
Positivity Online First
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1. Introduction

This paper deals with lattices of continuous functions and their homomorphisms,
with emphasis on isomorphisms.

As usual, we write C(X) for the lattice of all real-valued continuous func-
tions on a topological space X with the order induced by that of R, that is, f ≤ g
meaning f(x) ≤ g(x) for all x ∈ X. The sublattice of bounded functions is denoted
C∗(X).

Until further notice X and Y will denote compact Hausdorff spaces. Sup-
pose we are given an isomorphism T : C(Y ) → C(X), that is, bijection satisfying
T (f ∨ g) = Tf ∨ Tg and (this is equivalent for bijections) T (f ∧ g) = Tf ∧ Tg.
What can be said about T? In particular, how to represent it? We emphasize that
T is not assumed to be linear.

As far as I know, these problems were first considered by Kaplansky in his
venerable oldies [16] and [17]. In the former he showed that if the lattices C(Y ) and
C(X) are isomorphic, then X and Y are homeomorphic. The proof is of Stonian
style and proceeds by duality (the points of X are identified as equivalence classes
of prime ideals of C(X), a prime ideal being the kernel of some homomorphism
onto the lattice {0, 1} and so on; see also [2, pp. 227–228] and [23, pp. 129–130]).
The papers [14, 24] contain extensions to noncompact spaces.

The sequel [17] studies continuity properties of isomorphisms. For instance,
it is proved that, referring to the usual sup norm topology, T is continuous if and
only if it admits a representation as

Tf(x) = t(x, f(τ(x))) (f ∈ C(Y ), x ∈ X),
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where τ : X → Y is a homeomorphism and t : X ×R → R is a continuous function
(necessarily given by t(x, c) = Tc(x)). Moreover it is shown that, if X (and so
Y ) is metrizable, then every isomorphism between C(Y ) and C(X) is continuous
[17, p. 633]. Later on, Cater proved the same for X either sequentially compact or
locally connected [6] – despite the criticism of the reviewer in [1].

In any case some restriction is necessary to get automatic continuity, as shown
by Kaplansky himself in [17, p. 629]. Let us recall that if S is a completely regular
space there is a compact space βS (its Stone-Čech compactification) containing it
as a dense subspace in such a way that the Banach algebra C∗(S) is isometrically
isomorphic to C(βS).

Let �∞(Γ) be the space of all bounded functions f : Γ → R. By the preceding
remark �∞(Γ) = C(βΓ), where Γ is treated as a discrete set. Let t : Γ × R → R be
any function satisfying:
• For each γ ∈ Γ, the function t(γ, ·) is an automorphism of R (in the ‘default’

lattice setting, that is, an increasing homeomorphism).
◦ A function f : Γ → R is bounded if and only if so is t(·, f(·)).

(Such a function will be called admissible in all what follows.) Then we can define
an automorphism of �∞(Γ) taking

Tf(γ) = t(γ, f(γ)) (f ∈ �∞(Γ), γ ∈ Γ).

However, such a T is continuous if and only if the family {t(γ, ·) : γ ∈ Γ} is
equicontinuous on compact subsets of R.

To be more concrete, following Ercan and Önal [9], let us define � : (0,∞) ×
R → R by

�(x, c) =

{
cx for 0 ≤ c ≤ 1
c otherwise.

If f is a function defined on some subset of (0,∞) we put Lf(x) = �(x, f(x)), which
has the same domain as f . If we consider x ∈ N, then L becomes an automorphism
of �∞ = C(βN). Considering x ∈ (0,∞) and f ∈ C∗(0,∞) we obtain an automor-
phism of C∗(0,∞) = C(β(0,∞)). Allowing f to be measurable and essentially
bounded we extend L to an automorphism of L∞(λ), where λ denotes Lebesgue
measure on the Borel sets of the interval (0,∞). In any case L is discontinuous at
f = 1 because ‖Lc − L1‖∞ = 1 for every 0 < c < 1.

The presence of the Stone-Čech compactification in these examples is not
accidental: actually Itô proved in [15, proof of Theorem 2] that if C(X) admits
a discontinuous automorphism, then X has a subset homeomorphic with βN.
Another remarkable result in [15, Theorem 1] states that C(X) admits a con-
tinuous automorphism whose inverse is discontinuous if and only if X = βS for
some open Fσ proper subset S ⊂ X.

The plan of the paper is as follows. Section 2 contains generalities on homo-
morphisms. We give a simple proof that each homomorphism T : C(Y ) → C(X)
gives rise to a continuous mapping τ : XT → Y , where XT is an open subset of X
depending on T , in such a way that
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t(x, f(τ(x))−) ≤ Tf(x) ≤ t(x, f(τ(x))+) (f ∈ C(Y ), x ∈ XT ),

with t(x, c) = Tc(x). We keep this notation in all what follows.
Section 3 focuses on isomorphisms. In this case τ is a homeomorphism and

the mappings τ and t completely determine T . This is shown through an explicit
representation of T . Moreover, there is a dense Gδ subset of X where Tf(x) =
t(x, f(τ(x))) holds for all f ∈ C(Y ). Also we give new examples of compact spaces
X for which automorphisms of C(X) are automatically continuous and we describe
the automorphisms of C∗(S) = C∗(βS) when S is a metric space, thus showing
that the above example by Ercan and Önal may be regarded as a typical one. As
an application, in Sect. 4 we give a nonlinear version of a recent result by Garrido
and Jaramillo on uniformly continuous functions.

Section 5 is devoted to the ‘von Neumann’ algebra L∞(μ) – incidentally, this
was the starting point of the research reported here. We obtain a very precise
description of the automorphisms, at least when μ is a ‘standard’ measure. Sect. 6
describes the automorphisms of many function lattices appearing in analysis. This
closing Section may be regarded as a small nonlinear complement to Chapter XV
of [2].

Notations. Given sets A and B we write BA for the set of all mappings
from A to B, while BA denotes the set of constant maps in BA. In particular,
RA are the constant functions on A. Every a ∈ A gives rise to an ‘evaluation’
map δa : BA → B (defined as δa(f) = f(a)). Also, given a map τ : A → B
and a set C we write τ∗ : CB → CA for the composition on the right with τ ,
that is, τ∗(f) = f ◦ τ . Similarly, τ∗ : AC → BC denotes composition on the left:
τ∗(f) = τ ◦ f . Finally, the identity on A is denoted by 1A while the characteristic
function of A is 1A.

2. Lattice Homomorphisms

In this Section we obtain some general results on homomorphisms between the
lattices of continuous functions on compacta. Our results are closely related to
those of Kaplansky [16, 17], Shirota [24] and Cater [6]. We remark, however, that
these papers deal only with isomorphisms, but between more general sublattices
of C(X).

Let T : C(Y ) → C(X) be a lattice homomorphism. We define t : X × R → R

by t(x, c) = Tc(x). Two obvious properties of t are:

• For every real c the function t(·, c) is continuous.
• For fixed x ∈ X the function t(x, ·) is nondecreasing.

For each x ∈ X, set O(x) = {Tf(x) : f ∈ C(Y )} and consider the (obviously
open) set XT = {x ∈ X : O(x) is not a single point}. It is easily seen that

X\XT = {x ∈ X : t(x, c) = t(x, d) for all c, d ∈ R}.
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Lemma 1. With the above notations, given x ∈ XT there is a unique y ∈ Y such
that, for every c ∈ R, f(y) > c implies Tf(x) ≥ t(x, c) and f(y) < c implies
Tf(x) ≤ t(x, c).

Proof. Fix x ∈ X and c ∈ R. We claim that there is some y ∈ Y (possibly depend-
ing on c) such that f(y) > c implies Tf(x) ≥ t(x, c). Otherwise, for every y ∈ Y
there is f ∈ C(Y ) such that f(y) > c but Tf(x) < t(x, c). By compactness there
is a finite system f1, . . . , fk, with f1 ∨ . . . ∨ fk ≥ c while Tfi(x) < t(x, c). A
contradiction.

Next we show that y is actually independent on c. Thus suppose there are
c′ and y′ �= y such that f(y′) > c′ implies Tf(x) ≥ t(x, c′). There is no loss of
generality in assuming c′ ≥ c. Then, given d ∈ R we may choose f, f ′ ∈ C(Y ) such
thatf(y) > c and f ′(y′) > c′, but f ∧ f ′ ≤ d. It follows that

t(x, d) = Td(x) ≥ T (f ∧ f ′)(x) = Tf(x) ∧ Tf ′(x) ≥ t(x, c),

which is impossible since x ∈ XT . The above argument shows that y is unique:
just take c′ = c. This establishes the first implication.

By symmetry, there is y′ ∈ Y such that, for all c, f(y′) < c implies Tf(x) ≤
t(x, c). Let us show that y′ = y. Take c < c′ such that t(x, c) < t(x, c′). Now, if
y′ �= y, there is f ∈ C(Y ) with f(y) < c and f(y′) > c′ and so Tf(x) ≤ t(x, c) and
Tf(x) ≥ t(x, c′), which is impossible. �
Lemma 2. With the notations of Lemma 1, the map τ : XT → Y given by τ(x) = y
is continuous.

Proof. Suppose on the contrary there is a net (xα) converging to x ∈ X such that
τ(xα) does not converge to τ(x). As Y is compact, passing to a subnet if necessary,
we may assume there is a neighbourhood U of τ(x) such that τ(xα) /∈ U for all α.

Fix c, d ∈ R and write y = τ(x), yα = τ(xα). Then there is f ∈ C(Y )
such that f(y) < c and f(yα) > d for all α, as Y is completely regular. We
have Tf(x) ≤ t(x, c) and Tf(xα) ≥ t(xα, d) for all α. By continuity we see that
Tf(x) ≥ t(x, d) and so t(x, d) ≤ t(x, c). By symmetry we have t(x, d) = t(x, c). �

All this can be restated as follows:

Proposition 1. Let T : C(Y ) → C(X) be a homomorphism. Then there is a con-
tinuous mapping τ : XT → Y such that

t(x, f(τ(x))−) ≤ Tf(x) ≤ t(x, f(τ(x))+) (f ∈ C(Y ), x ∈ XT ),

where t(x, c) = Tc(x) and XT = {x ∈ X : t(x, ·) : R → R is not constant}. If
x /∈ XT , then Tf(x) is the only value attained by t(x, ·). �

The above τ shall be referred to as the map associated to (or induced by) T .
We pause for one easy application. The following result shows that, in many

respects, the behaviour of a homomorphism depends only on its action on the
constant functions.

Corollary 1. Let T : C(Y ) → C(X) be a homomorphism.
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• If T continuous on RY for the topology of pointwise convergence of C(X),
then Tf(x) = t(x, f(τ(x))) for all f ∈ C(Y ) and all x ∈ XT .

• If T is linear on RY , then it is a homomorphism of vector lattices and so
Tf = ω · τ∗(f), where ω = T1.

• If T preserves constants (that is, Tc = c for every real c), then it is an
algebra homomorphism and so T = τ∗. �

The third part of the preceding Corollary was proved long time ago by Mena
and Roth in [21]. See [11] for a generalization. I take here the opportunity of thank
the referee for this information.

Let us consider now the scalar-valued case T : C(Y ) → R. This amounts to
treat R as the lattice of continuous functions on a single point.

First, note that if T is not constant, it is associated to a unique point y ∈ Y
in the sense that, if we define t(c) = Tc, we have

t(f(y)−) ≤ Tf ≤ t(f(y)+) (f ∈ C(Y )).

This implies that, to some extent, δyf ‘controls’ Tf . Even if the exact value of T
at f cannot be deduced from the value of f at y (see the example below), T has
a local behaviour:

Proposition 2. Let the homomorphism T : C(Y ) → R be associated to the point
y ∈ Y . If f and g agree on a neighbourhood of y, then Tf = Tg.

Proof. Replacing f and g by f ∧ g and f ∨ g if necessary, we may assume f ≤ g.
It is clear from Lemma 1 that Th ≤ Tf provided h(y) < f(y). Let A be an open
neighborhood of y where f and g agree, and let h′ ≥ 0 be a continuous function
vanishing outside A and such that h′(y) = 1. Take h = g − h′. We have Th ≤ Tf .
But g = h ∨ f and so Tg = Th ∨ Tf = Tf . �

This can be used to improve [16, Lemma 6], assuming the underlying compact
space to be R-separated.

Corollary 2. Let T : C(Y ) → C(X) be a homomorphism.

(a) If T is onto, then XT = X and τ : X → Y embeds X as a closed subspace of
Y .

(b) If T is injective, then τ(XT ) is dense in Y . If besides this XT = X, then τ
is onto.

Proof. Part (a) clearly follows from Proposition 1.
As for (b), suppose there is y ∈ Y not in the closure of τ(XT ). Then there

is f ∈ C(Y ) vanishing on some open set containing τ(XT ) with f(y) = 1. We
show that Tf = T0. Of course, if x /∈ XT , then Tf(x) = T0(x). If x ∈ XT ,
then Tf(x) is the value of the homomorphism T ∗δx : C(Y ) → R at f . Obviously
T ∗δx is associated to τ(x) and f and 0 agree on a neighbourhood of τ(x). Hence
Tf(x) = T0(x) and T is not injective �
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Notice that (b) implies that if T is injective and f, g ∈ C(Y ) agree on some
nonempty open A ⊂ Y , then Tf and Tg agree on τ−1(A), which is a nonempty
open subset of X.

We close the Section with the following.

Example 1. A surjective homomorphism T : C[0, 1] → R associated with the point
0 and such that for each c ∈ [−1, 1] there is f such that f(0) = 0 and Tf = c.

Proof. Let (tn) be a sequence converging to 0 in [0, 1], with tn �= 0 for all n. Let
U be a free ultrafilter on N and define γ : C[0, 1] → [−∞,∞] by

γ(f) = lim
U(n)

nf(tn).

Let s : [−∞,∞] → [−1, 1] be any increasing homeomorphism and define

Tf =

⎧⎪⎨
⎪⎩

f(0) − 1 if f(0) < 0
s(γ(f)) if f(0) = 0
f(0) + 1 if f(0) > 0

It is easily verified that T fulfills the required properties. �

A related example appears in [16, p. 620].

3. More on Isomorphisms

In this Section T : C(Y ) → C(X) is assumed to be a lattice isomorphism, unless
otherwise stated. The maps τ : X → Y and t : X ×R → R have the same meaning
as in Sect. 2. The following two results contain the main structural properties we
can prove for a general automorphism. Proposition 3 is due to Kaplansky. It clearly
follows from Corollary 2. However, we derive it straight from Lemmas 1 and 2.

The first part of Theorem 1 shows that an isomorphism depends only on the
associated maps t and τ – which is not true for mere homomorphisms! Although
this follows from abstract considerations, we prefer to make it explicit.

Part (b) proves that isomorphisms cannot be ‘very pathological’ in the sense
that the set of those x ∈ X where the functions t(x, ·) are automorphisms of R is
very large.

Proposition 3 (Kaplansky). If T : C(Y ) → C(X) is an isomorphism then τ : X →
Y is a homeomorphism.

Proof. Let us show that the continuous mapping Y → X associated to T−1 is an
inverse for τ . Define s : Y × R → R by s(y, c) = T−1c(y). Fix x ∈ X and let
y = τ(x). Applying Lemma 1 to T−1 and y we get x′ ∈ X such that:

• Tf(x) > t(x, c) implies f(y) ≥ c,
• Tf(x′) < d implies f(y) ≤ s(y, d),
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for every c, d and f . Note that the first implication here is just a rewording of the
second one in Lemma 1. It only remains to see that x′ = x. For if not, take c = 1
and let d so that s(y, d) ≤ 0. Take f such that Tf(x) > t(x, 0) and Tf(x′) < d.
Then f(y) must be greater than 1 and smaller than 0. A contradiction. �

Note that if τ : X → Y is the homeomorphism induced by T , then the com-
position T ′ = T ◦ (τ−1)∗ is an automorphism of C(X) whose associated homeo-
morphism is the identity on X. Moreover T ′ and T share any property preserved
by composition with a linear isomorphism of algebras. This will be used to simplify
some proofs.

Theorem 1. Let T : C(Y ) → C(X) be an isomorphism. Then:
(a) For every f ∈ C(Y ) and all x ∈ X one has

Tf(x) = t(x, f(τ(x))+)
∧

lim inf
z→x

t(z, f(τ(z))+)

= t(x, f(τ(x))−)
∨

lim sup
z→x

t(z, f(τ(z))−).

(b) There is a Gδ dense subset D ⊂ X such that, for every x ∈ D, the function
t(x, ·) is an automorphism of R and, in particular, one has:

Tf(x) = t(x, f(τ(x))) (f ∈ C(Y ), x ∈ D).

Proof. We may assume Y = X and τ = 1X . To prove the first part, we begin
with the observation that, given arbitrary bounded functions a and c on X, some
b ∈ C(X) such that a ≤ b ≤ c exists if and only if upper a ≤ lower c, where upper a,
the upper regularization of a, defined by

upper a(x) = a(x)
∨

lim sup
z→x

a(z)

is the greatest upper semicontinuous function dominated by a, while lower c, the
lower regularization of c, is defined as

lower c(x) = c(x)
∧

lim inf
z→x

c(z)

and is the smallest lower semicontinuous function dominating c. This follows from
Hahn-Tong theorem; see Theorem 6.4.4 on p. 100 and the exercise 6.4.10 (D) on
p. 102 in [23]. A moment’s reflection suffices to realize that the ‘interpolating’
function b is unique if and only if upper a = lower c. The proof will be complete if
we show that Tf is the unique continuous function between T−f and T+f , where
T±f(x) = t(x, f(x)±). Suppose T−f ≤ g ≤ T+f , with g ∈ C(X). By Proposition 1
one has

T (f − δ) ≤ T−f ≤ g ≤ T+f ≤ T (f + δ) (δ > 0.)

But any lattice isomorphism preserves arbitrary ‘joins’ and ‘meets’ and so

Tf =
∨
δ>0

T (f − δ) ≤ g ≤
∧
δ>0

T (f + δ) = Tf.
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To prove (b), given p, q ∈ Q, with p < q, consider the set N(p, q) = {x ∈ X :
t(x, p) = t(x, q)}. By the remark after Corollary 2 this is a closed set with empty
interior and so

N =
⋃
p<q

N(p, q) (p, q ∈ Q)

is of first category. Let D1 be the complement of N in X. It is fairly obvious that
t(x, ·) is strictly increasing on R if and only if x ∈ D1. Now define s : X × R → R

by s(x, c) = T−1c(x) and let D2 the set of those x for which s(x, ·) is stricty
increasing on R. It is clear that D = D1 ∩D2 is still a dense Gδ subset of X. Now,
in view of Proposition 1, it suffices to show that t(x, ·) is continuous (hence an
automorphism of R) for all x ∈ D.

Fix x ∈ D and note that, given c ∈ R, one has

s(x, t(x, c)) = c (1)

provided t(x, c) is a point of continuity of s(x, ·). As t(x, ·) is strictly increasing
and s(x, ·) is continuous outside a countable set we see that the set of those c
where (1) holds is dense in R, since the complement is at most countable. Thus
the following result completes the proof. The momentary change of notation is
quite natural. �
Lemma 3. Let t, s : R → R be strictly increasing functions such that s ◦ t is the
identity on some dense subset of the line. Then t is continuous.

Proof. Put S = {c ∈ R : s(t(c)) = c}. We show that for every real c one has
s(t(c−)−) = s(t(c+)+). Fix c and take sequences (pn) and (qn) in S such that pn →
c− and qn → c+. Then t(pn) → t(c−)− and t(qn) → t(c+)+ and so s(t(c−)−) =
s(t(c+)+) = c. �

We hasten to recall that the representation in part (b) of Theorem 1 is possi-
ble for all x ∈ X only if T is continuous. In the following Lemma we gather results
by Kaplansky, Cater and Itô. The easy proof is included for the sake of clarity.

Lemma 4. Let T : C(Y ) → C(X) be an isomorphism. The following are equivalent:
(a) T is continuous on RY for the topology of pointwise convergence in C(X).
(b) T is continuous in the topology of pointwise convergence.
(c) Tf(x) = t(x, f(τ(x)) for all f and x.
(d) T−1 is increasing.
(e) T is continuous in the norm topology.

Proof. The implications (a) ⇒ (b) ⇒ (c) and (e) ⇒ (a) are trivial.
We show (c) ⇒ (d). Of course (d) means that if f(x) > g(x) for all x, then

T−1f(y) > T−1g(y). Writing h′ = T−1h for h = f, g this can be restated as: if
f ′(y) ≤ g′(y) for some y ∈ Y , then Tf ′(x) ≤ Tg′(x) for some x ∈ X, which is
clearly implied by (c).

The implication (d) ⇒ (e) is obvious since the sets:

{h ∈ C(X) : f < h < g} (f, g ∈ C(X))

form a base for the norm topology of C(X). �
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Corollary 3. Suppose every (nonempty) zero set has nonempty interior in X. Then
every automorphism of C(X) is continuous.

Proof. Corollary 2 (b) implies that automorphisms of C(X) are increasing. �

The most typical example where Corollary 3 applies is N
∗ = βN\N, the

growth of the integers in its Stone-Čech compactification. It is well-known that
C(N∗) = �∞/c0, as Banach algebras. Suppose f ∈ C(N∗) vanishes at some x ∈ N

∗

and let f ′ ∈ C(βN) be any extension. Clearly, there is an infinite M ⊂ N such that
f ′(n) → 0 as n → ∞ in M . Hence f ′ − 1Mf ′ is another extension of f vanishing
on M and so f is zero on clβN M ∩ N

∗ an open subset of N
∗.

Another important class of lattices whose automorphisms are automatically
continuous are the (Banach space) ultraproducts of any countable family of C(X).
We will refrain from entering into further details here. All you need to get the con-
tinuity of lattice automorphims in ultraproducts out from Corollary 3 is in [4].

In the following result, we borrow an idea from Cater’s [6, Proof of
Theorem IV] to obtain a sharp description of the action of T at certain points
of X, even if such description is impossible on the whole of X. The proof, how-
ever, develops an argument sketched by Kaplansky in [17, Note added in proof on
p. 633].

Lemma 5. Let T : C(Y ) → C(X) be an isomorphism and let x ∈ X be a point
satisfying one of the following conditions:
(a) there is a sequence (xn) converging to x, with xn �= x for all n.
(b) X is locally connected at x.
Then t(x, ·) is an automorphism of R and Tf(x) = t(x, f(τ(x))) for all f ∈ C(Y ).

With the notations of Theorem 1, this means that some points must be in D
irrespective of the isomorphism T (this should be compared to Example 2 below).
The proof requires the construction of a function having certain oscillation prop-
erty:

Lemma 6. Let x ∈ X satisfy one of the conditions in Lemma 5. Suppose f, g ∈
C(X) agree at x, but {z ∈ X : f(z) = g(z)} is not a neighborhood of x. Then
there is h ∈ C(X) such that {z : h(z) > f(z)} and {z : h(z) < g(z)} meet every
neighbourhood of x.

Proof of Lemma 6. In the first case, define h : {xn} ∪ {x} → R taking h(x) =
f(x) = g(x), h(xn) = f(xn) + 1/n for even n and h(xn) = g(xn) − 1/n for odd
n, and extend by Tiezte. As for the second one, we may assume f ≥ g = 0. Set
h(z) = 2f(z) cos(1/f(z)), with h(z) = 0 if f(z) = 0.

Proof of Lemma 5. We may assume τ = 1X . Suppose f(x) = g(x). We must show
that Tf(x) = Tg(x). If f and g agree on a neighborhood of x, this follows from
Proposition 2. Otherwise, take h as in Lemma 6. It follows from Proposition 1 that
{z : Th(z) ≥ Tf(z)} and {z : Th(z) ≤ Tg(z)} meet every neighbourhood of x.
Hence Tf(x) ≤ Th(x) ≤ Tg(x) and, by symmetry, Tf(x) = Tg(x).
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Therefore Tf(x) = t(x, f(x)) and (by surjectivity) t(x, ·) : R → R is onto
whence continuous. To see that it is an automorphism, simply note that the func-
tion s(x, ·) : R → R given by s(x, c) = T−1c(x) is a continuous inverse for t(x, ·).

Now, we present some examples in the light of the above result. As we men-
tioned in the Introduction, discontinuous automorphisms appear in connection
with Stone-Čech compactifications. The following result describes the automor-
phisms of C(βS) for metrizable S, showing that, to some extent, they have a
simple behaviour.

Corollary 4. Let S be metrizable space, τ a homeomorphism of S and t : S×R → R

a continuous admissible function. Then the map defined by

Tf(x) = t(x, f(τ(x))) (x ∈ S, f ∈ C∗(S)),

is an automorphism of C∗(S). All automorphisms of C∗(S) arise in this way.

Proof. Everything in the first part is obvious but that T is onto. Since C∗(S) =
C(βS) and the Gδ points in βS are exactly those of S everything in the second
part follows from Lemma 5, but the continuity of t. The following remark ends the
proof. �

Lemma 7. Let t : S × R → R be admissible, where S is a metric space (or even a
normal space). We define s : S×R → R taking s(x, d) = c if and only if t(x, c) = d.
The following statements are equivalent:
(a) The function x �→ t(x, f(x)) is in C∗(S) if f is.
(b) t is continuous.
(c) t has closed graph.
(d) s has closed graph.
(e) s is continuous.
(f) The function x �→ t(x, f(x)) is in C∗(S) only if f is.

Proof. It is clear that the equivalences (d) ⇔ (e) ⇔ (f) hold if and only if (a) ⇔
(b) ⇔ (c) holds. That (c) ⇔ (d) is trivial, hence it suffices to prove that the first
three conditions are equivalent. Clearly, (b) implies both (a) and (c), while (a) ⇒
(b) is as in [17, Lemma 2].

And, finally, we prove (c) ⇒ (b). In fact, we show that every locally bounded
real-valued function with closed graph defined on a metric space is continuous. Let
u : M → R be such a function. The graph of u is the set

G(u) = {(x, c) ∈ M × R : c = u(x)}.

Let (xn) converge to x in M . We show that u(xn) → u(x) as n → ∞. Indeed, if
u∗ is a cluster point of the sequence (u(xn)), then (x, u∗) belongs to (the closure
and therefore to) G(u) and so u∗ = u(x). �

Another somewhat surprising consequence is that each C(X) embeds as a
subalgebra (complemented by a homomorphism of algebras) in a larger C(Y ) hav-
ing only continuous automorphisms. Just consider Y = X × [0, 1], the natural
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proyection π : Y → X and the embedding ı : X → Y given by ı(x) = (x, 0). The
maps π∗ : C(X) → C(Y ) and ı∗ : C(Y ) → C(X) are homomorphisms of algebras,
the first one is injective and, moreover, ı∗ ◦ π∗ = 1C(X). Needless to say, every
point of Y satisfies the first hypothesis in Lemma 5.

4. Uniformly Continuous Functions

In this Section we present a nonlinear counterpart of a recent result of Maribel
Garrido and Jesús Jaramillo concerning lattices of uniformly continuous functions.
As in [12] we consider only metric spaces. We abandon our earlier convention that
X and Y denote compact spaces and, given a metric space X, we write U∗(X) for
the lattice of all bounded uniformly continuous funtions on X.

As it is remarked in [12], each metric space (X, d) admits a compactification
κX such that the Banach algebras U∗(X) and C(κX) are isometrically isomorphic
in the obvious way. What is more important [12, Lemma 1]: if X is complete, then
the points of κX having countable neighborhood bases are exactly those of X.

Suppose we are given a lattice isomorphism T : U∗(Y ) → U∗(X), where X
and Y are complete metric spaces. Then T induces a homeomorphism τ : κX →
κY and, by the preceding remark, τ maps X onto Y . On the other hand compo-
sition with τ preserves uniform continuity and so, by an old result of Efremovich,
τ is uniformly continuous and, in fact, a uniform homeomorphism. We then have
that U∗(Y ) and U∗(X) are lattice isomorphic if and only if X and Y are uniformly
homeomorphic. Our aim here is to represent T . In this line we have the following
nonlinear companion of [12, Corollary 3].

Theorem 2. Let Y and X be complete metric spaces, τ : X → Y a uniform homeo-
morphism and t : X × R → R an admissible function satisfying the condition:
• If (xn) and (yn) are sequences in X with 0 < d(xn, yn) → 0 and (cn), (dn)

are bounded in R one has cn − dn → 0 ⇐⇒ t(xn, cn) − t(yn, dn) → 0.

Then the mapping T : U∗(Y ) → U∗(X) defined by

Tf(x) = t(x, f(τ(x))) (x ∈ X) (2)

is an isomorphism. And, conversely, all isomorphisms arise in this way.

Proof. The first part is nearly obvious, taking into account that f is uniformly con-
tinuous if and only if d(xn, yn) → 0 implies f(xn) − f(yn) → 0. Thus, assuming
τ = 1X and taking T is as in (2) we get an endomorphism of U∗(X). In fact we only
need the implication ‘⇒’ here. The implication ‘⇐’ means that if s is the admissible
inverse of t, then we can obtain the inverse of T taking Sf(x) = s(x, f(x)).

To prove the converse, suppose T : U∗(Y ) → U∗(X) is an isomorphism. By
the preceding remarks T induces a homeomorphism τ : κX → κY mapping X onto
Y , as a uniform homeomorphism and since the points of X have countable neigh-
bourhood bases in κX we can apply Lemma 5 (a) to get (2), where t(x, c) = Tc(x).
Obviously t is admissible. The proof will be complete if we show that every admis-
sible function t : X×R → R such that t(·, f(·)) belongs to U∗(X) for all f ∈ U∗(X)
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satisfies the above condition with ‘⇒’ replacing ‘⇔’. The implication ‘⇐’ follows
from the same argument applied to s.

Indeed let us assume (xn), (yn) are sequences in X, with 0 �= d(xn, yn) → 0
and (sn), (tn) are bounded sequences with cn − dn → 0. We must show that
t(xn, cn) − t(yn, dn) → 0.

But a sequence converges to � if and only if every subsequence admits a fur-
ther subsequence converging to �. Hence it suffices to see that some subsequence
of t(xn, cn) − t(yn, dn) converges to zero.

Thus, without loss of generality we assume (cn) and (dn) converge, say to c.
On the other hand, either
(a) (xn) has a convergent subsequence, or
(b) (xn) has a ‘discrete’ subsequence.
In case (a) we may assume (xn) converges, say to x. We will prove that t(xn, cn) →
t(x, c) and the result follows by symmetry. Again it suffices to find a subsequence
converging to t(x, c). Now, by passing to a subsequence if necessary, we may assume
either
(a.1) xn = x for all n, or
(a.2) xn �= xm �= x for every n �= m.

In the first case we have t(xn, cn) → t(x, c) by continuity in the second var-
iable and we are done. Assuming (a.2), the function sending xn into cn and x
into c is uniformly continuous on the compact set {xn} ∪ {x} and so, there is
f ∈ U∗(X) = C(κX) such that cn = f(xn) and c = f(x). We have

t(xn, cn) = t(xn, f(xn)) → t(x, f(x)) = t(x, c),

which completes the proof on the assumption (a).
As for (b) we may assume d(xn, xm) ≥ r > 0 for n �= m and d(xn, yn) < r/2.

We can define a function on S = {xn, yn : n ∈ N} sending xn into cn and yn

into dn. Clearly, that function is uniformly continuous on S and so it extends as
a continuous function to the closure of S in κX and, by normality, to the whole
of κX. Thus, there is f ∈ U∗(X) such that cn = f(xn) and dn = f(yn) for all n.
Since the function x �→ t(x, f(x)) is uniformly continuous and d(xn, yn) → 0 we
have

t(xn, cn) − t(yn, dn) = t(xn, f(xn)) − t(yn, f(yn)) → 0,

which completes the proof. �

The condition ‘d(xn, yn) > 0’ cannot be removed in the preceding Theorem.
Indeed, U∗(N) = �∞ and if T is an automorphism of �∞, then t satisfies the above
condition removing ‘d(xn, yn) > 0’ and with ‘⇒’ replacing ‘⇔’ if and only if T is
continuous.

Actually one can remove ‘d(xn, yn) > 0’ in Theorem 2 if (and only if) N does
not appear as a direct summand of X in the ‘uniform’ category. Notice that N is
such a direct summand if and only if there is ε > 0 and an infinite subset S ⊂ X
such that d(s, x) ≥ ε whenever s ∈ S and x ∈ X, with x �= s. Please check this. In
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that case, the relevant condition on t is easily seen to be equivalent to the uniform
continuity of t and of s on every set of the form X × [a, b]. I thank Javier Cabello
Sánchez for this observation.

5. A Closer Look at L∞

In this section we deal with isomorphisms between lattices of bounded measurable
functions. Given a measure space (X,X, μ), we write L0(μ) for the set of all mea-
surable functions on X equipped with ‘pointwise’ operations, and the traditional
convention about identifying functions equal almost everywhere.

The subset of essentially bounded functions in L0(μ) with the essential
supremum norm is a Banach algebra denoted L∞(μ).

By general representation theorems L∞(μ) is isometrically isomorphic to the
Banach algebra C(M), where M is some compact space – actually, the set all non-
zero multiplicative linear functionals on L∞(μ) equipped with the relative weak*
topology of L∞(μ)∗. Here, we need only a few elementary facts concerning M.
Mainly, that each measurable A ⊂ X corresponds to a clopen subset of M. This
is obvious since 1A is an idempotent in L∞(μ) = C(M).

Otherwise the topology of M is very involved: it is always an extremely dis-
connected space. Moreover, if μ is not atomic, then M has no isolated points and, in
fact, no point is Gδ. However, nonempty zero sets may have empty interior (these
correspond to noninvertible functions in L∞(μ) vanishing on no set of positive
measure).

As a Banach lattice, however, L∞(μ) displays some nice features: the most
remarkable is order completeness: if S ⊂ L∞(μ) is (order) bounded, then

∨
S

exists in L∞(μ). Note that if S ⊂ L∞(μ) is countable, then
∨

S can be computed
pointwise.

We will exploit this fact thanks to the following.

Lemma 8. Isomorphisms L∞(ν) → L∞(μ) preserve almost everywhere conver-
gence.

Proof. Note that fn → f almost everywhere if and only if

f =
∧
n

∨
k≥n

fk =
∨
n

∧
k≥n

fk

and that isomorphisms preserve arbitrary joins and meets. �

Before going further, we simplify the treatment of lattice isomorphisms as
follows. Let L : L∞(ν) → L∞(μ) be a lattice isomorphism and let U be the asso-
ciated isomorphism of algebras. Then T = L ◦ U−1 is a lattice automorphism of
L∞(μ) whose associated algebra automorphism is the identity – we restrict our-
selves to this case in the ensuing discussion. By Corolary 2 (b) we have that if
f, g ∈ L∞(μ) agree almost everywhere on a measurable A ⊂ X, then so Tf and
Tg do.
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We define t : X × R → R taking t(x, c) = Tc(x) – any version of Tc suf-
fices. Now, if f is simple (that is, it takes only finitely many values), we have
f =

∑n
i=1 ci1Ai

and so

Tf(x) = t(x, f(x))

almost everywhere.
One may expect the same holds for every f ∈ L∞(μ), but simple examples

show this is not the case if t(·, c) are arbitrary representatives of Tc. The following
result, which is the main step in representing automorphisms of L∞(μ), shows that
a judicious choice of the versions works.

Lemma 9. Let T be an automorphism of L∞(μ) whose associated algebra auto-
morphism is the identity. Then there is a measurable admissible t : X × R → R

such that, for every f ∈ L∞(μ), one has

Tf(x) = t(x, f(x)) (3)

almost everywhere.

Proof. For each rational r, let us fix a bounded version of Tr, so that we consider
Tr(x) defined for every x ∈ X. Note that if r < s, then Tr(x) < Ts(x) almost
everywhere. Clearly, the set N = {x ∈ X : Tr(x) ≥ Ts(x) for some r < s} has
measure zero. We first define t∗ : X × Q → R taking

t∗(x, c) =

{
Tr(x) if x /∈ N

r if x ∈ N

Now, for c ∈ R, put

t(x, c) = sup{t∗(x, r) : r ∈ Q, r < c}.

It follows from Lemma 8 that t(·, c) is a bounded representative of Tc for each
c ∈ R.

Notice that all functions t(x, ·) are strictly increasing: choose c, d ∈ R such
that c < d and pick any x ∈ X. If p and q are rational numbers such that
c < p < q < d, we have

t(x, c) ≤ t∗(x, p) < t∗(x, q) ≤ t(x, d),

as desired.
Next we verify that t(x, ·) is left continuous: it suffices to see that for each

c ∈ R, x ∈ X there is a sequence (cn) with cn < c and t(x, cn) → t(x, c). Let rn

be a strictly increasing sequence of rational numbers converging to c such that
t∗(x, rn) → t(x, c). We then have

lim
n

t∗(x, rn) = lim
n

t(x, rn+1) = t(x, c).

We now derive the formula (3) from that we know so far, namely that t(·, c)
is a version of Tc and the left continuity of every t(x, ·). Fix f ∈ L∞(μ). Let (sn)
be an increasing sequence of simple functions converging pointwise to f . By the
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remark before the Lemma we have Tsn(x) = t(x, sn(x)) almost everywhere. But,
by left continuity one also has

t(x, sn(x)) → t(x, f(x)) (x ∈ X).

On the other hand Tsn converges almost everywhere to Tf and so Tf(x) =
t(x, f(x)) almost everywhere.

Let us complete the proof that t is admissible. As T−1 is an automorphism,
there is s : X ×R → R, with each s(x, ·) strictly increasing, each s(x, ·) a version of
T−1c, and such that, for every f ∈ L∞(μ), one has T−1f(x) = s(x, f(x)) almost
everywhere. In particular we have that, for each r ∈ Q, s(x, t(x, r)) = r holds
almost everywhere and thus the set

M = {x ∈ X : s(x, t(x, r)) �= r for some r ∈ Q}
is null. It follows from Lemma 3 that t(x, ·) is an automorphism of R for x outside
M . Now, if we redefine t taking t(x, c) = c for x ∈ M and c ∈ R, we get an
admissible t for which (3) still holds.

We conclude the proof by showing that t is measurable. For each n, define
tn : X × R → R taking tn(x, c) = t(x, k/2n), where k is the unique integer such
that k/2n ≤ c < (k + 1)/2n. Notice that tn ≤ tn+1. By construction, each tn is
measurable and since tn converges pointwise to t, so is t. �

Finally, we get a transparent description of the isomorphisms between L∞

lattices when the underlying measures are ‘standard’. Recall that (X,X, μ) is stan-
dard if X is the algebra of Borel sets of a Polish space (a separable complete
metrizable space) X.

Also, given measure spaces (X,X, μ) and (Y,Y, ν), a measurable isomorphism
is a bijection τ : X → Y , measurable in both directions and such that A ∈ X has
measure zero if and only if ν(τ(A)) = 0.

Theorem 3. Let (X,X, μ) and (Y,Y, ν) be standard measure spaces, τ : X → Y a
measurable isomorphism and t : X × R → R a measurable admissible function –
with respect to the Borel structures. Then the map T : L∞(ν) → L∞(μ) given by

Tf(x) = t(x, f(τ(x))) (4)

is an isomorphism. All isomorphims arise in this way.

Proof. The hypotheses on the measures guarantee that every algebra isomorphism
L∞(ν) → L∞(μ) is given by composition with a measurable isomorphism τ : X →
Y . Thus, the second part follows from Lemma 9.

To prove the first part, we may assume μ = ν and τ = 1X and everything
is obvious but that T is onto. Consider the ‘admissible inverse’ of t given by
s(x, d) = c if and only if t(x, c) = d. This is a measurable function since its graph

G(s) = {(x, d, c) ∈ X × R × R : c = s(x, d)} = {(x, d, c) ∈ X × R × R : d = t(x, c)}
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is Borel (t is measurable) and a function on a Polish space (as X × R) is Borel
measurable if and only if its graph is a Borel set (see [7, Proposition 8.3.4]). Now,
the map S defined on L∞(μ) by

Sf(x) = s(x, f(x))

is easily seen to be the inverse of T . �

Example 2. A compact space M such that for every m ∈ M there is an automor-
phism T of C(M) such that T ∗δm is discontinuous.

Proof. Let μ be Lebesgue measure on the Borel sets of the unit interval. Our
compact space will be M, the maximal ideal space of the Banach algebra L∞.

Fix m ∈ M. We can regard m as a unital homomorphism of algebras m :
L∞ → R. It is clear that there is a unique y ∈ [0, 1] such that f(m) = m(f) = f(y)
for every f ∈ C[0, 1], that is, m is an extension of δy. Let (An) be a decreasing base
of neighborhoods of y in [0, 1], with A1 = [0, 1] and put n(x) = max{n : x ∈ An},
with n(y) = 1.

Now, define t : [0, 1] × R → R by t(x, c) = �(n(x), c), where � is the function
defined in the introduction and put

Tf(x) = t(x, f(x)) (f ∈ L∞).

Clearly, T is an automorphism, and it is not hard to see that T ∗m is discontinuous
at f = 1. �

It is well-known that there is no topology on L∞(μ) inducing convergence
almost everywhere unless μ is purely atomic. However [7], convergence almost
everywhere implies convergence in measure and since each sequence converging
in measure has subsequences converging almost everywhere to the same limit we
infer from Lemma 8 that isomorphisms T : L∞(ν) → L∞(μ) are homeomorphisms
for the topology of convergence in measure. If μ is finite, that topology is given on
L0(μ) by the F -norm

‖f‖0 =
∫

X

|f(x)|
1 + |f(x)|dμ (f ∈ L0(μ)).

Perhaps the most important topology on L∞(μ) is the weak* topology. Here,
we treat L∞(μ) as the dual of the Banach space L1(μ). Theorem 3 could suggest
that automorphisms of L∞(μ) must be weak* continuous. We have, however, the
following result, based on a remark of [5].

Corollary 5. Let ν and μ be finite standard measures without atoms. A lattice iso-
morphism T : L∞(ν) → L∞(μ) is weak* continuous if and only if it is an affine
homeomorphism in the norm topology.

Proof. We can assume throughout the proof that ν = μ is Lebesgue measure on
the unit interval and also that T0 = 0 – hence T is affine if and only if it is linear.
The ‘if part’ is clear: if T is linear, then Tf(x) = ω(x)f(τ(x)), where ω = T1Y .
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These operators are always weak* continuous since both composition operators
and multiplication operators are.

To prove the converse, after composing with τ−1 we can assume T has the
form f �→ t(·, f(·)). This is equivalent to say that two functions agree on a given
Borel subset of the unit interval if and only if so do their images under T .

Let (rn) denote the sequence of Rademacher’s functions, that is, rn(x) is the
signum of cos(2nπx) for 0 ≤ x ≤ 1. In is well-known that (rn) converges to zero
in the weak* topology of L∞. Set U±

n = {x ∈ [0, 1] : rn(x) = ±1}. Now, since
1U±

n
= (1 ± rn)/2 we have 1U±

n
→ 1

2 weakly* and since multiplication on L∞ is
separately weak* continuous we see that, for each f, g ∈ L∞, one has

lim
n→∞

(
1U+

n
f + 1U−

n
g
)

=
f + g

2
(weak*).

Notice that 1U+
n

f + 1U−
n

g agrees with f on U+
n and agrees with g on U−

n , so

T (1U+
n

f + 1U−
n

g) = 1U+
n

Tf + 1U−
n

Tg and

T

(
f + g

2

)
= lim

n→∞
(
1U+

n
Tf + 1U−

n
Tg

)
=

Tf + Tg

2
,

with the limit taken in the weak* sense. Hence T preserves midpoints and zero (in
both directions). It follows that it is additive (in both directions) and since T is
order preserving linearity and norm continuity easily follows. �

6. Lattices of Measurable Functions

We now extend the results of the preceding Section to other function lattices. As
before (X,X, μ) will denote a standard measure. Let us say that L is a function
lattice on μ if L∞(μ) ⊂ L ⊂ L0(μ), as lattices. If μ is finite this includes most
lattices one encounters in analysis including the spaces Lp(μ), for 0 ≤ p ≤ ∞. If μ
is infinite then, e. g., L2(μ) does not contain L∞(μ), but note that if μ is σ-finite,
then there is a finite measure υ with the same null sets (hence L0(υ) = L0(μ) and
L∞(υ) = L∞(μ)) and such that Lp(μ) is isomorphic to a function lattice on υ for
all p.

Theorem 4. Let T : M → L be an isomorphism, where M and L are function
lattices on the standard measures ν and μ, respectively. Then there exist a mea-
surable isomorphism τ : X → Y and a measurable function t : X × R → R such
that, for every f ∈ M ,

Tf(x) = t(x, f(τ(x))) (5)

holds almost everywhere. Moreover t can be chosen so that, for each fixed x, the
map t(x, ·) is an automorphism of R.

Proof. We may and do assume T0 = 0. Consider the composition

S : L∞(ν) −−−−→ M
T−−−−→ L −−−−→ L0(μ)

ρ∗−−−−→ L∞(μ)
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where the unlabelled arrows are plain inclusions and ρ∗(f) = ρ ◦ f , with

ρ(t) =
t

1 + |t| (t ∈ R).

As S is injective we know from Corollary 2 that if f, g ∈ L∞(ν) agree on some set
A of positive measure then Sf and Sg (and so Tf and Tg) agree on some set of
positive measure, say B, depending only on A. Suppose now that f, g ∈ M agree
on A. Then there are sequences (fn) and (gn) in L∞(ν) with fn and gn equal on A,
fn → f and gn → g almost everywhere. But T preserves almost everywhere con-
vergence (same proof as Lemma 8) and thus Tf and Tg agree almost everywhere
on B. Applying the same reasoning to T−1, we have in particular that f, g ∈ M
agree on some set of positive measure if and only if so Tf and Tg do.

Consequently T1Y > 0 almost everywhere and so η(x) = 1/T1Y (x) makes
sense as a function of L0(μ). Now, consider the composition

T ′ : L∞(ν) −−−−→ M
T−−−−→ L −−−−→ L0(μ)

·η−−−−→ L0(μ)
ρ∗−−−−→ L∞(μ),

where ·η denotes multiplication by η, which is a linear automorphism of L0(μ).
We can regard T ′ as a homomorphism from C(N) into C(M), where L∞(μ) =
C(M) and L∞(ν) = C(N). Clearly, T ′0 = 0 and T ′1 = 1/2. Hence T ′ induces
a continuous map φ : M → N and also a homomorphism of unital algebras φ∗ :
C(N) → C(M). As φ∗ sends idempotents to idempotents we can define a mapping
Φ : Y → X by the rule

1Φ(A) = φ∗(1A).

Our immediate aim is to show that Φ is an isomorphism. Notice that the same
argument as before proves the following.

Claim. Let f, g ∈ M agree almost everywhere on A. Then Tf and Tg agree
almost everywhere on Φ(A).

As T−1 has similar properties, we get a mapping Ψ : X → Y and we have
that if Tf and Tg agree on B, then f and g agree almost everywhere on Ψ(B).

Let us show that Ψ is an inverse for Φ. Pick A ∈ Y and consider the func-
tions 1 and 1A. We have that T1 and T1A agree almost everywhere on Φ(A) and
so 1 = T−1T1 and 1A = T−1T1A agree on ΨΦ(A). Hence ΨΦ(A) ⊂ A for each
measurable A and also (ΨΦ(A))c = ΨΦ(Ac) ⊂ Ac, that is, ΨΦ(A) = A.

Hence Φ is an isomorphism and the hypotheses about the measures guarantee
the existence of a bimeasurable τ : X → Y such that Φ(A) = τ−1(A).

The rest of the proof follows the lines of Section 5. We already know that
f < g almost everywhere if and only if Tf < Tg almost everywhere. In particular
we can choose versions of Tr for r ∈ Q such that Tr(x) < Ts(x) for all r < s and
all x ∈ X. Now, define t : X × R → R by letting t(x, 0) = 0 and

t(x, c) =

{
inf{Tr(x) : r > c, r ∈ Q} for c < 0
sup{Tr(x) : r < c, r ∈ Q} for c > 0
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It is clear that for every real c the function t(·, c) is a version of Tc and also that
for every fixed x the real function t(x, ·) is left continuous on (0,∞) and right
continuous on (−∞, 0).

It follows from the Claim that if s is simple, then

Ts(x) = t(x, s(τ(x)))

holds almost everywhere. For an arbitrary f ∈ M , write f = f+−f−, where f+ and
f− are non-negative functions with disjoint supports. Clearly, there are increas-
ing sequences (s±

n ) of simple functions with s±
n → f± almost everywhere, with

supp s±
n ⊂ supp f±. Writing sn = s+

n − s−
n we have sn → f almost everywhere.

Moreover, for every x one has t(x, sn(τ(x))) → t(x, f(τ(x))), so

Tf(x) = t(x, f(τ(x)))

almost everywhere.
The remainder of the proof, namely, that we can modify t in such a way that

each t(x, ·) is an increasing homeomorphism of R and that resulting t is jointly
measurable goes exactly as in the proof of Lemma 9. �

Of course, the precise conditions on t and τ under which (5) defines an iso-
morphism will depend on M and L. A trivial condition is that t(·, f(·)) belongs to
L if and only if f ∈ M . For the ‘maximal’ lattice L0(μ) we have the following.

Corollary 6. Let μ be a finite standard measure. Let τ be measurable automorphism
of X and t : X × R → R be a measurable function such that for every fixed x, the
funcion t(x, ·) is an automorphism of R. Then the formula

Tf(x) = t(x, f(τ(x))) (x ∈ X)

defines an automorphism of L0(μ). All automorphisms of L0(μ) arise in this way
and they are continuous when L0(μ) is furnished with the topology of convergence
in measure. �

Another trivial consequence of Theorem 4 is that for 0 ≤ p, q ≤ ∞ the lattices
Lp and Lq are isomorphic if and only if 0 < p, q < ∞. However this follows easily
by inspection: indeed, if 0 < p < ∞, then the map sending f ∈ Lp to σ(f)|f |p
gives an isomorphism between L1 and Lp –here σ denotes ‘signum’. Conversely,
the statement: ‘there is a sequence (fn) such that for every f there is n such that
fn ≥ f ’ holds in Lp if and only if p = ∞, while the statement: ‘if (fn) and f are
such that f ≤ fn for all n and fn ∧ fm = f whenever n �= m, then

∨
n fn exists’

holds in Lp if and only if p = 0.

7. Concluding Remarks

Very recently J. Marovt has published three papers on preservers [18, 20, 19]. His
results can be summarized as follows. Notice that a bijection between lattices is
an isomorphism if and only if it preserves the order in both directions.
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Let T be a bijection on C(X, I), where X is a metrizable compact space and
I = [0, 1].

(a) If T preserves the order in both directions then it has the form Tf(x) =
t(x, f(τ(x))) where τ is a homeomorphism of X and t : X × I → I is given
by t(x, c) = Tc(x).

(b) If T is multiplicative then Tf(x) = (f(τ(x)))κ(x), where τ is a homeomor-
phism and κ : X → (0,∞) is continuous.

(c) If T is affine then it has the form Tf(x) = 1/2+u(x)(1/2− f(τ(x))), where
τ is a homeomorphism and u : X → ±1 is continuous.

Marovt conjectures that the same holds without metrizability. This is the
case in (c), but neither in (a) or (b). Indeed, the counterexample for (b) in [9] is
easily seen to be a counterexample for (a) as well. Actually, I do not know if every
multiplicative bijection on C(X, I) must preserve order (in both directions). It is
clear that any multiplicative bijection on C(X, (0, 1)) does. We refer the reader to
the papers [22, 24, 14, 8] for related results on the semigroup C(X).

The affine case is as follows (a slightly different argument appears in [10]):
as I is affine with [−1, 1] we can consider affine bijections on C(X, [−1, 1]). Note
that C(X, [−1, 1]) is just the unit ball of the Banach space C(X). On the other
hand, if B is the unit ball of a Banach space then the origin is the only point f
in B satisfying the following: given g ∈ B there is h ∈ B such that f = (g + h)/2
(for if f �= 0 then f is not a midpoint with g = −f/‖f‖). It follows that T0 = 0
and so Tcf = cTf for all f ∈ C(X, [−1, 1]) and c ∈ I. Hence we can extend T to
a linear bijection thus:

f �−→ ‖f‖T (f/‖f‖).

But a linear bijection mapping the unit ball onto itself is also an isometry and so
the Banach-Stone theorem gives that T has the form Tf = u · f ◦ τ, where τ is a
homeomorphism of X and u : X → ±1 is continuous. Translating this to C(X, I)
one obtains (c) with an X arbitrary compact Hausdorff space (or any metrizable
space, compact or not). It is perhaps a little ironic that the Studia paper [20]
contains more or less Banach’s part of the Banach-Stone theorem (see [13] for an
historical account).

The results of this paper remain true mutatis mutandis if we replace R by I.
We will refrain from entering into further details here, as this would add nothing
to the main ideas.

We close with some questions arising from the results of the paper.
First, it would be interesting to characterize those maps t : X × R → R such

that t(x, c) = Tc(x) for some automorphism T of C(X), with X compact. This
would complete Theorem 1.

With the sole exception of Section 6 our results apply only to bounded func-
tions. It would be interesting to obtain a description of the automorphisms of C(X)
when X is a metric space. Same question for U(X), with X complete metric.
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Note added in proof. After receiving the proofs, I found out two papers closely
related to the subject of these notes, namely

[NS] I. Namioka, S. Saeki, On lattice isomorphisms of C(X)+. Tokyo J. Math.
1 (1978), no 2, 345–368.

[LS] R. Lochan, D. Strauss, Lattice homomorphisms of spaces of continuous
functions. J. London Math. Soc. (2) 25 (1982), no 2, 379–384.

I hasten to remark that some results presented here were already proved in
these papers. Indeed, Corollary 3 and the remark that closes Sect. 3 are due to
Namioka and Saeki. Let me mention the notable result, proved in [NS], that C(X)
admits a discontinuous automorphism if and only if X = βS, for some open Fσ

proper subset S ⊂ X (Theorem 1.5). This rounds off the earlier results by Itô
quoted in the Introduction. It seems that Namioka and Saeki were unaware of [15]
as well as of Cater’s [6].

Also, Lemmas 1 and 2 correspond to Theorem 1 in [LS], while Corollary 2
corresponds to Propositions 1 and 2 in [LS]. Moreover, the first and second parts of
Corollary 1 should be credited to Lochan and Strauss as they correspond to their
Propositions 3 and 4. Our approach is simpler. By the way, Theorem 4 in [LS] was
obtained earlier in [6]. Finally, it is worth noticing that [LS] contains the striking
results that it is compatible with ZF (the usual setting of set theory without the
axiom of choice) to assume that every surjective homomorphism C(Y ) → C(X) is
continuous (Theorem 3).
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