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Abstract

We discuss the existence of homomorphisms to oriented cycles and
give, for a special class of cycles C, a characterization of those digraphs
that admit a homomorphism to C. Our characterization can be used
to prove the multiplicativity of these cycles, as well as the membership
of the corresponding decision problem in the class NP∩coNP . We also
mention a conjecture on the existence of homomorphisms to general
oriented cycles.

1 Introduction.

The problem of existence of graph homomorphisms has attracted consid-
erable attention, [1], [2], [8], [4], [7], [9], [6], [5], [20], [22], [16]. ¿From an
algorithmic point of view, the problem is known to be NP-complete when the
target is a fixed undirected graph G of chromatic number greater than two,
and polynomial for all other undirected graphs, [5]. No such clear distinction
is known for digraphs, [4], [7], [9],[20], although some conjectures for special
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cases have been proposed, [6]. One result of note, [19], is a polynomial algo-
rithm for the existence of a homomorphism to an oriented path. However,
the existence of homomorphisms to oriented cycles appears to be a harder
problem and no general polynomial algorithm is known at this time.

Another recent source of interest in the same problem is Hedetniemi’s
conjecture [13], [14], [15], [10], [11], which states that the chromatic number
of the product of two n-chromatic graphs is n. (The product here is the
conjunction [26], also known as the categorical product [14], in which (a, b) is
adjacent to (c, d) just if a is adjacent to c and b to d.) This led to the definiton
of a multiplicative (directed or undirected) graphW , [3], (see also [21]), as one
for which graphs non-homomorphic to W are closed under taking products.
In other words, W is multiplicative just if G 67→ W and G′ 67→ W implies
that G×G′ 67→ W . It is easy to see that Hedetniemi’s conjecture asserts that
complete graphs are multiplicative. Some multiplicative graphs and digraphs
were given in [3], [17], [18]. Again, multiplicative oriented paths have been
completely characterized, [17], while the situation for oriented cycles is more
difficult. In particular, [17] introduced a special class of cycles, called C-
cycles, and showed that among oriented cycles only the C-cycles could be
multiplicative. (A simpler proof of this result is given in [18].) However, the
problem of whether or not all C-cycles were multiplicative, remained open.

We introduce a more general class of oriented cycles, called B-cycles, and
give a characterization of those digraphs which are homomorphic to a fixed
B-cycle. This result will allow us to prove (in a subsequent paper [23]) that
all C-cycles are indeed multiplicative, thus completing the characterization
of multiplicative oriented cycles. It will also follow from our result that the
existence problem for homomorphism to a fixed B-cycle is in NP ∩ coNP .
We shall mention corresponding results about homomorphisms to a fixed
oriented path, and a possible extension of our main result to any oriented
cycle. Proving this extension would verify that the existence problem for
homomorphism to any oriented cycle is in NP ∩ coNP , and possibly even
suggest a polynomial algorithm for it.

A homomorphism of a digraphG to a digraphH is a mapping of the vertex
sets V (G) 7→ V (H) which preserves the edges, i.e., such that xy ∈ E(G)
implies f(x)f(y) ∈ E(H). If such a homomorphism exists, we say G is

2



homomorphic to H and write G 7→ H. Otherwise we write G 67→ H.

An oriented path P is a digraph obtained from an undirected path by
orienting its edges and assigning to it a positive direction. Thus an oriented
path P is a digraph given by its sequence of vertices < p0, p1, . . . , pn >,
such that, for each i ∈ {0, 1, . . . , n − 1}, either pipi+1 ∈ E(P ) (a forward
edge of P ), or pi+1pi ∈ E(P ) (a backward edge of P ), and such that P has
no other edges. The direction of P is emphasized by saying that p0 the
initial point, i(P ), of P , and pn the terminal point, t(P ), of P , respectively.
Expressions such as “u precedes (or follows) v on P”, or “z is between x
and y on P”, also refer to this order on P . Changing the direction of P
results in the path P T =< pn, pn−1, . . . , p0 >. Note that P T is the same
digraph as P , only traversed in the opposite order. If P =< p0, p1, . . . , pn >
and P ′ =< p′0, p

′
1, . . . , p

′
m > are oriented paths with disjoint vertex-sets, the

concatenation of P and P ′ is the oriented path P • P ′ =< p0, p1, . . . , pn =
p′0, p

′
1, . . . , p

′
m >. We often concatenate given paths with the special oriented

path A =< a, a′ >, consisting of a single forward arc aa′.

Let P =< p0, p1, . . . , pn > be an oriented path and let u = pi precede
v = pj in P (i.e., let i < j). The interval of P from u to v is the oriented
path P [u, v] =< pi, pi + 1, . . . , pj >. We also let P [., v] = P [i(P ), v], and
P [u, .] = P [u, t(P )].

Let P be an oriented path. The length l(P ) of P is the number of forward
edges of P minus the number of backward edges of P . We say that P is
minimal if it contains no proper interval of the same length. An interval I
of P is called minimal if I is a minimal path. The distance from u to v in P
is dP (u, v) = l(P [u, v]). The level of u in P is λP (u) = l(P [., u]). Note that
homomorphisms preserve distance, i.e., if f : P 7→ P ′ is a homomorphism
and u, v ∈ P then dP ′(f(u), f(v)) = dP (u, v).

A directed path (interval) is an oriented path (interval) with all the edges
in the same direction. If they are forward edges it is called a forward directed
path (interval), otherwise it is called a backward directed path (interval).

An oriented cycle C is a digraph obtained from an undirected cycle by ori-
enting its edges and assigning to it a positive direction. Thus an oriented cycle

3



C is a digraph given by its circular sequence of vertices < c0, c1, . . . , cn, c0 >,
such that, for each i ∈ {0, 1, . . . , n}, either cici+1 ∈ E(C) (a forward edge of
C), or ci+1ci ∈ E(C) (a backward edge of C), and such that C has no other
edges. (Subscript addition modulo n.) Since we do not distinguish an initial
vertex of an oriented cycle, < c0, c1, . . . , cn, c0 >=< c1, c2, . . . , cn, c0, c1 >,
and we usually choose a most convenient vertex to start listing C. Note that
we can view an oriented cycle as an oriented path in which the initial and
terminal vertices have been identified, and in this spirit we shall use some of
the definitions given for oriented paths also for oriented cycles. In particular,
the length of the oriented cycle C is the difference between the number of
forward edges and the number of backward edges of C; an interval of C is an
interval of < c0, c1, . . . , cn >, where < c0, c1, . . . , cn, c0 > is any of the diferent
ways of listing C.

Let P =< p0, p1, . . . , pm > be an oriented path and C =< c0, c1, . . . , cn >
an oriented cycle. Consider a homomorphism f : P 7→ C such that f(pi) =
f(pi+2) for some i. Define P ′ =< p0, p1, . . . , pi, pi+3, . . . , pm >, and define
f ′(pj) = f(pj) for j = 0, 1, . . . , i, i + 3, . . . ,m. Note that f ′ : P ′ 7→ C is
a homomorphism; we shall say that it is obtained from f : P 7→ C by a
simplification step. If f ′′ : P ′′ 7→ C is obtained from f : P 7→ C by a
sequence of simplification steps, we shall say that f : P 7→ C simplifies to
f ′′ : P ′′ 7→ C. We shall say that the homomorphism f : P 7→ C wraps P
around C if f simplifies to f ′′ : P ′′ 7→ C where P ′′ =< p′′0, p

′′
1, . . . , p

′′
n+1 >

and f ′′(p′′j ) = cj, for j = 0, 1, . . . , n,and f ′′(p′′n+ 1) = c0. We shall say that
the homomorphism f : P 7→ C winds P around C if some restriction of f
to an interval of P wraps the interval around C. Finally, we shall say that
the oriented path P can (can not) be wound around C if there is (isn’t) a
homomorphism f : P 7→ C which winds P around C.

DEFINITION 1 An oriented cycle C =< c0, c1, . . . , cn, cn+1, . . . , cm, c0 >,
with n ≥ 2, is a B-cycle (with parameter n), if < c0, c1, . . . , cn > is a forward
directed path (of length n), and < c0, cm, cm−1, . . . , cn+1, cn > an oriented path
of length n− 1 which does not contain an interval of length n.

Note that C has length 1. Note further that I =< c0, c1, . . . , cn > is the
only minimal interval of C of length n, i.e., every interval of C is of length
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at most n, and every interval of length n must contain I. Therefore, if P is
any minimal oriented path of length n and if h : P 7→ C is a homomorphism,
then h(i(P )) = c0 and h(t(P )) = cn. Furthermore, if P is an oriented path
which contains an interval of length greater than n and if h : P 7→ C is a
homomorphism, then h must wind P around C.

We now give our main result, a characterization of the class of digraphs
which are homomorphic to a fixed B-cycle.

THEOREM 2 Let C be a B-cycle and G any digraph. Then G 67→ C if and
only if there exists an oriented path P such that P 7→ G but P 67→ C.

If G 7→ C and P is an oriented path such that P 7→ G, then of course
P 7→ C by composition. Thus the sufficiency of the condition is obvious.
The remainder of this paper consists of proving the necessity. Thus we shall
prove that G is homomorphic to C provided all paths homomorphic to G are
also homomorphic to C.

Note that an image of a path P =< p0, p1, . . . , pm > under homomor-
phism f to G may be viewed as a walk in G, simply by identifying it with
the sequence of vertices f(p0), f(p1), . . . , f(pm). We could also call a walk
pattern of G any path P which is homomorphic to G. In this terminology,
our main theorem would assert that G is homomorphic to C if and only
if each walk pattern of G is homomorphic to C. Since this terminology is
somewhat unusual, we shall avoid it in the sequel. However, it may help the
reader to bear this point of view in mind when reading the proofs. In partic-
ular, we frequently define paths P =< p0, p1, . . . , pm > and homomorphisms
f : P 7→ G, having first in mind the walk f(p0), f(p1), . . . , f(pm) in G.

2 The mapping ψ

¿From now on we assume that C =< c0, c1, . . . , cn, cn+1, . . . , cm, c0 > is a
fixed B-cycle with parameter n, and that G is a fixed digraph such that
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every path P homomorphic to G is also homomorphic to C. We proceed to
construct a homomorphism G 7→ C.

First we associate with C a path R =< r0, r1, . . . , rn, rn+1, . . . , rm, rm+n,
rm+n−1, . . . , rm+1 >, such that rirj is a forward (respectively backward) arc
just if cicj is a forward (respectively backward) arc of C, where we let
cm+n−i = ci, i = 0, 1, . . . , n − 1. Note that there is a natural homomor-
phism R 7→ C, taking ri to ci. For v ∈ R, Ind(v) denotes the index of v,
i.e., Ind(v) = i just if v = ri. We write u ≤ v (or u < v) if Ind(u) ≤ Ind(v)
(respectively Ind(u) < Ind(v)) on R; thus ri ≤ rj just if i ≤ j. When we
speak of the maximum of a set of vertices of R, we are referring to this order.
(Note that this is not the ordering imposed by R, in which rm is followed by
rm+n, then rm+n−1, etc.)

It follows from the definition of R that D =< r0, r1, . . . , rn > is a directed
interval of R of length n. It also follows that for every vertex x of R we have
0 ≤ λR(x) ≤ n, and λR(x) = 0 if and only if x = r0. Thus D is the only
minimal interval of R of length n. Hence if P is any minimal oriented path
of length n and if h : P 7→ R is any homomorphism, then h(i(P )) = r0 and
h(t(P )) = rn.

We shall denote by P the set of all paths P homomorphic to G such that
0 < λP (x) ≤ n holds for all vertices of P except for i(P ). Each interval of
any P ∈ P has length at most n. It is well known, cf. [21], [3], that this
implies that P is homomorphic to D, and hence also homomorphic to R.

DEFINITION 3 Define φ : P 7→ V (R) as follows: For P ∈ P,

φ(P ) = max{h(t(P )) : h : P 7→ R}.

Define ψ : V (G) 7→ V (R) by

ψ(x) = min{φ(P ) : P ∈ P , and for some h : P 7→ G, h(t(P )) = x}.

Since there is a natural homomorphism from R to C, ψ induces a mapping
of G to C. In this section we show that this induced mapping has some nice
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properties. However it is not, in general, a homomorpism. In the next section,
we will use ψ to construct a true homomorphism of G to C.

DEFINITION 4 Put

K = {x ∈ V (G) : ψ(x) = rm+n}

K1 = {x ∈ V (G) : r1 ≤ ψ(x) ≤ rm} and

K2 = {x ∈ V (G) : rm+1 ≤ ψ(x) ≤ rm+n−1}.

Put L = K1 ∪K2.

It follows from the definition of P ∈ P (and from the fact that homo-
morphisms preserve distances), that φ(P ) 6= c0; whence each ψ(x) 6= c0 and
V (G) = K ∪ L.

LEMMA 5 For each vertex x ∈ K2, there exists a path P ∈ P and ho-
momorphisms g : P 7→ G, h : P 7→ R such that g(t(P )) = x, h(i(P )) =
rm+n, and h(t(P )) = ψ(x). In particular, P contains no interval of length n.

Proof. The definiton of ψ(x) implies that there is a path P ′ and ho-
momorphisms g′ : P ′ 7→ G, h′ : P ′ 7→ R such that g′(t(P ′)) = x and
h′(t(P ′)) = ψ(x) = φ(P ′). Since < rm+n, rm+n−1, . . . , rm + 1 > is a directed
path, it follows from the definition of φ(P ′) that h′ maps some vertex of P ′ to
rm+n. Let v be the last vertex of P ′ such that h′(v) = rm+n. Let P = P ′[v, .],
and let g, h be the corresponding restrictions of g′, h′. It is now easy to see
that the conclusions hold.

Remark. The situation is different for vertices x ∈ K1. In fact, any
P with homomorphisms g : P 7→ G, h : P 7→ R such that g(t(P )) = x
and h(t(P )) = φ(P ) = ψ(x) does contain an interval of length n. Indeed, if
λP (v) < n for all v then P maps to < rm+n, rm+n−1, . . . , rm+1 > contradicting
the fact that φ(P ) ≤ rm. Let v be the first vertex on P of level n, and let f be
any homomorphism of P to R (respectively to C). Since P [., v] is a minimal
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interval of length n, we have f(i(P )) = r0 (respectively f(i(P )) = c0) and
f(v) = rn (respectively f(v) = cn). This implies in particular that the length
of P is determined by x, namely l(P ) = λR(ψ(x)).

For x ∈ L, let Px denote the set of all paths P ∈ P which admit
homomorphisms g : P 7→ G and h : P 7→ R such that g(t(P )) = x,
h(t(P )) = φ(P ) = ψ(x), and h(i(P )) = rm+n if x ∈ K2 or h(i(P )) = r0
if x ∈ K1. (According to the last remark, h(i(P )) = r0 is automatic for
x ∈ K1.) The above remark also implies that the length of all P ∈ Px is the
same for x ∈ K1; a similar argument shows the same for x ∈ K2.

LEMMA 6 Let x ∈ L and let P ∈ Px. Then P can not be wound around
C.

Proof. Suppose P ∈ Px and f : P 7→ C is a homomorphism which winds
P around C.

Assume first that x ∈ K2: Note that f(i(P )) 6= c0 since P does not
contain an interval of length n. Thus f(v) 6= c0 for all v ∈ P , since the
distance from f(i(P )) to c0 along any direction of C is non-positive and the
distance from i(P ) to any other point of P is positive. Therefore f does not
wind P around C.

Assume now that x ∈ K1: Then f(i(P )) = c0, according to the remark.
Since all λP (v) ≥ 0, f must map P around C in the positive direction. Since
f winds P around C, some vertex v 6= i(P ) of P has f(v) = c0. Then
lP (v) = 1 and so P ′ = P [v, .] contains no interval of length n. Furthermore
P ′ contains no vertex of negative level. Therefore there is a homomorphism
h : P ′ 7→ R[rm+n, rm+1] such that h(v) = rm+n. We may view f restricted
to P [., v] as a homomorphism to R, with f(v) = cm+n. This restriction of f ,
together with the homomorphism h then yield a homomorphism g : P 7→ R,
such that g(t(P )) ≥ rm+1. This contradicts the assumption that φ(P ) =
ψ(x) ≤ rm.

LEMMA 7 Let x, y ∈ L and xy ∈ E(G). Then any Px ∈ Px has length less
than n, and any Py ∈ Py length more than 1.
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Proof. Suppose Px ∈ Px has length n, and let P ′ = Px •A. (Recall that
A is the path consisting of a single forward arc aa′.) Then P ′ has length
n + 1 and is homomorphic to G (extend any homomorphism Px 7→ G to P ′

by mapping a′ to y). According to our assumption, it is also homomorphic to
C. Any homomorphism P ′ 7→ C must wind P ′ around C, in order to achieve
the length n+ 1. In fact, even its restriction to Px must wind Px around C,
for the length of C is 1. Since this contradicts Lemma 6, we have l(Px) < n.

Suppose Py ∈ Py has length 1, and let P ′′ = Px •A•P T
y . Then the length

of P ′′[a, .] is zero, and hence for each u ∈ P T
y \i(Py) in P ′′ the distance to a,

being the same as the distance to i(Py), is positive. We first show that there
is no u ∈ P T

y \i(Py) for which λPy(u) = n. Suppose there is; then we have
λP ′′(u) ≥ n + 1. Thus any homomorphism P ′′ 7→ C must wind P ′′ around
C. On the other hand, there exists such a homomorphism f : P ′′ 7→ C,
because P ′′ is obviously homomorphic to G (take a to x and a′ to y). Since
i(P ′′) is the initial vertex of a minimal interval of P ′′ of length n, we have
f(i(P ′′)) = c0. Let v ∈ P ′′ be the first vertex of P ′′ after i(P ′′) such that
f(v) = c0. Then v ∈ Py, for otherwise f would wind Px around C contrary
to Lemma 6. Also v must precede u in P ′′ because λP ′′(u) ≥ n+1. Therefore
v 6= i(Py). This is a contradiction because it implies that dC(f(a), f(v)) ≤ 0
while dP ′′(a, v) > 0.

Therefore all λPy(u) ≤ n− 1, and hence y ∈ K2. Then l(Py) = 1 implies
that ψ(y) = φ(Py) = rm+n−1. Let, as above, P ′ = Px • A. Then P ′ ∈ P
because l(Px) ≤ n − 1. There is a homomorphism of P ′ to G which takes
a′ to y. Thus we must have φ(P ′) ≥ ψ(y) ≥ rm+n−1. Let h : P ′ 7→ R be
a homomorphism such that h(t(P ′)) ≥ rm+n−1. Now h(t(P ′)) = h(a′) 6=
rm+n, because h(a′) is the end of the edge starting in h(a), while rm+n has
indegree zero. Also h(t(P ′)) = h(a′) 6= rm+n−1, otherwise h(a) = rm+n

which contradicts the assumption that φ(Px) = ψ(x) ≤ rm+n−1. This final
contradiction proves the lemma.

COROLLARY 8 Assume x, y ∈ L, xy ∈ E(G). If Px ∈ Px, Py ∈ Py then
Px • A ∈ P, Py • AT ∈ P.

LEMMA 9 Assume x, y ∈ K1. If xy ∈ E(G), then ψ(x)ψ(y) ∈ E(R).
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Proof. Suppose first that ψ(x) < ψ(y). Let Px ∈ Px and let P ′ =
Px • A. There is a homomorphism g : P ′ 7→ G with g(a) = x and g(a′) =
y. Since P ′ ∈ P (by the above Corollary) and g(t(P ′)) = y, there is a
homomorphism h′ : P ′ 7→ R such that h′(a′) ≥ ψ(y). On the other hand,
h′(a) ≤ φ(Px) = ψ(x) < ψ(y), since h′ restricted to Px is a homomorphism.
Now h′(a)h′(a′) ∈ E(R), and so Ind(h′(a′)) ≤ Ind(h′(a)) + 1. (Since ψ(x) <
ψ(y), ψ(x) can not be rm). Then Ind(h′(a)) ≤ Ind(ψ(x)) < Ind(ψ(y)) ≤
Ind(h′(a′)) ≤ Ind(h′(a)) + 1 implies that h′(a) = ψ(x), h′(a′) = ψ(y) and
therefore ψ(x)ψ(y) ∈ E(R).

A similar argument applies in the case ψ(x) > ψ(y). One only needs to
use Py ∈ Py and P ′′ = Py •AT , and a homomorphism h′′ : P ′′ 7→ R such that
h′′(a′) ≥ ψ(x).

It remains to consider the case ψ(x) = ψ(y). Let P ′, h′, P ′′ and h′′ be
defined as above. Let ψ(x) = ψ(y) = ri. Then as above, h′(a) ≤ ψ(x) =
ri = ψ(y) ≤ h′(a′). Now h′(a)h′(a′) ∈ E(R) implies that Ind(h′(a)) ≥
Ind(h′(a′))−1 ≥ i−1. Therefore either h′(a) = ri, or h′(a) = ri−1. But h′(a)
cannot be ri−1, because the homomorphism inherent in the definition of φ(Px)
maps Px to a path that starts at r0 and ends at ri, so (as homomorphisms
preserve distances) h′ cannot map Px to a path that starts at r0 and ends
at ri−1. (By the remark, h′(i(Px)) = r0). Therefore h′(a) = ψ(x) = ri and
h′(a′) = ri+1 (or rm+n if i = m). So riri+1 (or rmrm+n) ∈ E(R). The same
argument applied to P ′′ and h′′ will show that ri+1ri (or rm+nrm) ∈ E(R).
This is a contradiction because R has no pair of opposite edges. Therefore
this case can not happen and the lemma is proved.

LEMMA 10 Assume x, y ∈ K2. If xy ∈ E(G), then ψ(x)ψ(y) ∈ E(R).

Proof. Again, we take Px ∈ Px, Py ∈ Py, P ′ = Px •A, and P ′′ = Py •AT ;
note that P ′ 7→ G and P ′′ 7→ G with a going to x and a′ to y. Since
P ′ ∈ P, there exists a homomorphism h′ : P ′ 7→ R with h′(a′) ≥ ψ(y).
Clearly, h′(a) ≤ ψ(x). As there is an edge from h′(a) to h′(a′), Ind(h′(a′)) =
Ind(h′(a))−1; hence Ind(ψ(y)) ≤ Ind(ψ(x))−1. A similar argument applied
to P ′′ shows that Ind(ψ(y)) ≥ Ind(ψ(x))−1. Thus Ind(ψ(y)) = Ind(ψ(x))−
1 and ψ(x)ψ(y) ∈ E(R).
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LEMMA 11 Assume x ∈ K, y ∈ K2. If xy ∈ E(G), then ψ(x)ψ(y) ∈
E(R).

Proof. Note that we cannot use our Corollary, as x 6∈ L. However,
proceeding by contradiction, since we have ψ(x) = rm+n, we may assume
that ψ(y) ≤ rm+n−2. In this case we still may take any Py ∈ Py and be
assured of l(Py) ≥ 2, or else φ(Py) ≥ rm+n−1. Thus letting P ′′ = Py • AT ,
we have P ′′ ∈ P . There is a homomorphism P ′′ 7→ G taking t(P ′′) = a to
x. Therefore there is a homomorphism h′′ : P ′′ 7→ Rsuch that h′′(a) = rm+n.
Now h′′(i(P ′′)) = r0 because r0 is the only point in C which has positive
distance to rm+n. However this is a contradiction because Py contains no
subpath of length n.

LEMMA 12 Assume x ∈ K1, y ∈ K2. Then xy 6∈ E(G), and if yx ∈ E(G),
then l(Px) = 2 and l(Py) = 1 for any Px ∈ Px, Py ∈ Py.

Proof. Suppose xy ∈ E(G) and let P ′ = Px • A, for Px ∈ Px. Thus
P ′ ∈ P by the Corollary. There is a homomorphism P ′ 7→ G taking a to
x and a′ to y. Hence there is a homomorphism h′ : P ′ 7→ R such that
h′(a′) ≥ ψ(y) ≥ rm+1. Also, we have h′(a) ≤ φ(Px) = ψ(x) ≤ rm. Hence
h′(a) = rm and h′(a′) = rm+n. This is impossible, as rmrm+n 6∈ E(R).

Now assume that yx ∈ E(G). An argument identical to the above (with
A =< a, a′ > consisting of the single backward arc a′a) shows that h′(a) = rm
and h′(a′) = rm+n. Since dR(r0, rm) = 2, we have l(Px) = dPx(i(Px), a) =
dR(h′(i(Px)), h

′(a)) = dR(r0, rm) = 2, because h′(i(Px)) = r0 and h′(a) = rm.

Let Py ∈ Py; we prove that l(Py) = 1. Let P ′′ = Px • A • (Py)
T , and

let f : P ′′ 7→ C be a homomorphism. Since i(P ′′) is the initial point of
some minimal interval of P ′′ of length n, we have f(i(P ′′)) = c0, and f
begins by mapping P ′′ to C in the positive direction. If l(Py) = q ≥ 2, then
l(P ) = 1− q < 0, and f must eventually wind P ′′ around C in the negative
direction. But this is impossible, since Py can not wind around C. Therefore
l(Py) = 1.

11



3 The homomorphism hψ

In the previous section we constructed a mapping ψ from G to R, and so, by
composition with the natural homomorphism R 7→ C, a mapping from G to
C. The above lemmas suggest that ψ is very close to being a homomorphism;
however it is not a homomorphism in general. In this section we will modify
this mapping to construct a true homomorphism from G to C. Roughly
speaking, we shall make a correction for those vertices x that are forced into
K1 by a path in Px which would allow mapping x further along R if a length
zero portion of it were cut out. Specifically:

DEFINITION 13 Let M denote the set of all vertices x ∈ K1 for which
there exists a Px ∈ Px, a homomorphism g : Px 7→ G with g(t(Px)) = x,
and a pair of vertices u < v ∈ Px such that g(u) = g(v), l(Px[u, v]) = 0, and
Px[., u] • Px[v, .] contains no interval of length n. If x ∈ M then any Px as
above has the same length, and we denote it by i(x).

Define the mapping hψ : G 7→ V (C) as follows:

hψ(x) = c0 if x ∈ K.
hψ(x) = ci where i = Ind(ψ(x)) if x ∈ K1\M .
hψ(x) = cj if x ∈ K2 and ψ(x) = cm+n−j.
hψ(x) = ci if x ∈M and i(x) = i.

THEOREM 14 The mapping hψ is a homomorphism of G to C.

Proof. Suppose x, y ∈ V (G) and xy ∈ E(G). We shall show that
hψ(x)hψ(y) ∈ E(C). By considering the natural homomorphism R 7→ C and
the definition of hψ, the above lemmas imply the following:

If both x and y are in K1\M then hψ(x)hψ(y) ∈ E(C).
If both x and y are in K2 then hψ(x)hψ(y) ∈ E(C).
If x ∈ K and y ∈ K2 then hψ(x)hψ(y) ∈ E(C).
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We have also proved that it is never the case that x ∈ K1 and y ∈ K2.
Note that it is also never the case that y ∈ K, since rm+n has indegree zero.
Therefore we complete the proof of the theorem by showing the following
assertions:

If x ∈ K and y ∈ K1 then hψ(x)hψ(y) ∈ E(C).
If both x ∈M and y ∈M then hψ(x)hψ(y) ∈ E(C).
If x ∈ M, y ∈ K1\M or y ∈ M,X ∈ K1\M then hψ(x)hψ(y) ∈

E(C).
If x ∈ K2 and y ∈ K1 then hψ(x)hψ(y) ∈ E(C).

We proceed to prove these four assertions in a sequence of four lemmas.

LEMMA 15 Assume x ∈ K, y ∈ K1. If xy ∈ E(G) then hψ(x)hψ(y) ∈
E(C).

Proof. Let Py ∈ Py and P = Py • AT . Then all vertices v ∈ P have
0 ≤ λP (v) ≤ n.

Suppose first that l(P ) > 0: Then P ∈ P and P 7→ G so that t(P ) = a is
taken to x. Thus there is a homomorphism h : P 7→ R such that h(a) = rm+n,
which implies h(a′) = rm because h(a′) ≤ ψ(y) ≤ rm. Hence ψ(y) = rm. If
y 6∈ M , then hψ(y) = cm, (because ψ(y) = rm) which implies hψ(x)hψ(y) ∈
E(C). Hence we assume that y ∈M . We may also assume that Py fulfills the
requirements of the definition of M , i.e., that there exists a homomorphism
g : Py 7→ G with g(t(Py) = x, and a pair of vertices u < v ∈ Py such that
g(u) = g(v), l(Py[u, v]) = 0, and P ′ = Py[., u] • Py[v, .] contains no interval of
length n. Let P ′′ = P ′ • AT . It is clear that P ′′ 7→ G taking a to x (since
g(u) = g(v) we can use the restriction of g), and that P ′′ ∈ P (because
l(P ′′) = l(P )). Since x ∈ K, there is a homomorphism h′′ : P ′′ 7→ R such
that h′′(a) = rm+n. Now the length of P ′′ is positive, and the only vertex of
R with a positive distance to rm+n is r0. Hence h′′(i(P ′′)) = r0, contrary to
P ′ not containing an interval of length n.

Hence l(P ) = 0. Then for each vertex u ∈ P, dP (i(P ), u) = dP (t(P ), u);
in particular, l(Py) = 1. If ψ(y) = r1, then hψ(y) = c1 (whether or not
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y ∈ M); hence hψ(x)hψ(y) ∈ E(C). Thus suppose that ψ(y) > r1. Since
y ∈ K1, there exists in Py a vertex of level n. Let u be the last such vertex
on Py. Let P* be a path isomorphic to, but disjoint from, P; let v∗ be the
vertex of P∗ corresponding to the vertex v of P . (For notational reasons, we
denote the terminal point by (a′)∗ = a′′.) Let P ′ = A • Py[u, .]T • P ∗

y [u, .].
Then P ′ 7→ G so that the image starts with the edge xy and returns to y.
It is easy to verify that P ′ ∈ P. Now P ′ and Py are two paths in P which
admit homomorphisms to G with the terminal points a′, a′′ taken to y. We
claim that φ(P ′) = φ(Py), i.e., that for any homomorphism h : P ′ 7→ R there
exists a homomorphism h′ : Py 7→ R such that h′(a′) = h(a′′) = y. Thus
let h : P ′ 7→ R be a homomorphism. Since P ′[., u] is a minimal interval of
length n, we have h(u) = rn. Define h′ : Py 7→ R as follows:

for v ∈ Py[., u] let h′(v) = ri where i = λPy(v)
for v ∈ Py[u, .] let h′(v) = h(v∗).

Then h′ is a homomorphism from Py to R and h′(a′) = h(a”). Therefore
φ(P ′) = φ(Py) which implies P ′ ∈ Py. Then the path P ′ shows that y ∈ M .
Since l(P ′) = 1 we have hψ(y) = c1 and hψ(x)hψ(y) ∈ E(C).

LEMMA 16 Assume both x ∈M and y ∈M . If xy ∈ E(G) then hψ(x)hψ(y) ∈
E(C).

Proof. By an earlier lemma, ψ(x)ψ(y) ∈ E(R). Let Px ∈ Px, Py ∈ Py, let
h : Px 7→ R be a homomorphism such that h(t(Px)) = ψ(x) and h′ : Py 7→ R a
homomorphism such that h′(t(Py)) = ψ(y). Since h(i(Px)) = h′(i(Py)) = r0,
l(Px) = λR(ψ(x)) = λR(ψ(y) − 1 = l(Py) − 1. Suppose l(Px) = i and
l(Py) = j: since i = j − 1, hψ(x)hψ(y) = cj−1cj ∈ E(C).

LEMMA 17 Assume x ∈ M, y ∈ K1\M , or y ∈ M,x ∈ K1\M . If xy ∈
E(G) then hψ(x)hψ(y) ∈ E(C).

Proof. Take paths Px ∈ Px, Py ∈ Py, and let P ′ = Px • A • P T
y . As

in lemma 16, we find that l(Px) = l(Py) − 1, i.e., that l(P ′) = 0. Assume
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first that x ∈M, y ∈ K1\M . Then we may assume that Px contains vertices
u < v such that some homomorphism of Px to G which takes t(Px) to x
maps u and v to the same vertex of G, and such that l(Px[u, v]) = 0 and
Px[., u]•Px[v, .] contains no interval of length n. Let also z be the last vertex
of Py of level n. Let P ′′ = Px[., u]•Px[v, .]•A• (Py[z, .])

T •Py[z, .]. Obviously
z is the only vertex of P ′′ with level n. By the same argument as used in the
proof of lemma 15, we can show that P ′′ ∈ Py. This would mean that y ∈M
unless y = u. Thus we must have y = u and ψ(y) = φ(P ′′) = rn. Therefore
l(Px) = n− 1 and hψ(x)hψ(y) = cn−1cn ∈ E(C). If y ∈ M,x ∈ K1\M , then
one finds analogous vertices u, v ∈ Py, z ∈ Px, and a corresponding argument
applied to P ′′ = Py[., u] •Py[v, .] •AT • (Px[z, .])

T •Px[z, .] shows that x ∈M ,
as l(Px) 6= n by lemma 7. Thus this case can not happen, and the lemma is
proved.

LEMMA 18 Assume x ∈ K2, y ∈ K1. If xy ∈ E(G) then hψ(x)hψ(y) ∈
E(C).

Proof. Let Px ∈ Px, Py ∈ Py. Let u be the last point of Py with
λPy(u) = n. Let P = Px • A • (Py[u, .])

T • Py[u, .]. By lemma 12, l(Px) =
1, l(Py) = 2. Using an argument from the proof of lemma 15 we can show
that P ∈ Py. If u = t(Py) then n = 2, and ψ(y) = φ(P ) = r2. Hence
hψ(x)hψ(y) = c1c2 ∈ E(C). If u 6= t(Py), then P shows that y ∈ M . Again
hψ(y) = c2 (since l(P ) = 2) and hψ(x)hψ(y) ∈ E(C).

This completes the proof of both our theorems.

4 Conclusions

For any B-cycle C, our result identifies the obstructions to a possible ho-
momorphism G 7→ C, as oriented paths homomorphic to G but not to C.
There are similar obstruction theorems for other graphs and digraphs, [24],
[21], [3]. For instance, it is well known, [3], [21], that if C is a directed cycle,
then G 7→ C if and only if G contains only cycles of length divisible by the
length of C. Perhaps the following may hold:
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Conjecture 19 Let C be any oriented cycle. Then G 7→ C if and only if

each oriented path homomorphic to G is also homomorphic to C,
and

each oriented cycle of G has length divisible by the length of C.

Our main theorem verifies the conjecture for B-cycles, which have length 1
and thus automatically satisfy the divisibility condition. The above example
verifies the conjecture for directed cycles, which admit a homomorphism from
any oriented path and thus automatically satisfy the first condition. We have
also verified the conjecture in a few additional cases.

There are corresponding results for oriented paths, [25]:

THEOREM 20 Let P be an oriented path. Then G 7→ P if and only if
each oriented path homomorphic to G is also homomorphic to P .

As mentioned in the introduction, our main motivation in this paper was
to prove the following result, [23]:

THEOREM 21 Let C be an oriented cycle. Then C is multiplicative if and
only if C is a C-cycle.

Proof-sketch. The necessity of the condition was proved in [17] (cf. also
[18]). Thus assume that C is a C-cycle, and G 67→ C,G′ 67→ C. Each C-cycle
is a B-cycle, and therefore, according to our main result, there exist paths
P, P ′, homomorphic to G,G′ respectively, such that P 67→ C and P ′ 67→ C.
We prove in [23] that this implies that there exists a path P∗ homomorphic
to P ×P ′ (and hence also homomorphic to G×G′) such that P∗ 67→ C. Thus
we have G×G′ 67→ C and hence C is multiplicative.

As another application of our main result, we shall prove that, for each
B-cycle C, the following decision problem is in NP ∩ co−NP :
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Instance: A digraph G.

Question: Is G homomorphic to C ?

It is easy to see that the problem is in NP . The fact that it also belongs to
co−NP is an easy consequence of the two lemmas below (with H = C), from
[25]. It should be observed that at this time there is no known polynomial
algorithm for this problem.

DEFINITION 22 Let P =< p0, p1, . . . pm > be an oriented path and H
any digraph. The cannonical labeling of P by H is the unique mapping l of
P to the subsets of V (H) for which

l(p0) = V (H)
l(pi+1) = {v ∈ V (H) : for some u ∈ l(pi), uv ∈ E(H) if pipi+1 ∈

E(P ), mboxor vu ∈ E(H) if pi+1pi ∈ E(P )}.

LEMMA 23 Let P =< p0, p1, . . . pm > be an oriented path and H any
digraph. Then P 7→ H if and only if l(pm) = ∅ in the cannonical labeling of
P by H.

LEMMA 24 Let H be a digraph with k vertices, and G a digraph with n
vertices. If there exist oriented paths P is homomorphic to G but not to H,
then there exists such a path P of length at most 2k · n.

Lemma 24 implies that any digraph H which admits an obstruction char-
acterization in terms of paths (such as our main theorem, or 20) has a cer-
tificate for G 67→ H, which is a path of length polynomial in the size of G.
(The digraph H is fixed, thus 2k is a constant.) Then the previous lemma
verifies the certificate in polynomial time. We noted this for H = P , an ori-
ented path, in [25]. These observations extend to any cycle C for which the
above conjecture holds, thus conjecture implies that the existence problem
for homomorphism to any oriented cycle is in NP ∩ co−NP .
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