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Abstract. This paper describes the application of a recently developed analytic approach known as the homotopy
analysis method to derive a solution for the classical problem of nonlinear progressive waves in deep water. The
method is based on a continuous variation from an initial trial to the exact solution. A Maclaurin series expansion
provides a successive approximation of the solution through repeated application of a differential operator with
the initial trial as the first term. This approach does not require the use of perturbation parameters and the solution
series converges rapidly with the number of terms. In the framework of this approach, a new technique to apply
the Padé expansion is implemented to further improve the convergence. As a result, the calculated phase speed
at the 20th-order approximation of the solution agrees well with previous perturbation solutions of much higher
orders and reproduces the well-known characteristics of being a non-monotonic function of wave steepness near
the limiting condition.
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1. Introduction

Consider a train of progressive gravity waves moving at a phase speed C on the surface of infi-
nitely deep water. The two-dimensional boundary-value problem is defined with a coordinate
system (x, y) fixed to the waves. The x-axis is positive in the direction of wave propagation
and the y-axis points vertically upward from the still-water level. The problem is steady and
is periodic in the x-variable. The fluid is assumed to be inviscid, incompressible and without
surface tension. The fluid motion can be described by a velocity potential φ satisfying the
Laplace equation

∇2φ(x, y) = 0 for (x, y) ∈ �, (1)

where the domain � is defined in {(x, y) | −∞ < x < +∞,−∞ < y < ζ(x)} with ζ indi-
cating the surface elevation. The velocity potential φ is subject to the free-surface boundary
conditions

C2φxx + gφy + 1

2
∇φ∇(∇φ∇φ)− 2C∇φ∇φx = 0 at y = ζ(x), (2)

ζ(x) = 1

g

(
Cφx − 1

2
∇φ∇φ

)
at y = ζ(x), (3)

and the condition at deep water
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lim
y→−∞

∂φ

∂y
= 0, (4)

where g denotes the gravitational acceleration and the subscripts x and y denote partial
derivatives in the respective directions.

Although the governing equation (1) is linear, the free-surface boundary conditions (2) and
(3) are nonlinear and are defined on a surface, which is unknown a priori. This classical water-
wave problem does not have a straightforward solution and has attracted attention from many
researchers since the mid 19th century. Stokes [1] first proposed a perturbation technique for
this problem and later obtained an analytic solution to the 5th order in wave amplitude [2,
3]. Thereafter, researchers have applied Stokes’ perturbation approach and derived higher-
order solutions [4–6]. With the use of a computer, Schwartz [7] extended Stokes’ perturbation
expansion to obtain a solution to the 58th order. The solution is obtained in the complex plane
through a mapping function. His perturbation expansion has limited convergence and the Padé
technique is employed to derive the solution at the limiting wave condition (H/L)max =
0·14118, where H is the wave height and L the wavelength.

Following Schwartz [7], Longuet-Higgins [8] took the Stokes-type expansion in wave am-
plitude to high orders and obtained stable solutions up to the wave steepness H/L = 0·1411.
The results show that for a given wavelength the energy and phase speed are not monotonic
functions of wave steepness. Besides, Longuet-Higgins [9, 10] investigated the stability of
steady gravity waves to infinitesimal disturbances and found subharmonic modes that become
unstable, when the wave height reaches a certain value, may become stable and then unstable
again as the wave height continues to increase. Chen and Saffman [11] found by numerical
techniques that symmetrical steady gravity waves of large amplitudes have bifurcations at
H/L ≈ 0·13. Additional high-order solutions based on Stokes’s perturbation approach further
illustrate the nonlinear characteristics of steep gravity waves [12–15].

The present paper describes a new analytic approach to the solution of this classical water-
wave problem. The solution is based on the homotopy analysis method [16], which does not
require the assumption of small or large quantities as perturbation parameters. Different from
other analytic techniques, this method provides a simple way to control the convergence rate
and region of the approximation series. The comparison of the homotopy analysis method with
other perturbation and non-perturbation techniques is discussed in detail by Liao [17]. The
homotopy analysis method has been successfully applied to derive explicit analytic solutions
for a number of classical nonlinear problems including Blasius’ viscous-flow problem [18],
the Falkner-Skan viscous flow over a semi-infinite plane [19], and the drag of a sphere over
a considerably larger range of Reynolds number than that of all previous theoretical solutions
[20]. These studies have verified the validity of the homotopy analysis method as a powerful
analytic tool for nonlinear problems.

The homotopy analysis method is applied here for the first time to a nonlinear problem with
multiple unknown variables and an unknown boundary. The method has several advantages
over the perturbation technique in the solution of the nonlinear water-wave problem defined
by Equations (1–4). It provides greater flexibility in the selection of a proper set of basis
functions for the solution and provides a simple way to implement the Padé expansion to
improve the convergence and accuracy of the solution series. This allows the formulation of
the boundary-value problem in the physical plane in contrast to Schwartz’s approach [7] and
gives rise to a general solution approach for a larger class of nonlinear problems.
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2. Mathematical formulation

2.1. CONTINUOUS VARIATION

The homotopy analysis method is based on a continuous variation from an initial trial to the
exact solution. In the water-wave problem, we construct the mappings φ(x, y) → �(x, y;p),
ζ(x) → η(x;p), and C → �(p) such that, as the embedding parameter p increases from 0 to
1, �(x, y;p), η(x;p), and �(p) vary from the initial guesses to the exact solution given by
φ(x, y), η(x), and C, respectively. To ensure this, �(x, y;p) satisfies the Laplace equation

∇2�(x, y;p) = 0 for (x, y) ∈ �(p), (5)

where the domain �(p) = {(x, y) | −∞ < x < +∞,−∞ < y < η(x;p)} should preserve
the connectedness as p spans the interval [0, 1]. The potential � is subject to three boundary
conditions analogous to (2), (3), and (4), given, respectively, by

(1 − p)L[�(x, y;p) − φ0(x, y),�(p)] = ph̄N [�(x, y;p),�(p)] at y = η(x;p), (6)

(1 − p)[η(x;p) − ζ0(x)] = ph̄{η(x;p) − Z[�(x, y;p),�(p)]} at y = η(x;p), (7)

lim
y→−∞

∂�(x, y;p)
∂y

= 0, (8)

where h̄ is a nonzero auxiliary parameter, φ0(x, y) is an initial guess of the velocity potential
satisfying (1) and (4), ζ0(x, y) is an initial guess of the surface elevation, and L,N , and Z
are differential operators determined from the free-surface boundary conditions (2) and (3).

The linear auxiliary operator L is second order and can be selected from a number of
possible candidates. The choice of this operator will affect the convergence of the solution.
Based on the two linear terms of the free-surface boundary condition (2), we select

L[�(x, y;p),�(p)] = �2(p)
∂2�(x, y;p)

∂x2
+ g

∂�(x, y;p)
∂y

. (9)

The nonlinear operators N and Z are given, respectively, by the two free-surface boundary
conditions (2) and (3) as

N [�(x, y;p),�(p)] = �2(p)�xx(x, y;p) + g�y(x, y;p)
+ 1

2
∇�(x, y;p)∇[∇�(x, y;p)∇�(x, y;p)]

− 2�(p)∇�(x, y;p)∇�x(x, y;p),
(10)

Z[�(x, y;p),�(p)] = 1

g
[�(p)�x(x, y;p) − 1

2
∇�(x, y;p)∇�(x, y;p)]. (11)

When p = 0, the governing equation (5) and the boundary conditions (6) to (8) give rise to
the initial trial solution

�(x, y; 0) = φ0(x, y), η(x, 0) = ζ0(x), �(0) = C0, (12)

where C0 is the initial guess of the phase speed. When p = 1, Equations (5–8) are equivalent
to (1–4) of the original boundary-value problem with



108 S.-J. Liao and K.F. Cheung

�(x, y; 1) = φ(x, y), η(x, 1) = ζ(x), �(1) = C. (13)

The boundary-value problem defined by (5–8) thus provides a continuous variation from the
initial trial to the exact solution as p increases from 0 to 1.

The convergence of the solution also depends on the choice of the initial approximation. A
logical choice is the solution of the linear Airy wave theory that gives

φ0(x, y) = AC0 exp(ky) sin(kx), (14)

�(0) =
√
g

k
= C0, (15)

as the initial approximations of φ(x, y) and C, respectively, where A is a constant and k =
2π/L is the wave number. In spite of the more obvious choice from the linear solution, we
choose

ζ0(x) = 0 (16)

as the initial guess of the surface elevation ζ(x) to simplify the subsequent formulation and
the solution procedure.

2.2. SUCCESSIVE APPROXIMATION

The solution to the nonlinear water-wave problem is determined by a successive approxi-
mation of the continuous variation. By Maclaurin series, �(x, y;p), η(x;p), and �(p) are
expanded about the embedding parameter p to give

�(x, y;p) ∼ φ0(x, y) +
+∞∑
m=1

φ
[m]
0 (x, y)

m! pm, (17)

η(x;p) ∼ ζ0(x) +
+∞∑
m=1

ζ
[m]
0 (x)

m! pm, �(p) ∼ C0 +
+∞∑
m=1

C
[m]
0

m! p
m, (18, 19)

in which

φ
[m]
0 (x, y) = ∂m�(x, y;p)

∂pm

∣∣∣∣
p=0

, �[m](x, y;p) = ∂m�(x, y;p)
∂pm

, (20)

ζ
[m]
0 (x) = ∂mη(x;p)

∂pm

∣∣∣∣
p=0

, η[m](x;p) = ∂mη(x;p)
∂pm

, (21)

C
[m]
0 = dm�(p)

dpm

∣∣∣∣
p=0

, �[m] = dm�(p)

dpm
. (22)

As is evident from (13), any converging series given by the homotopy analysis method at
p = 1 represents the exact solution. If the value of h̄ is properly selected so that the above
Maclaurin series are convergent at p = 1, we have

φ(x, y) = φ0(x, y) +
+∞∑
m=1

φ
[m]
0 (x, y)

m! , (23)
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ζ(x) = ζ0(x) +
+∞∑
m=1

ζ
[m]
0 (x)

m! , (24)

C = C0 +
+∞∑
m=1

C
[m]
0

m! . (25)

The above formulas provide a series solution for the exact boundary-value problem with the
initial trial solution, φ0(x, y), ζ0(x), andC0, as the first term. The unknown φ[m]

0 (x, y), ζ
[m]
0 (x),

and C[m]
0 are determined in the order m = 1, 2, 3, · · · with governing equations and boundary

conditions established in turn from (5–8).
Differentiating Equations (5) and (8) m times with respect to the embedding parameter at

p = 0, we have the governing equation

∇2φ
[m]
0 (x, y) = 0 in (x, y) ∈ �0 (26)

and the condition at deep water

lim
y→−∞

∂φ
[m]
0 (x, y)

∂y
= 0. (27)

The free-surface boundary conditions (6) and (7) are satisfied at y = η(x;p), which itself is
a function of p. Thus, it holds for �(x, y;p) at y = η(x;p) that

Dm�(x, y;p)
Dpm

=
[
∂

∂p
+ η[1](x;p) ∂

∂y

]m
�(x, y;p), (28)

where η[1](x;p) is given by Equation (21). The differential operator Dm/Dpm, which contains
the linear term ∂m/∂pm, is determined from a simple procedure described in the Appendix.
For simplicity, we write

Dm�(x, y;p)
Dpm

= �[m](x, y;p) + Rm[�(x, y;p),�(p)], (29)

where Rm is a nonlinear operator and �[m](x, y;p) is defined by Equation (20). For functions
independent of y, such as �(p) and η(x, p), we simply have

Dmη(x;p)
Dpm

= ∂mη(x;p)
∂pm

= η[m](x;p), (30)

Dm�(p)

Dpm
= dm�(p)

dpm
= �[m](p), (31)

which are consistent with the relations defined in (21) and (22), respectively.
Differentiating Equations (6) and (7) m times with respect to the embedding parameter at

p = 0 we obtain the respective free-surface boundary conditions defined at y = ζ0(x) as

DmL[�(x, y;p),�(p)]
Dpm

∣∣∣∣
p=0

= m

{
χm

Dm−1L[�(x, y;p),�(p)]
Dpm−1

+ h̄
Dm−1N [�(x, y;p),�(p)]

Dpm−1

} ∣∣∣∣
p=0

(32)
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and

ζ
[m]
0 (x) = m

{
(χm + h̄)ζ

[m−1]
0 (x) − h̄

Dm−1Z[�(x, y;p),�(p)]
Dpm−1

∣∣∣∣
p=0

}
, (33)

in which

DmL[�(x, y;p),�(p)]
Dpm

∣∣∣∣
p=0

=
m∑
i=0

(
m
i

) Di[�2(p)]
Dpi

∣∣∣∣
p=0

Dm−i�xx(x, y;p)
Dpm−i

∣∣∣∣
p=0

+ g
Dm�y(x, y;p)

Dpm

∣∣∣∣
p=0

(34)

where χ1 = 0 and χm = 1 for m ≥ 2. Substituting Equation (29) in (32), we have

C2
0

∂2φ
[m]
0 (x, y)

∂x2
+ g

∂2φ
[m]
0 (x, y)

∂y
= Sm(x, y) at y = ζ0(x), (35)

in which

Sm(x, y) =
{
mχm

Dm−1L[�(x, y;p),�(p)]
Dpm−1

+mh̄
Dm−1N [�(x, y;p),�(p)]

Dpm−1

−C2
0Rm[�xx(x, y;p),�(p)] − gRm[�y(x, y;p), �(p)]

−
m∑
i=1

(
m
i

) Di[�2(p)]
Dpi

Dm−i[�xx(x, y;p)]
Dpm−i

} ∣∣∣∣
p=0

.

(36)

Notice that the resulting boundary conditions (33) and (35) are evaluated at the initial ap-
proximation of the surface elevation ζ0(x) and the reason for choosing ζ0(x) = 0 is now
evident.

2.3. SOLUTION PROCEDURE

The boundary-value problem at the mth-order approximation is defined by the governing
Equation (26) and the boundary conditions (27), (33) and (35). Although the embedding
parameter p is used in the Maclaurin series expansions (17–19), it vanishes in the result-
ing boundary-value problem and its solution. The right-hand side of Equation (33) is only
dependent upon terms up to the (m − 1)th approximation. Thus, ζ [m]

0 (x) can be determined
from (33) before solving for the mth-order approximation. Once ζ [m]

0 (x) is known, Sm(x, y)
can be evaluated and expressed in the form

Sm(x, y) =
m∑
n=1

bm,n sin(nkx) for m ≥ 1. (37)

To avoid the secular terms in the solution of φ[m]
0 (x, y) from Equation (35), the following

condition must hold:

bm,1 = 0 for m ≥ 1. (38)

This provides a linear algebraic equation in the form
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αm,1C
[m]
0 + βm,1 = 0, (39)

from which the unknown C
[m]
0 can be determined in terms of the coefficients αm,1 and βm,1.

Based on the boundary condition (35) and the expression for Sm in (37), the solution of
φ

[m]
0 (x, y) has the form

φ
[m]
0 (x, y) =

m∑
n=1

am,n exp(nky) sin(nkx), (40)

in which

am,n = bm,n

(kn)g − C2
0(kn)

2
for 2 ≤ n ≤ m. (41)

Notice that the coefficient am,1 is still unknown. To relate the solution and the wave height H ,
we enforce

ζ
[m]
0 (0) − ζ

[m]
0 (L/2) =

{
H for m = 1

0 for m ≥ 2.
(42)

This relation provides a second linear algebraic equation in the form

αm,2am,1 + βm,2 = 0, (43)

for the solution of am,1 in terms of the coefficients αm,2 and βm,2. The value of A in the initial
approximation of φ0(x, y) in Equation (14) is determined from (33) and (42) as

A = −
(
H

2h̄

)
. (44)

The above expression suggests that h̄ should be negative and nonzero.
The nonlinear water-wave problem is now reduced to the two linear algebraic equations

for C[m]
0 and am,1, respectively. The solutions of the two equations complete the expression

for φ[m]
0 (x, y), as well as the mth-order approximation of the solution. The formulation can be

easily adapted for symbolic computation and we obtained the analytic solution using Mathe-
matica Version 4.1. Since symbolic computation is employed, truncation error is not a concern
for the numerical results presented in this paper.

3. Results and analysis

The phase speed C, velocity potential φ(x, y), and surface elevation ζ(x) are dependent upon
the wave steepness. Mathematically, all of them are also functions of the auxiliary parameter h̄,
which influences the convergence rate and region of the solution series (23–25). In practice,
a finite number of terms are used in the solution series. The Mth-order approximation of
(23–25) become

φ(x, y) ≈ φ0(x, y) +
M∑
m=1

φ
[m]
0 (x, y)

m! , (45)

ζ(x) ≈ ζ0(x) +
M∑
m=1

ζ
[m]
0 (x)

m! , (46)
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C ≈ C0 +
M∑
m=1

C
[m]
0

m! . (47)

The first few terms of the series normally provide an accurate approximation of the solution.
More terms are required for convergence at the limiting wave condition depending on the
choice of h̄.

Most researchers focus their attention on the dispersion relation between the phase speed C
and wave height H . Schwartz [7] provided the Mth-order approximation of the phase speed
in the form

C2 ≈
M∑
j=0

αjH
2j , (48)

where αj is constant. Schwartz applied the Padé technique to improve the convergence and
obtained the solution with the maximum wave steepness (H/L)max = 0·14118. In the present
approach, the Mth-order approximation of the phase speed is

C ≈
M∑
j=0

βjH
2j , (49)

where βj are coefficients. It is obvious that C2 given by the present approach at the Mth-order
approximation contains terms up to H 4M , whereas the highest exponent of Schwartz’s formula
at the same order of approximation is 2M. The accuracy and convergency of the phase speed
given by Equation (49) can be further enhanced by the following homotopy-Padé technique.

The value of �(p) varies from the initial guess C0 = √
g/k to the exact phase speed C as

p increases from 0 to 1. The Maclaurin series (19) can be regarded as a power series of p. With
the (2κ)th-order approximation of the solution evaluated, we can enhance the convergence by
applying the [κ, κ] Padé expansion to the power series

�(p) ≈ C0 +
2κ∑
m=1

C
[m]
0

m! p
m. (50)

The resulting expansion can be organized in the form

�(p) ≈
C0 +

κ∑
n=1

B2κ,np
n

1 +
κ∑

n=1
B2κ,κ+npn

, (51)

where the coefficient B2κ,n is independent of the auxiliary parameter h̄. Setting p = 1 in above
expression, we obtain a new approximation of the phase speed due to (13)

C

C0
≈

1 +
κ(κ+1)/2∑

n=1
γ2κ,n(kH)2n

1 +
κ(κ+1)/2∑

n=1
δ2κ,n(kH)2n

, (52)
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Table 1. Comparison of the [κ, κ] homotopy-Padé approximation of
C2/C2

0 with Schwartz [7]

H/L Schwartz [7] κ = 6 κ = 8 κ = 10 κ = 11

0·040 1·01592 1·01592 1·01592 1·01592 1·01592

0·070 1·04955 1·04955 1·04955 1·04955 1·04955

0·100 1·10367 1·10367 1·10367 1·10367 1·10367

0·120 1·15182 1·15190 1·15184 1·15182 1·15181

0·130 1·17820 1·17865 1·17834 1·17821 1·17821

0·135 1·18996 1·19148 1·19061 1·19003 1·19003

0·140 1·1930 1·20150 1·19833 1·19369 1·19385

where γ2κ,j and δ2κ,j are coefficients. Although the power series (50) is a function of the
auxiliary parameter h̄, the application of the [κ, κ] Padé expansion eliminates h̄ from the
resulting expression.

In the homotopy analysis method, the auxiliary parameter h̄ controls the convergence rate
and region of the approximation series. As h̄ approaches 0, the convergence region enlarges at
the expense of the convergence rate and increasing number of terms are needed in the approxi-
mation to maintain the same level of accuracy. The homotopy-Padé expression (52), however,
does not depend on h̄ and gives converging results over a considerably large convergence re-
gion at the same order of approximation. The introduction of the nonzero auxiliary parameter
h̄ in the formulation has only mathematical meaning here. When the traditional Padé method
is applied, the resulting expression will be subject to the convergence requirements imposed
by h̄. Furthermore, the method requires an approximation to O(H 2κ2+2κ). In this sense, the
homotopy-Padé expression (52) is to O(H 2κ2+2κ), which is considerably higher than O(H 2κ)

achieved by the Padé expansion used by Schwartz [7].
Table 1 lists the relative phase speed, C2/C2

0 , computed at various levels of the homotopy-
Padé approximation (52) and from Schwartz’s perturbation solution to O(H 116) [7]. For wave
steepness up to H/L = 0·10, the homotopy-Padé approximation converges at [6,6] and
gives results identical to Schwartz’s for the number of decimals considered. The computed
relative phase speed at this level of approximation is to O(H 82), which is lower than that
considered by Schwartz. At the 20th-order approximation of the solution series, C2 given by
the [10,10] homotopy-Padé approximation is to O(H 220) and converges to slightly different
results in comparison to Schwartz’s for wave steepness H/L > 0·12. The homotopy-Padé
approximation converges rapidly with the number of terms and the 20th and 22nd-order
approximations of the solution give identical or very similar results over the range of wave
steepness considered, indicating reasonable convergence at the 20th order and the validity of
the proposed homotopy-Padé technique.

The [10,10] and [11,11] homotopy-Padé approximations of C/C0 are compared with
Longuet-Higgins’s perturbation solution [8] in Table 2. The two homotopy-Padé approxima-
tions and Longuet-Higgins’results are identical for wave steepness up to H/L = 0·121921,
whereas the [10,10] Homotopy-Padé approximation remains convergent up to H/L =
0·137249 for the number of decimals considered. The phase speeds computed by the various
methods as the wave steepness approaches the limiting condition are compared in Figure 1.
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Table 2. Comparison of the [κ, κ] homotopy-Padé approximation of C/C0 with Longuet-Higgins [8]

H/L Longuet-Higgins [8] κ = 10 κ = 11 H/L Longuet-Higgins [8] κ = 10 κ = 11

0 1·00000 1·00000 1·00000 0·133178 1·08904 1·08906 1·08906

0·045266 1·01016 1·01016 1·01016 0·136178 1·09184 1·09188 1·09188

0·064351 1·02065 1·02065 1·02065 0·136723 1·09222 1·09228 1·09228

0·079187 1·03143 1·03143 1·03143 0·137249 1·09255 1·09260 1·09260

0·091809 1·04247 1·04247 1·04247 0·137755 1·09275 1·09284 1·09285

0·102959 1·05366 1·05366 1·05366 0·138242 1·09290 1·09300 1·09301

0·108093 1·05926 1·05926 1·05926 0·138712 1·09295 1·09306 1·09308

0·112962 1·06482 1·06482 1·06482 0·139170 1·09291 1·09302 1·09305

0·117572 1·07029 1·07029 1·07029 0·139610 1·09279 1·09285 1·09290

0·121921 1·07558 1·07558 1·07558 0·140060 1·09258 1·09250 1·09258

0·125993 1·08059 1·08060 1·08060 0·140530 1·09240 1·09189 1·09202

0·129760 1·08516 1·08517 1·08517 0·141100 1·09230 1·09066 1·09089

Both the present and Longuet-Higgins’s approaches gives the maximum phase speed at the
same wave steepness H/L = 0·138712 and show the phase speed is not a monotonic function
of wave steepness. The homotopy–Padé approximations agree well with Longuet-Higgins’s
results up to H/L = 0·14, but show a more rapid decrease of the phase speed toward the
limiting-wave condition beyond that. The phase speed given by Schwartz [7] at H/L = 0·14
is slightly lower in comparison to the other predictions.

As observed in the previous and present studies, the physics of steep gravity waves is rather
complicated and different approaches produce slightly different solutions toward the limiting-
wave condition. The limiting wave is unstable physically and might be mathematically as
well. It would be interesting to employ the present approach to investigate the bifurcations of
gravity waves for H/L ≈ 0·13, found numerically by Chen and Saffman [11], if higher-order
approximations can be obtained in the future.

4. Conclusions

We have applied the homotopy analysis method to provide an analytic solution for the clas-
sical problem of nonlinear progressive waves in deep water and developed a new technique,
namely the homotopy-Padé method, to increase the accuracy and convergence of the solution.
The [10,10] homotopy-Padé approximation of C2/C2

0 is to O(H 220), and agrees well with
Schwartz’s results to O(H 116) [7]. The same approximation also gives good agreement with
Longuet-Higgins’s results [8] up to the wave steepness H/L = 0·14 and shows that the
phase speed is not a monotonic function of wave steepness. The present and the two previous
approaches, however, give slightly different results toward the limiting-wave condition.

This study shows that the homotopy analysis method is applicable to a complicated non-
linear problem with two nonlinear boundary conditions defined on an unknown surface. The
present approach does not involve a perturbation parameter and shows better convergence
compared to other approximation techniques. The embedding parameter used in the series
expansion vanishes in the resulting boundary-value problem and its solution. Most impor-
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Figure 1. Phase speed vs. wave steepness for nonlinear progressive waves in deep water. - - - -, [10, 10] ho-
motopy-Padé approximation; —-, [11,11] homotopy-Padé approximation; ◦, Schwartz [7]; • Longuet-Higgins
[8].

tantly, the application of the homotopy-Padé expansion to the solution series eliminates the
auxiliary parameter used in the formulation and thus achieves a high convergence rate over a
considerably large convergence region. This expansion method has potential application to a
wide variety of nonlinear problems in science and engineering.
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Appendix

The operator Dm/Dpm for m ≥ 1 can be determined by following the procedure outlined here.
The potential �(x, y;p) on the free surface at y = η(x;p) can be expanded about p = 0 by
a Taylor series to give

�(x, y;p) =
+∞∑
m=0

Dm�(x, y;p)
Dpm

∣∣∣∣
p=0

(
pm

m!
)
. (53)

The potental can similarly be expanded by a Taylor series about the free surface at y = η(x; 0)
as
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�(x, y;p) =
+∞∑
n=0

+∞∑
r=0

∂n�[r](x, y;p)
∂yn

∣∣∣∣
p=0

(
pr

n!r!
)

[η(x;p) − η(x, 0)]n. (54)

Equating the two expressions for �(x, y;p) and invoking (12) and (18), we have
+∞∑
m=0

Dm�(x, y;p)
Dpm

∣∣∣∣
p=0

(
pm

m!
)

=
+∞∑
n=0

+∞∑
r=0

∂n�[r](x, y;p)
∂yn

∣∣∣∣
p=0

(
pr

n!r!
)[+∞∑

s=1

(
ps

s!
)
ζ

[s]
0 (x)

]n

.

(55)
Expanding the right-hand side of above equation and comparing the coefficients in the same
power of p, we arrive at the definition of the operator Dm/Dpm for m ≥ 1. This can be
accomplished by symbolic computation using Mathematica Version 4.1 along with the rest of
the formulation.
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