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Abstract

We investigate periodic and chaotic solutions of Hamiltonian systems in
� �

which
arise in the study of stationary solutions of a class of bistable evolution equations. Under
very mild hypotheses, variational techniques are used to show that, in the presence of two
saddle-focus equilibria, minimizing solutions respect the topology of the configuration
plane punctured at these points. By considering curves in appropriate covering spaces of
this doubly punctured plane, we prove that minimizers of every homotopy type exist and
characterize their topological properties.

1 Introduction

This work is a continuation of [5] where we developed a constrained minimization method to
study heteroclinic and homoclinic local minimizers of the action functional

�� �� � � 	� 
 �� � �  � �  � �� � 	� ��� ��  �� � �� �� �� � � ������ � (1.1)

which are solutions of the equation� � � � �  � �  �� � � � (1.2)

with � � � � �. This equation with a double-well potential
�

has been proposed in connection
with certain models of phase transitions. For brevity we will omit a detailed background of
this problem and refer only to those sources required in the proofs of the results. A more
extensive history and reference list are provided in [5], to which we refer the interested reader.

The above equation is Hamiltonian with

� � ����  � �� ��  �� � �� �� �� � � ��� � (1.3)

The configuration space of the system is the�� � � �-plane, and solutions to����� can be rep-
resented as curves in this plane. Initially these curves do not appear to be restricted in any 
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way. However, the central idea presented here is that, when�� �� �� are saddle-foci, the min-
imizers of

�
respect the topology of this plane punctured at these two points, which allows

for a rich set of minimizers to exist. Using the topology of the doubly -punctured plane and
its covering spaces, we describe the structure of all possible types of minimizers, including
those which are periodic and chaotic. Since the action of the minimizers of theselatter types
is infinite, a different notion of minimizer is required that is reminiscent ofthe minimizing
(Class A) geodesics of Morse [8]. Such minimizers have been intensively studied in the con-
text of geodesic flows on compact manifolds or the Aubry-Mather theory (see e.g. [1] for an
introduction). A crucial difference is that we are dealing with a non-mechanical system on
a non-compact space. Nevertheless, we are able to emulate many of Morse’soriginal argu-
ments about how the minimizers can intersect with themselves and each other. For a precise
statement of the main results we refer to Theorem 4.2 and Theorem 6.8. For related work on
mechanical Hamiltonian systems we refer to [9, 2] and the references therein.

Another important aspect of the techniques employed here and in [5] is the mildness of
the hypotheses. In particular, our approach requires no transversality or non-degeneracy con-
ditions, such as those found in other variational methods and dynamical systems theory, see
[5]. Specifically, we will assume the following hypothesis on

�
:

(H):
� � � �

,
� �� �� � �  �� �� � �,

�  �� �� � �, and
� �� � � � for � �� � �.

Moreover there are constants�� and�� such that
� �� � � ���

�
����

.

We will also assume for simplicity of the formulation that
�

is even, but many analogous
results will hold for nonsymmetric potentials, c.f. [5]. Finally, we assume that the parameters� and� are such that� � � � are saddle-foci, i.e.�� �� � � ���  �� ��. An example of a
nonlinearity satisfying these conditions is

� ��� � ��� � �����, in which case (1.2) is the
stationary version of the so-called extended Fisher-Kolmogorov (EFK) equation.

In [5] we classify heteroclinic and homoclinic minimizers by a finite sequenceof even
integers which represent the number of times a minimizer crosses� � � �. More general
minimizers can be similarly classified by infinite and bi-infinite sequences, as described in
Section 2. A more general notion of minimizer for these types is defined in Section3, and in
Section 4 we prove that such minimizers exist.

In Sections 5 and 6 we show that many properties of these symbol sequences such as sym-
metry and periodicity are reflected in the corresponding minimizers. In particular, we show
that for any periodic type, there exists a periodic minimizer of that type. The classification
of minimizers by symbol sequences has other properties in common with symbolic dynam-
ics; for example, if a type is asymptotically periodic in both directions, then there exists a
minimizer of that type which is a heteroclinic connection between two periodic minimizers.

The minimizers discussed here all lie in the 3-dimensional ‘energy-manifold’	
 �
� �� � �  � �  � �  � � � ��� � �  � �  � �  � � ��. Exploiting certain properties of minimizers that
are established in this paper, we can deduce various linking and knotting characteristics when
they are represented as smooth curves in	
 . However, we will not address this issue in this
paper. The minimizers found in this paper are also used in [13] to construct stable patterns for
the evolutionary EFK equation on a bounded interval.

Some notation used in this paper was introduced previously in [5]. While we have at-
tempted to present a self-contained analysis, we have avoided reproducing details (particularly
in Section 5.1) which are not central to the ideas presented here, and which arethoroughly
explained in [5].
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2 Types and function classes

A function � � � � � can be represented as a curve in the�� � � ��plane, and the asso-
ciated curve will be denoted by� �� �. Removing the equilibrium points�� �� �� from the�� � � ��plane (the configuration space) creates a space with nontrivial topology, denoted by� � � � �� �� �� ���. In

�
we can represent functions� which have the property that� �� �

when� � � �, and various equivalence classes of curves can be distinguished. For example,
in [5] we considered classes of curves that terminate at the equilibrium points�� �� ��. An-
other important class consists of closed curves in

�
, which represent periodic functions. We

now give a systematic description of all classes to be considered.

Definition 2.1 A type is a sequence� � ��� ��	
 with �� � �� � � �, where


acts as a
terminator. To be precise,� satisfies one of the following conditions:

i) � � � , and� � �� �
is referred to as abi-infinite type .

ii) � � ��� � �
, and� � � � � � � � � � ���� with �� � ��

for all � � �, or
� � �� � ���, and� � ����� ��� � �� � � � with �� � ��

for all � � ��.
In these cases� is referred to as asemi-terminated type.

iii) � � �� � ����� � �� with � � �, and� � � � � � � ���� �� � � with �� � ��
.

In this case� is referred to as aterminated type.

These types will define function classes using the vector� to count the crossings of� at
the levels� � � �. Since there are two equilibrium points, we introduce the notion ofparity
denoted by�, which will be equal to either� or �.
Definition 2.2 A function� � � ��� � �� � is in theclass	 �� � � � if there are nonempty sets��� ��	
 such that
i) �� � �� �� � ��	
 � �,
ii) ��� � �� for � � � ,
iii) max

�� � min
��� �,

iv) � ��� � � �������� �, and
v) ��	
 � � consists of transverse crossings of� �, i.e.,� � � �� � for  � ��.

Note that by Definition 2.1, a function� in any class	 �� � � � has infinitely many crossings
of � �. Definition 2.2 is similar to the definition of the class	 �� � in [5] except that here it is
assumed that all crossings of� � are transverse. Only finitely many crossings were assumed
to be transverse in [5] so that the classes	 �� � would be open subsets of! � � � �� �. Since
we will not directly minimize over	 �� � � �, we now require transversality of all crossings of
� � to guarantee that� �� � � �

. However, note that the minimizers found in [5] are indeed
contained in classes	 �� � � � as defined above, where the types� are terminated.

The classes	 �� � � � are nonempty for all pairs�� � � �. Conversely, any function� �� ��� � �� � is contained in the closure of some class	 �� � � � with respect to the complete met-
ric on

� ��� � �� � given by " �� � # � � $� ��� % &'��� (� � # () * +�� ,�-�, cf. [10]. That is, if
we define	 �� � � � �� �� � � ��� � �� � � .�/ �

	 �� � � �, with �/ � � in
� ��� � �� ��, then� ��� � �� � � � +0 ,� -	 �� � � �. Note that the functions in1	 �� � � � �� 	 �� � � � � int�	 �� � � ��

have tangencies at� � and thus are limit points of more than one class. In the case of an
infinite type, shifts of� can give rise to the same function class. Therefore certain infinite
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types need to be identified. Let� be the shift map defined by� �� �� � ��� � and the map� � �� � �� � �� � �� be defined by� �� � � �� � ��% �� � � �� � � �. Two pairs (infinite types)�� � � � and ��  � �  � are equivalent if�  � �
/ �� � and�  � � / �� � for some� � � , and this

implies	 �� � � � � 	 ��  � �  �.
3 Definition of minimizer

When the domain of integration is� , the action
� ��� given in (1.1) is well-defined only for

terminated types� and� �
	 �� � � � � �!� � � � �� ��, where!� is a smooth function from�� ���� � to ����� . For semi-terminated types or infinite types the action

�
is infinite for

every� �
	 �� � � �. We will define an alternative notion of minimizer in order to overcome

this difficulty.
For every compact interval� � � the restricted action

��
is well-defined for all types.

When we restrict� to an interval� , we can define itstype and parity relative to� , which we
denote by�� �� �� � � � �� �� ��. Namely, let� �

	 �� � � �. It is clear that�� � � � �� � �� �� �� ��
for any bounded interval� . Then� �� �� � is defined to be the finite-dimensional vector which
counts the consecutive instances of� �� � � �, and� �� �� � is defined such that the first time� �� � � � in � happens at�� ���� �. Note that the components of� �� �� � are not necessarily all
even, since the first and the last entries may be odd. We are now ready to statethe definition
of a (global) minimizer in	 �� � � �.
Definition 3.1 A function� �

	 �� � � � is called aminimizer for
�

over 	 �� � � � if and only
if for every compact interval� the number

�� �� �� � minimizes
�� 	 �# �� 	 � over all functions# �

	 �� � � � and all compact intervals�  such that�# � #  � �� � 	 � �� � �� �� � and �� �# �� 	 � � � �# �� 	 �� �
�� �� �� � � � �� �� ��.

The pair �� �� �� � � � �� �� �� defines a homotopy class of curves in
�

with fixed end points�� � � � �� � . The above definition says that a function�, represented as a curve� �� � in
�

, is a
minimizer if and only if for any two points
 � and
 � on� �� �, the segment� �
 � � 
 � � � � �� �
connecting
 � and
 � is the most

�
-efficient among all connections

�� �
 � � 
 � � between
 � and

 � that are induced by a function# and are of the same homotopy type as� �
 � � 
 � �, regardless
the length of the interval needed to parametrize the curve

�� �
 � � 
 � �. As we mentioned in the
introduction, this is analogous to the length minimizing geodesics of Morse and Hedlund and
the minimizers in the Aubry-Mather theory. The set of all (global) minimizersin 	 �� � � �
will be denoted by

�
	 �� � � �.

Lemma 3.2 Let � �
	 �� � � � be a minimizer, then� � � � �� � and� satisfies equation(1.2).

Moreover,� satisfies the relation
� �� � � � �  � �  � � �, i.e. the associated orbit lies on the

energy level
� � �.

Proof. From the definition of	 �� � � �, on any bounded interval� � � there exists�
 �� � � �
sufficiently small such that� �  �

	 �� � � � for all
 � � �


 �� �, with ( () * � � � �
.
Therefore

�� �� �  � � �� �� � for all such functions

, which implies that��� ��� � � for any

bounded interval� � � , and thus� satisfies (1.2).
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To prove the second statement we argue as follows. Since� �
	 �� � � �, there exists

a bounded interval� such that� �� � � �. Introducing the rescaled variable� � ��� with� � �� � and# ��� � � ���, we have

�� ��� � � �� � # � � 	 �



� �� � �� �#  �� � �� �� �#  �� � � � �# �� �� � (3.1)

which decouples� and� . Since� �� � � � we see from Definition 3.1 that
� �� � � � # � ��� ��� � � �� � # �. The smoothness of

�
in the variable� � � implies that

�� � � �� � # � ���� 	� � �.

Differentiating yields

1
1 �

� �� � # � � 	 �



��� �� 
� � �#  �� � � �� �� �#  �� � � �# �� ��
� � � � 	 �




�� 
� � ��  �� � �� �� �� � � ���� ��
� �� � � 	 �



� �� � � � �  � �  ��� � �� �

Thus� � �, and
� �� � � � �  � �  � � � for � � � . This immediately implies that

� � � for all� � � .
The minimizers for

�
found in [5] also satisfy Definition 3.1, and we restate one of the

main results of [5].

Proposition 3.3 Suppose
�

is even and satisfies(H), and� � � � � are chosen such that� �
are saddle-focus equilibria. Then for any terminated type� with parity either� or � there
exists a minimizer� �

	 �� � � � of
�

.

From Definition 2.2, the crossings of� �
	 �� � � � with � � are transverse and hence

isolated. We adapt from [5], the notion of a normalized function with a few minor changes to
reflect the fact that we now require every crossing of� � to be transverse.

Definition 3.4 A function� �
	 �� � � � is normalized if, between each pair� ��� and � ��

of consecutive crossings of� �, the restriction� �+� ,�- is either monotone or� �+� ,�- has exactly
one local extremum.

Clearly, the case of� �+� ,�- being monotone can occur only between two crossings at dif-
ferent levels� �, in which case we say that� has atransition on

�� � �.
Lemma 3.5 If � � �

	 �� � � �, then� is normalized.

Proof. Since� �
	 �� � � �, all crossings of� � � � are transverse, i.e.� �� �. Thus for

any critical point�
 � � , � ��
 � �� � �, and the Hamiltonian relation from Lemma 3.4 implies
that � � ��
 �� �� � � �� ��
 �� � �. Therefore� is a Morse function, and between any two
consecutive crossings of� � there are only finitely many critical points. Now on any interval
between consecutive crossings where� is not normalized, the clipping lemmas of Section 3
in [5] can be applied to obtain a more

�
-efficient function, which contradicts the fact that� is

a minimizer.
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4 Minimizers of arbitrary type

In this section we will introduce a notion of convergence of types which will be usedin Section
6.2 to establish the existence of minimizers in every class	 �� � � � by building on the results
proved in [5].

Definition 4.1 Consider a sequence of types��/ � �/ � � ��� /� ��	�� � �/ � and a type�� � � � �
���� ��	� � � �. The sequence��/ � �/ � limits to the type�� � � � if and only if there exist numbers�/ � �� such that� /������� �� � �� for all � � � as � � 

. We will abuse notation and
write ��/ � �/ � � �� � � �.

We should point out that a sequence of types can limit to more than one type. For
example the sequence��/ � �� � �� � � � � � � � � � � � � � � � � � � � � � � � ���� � �� limits to the types�� � � � � � � � ��, �� � � � � � � � � � � � �� and �� � � � � � � � ���� � ��.
Theorem 4.2 Let ��/ � �/ � � �� � � � and �/ � �

	 ��/ � �/ � with (�/ (� ,� � �
for all �.

Then there exists a subsequence�/ � such that�/ � � �� �
	 �� � � � in

� ��� � �� �, and �� is a
minimizer in the sense of Definition3.1, i.e. �� � �

	 �� � � �.
Proof. This proof requires arguments developed in [5] to which the reader is referred for

certain details. The idea is to take the limit of�/ restricted to bounded intervals. We define
the numbers�/ as in Definition 4.1, and we denote the convex hull of

�� by � � � ��'� ��� �.
Due to translation invariance we can pin the functions�/ so that�/ ��� � ������ �, which
is the beginning of the transition between�

/������� and�
/
������� �� . Due to the assumed a

priori bound and interpolation estimates which can be found in the appendix to [7], there is
enough regularity to yield a limit function�� as a

� ��� �–limit of �/ , after perhaps passing to
a subsequence. Moreover�� satisfies the differential equation (1.2) on� . The question that
remains is whether�� �

	 �� � � �.
To simplify notation we will now assume that�/ � � and�/ � � � �. Fixing a small� � �, we define�

/� �� � � �
/� as the smallest interval containing�

/� such that� �� � �� +	 - �
������ � � ������ �� � If � is a (semi-)terminated type then�

/� �� � is a half-line. The interval of
transition between�

/� �� � and�
/�� � �� � is denoted by
/� �� �. To see that�� �

	 �� � � �, the goal
is to eliminate the two possibilities that a priori may lead to the loss or creation of crossings
in the limit so that�� �� 	 �� � � �: the distance between two consecutive crossings in�/ could
grow without bound or�� could posess tangencies at� � � �.

Due to the a priori estimates in� � ,� we have the following bounds on
�

:� ��/ �� �� +	 - � � � � (4.1)

and � ��/ ���� +	 - � � �  �
where

�
and

�  are independent of� and�. Indeed, note that for� large enough the homotopy
type of�/ on the intervals�

/� �� � is constant by the definition of convergence of types. Since
the functions�/ are minimizers,

� ��/ �� �� +	 - � is less than the action of any test function of this
homotopy type satisfying the a priori bounds on� and� on 1 � /� �� � (see [5], Section 6, for
a similar test function argument). The estimate�
/� �� � � � � �� � is immediately clear from
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Lemma 5.1 of [5]. We now need to show that the distance between two crossings of�� ���� �
within the interval�

/� �� � cannot tend to infinity.

First we will deal with the case when� /� is finite for all �. Suppose that the distance
between consecutive crossings of�� ���� � in �

/� �� � tends to infinity as� � 
. Due to

Inequality (4.1) and Lemma 3.5, minimizers have exactly one extremum between crossing of�� ���� � for any � � �, and hence there exist subintervals� / � �
/� �� � with �� / � � 

, such
that� � ��/ � ������ � � � on� / where�/ � �� � ��, and ��  ���� � � �. Taking a subsequence
we may assume that�/ is constant.

We begin by considering the case where�/ � � � �. Now � can be chosen small enough,
so that the local theory in [5] is applicable in� / . If �� / � becomes too large then�/ can be
replaced by a function with lower action and with many crossings of������ �. Subsequently,
redundant crossings can be clipped out, thereby lowering the action. This implies that �/ is
not a minimizer in the sense of Definition 3.1, a contradiction.

The case where�/ � � must be dealt with in a different manner. First, there are unique
points�/ �

� / such that�/ ��/ � � �, and for these points�/ ��/ � � �� ��� as �� / � � 
. Let�/ ��/ � be the first crossing of�� ���� � to the left of� / . Taking the limit (along subsequences)

of �/ �� � �/ � we obtain a limit function
�� which is a solution of (1.2). If��/ � �/ � is bounded

then
�� has a tangency to� � ����� at some�� � � . All �/ lie in

�� � �� (see (1.3))
and so does

��, hence
�� ��� � � �. Moreover

�� ��� � � �, because
�� ��� � is an extremum. By

uniqueness of the initial value problem this implies that
�� � �� ���, contradicting the fact that�� ��� � ������ �. If ��/ � �/ � � 

, then
�� is a monotone function on

�� � �, tending to�� ���
as � 

, and its derivatives tend to zero (see Lemma 3 in [11] or Lemma 1 part (ii) in [7]
for details). This contradicts the saddle-focus character of the equilibrium point.

In the case that� /� � 
we remark that (4.1) also holds when�

/� is a half-line. It follows
from the estimates in Lemma 5.1 in [5] that�/� � ������ � as � 

or  � �
(whichever

is applicable). From the local theory in Section 4 of [5] and the fact that�/ is a minimizer,
it follows that the derivatives of�/ tend to zero. The analysis above concerning the intervals
� / and the clipping of redundant oscillations now goes on unchanged.

We have shown that the distance between two crossings of� � is bounded from above.
Next we have to show that the limit function has only transverse crossings of� �. This ensures
that no crossings are lost in the limit. When�� would be tangent to������ � in � �, then we can
construct a function in# �

	 �� � � � in the same way as demonstrated in [5] by replacing
tangent pieces by more

�
-efficient local minimizers and by clipping. The function# still has

a lower action than�� on a slightly larger interval (the limit function�� also obeys (4.1), so that
the above clipping arguments still apply). Since�/ � �� in

� ��� � it follows that
�� ��/ � � �� ���

on bounded intervals� . This then implies that for� large enough the function�/ is not a
minimizer in the sense of Definition 3.1, which is a contradiction.

The limit function�� could also be tangent to�� ��� for some�
 � ��. As before, such tan-
gencies satisfy�� ��
 � � ����� � �� ��
 � � �� ��
 � � �� ��
 � � �, which leads to a contradiction
the uniqueness of the initial value problem.

Finally, crossings of� � cannot accumulate since this would imply that at the accumulation
point all derivatives would be zero, leading to the same contradiction as above. In particular,
if � /� � 

for some�, then �� /� � � 
and the crossings in

�/� for 
 � � move off to infinity
and do not show in��, which is compatabile with the convergence of types.
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We have now proved that�� �
	 �� � � � and, since�� is the

� ��� �–limit of minimizers,�� is
also a minimizer in the sense of Definition 3.1.

Remark 4.3 It follows from the estimates in Theorem 3 of[7] that in the theorem above we
in fact only need an
�

-bound on the sequence�/ .
Remark 4.4 It follows from the proof of Theorem4.2 that there exists a constant

�
 � � such
that for all uniformly bounded minimizers� ��� it holds that�� ��� � ������� � � �

for all � � � �
and all � � � . This means that the uniform seperation property discussed in[5] is uniformly
satisfied by all minimizers.

Remark 4.5 In order to take a limit of the sequence�/ � �
	 ��/ � � � in the above theorem,

we need the a priori estimate(�/ (� ,� � �
for all �. We will show in Section 6 that this

estimate will be satisfied for many sequences�/ , see Corollary 6.2 and Theorem 6.3 below.
Note that for the special case where

� ��� � �� �� as �� � � 
for some� � �

, an a priori 
�
bound on the set of all solutions of(1.2)with domain of existence� can be obtained[4].

5 Periodic minimizers

An bi-infinite type� is periodic if there exists an integer� such that�
/ �� � � � . The (natural)

definition of the period of� is
% &'�� � �� �� / �� � � � �. We will write � � ��� where� � �� � � ���� �/ � and� is even. Cyclic permutations of� with possibly a flip of� give rise to

the same function class	 ���� � � �. In reference to the type��� with parity � we will use the
notation�� � � �. Any such type pair�� � � � can formally be associated with a homotopy class
in � � �� � � � in the following way. Let�
 and� � be the clockwise oriented circles of radius one
centered at��� �� and ���� �� respectively, so that

��
 � and
�� �� are generators for� � �� � � �.

Defining � �� � � � � �	
� 
�� � +� - � � � � � �	 �


�� , the map� � � � ��� � � �� � �� � � � �� � � � is an
injection, and we define� �� �� � � � to be the image of� in � � �� � � �. Powers of a type pair�� � � � for � � � are defined by concatenation of� with itself � times, which is equivalent to�� � � � � �� � ��� �� � � �� �.
Definition 5.1 Two pairs �� � � � and ��� � �� � are equivalent if there are numbers� � � � �
such that�� � � �� � ��� � �� �� up to cyclic permutations. This relation,�� � � � � ��� � �� �, is an
equivalence relation.

Example: if �� � � � � ��� � � � � � � � � �� and ��� � �� � � ��� � � � � � � � � � �� � ��, then � �� � � �� �
� ��� � �� ��. The equivalence class of�� � � � is denoted by

�� � � �. A type �� � � � is a minimal
representative for

�� � � � if for each ��� � �� � � �� � � � there is� � � such that��� � �� � � �� � � �
up to cyclic permutations. A minimal representative is unique up to cyclic permutations. It is
clear that in the representation of a periodic type� � ���, the type� is minimal if the length
of � is the minimal period. Due to the above equivalences we now have that

	 ���� � � � � 	 ����� � �� � � � ��� � �� � � �� � � � �
It is not a priori clear that minimizers in	 ���� � � � are periodic. However, we will see that
among these minimizers, periodic minimizers can always be found.
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For a given periodic type��� we consider the subset of periodic functions in	 ���� � � �,
	 ��� ���� � � � � �� �

	 ���� � � � � � is periodic� �
For any� �

	 ��� ���� � � � and a period� of �, � �� ��
 ,� �� is a closed loop in
�

whose ho-
motopy type corresponds to a nontrivial element of� �� �� � � �. In this correspondence there
is no natural choice of a basepoint. For specificity, we will describe how to make the corre-
spondence with the origin as the basepoint and thereafter omit it from the notation. Trans-
late � so that� ��� � �. Let � � �� � �� � �

be the line from� to �� � �  ����, and let� � ��� � � �� � ��. Then
�� �� ��
 ,� � � � � � � � �� ��
 ,� �� � � , and

��� �� ��
 ,� ��� � � �� �� � � �. Now
define

�� �� ��
 ,� ��� � ��� �� ��
 ,� ���. Thus there exists a pair�� � �� �� ��
 ,� ��� � ��� � �� � � �� � � �, with�� � � for some� � �. Therefore we define for any��� � �� � � �� � � �
	 ��� ��� � �� � � �� �

	 � �� ���� � � � � �� �� ��
 ,� ��� � � ��� � �� � � � � �� � for a period� of � � �
The type�� � � �� ��
 ,� ��, with � � ���, is the homotopy type of� relative to a period� .
This type has an even number of entries. It follows that	 ��� �� � � � � 	 ��� ��� � �� � for all��� � �� � � �� � � � , � � �. Furthermore	 � �� ���� � � � � � +�� ,��-	 �� ,� �	 ��� ��� � �� �. In order to
get a better understanding of periodic minimizers in	 ���� � � � we consider the following
minimization problem:

���� �� � � � � &' 	

	��� +� ,� -

�� ��� � &' 	
� ��� �� ���� ���

�� ��� � (5.1)

where
��

is action given in (1.1) integrated over one period of length� , and	
�
� �� �� � � � is

the set of� -periodic functions� �
	 ��� �� � � � for which � �� ��
 ,� �� � �. Note that� is not

necessarily the minimal period, unless� is a minimal representative for
���. It is clear that for� � � � � the infima

���� �� � � � are well-defined and are nonnegative for any homotopy type�.
At this point it is not clear, however, that the infima

���� �� � � � are attained for all homotopy
types�. We will prove in Section 6 that existence of minimizers for (5.1) can be obtained
using the existence of homoclinic and heteroclinic minimizers already established in [5].

Lemma 5.2 If
���� �� � � � is attained for some� �

	 ��� �� � � � then� � � � �� � and satisfies
(1.2). Moreover, since� is minimal with respect to� we have

� �� � � � �  � �  � � �, i.e. the
associated periodic orbit lies in the energy surface

� � �.

Proof. Since
���� �� � � � is attained by some� �

	 ��� �� � � � for some period� , we have
that

�� �� �  � � �� ��� � � for all
 � � � �� � � � � with ( () * � �, sufficiently small. This

implies that��� ��� � �, and thus� satisfies (1.2). The second part of this proof is analogous
to the proof of Lemma 3.2.

We now introduce the following notation:

�
	 ���� � � � � �� �

	 ���� � � � � � &� � %&'&% &��� ������ &'�  � !�"'& &�' 
 ��� �
�
	 ��� ���� � � � � �� � �

	 ���� � � � � � &� # ��&�� &�� �
�
	 ��� �� � � � � �� �

	 ��� �� � � � � � &� � % &'&% &��� 	�� ���� �� � � �� �
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5.1 Existence of periodic minimizers of type� � �� � ���

If we seek periodic minimizers of type� � �� � ��, the uniform separation property for min-
imizing sequences (see Section 5 in [5]) is satisfied in the class	 ��� ���. Note that the parity
is omitted because it does not distinguish different homotopy types here. The uniform separa-
tion property as defined in [5] prevents minimizing sequences from crossing the boundary of
the given homotopy class. For any other periodic type the uniform separation property is not
a priori satisfied. For the sake of simplicity we begin with periodic minimizers of type�� � ��
and minimize

�
in the class	 ��� ��� � ���.

Minimizing sequences can be chosen to be normalized due to the following lemma,which
we state without proof. The proof is analogous to Lemma 3.5 in [5].

Lemma 5.3 Let � �
	 ��� ��� � ��� and� be a period of�. Then for every� � � there exists a

normalized function� �
	 � �� ��� � ��� with period�  � � such that

�� 	 �� � � �� ��� � �.
The goal of this subsection is to prove that when

�
satisfies (H) and� � � � � are such

that� � are saddle-foci, then
���� ��� � ��� is attained, Theorem 5.5 below. The proof relies on

the local structure of the saddle-focus equilibria� � and is a modification of arguments in [5];
hence we will provide only a brief argument. The reader is referred to [5] for further details.

In preparation for the proof of Theorem 5.5, we fix�
 � � � �
 � � � and
� � � so that the

conclusion of Theorem 4.2 of [5] holds, i.e. the characterization of the oscillatory behavior of
solutions near the saddle-focus equilibria� � holds. Let� �

	
�
� �� ��� � ��� be normalized, and

let �
 be such that� ��
 � � �. Then�
 is part of a transition from� � to � �. Assume without
loss of generality that this transition is from�� to �. Define�� � �	# �� � �
 � �� ���� � � � � �
and�� � &' 	 �� � �
 � �� ��� � � � � � �. Then let� �� � � �� � �� ��� � � � � � � and
 �� � � � ��� �� � � ��� � �� � � � �, and note that

��
 � �
 � � � � �� �� � � ��� � �� � � ��� �� �� �� � ��
 � �
 � � ��.
With these definitions we can establish the following estimate (c.f. Lemma 5.4 in [5]). For all� �

	 ��� ��� � ��� with
�� ��� � ���� ��� � ��� � �


(� (�) * � � �� � ���� ��� � ��� � 
 �� � � �� � (5.2)

First, (� (�) � � � ����� ��� � ��� � �
 �, and second if�� � � � � �
then

� �� � � � ���
, which

implies that(� (�� * � ��� �  ������ � ��� ��� ��� � ��
 �� � � � � � ��� ����
 �� � � ��. Combining
these two estimates proves (5.2).

For functions� �
	

�
��� ��� � ��� that satisfy

�� ��� � ���� ��� � ��� � �, it follows from
Lemma 5.1 of [5] that there exist (uniform in�) constants� � and� � such that� � � �� �� �� ���
 � �
 � � � � � � � � � and thus� � � �. The next step is to give an a priori upper bound on�
by considering the minimization problem (c.f. Section 5 in [5])


� � &' 	 � 
 �� � � � � � �
	

�
� �� ��� � ��� '��% � �&��� � � � � � �

�'� �� ��� � ���� ��� � ��� � �� �
Lemma 5.4 There exists a constant� � � ��
 � � � such that
� � � for all � � � � �
.
Moreover, if� 
 � �

� � �, then for any� � � � �
, there is a normalized� �
	

�
��� ��� � ���

with
�� �� � � ���� ��� � ��� � �� and� � � � � � 
.

Proof. Let ��/ � �/ � �
	

��
��� ��� � ��� � � � be a minimizing sequence for
�, with nor-

malized functions�/ . As in the proof of Theorem 5.5 of [5], in the weak limit this yields a
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pair ��� � �� � such that
 ��� � �� � � 
�. We now define� ��� � �� � �
 � � � ����
 � �� � ��. This
gives two possibilities for
 ��� � �� �, either
 ��� � �� � � � or 
 ��� � �� � � � . If the former is true
then we can construct (see Theorem 5.5 of [5]) a pair��# � ��  � �

	
�� 	
��� ��� � ��� � � � , with �#

normalized, such that� �� 	 ��# � � � �� ���� � ���� ��� � ��� � � and 
 ��# � ��  � � 
 ��� � �� � � 
� �
which is a contradiction excluding the first possibility. In the second case, where 
 ��� � �� � �
� , we can construct a pair��# � ��  � with �# normalized such that� �� 	 ��# � � � �� ���� � � � ���� ��� � ��� � �� � and 
 ��# � ��  � � 
 ��� � �� � � � �
which implies that� � � ��  � �� � �

� � � � � 
 and concludes the proof. For details
concerning these constructions, see Theorem 5.5 in [5].

Theorem 5.5 Suppose that
�

satisfies(H) and � � � � � are such that� � are saddle-foci,
then

���� ��� � �� � is attained for any� � �. Moreover, the projection of any minimizer in�
	 ��� ��� � ��� onto the�� � �  �–plane is a simple closed curve.

Proof. By Lemma 5.4, we can choose a minimizing sequence��/ � �/ � �
	

��
��� ��� � ��� �

� � , with �/ normalized and with the additional properties that(�/ () * � �
and� � � �/ �� 
 . Since the uniform separation property is satisfied for the type�� � �� this leads to a mini-

mizing pair��� � �� � for (5.1) by following the proof of Theorem 2.2 in [5]. As for the existence
of periodic minimizers of type� � �� � �� the uniform separation property is automatically
satisfied and the above steps are identical.

Lemma 3.5 yields that minimizers are normalized functions and the projection of anor-
malized function in	 ��� ��� � ��� is a simple closed curve in the�� � � �–plane.

We would like to have the same theorem for arbitrary periodic types���. For homotopy
types that satisfy the uniform separation property the analog of Theorem 5.5 can be proved.
However, in Section 5 we will prove a more general result using the information about the
minimizers with terminated types (homoclinic and heteroclinic minimizers) which was ob-
tained in [5].

Remark 5.6 The existence of a�� � ��-type minimizer is proved here in order to obtain a priori
� � ,� -estimates for all minimizers (Section 6). However, if

�
satisfies the additional hypoth-

esis that
� �� � � �� ��, � � �

as �� � � 
, then such estimates are automatic (c.f. [7], [4]).

In that case the existence of a minimizer of type�� � �� follows from Theorem 5.14 below. To
prove existence of minimizers of arbitrary type� we will use an analogue of Theorem 5.14
(see Lemma 6.7 and Theorem 6.8 below).

5.2 Characterization of minimizers of type� � ��� � ���

Periodic minimizers associated with
��
 � or

�� �� are the constant solutions� � �� and� � �
respectively. The simplest nontrivial periodic minimizers are those of type� � �� � �� , i.e.� � ��� � ���. These minimizers are crucial to the further analysis of the general case.The type� � �� � �� is a minimal type (associated with

�� ��
 �), and we want to investigate the relation
between minimizers in	 ���� � ���� and periodic minimizers of type�� � ��.
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Considering curves in the configuration space
�

is a convenient method for studying mini-
mizers of type�� � ��. For example, minimizers in

�
	 ���� � ���� and

�
	 � �� ��� � ��� all satisfy

the property that they do not intersect the line segment
 � ���� �� � ��� in
�

. If other
homotopy types� are considered, i.e.� �� ��� � ��� � then minimizers represented as curves in

�
necessarily have self-intersections and they must intersect the segment
, which makes their
comparison more complicated. We will come back to this problem in Section 6. Note that
for a

� �-function � the associated curve� �� � is a closed loop if and only if� is a periodic
function.

Lemma 5.7 For any non-periodic minimizer� � �
	 ���� � ���� and any bounded interval

� the curve� �� �� � has only a finite number of self-intersections. For periodic minimizers� � �
	 ��� ���� � ���� this property holds when the length of� is smaller than the minimal

period.

Proof. Fix a time interval� � �� � � �. If � is periodic,� should be chosen smaller than
the minimal period of�. Let 
 � �� 
 � � 
 � be an accumulation point of self-intersections of� �� . Then
 is a self intersection point, and there exists a monotone sequence of times�/ � �
converging to�
 such that� �� ��/ �� are self-intersection points and� �� ��
 �� � 
 . Also
there exists a corresponding sequence�/ � � with �/ �� �/ such that� �� ��/ �� � � �� ��/ ��.
Choosing a subsequence if necessary,�/ � �
 monotonically. Since� is a minimizer in�
	 ���� � ����, the intervals

��/ � �/ � must contain a transition, and hence��/ � �/ � � � 
 � �.
Therefore,�
 �� �
 , and we will assume that�
 � �
 (otherwise change labels). The homotopy
type of� �� ���� ,�� � � is �� � �� for some� � � (since� is bounded).

Assume that�/ and �/ are increasing; the other case is similar. Using the times�/ ��
 � �/ � �
, the curve� � � � �� �����	 ,��� 	� �, for
�

sufficiently small, can be decomposed as
� � � � �

� � � � �
� �

�  where � � �� ���� �	 ,�� � � � � � � � �� ���� ,�� � � � � � � �� ���� ,�� � � � �� �
� �� ���� ,�� � � � and� � � �� ���� ,��� 	� �. For� sufficiently large,� � and�� have the same homotopy
type, and� � �� ��, since otherwise� would be periodic with period smaller than�
 � �/ � � .
We can now construct two more paths

� � � � � � � � � � � � �  and � � � � � �� � � � �� � 
which have the same homotopy type for� sufficiently large. Since

� �� � � is minimal,
� �� �� �� �� � � and

� �� �� � � �� � �, and thus
� �� �� � � ��� � and

� ��� � � � �� �� which implies that� �� �� � � ��� �. Therefore
� �� � � � � �� �� � � �� � �, and� � � � � and� � are all distinct minimizers

with the same homotopy type and same boundary conditions. Since these curves all coincide
along� , the uniqueness of the initial value problem is contradicted. An argument very similar
to the one above is also used in the proof of Lemma 5.12 and demonstrated in Figure 5.1.

Lemma 5.8 If � � �� � �� with � � �, then
�
	 ��� ��� � �

	 ��� ��� � ��� and
���� ��� �

� � ���� ��� � ���.
Proof. Let � � �

	 ��� ��� with � � �� � �� for � � �, and let� be the period such
that the associated curve in

�
, � �� ��
 ,� ��, has the homotopy class of� ��� � �� �. First we will

prove that� �� ��
 ,� �� is a simple closed curve in
�

, and hence� �
	 ��� ��� � ���. Suppose not,

then by Lemma 5.7 the curve� �� ��
 ,� � � can be fully decomposed into� distinct simple closed
curves�� for � � �� � � � � � (just call the inner loop� �, cut it out, and call the new inner loop
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� �, and so on). Denote by
�� the action associated with loop��, then$� �� � �� ���. Let#� � 	 � �� ��� � �� � be the function obtained by pasting together� copies of� restricted to the

loop ��. If #� were a minimizer in	 ��� ��� � �� �, then by Lemma
� �� the functions� and#�

would be distinct solutions to the differential equation����� which coincide over an interval.
This would contradict the uniqueness of solutions of the initial value problem, and hence#� is
not a minimizer, i.e.

� �� �#� � � � � �� � ���� ��� � �� � � Consequently
���� ��� � �� � � $ � �� ����� ��� � �� �, which is a contradiction. Thus� �

	 ��� ��� � ��� and� �� ��
 ,� �� is a simple loop
traversed� times.

Now we will show that� � �
	 ��� ��� � ���. Since� �� � is the projection of a function

into the�� � �  �–plane,� traverses the loop once over the interval
�� � � �� �, and

���� ��� � �� � �
� � �� 
 ���. Suppose

�� 
 � ���� ��� � ���. Then we can construct a function in	 ��� ��� � �� �
with action less than

� ��� � ���� ��� � �� � by gluing together� copies of a minimizer in
	 ��� ��� � ���, which is a contradiction.

Lemma 5.9 For any� � �� �	 ��� ��� � �� � � �
	 ��� ��� � ��� � �

	 ��� ���� � ����.
Proof. We have already shown in Lemma 5.8 that

�
	 � �� ��� � �� � � �

	 ��� ��� � ���. We
now first prove that

�
	 ��� ��� � ��� � �

	 � �� ���� � ����. Let � � �
	 ��� ��� � ��� have period� .

Suppose� �� �
	 ��� ���� � ����. Then there exist two points� �� �� ��� � 
 � and� �� ��� �� � 
 �

on � �� � such that the curve� between
 � and
 � obtained by following� �� � is not minimal.
Replacing� by a curve with smaller action and the same homotopy type yields a function# �

	 ��� ���� � ���� for which
� �� �

,�* � �# � � � �� �
,�* � ���. Choose� � � such that�� � �� � � �.

Then� is a minimizer in
�
	 ��� ��� � �� � � �

	 ��� ��� � ��� which is a contradiction.
To finish the proof of the lemma we show that

�
	 ��� ���� � ���� � �

	 � �� ��� � ���. Let� � �
	 � �� ���� � ���� have period� . Let � �� ��
 ,� �� be the associated closed curve in

�
and

� its winding number with respect to the segment
. Suppose
�� ��� � ���� ��� � ��� � �

� � ���� �� � ��. This implies the existence of a function# �
	 ��� ��� � ��� � and a period

��
such that

� �� �# � � �� ���. Choose a time�
 � �� � � � such that� ��
 � � � and � ��
 � � �.
Let 
 
 � ��� � ��
 �� � �

. There exists a
� � � sufficiently small such that� ��
 � � � �� � � ��
 � � � � �, and� does not cross� � in

��
 � � � �
 � � � except at�
. Let 
 � and
 �
denote the points�� ��
 � � � � �  ��
 � � �� respectively. Let� denote the piece of the curve� �� �
from 
 � to 
 � and� �

the curve tracing� �� � backward in time from
 � to 
 �. Now choose
a point
 � on � �# � for which # � � and#  � �. We can easily construct cubic polynomials
� � and� � for which the curve� �� �� connects
 � to 
 � and the curve� �� � � connects
 � to 
 �
in

�
. These curves� �� � � are monotone functions, and hence the loop� �� �� � � �� � � � � �

has
trivial homotopy type in

�
. Therefore� �� ��
 ,� �� � � � � �� � � � � �# ��
 ,�� � � � � �� �� in

�
for

any� � �, and from Definition 3.1
� �� �� ��
 ,� �� � � � � � �� �� � � � � �# ��
 ,�� � � � � �� ���. Thus,

� � �� ��� � � �� � � � �� �� � � �� � � � � � � �� �# �
which implies � � � ��� ��� � � �� �# �� � � �� �� � � �� � � � � �� �
These estimates lead to a contradiction for� sufficiently large.

Lemma 5.10 For any two distinct minimizers� � and �� in
�
	 ��� ��� � ���, the associated

curves� �� � � do not intersect.
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Proof. Suppose� �� �� and� ��� � intersect at a point
 � �
. Translate� � and�� so that

� �� � ���� � � ��� ���� � 
 � Define the function� �
	 ��� ��� � ��� � as the periodic extension of

� ��� � � � � ��� for � � �� � � ��,�� �� � � �� for � � �� � � � � � � � �,
where� � is the minimal period of� �. Then

��
�
�� * ��� � ����� ��� � ��� � ���� ��� � ��� �. By

Lemma
� �� we have� � �

	 ��� ��� � ���, which contradicts the fact that� � and�� are distinct
minimizers with� �� �� �� � ��� �.

As a direct consequence of this lemma, the periodic orbits in	 ��� ��� � ��� are ordered in
the sense that� �� �� lies either strictly inside or outside the region enclosed by� ��� �. The
ordering will be denoted by�.

Theorem 5.11 There exists a largest and a smallest periodic orbit in
�
	 ��� ��� � ��� in the

sense of the above ordering, which we will denote by���� and ���� respectively. Moreover� � (���� (� ,� � (���� (� ,� � �

, and���� � � � ���� for every� � �

	 ��� ��� � ���. In
particular the set

�
	 ��� ��� � ��� is compact.

Proof. Either the number of periodic minimizers is finite, in which case there is nothing
to prove, or the set of minimizers is infinite. Let� � � �� �� � � � � �

	 ��� ��� � ���� � �
,

and let
� � � � � �� � �  � � �  � � � � � �� � Every minimizer in

�
	 ��� ��� � ��� intersects

the positive�–axis transversely exactly once. Moreover distinct minimizers cross this axis at
distinct points by Lemma 5.10. Thus we can use

�
as an index set and label the minimizers

as�� for � � �
. Due to the a priori upper bound on minimizers (Lemma 5.1 in [5]),

�
is a

bounded set. The set
�

is contained in the�-axis and hence has an ordering induced by the
real numbers. This order corresponds to the order on minimizers, i.e.� � � in

�
if and only

if �� � �	 as minimizers.
Suppose� � is an accumulation point of

�
. Then there exists a sequence�/ converging

to � �. From Theorem 4.2 (the a priori
�
-bound on��� is sufficient by Remark 4.3) we see

that there exists�� � �
	 ���� � ���� which is a solution to Equation����� such that��� �

�� in
� ��� � �� �. Since��� is periodic and the

� ��� �–limit of a sequence of periodic functions
with uniformly bounded periods (compare with the proof of Theorem 4.2 to find a uniform
bound on the periods) is periodic,�� � �

	 ��� ���� � ����. By Lemma 5.9,�� � �
	 ��� ��� � ��� �

Furthermore�� corresponds to��
 , and hence
�

is compact.

Consequently
�

contains maximal and minimal elements. Let���� and���� be the peri-
odic minimizers through the maximal and minimal points of

�
respectively. This proves the

theorem.

The above lemmas characterize periodic minimizers in
�
	 ���� � ����. Now we turn our

attention to non-periodic minimizers. We conclude this subsection with a theoremthat gives
a complete description of the set

�
	 ���� � ����.

Let � � �
	 ���� � ���� be non-periodic. Suppose that
 is a self-intersection point of

� �� �. Then there exist times� � � �� such that� �� �� ��� � � �� ��� �� � 
 , and� �� ��� � ,�* � � is a
closed loop. By Lemma 5.7 there are only finitely many self-intersections on

�� � � �� �. Without
loss of generality we may therefore assume that� is a simple closed loop, i.e, we need only
consider the case where
 � � �� �� ��� � � �� ��� �� and� �� ��� � ,�* � � is a simple closed loop. We
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now define�� � � �� �+� � ,� -� and�� � � �� �+�� ,�* - �. We will refer to�� as the forward and
backward orbits of� relative to
 .

Lemma 5.12 Let � � �
	 ���� � ���� be a non-periodic minimizer with at least one self-

intersection. Let
 and �� be defined as above. Then the forward and backward orbits
�� relative to
 do not intersect themselves. Furthermore,
 and �� are unique, and the
curve� �� � passes through any point in

�
at most twice.

Proof. We will prove the result for�� ; the argument for�� is similar. Suppose that��
has self-intersections. Define

�� � %&'�� � � � �� �� ���� � � �� �� �� for some� � �� � � ��� �
The minimum�� is attained by Lemma 5.7, and�� � �� since� � � �� ��� � ,�* � � is a simple
closed loop. Let�
 � �� � � �� � be the point such that� �� ��
 �� � � �� ��� ��. This point is unique
by the definition of��, and

�� � � �� ���� ,�
 � � is a simple closed loop. For small positive
�

we
define

� � � �� ��� ��, 
 � � �� �� � � � ��, � � � �� ��� � � �� and� � � � �� ��� ��	 ,�
� 	 � �, see
Figure 5.1. We can decompose this curve into five parts;� � � � � � �� �

� � � � �
� � where� �

joins 
 to 
 , � � joins 
 to
�

, � � joins
�

to � , and� and
�� are simple closed loops based at


 and
�

respectively, see Figure 5.1. The simple closed curves� and
�� go around
 exactly

once and thus have the same homotopy type. Moreover,� �� �� since� is non-periodic.
Besides� � we can construct two other distinct paths from
 to � :

� � � � � �
� � � � � � �

� � and � � � � � � �� � �� �
� � �

� � �
It is not difficult to see that� �, � � and� � all have the same homotopy type. Since

� �� � � is
minimal in the sense of Definition 3.1 we have, by the same reasoning as in Lemma5.7, that� �� �� � � �� � � and

� �� � � � � �� � �, which implies that
� ��� � � � �� � and

� �� � � � ��� �. Hence� �� � � � ��� �. Therefore
� �� �� � � �� � � � � �� � � which implies that� � � � � and � � are all

distinct minimizers of the same type as curves joining
 to � . Since these curves all contain
the paths� �, � � and� �, and are solutions to (1.2), the uniqueness to the initial value problem
is contradicted.

Finally, the curve� �� � can pass through a point at most twice because it is a union of��
and��, each visiting a point at most once. Moreover, points in� �� �+� � ,�* - �, common to both
�� and��, are passed exactly once. It now follows that if there is another self-intersection
besides
 , say at� � � �� �� ��� � � �� ��� ��, then� � � � � and�� � ��. We conclude that the
curve� �� �+� � ,�* - � contains� �� ��� � ,�* � � and therefore it is not a simple closed curve. Thus
 is
a unique self-intersection that cuts off a simple loop.

Lemma 5.13 Let � � �
	 ���� � ���� be non-periodic. Suppose that� � 
� �� �. Then� is

a connecting orbit between two periodic minimizers�� � �� � �
	 ��� ��� � ���, i.e. there are

sequences��/ � ��/ � 
such that� �� � ��/ � � �� ��� and� �� � ��/ � � �� ��� in

� ��� � �� �.
Proof. Lemma 5.12 implies that�� is a spiral which intersects the positive�–axis at a

bounded, monotone sequence of points��/ � �� in
�

converging to a point�� � � �� � Let �/ be the
sequence of consecutive times such that� ��/ � � �/ . Consider the sequence of minimizers
in

�
	 ���� � ���� defined by�/ ��� � � �� � �/ �. By Theorem 4.2 there exist a

� ��� �–limit
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Figure 5.1: The forward orbit�� starting at
 with a self-intersection at the point
�

. Lemma
5.12 implies that this cannot happen for non-periodic� � �

	 ���� � ����.
�� � �

	 ���� � ����. If �� is periodic, there is nothing more to prove. Thus suppose�� is
non-periodic. Then the curve� ��� � crosses the�–axis infinitely many times. On the other
hand, from the

� ��� � convergence� ��� � crosses this axis only at� �. By Lemma 5.12,� ��� �
can intersect� � at most twice, which is a contradiction. The

� ��� �–convergence follows from
regularity (as in the proof of Theorem 4.2). The proof of the existence of�� is similar.

Theorem 5.14 Let � � �
	 ���� � ����. Either � is unbounded,� is periodic and� �

�
	 ��� ��� � ���, or � is a connecting orbit between periodic minimizers in

�
	 ��� ��� � ���.

Proof. Let � � �
	 ���� � ���� be bounded, then� is either periodic or non-periodic. In the

case that� is periodic it follows from Lemma 5.9 that� � �
	 ��� ��� � ���. Otherwise if� is

not periodic it follows from Lemma 5.13 that� is a connecting orbit between two minimizers�� � �� � �
	 ��� ��� � ���.

In Section 6.2 we give analogues of the above theorems for arbitrary homotopy types�.
Notice that the option of� � �

	 ���� � ���� being unbounded in the above theorem does
not occur when

� ��� � �� ��, � � �
as �� � � 

.

6 Properties of minimizers

In Section 5, we proved the existence of minimizers in	 � �� ��� � ���, which will provide a pri-
ori bounds on the minimizers of arbitrary type. These bounds and Theorem 4.2 will establish
the existence of such minimizers. In this section we will also prove thatcertain properties of a
type� are often reflected in the associated minimizers. The most important examples are the
periodic types� � ���. Although there are minimizers in every class	 ���� � � �, it is not clear
a priori that among these minimizers there are also periodic minimizers. In order to prove
existence of periodic minimizers for every periodic type��� we use the theory of covering
spaces.
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6.1 Existence

The periodic minimizers of type�� � �� are special for the following reason. For a normalized� �
	 ��� ��� � ���, define

� �� � to be the closed disk in� �
such that1� �� � � � �� �.

Theorem 6.1 i) If � � �
	 ���� � � � then � �� � � � ����� � for any periodic type��� ��

��� � ���. ii) If � � �
	 �� � � � then� �� � � � ����� � for any terminated type� .

Proof. i) If ��� �� ��� � ��� then every� � �
	 ���� � � � has the property that� �� � intersects

the�-axis between� � � �. Suppose that� �� � does not lie inside
� ����� �. Then� �� � must

intersect� ����� � at least twice, and let
 � and 
 � be distinct intersection points with the
property that the curve� � obtained by following� �� � from 
 � to 
 � lies entirely outside of� ����� �. Let � � � � ����� � be the curve from
 � to 
 � following ����, such that� � and� � are
homotopic (traversing the loop� ����� � as many times as necessary) and thus

� �� �� � � �� � �
is minimal. Replacing� � by � � leads to a minimizer in

�
	 ���� � � � which partially agrees

with �. This contradicts the uniqueness of the initial value problem for (1.2).
ii) As in the previous case the associated curve� �� � either intersects� ����� � at least twice

or lies completely inside
� ����� �, and the proof is identical.

Corollary 6.2 For all minimizers in the above theorem,(� (� ,� � (���� (� ,� � �

.

In order to prove existence of minimizers in every class we now use the above theorem in
combination with an existence result from [5].

Theorem 6.3 For any given type� and parity � there exists a (bounded) minimizer� �
�
	 �� � � �. Moreover(� (� ,� � �


, independent of�� � � �.
Proof. Given a type� we can construct a sequence�/ of terminated types such that

�/ � � as� � 
. For any terminated type�/ there exists a minimizer�/ � �

	 ��/ � � � by
Proposition 3.3 (Theorem 1.3 of [5]). Clearly such a sequence�/ satisfies(�/ (� ,� � �

by
Corollary 6.2. Applying Theorem 4.2 completes the proof.

6.2 Covering spaces and the action of the fundamental group

The fundamental group of
�

is isomorphic to the free group on two generators�
 and� � which
represent loops (traversed clockwise) around��� �� and ���� �� respectively with basepoint�� � ��. Indeed,

�
is homotopic to a bouquet of two circles� � � � � � �. The universal

covering of� denoted by
�
� can be represented by an infinite tree whose edges cover either

�
 or � � in � , see Figure 6.1. The universal covering of
�

denoted by� � �� � �
can then

be viewed by thickening the tree
�
� so that

��
is homeomorphic to an open disk in� �

.
An important property of the universal covering is that the fundamental group� � �� � in-

duces a left group action on
��

in a natural way, via the lifting of paths in
�

to paths in
��

.
This action will be denoted by� � � for � � � � �� � and� � ��

. We will not reproduce the
construction of this action here, and the reader is referred to an introductorybook on alge-
braic topology such as [3]. However, we will utilize the structure of the quotientspaces of��

obtained from this action, which are again coverings of
�

. These quotient spaces will be
the natural spaces in which to consider the lifts of curves� �� � which lie in more complicated
homotopy classes than those in the case of� �

	 ��� ��� � ���.
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Figure 6.1: The universal cover
�
� of � is a tree. Its origin is denoted by	 . For � � �
 � ��
,

the quotient space
�
� 
 � �

� � �� � is also a covering space over� , and
�
� 
 � � �.

A periodic type� � ��� is generated by a finite type�, which together with the parity�
determines an element of� � �� � of the form� ��� � �	*

�
��� � � � ��� � �	 �� . Since we only consider

curves in
�

which are of the form� �� � � �� ��� � �  ����, the numbers� � are all positive. The
infinite cyclic subgroup generated by any such element� will be denoted by�� � � � � �� �. The
quotient space

�� 
 � �� � �� � is obtained by identifying points� and� in
��

for which � � �
 ��

for some� � � . The resulting space
�� 
 is homotopic to an annulus, and�
 � �� 
 � �

is
a covering space. Figure �� illustrates the situation for� , since it is easier to draw, and for�

the reader should imagine that the edges in the picture are thin strips. The lift ofthe path
� � �
 � ��
 to

�
� based at	 is shown by the dashed line. This piece of the tree becomes

a circle in the quotient space
�
� 
 . Note that infinitely many edges in

�
� are identified with

this circle. The dashed lines in both
�
� and

�
� 
 are strong deformation retracts of

�
� and

�
� 


respectively, and hence
�
� 
 is homotopic to a circle. Thickening

�
� 
 gives that

�� 
 is homotopic
to an annulus. Thus� � � �� 
 � is a generated by a simple closed loop in

�� 
 which will be denoted
by � ���. Note that for convenience we suppress the dependence of� and� on the parity�.

Remark 6.4 If we define the shift operator� on finite types� to be a cyclic permutation,
then 	 ��� �� � � � � 	 ��� ��  �� � � �  �� �� for all � � � . Functions in	 ��� �� � � � have a
unique lift to simple closed curve in

�� 
 , � � � �� �. However, functions in the shifted class
	 ��� ��  ��� � �  �� �� are not simple closed curves in

�� 
 . In order for such functions to be
lifted to a unique simple closed curve we need to consider the covering space

�� 
� , where
� � � ��  ��� � �  �� ��.
6.3 Characterization of minimizers of type �� �

In Section 5.2, we characterized minimizers in
�
	 ���� � ���� by studying the properties of

their projections into
�

. What was special about the types�� � �� was that the projected
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curves were a priori contained in
� � 
, which is topologically an annulus. The

�
-efficiency

of minimizing curves restricts the possibilities for their self and mutualintersections. In par-
ticular, we showed that all periodic minimizers in

�
	 ���� � ���� project onto simple closed

curves in
� � 
 and that no two such minimizing curves intersect. These two properties, cou-

pled with the simple topology of the annulus, already force the minimizing periodic curves to
have a structure of a family of nested simple loops.

Such a simple picture in the configuration plane
�

cannot be expected for minimizers in�
	 ����� � � �� with � �� �� � ��. The simple intersection properties (of Lemma 5.9 and 5.11)

no longer hold; in fact, periodic minimizing curves must have self-intersections in
�

as do
any curves in

�
representing the homotopy class of���� � � �. However, by lifting minimizing

curves into the annulus
�� 
 , we can remove exactly these necessary self-intersections and put

us in a position to emulate the discussion for the types�� � �� . More precisely, for a minimal
type �� � � �, any � �

	 ��� ��� � � � � with period� such that�� � �� �� ��
 ,� ��� � �� � � � , there
are infinitely many lifts of the closed loop� �� ��
 ,� �� into

�� 
 �� � (see above remark) but there
is exactly one lift, denoted� 
 �� ��
 ,� ��, that is a closed loop homotopic to�

 ��� in
�� 
 ���. We

can repeat all of the arguments in Section 5 by identifying intersections between the curves
� 
 �� ��
 ,� � � in

�� 
 ��� instead of intersections between the curves� �� ��
 ,� � � in
� � 
. Of course,

when gluing together pieces of curves, the values of� and� come from the projections into�
. In particular, the arguments of Lemma 5.9 show that� 
 �� ��
 ,� �� must be a simple loop

traced�-times, which leads to the following:

Lemma 6.5 For any periodic type��� and any � � � it holds that
�
	 ��� ��� � � � � �

�
	 ��� �� � � � � �

	 ��� ���� � � �.
The proof of the next theorem is a slight modification of Theorem 5.11.

Theorem 6.6 For any periodic type��� the set
�
	 ��� �� � � � is compact and totally ordered

(in
�� 
).
The following lemma is analogous to Lemma 5.13. Note however that by Theorem 6.1 we

do not need to assume that the minimizer is uniformly bounded.

Lemma 6.7 Let � � �
	 ���� � � � for some periodic type��� �� ��� � ���. Either� is periodic

and� � �
	 � �� �� � � �, or � is a connecting orbit between two periodic minimizers�� � �� �

�
	 ��� �� � � �, i.e. there are sequences��/ � ��/ � 

such that� �� � ��/ � � �� ��� and � �� ���/ � � �� ��� in
� ��� � �� �.

Combining Theorem 6.3 and Lemma 6.7 we obtain the existence of periodic minimizers
in every class with a periodic type (this result can also be obtained in a way analogous to
Theorem 5.5).

Theorem 6.8 For any periodic type��� the set
�
	 ��� �� � � � is nonempty.

The classification of functions by type has some properties in common with symbolic dy-
namics. For example, if a type� is asymptotic to two different periodic types, i.e.�

/ �� � � ��
and�

�/ �� � � �� as� � 
, with �� �� ��, then any minimizer� � �

	 �� � � � is a con-
necting orbit between two periodic minimizers�� � �

	 ��� +�� ,� - and�� � �
	 � �� ��� � � �,
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i.e. there exist sequences��/ � ��/ � 
such that� �� � ��/ � � �� ��� and� �� � ��/ � � �� ���

in
� ��� � �� �. This result follows from Cantor’s diagonal argument using Theorems 4.2 and 6.7,

and hence we have used the symbol sequences to conclude the existence of heteroclinic and
homoclinic orbits connecting any two types of periodic orbits.

Symmetry properties of types� are also often reflected in the corresponding minimizers.
For example, define the map

� �� on infinite types by
� �� �� � � ������� ��	�, and consider types

that satisfy
� �� �� � � � for some�
. Moreover assume that� is periodic. In this case we

can prove that the corresponding periodic minimizers are symmetric and satisfy Neumann
boundary conditions.

Theorem 6.9 Let � � ��� satisfy
� �� ����� � ��� for some�
 . Then for any� � �

	 ��� �� � � �
there exists a shift� such that� � � � � � � � � � satisfies
i) � � � � � � � �� �  � for all  � �� � � � where� is the period of�,
ii) �� ��� � �� ��� � � and�� �� � � �� �� � � �, and
iii) � � is a local minimizer for the functional

�� ��� on the Sobolev space
� �
� �� � � � � �� �� � �� � � � � �  ��� � � �� � � ��.

Proof. Without loss of generality we may assume that�
 � � and that� � ��� � � � � � � �� ��
for some� � ��

. We can choose a point�
 in the convex hull of
� � such that� ��
 � � � ��
�� � � � and� �� ���� ,���� � � � �� ��� � �� � � � � � �� � � ����. We now define# ��� � � ��
 � � � ��.

Then by the symmetry assumptions on� we have that� �# ���� ,���� � � � � �� ���� ,���� ��. Since� ��� ,���� � �# � � � ��� ,���� � �� � and � �� ��
 �� � � �� ��
 � � �� � � �# ��
 �� � � �# ��
 � � ��,
we conclude from the uniqueness of the initial value problem that� ��� � # ��� for all � ���
 � �
 � � �, which proves the first statement. The second statement follows immediately from
i). The third property follows from the definition of minimizer.
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