1.3. Let 6
be any real number with 0=60=7. Then we have

AL 1,1, —e) = AL, 1, %, — 1)
= 2|1 4 e -0R| = (1 + sin 6/2)n

and so
A(1’ 1) 1) - eW)/A(l, 1) 17 - 1) = (1 + Sin 6/2)1/2 .

Suppose that 2, is any complex number with [2,] =1 # z,- and take an integer n
so that 2z/3=<arg z,"=7; we have

A, 1,1, —2,0)/AQ L L, — 1D =(1 +sin z/3)2,
and hence

w, = (1 +sin /3)2 > u, = 2/3.
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