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ABSTRACT

The purpose of this paper is to give the homotopy classification of nanophrases of
length 2 with 4 letters. To do it we construct some new invariants of nanophrases γ, T .
The invariant γ defined in this paper is an extension of the invariant γ for nanowords
introduced in [5]. The invariant T is a new invariant of nanophrases. As a corollary of
these results, we give the classification of two-components pointed, ordered, oriented
curves on surfaces with minimum crossing number ≤ 2.
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1. Introduction.

Words are finite sequences of letters in a given alphabet. In [2] C. F. Gauss intro-
duced a method to investigate closed planar curves by words of a certain type now
called Gauss words. We can apply this method to encode surface curves. (See [10].)

V.Turaev introduced word theory in [5], [6]. The key of new concepts introduced
in those papers are those of étale words and nanowords. An étale word over an
alphabet α endowed with an involution τ : α −→ α is a word in an alphabet
A endowed with a projection A 3 A 7→ |A| ∈ α. Every word in the alphabet α

becomes an étale word over α by using the identity mapping id : α −→ α as the
projection. An étale word over α is called nanoword if every letter appears twice or
not at all. In the case where the alphabet α consists of two elements permuted by
τ , the notion of a nanoword over α is equivalent to the notion of an open virtual
string introduced in [9].

Turaev introduced an equivalence relation of homotopy on the set of étale words
over α. The relation of homotopy is generated by three transformations or moves
on nanowords. The first move consists in deleting two consecutive entries of the
same letter. The second move has the form xAByBAz 7→ xyz where x, y, z are
words and A,B are letters such that |A| = τ(|B|). The third move has the form
xAByACzBCt 7→ xBAyCAzCBt where x, y, z, t are words and A,B,C are letters
such that |A| = |B| = |C|. These moves are suggested by the Reidemeister moves
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in knot theory. In fact the first (resp. second, third) homotopy move is similar to
the first (resp. second, third) Reidemeister move.(See [6] for more details). Turaev
applied topological methods to a semigroup consisting letters to study properties
and characteristics of nanowords preserved under homotopy. For instance,these are
applications of colorings of knot diagrams, the theory of knot quandles, etc. (See
[5], [6], [7], [4] for more details.) As an application of those methods, Turaev gave
the homotopy classification of nanowords of length ≤ 6 in [5].

On the other hand, in [6] Turaev showed that a stable equivalence class of an
oriented pointed curve on a surface is identified with a homotopy class of nanoword
in a 2-letter alphabet. Moreover Turaev extended this result to multi-component
curves. In fact a stable equivalence class of an oriented, ordered, pointed multi-
component curve on a surface is identified with a homotopy classes of a nanophrase
in a 2-letter alphabet. Roughly speaking, a nanophrase is a sequence of étale words
which concatenation of those words is a nanoword. (See [6], [8].) We can define
homotopy moves similarly as in the case of nanowords.

Now the purpose of this paper is to give the homotopy classification of
nanophrases of length 2 with 4 letters. (Theorem 4.6.) To do it we construct some
new invariants of nanophrases. As a corollary of these results, we give the classifica-
tion of two-components pointed, ordered, oriented curves on surfaces with minimum
crossing number ≤ 2. (See also [1].)

Another application of the theory of words was introduced by N.Ito in [3].
By using the theory of words, Ito reconstructed the Arnold basic invariants and
constructed some other invariants for plane closed curves, long curves, and fronts.

In section 2 we review the theory of words and phrases which are introduced
by Turaev in [5], [6]. In section 3 we construct some new homotopy invariants of
nanophrases γ, T . The invariant γ defined in this paper is an extension of the
invariant γ for nanowords introduced in [5]. The invariant T is a new invariant of
nanophrases. In section 4 we generalize Turaev’s result to the case of nanophrases.
In fact we give the homotopy classification of nanophrases of length 2 with 4 letters
using homotopy invariants constructed in section 3.

2. Nanowords and Nanophrases.

In this section we review the theory of words and phrases (cf.[5], [6]).

2.1. Nanowords and their homotopy.

An alphabet is a set and letters are its elements. A word of length n ≥ 1 on an
alphabet A is a mapping w : n̂ → A where n̂ = {1, 2, · · · , n}. A word usually
encoded by the sequence of letters w(1)w(2) · · ·w(n). A word w : n̂ → A is a Gauss
word if each element of A is the image of precisely two elements of n̂.

For a set α, an α-alphabet is a set A endowed with a mapping A → α called
projection. the image of A ∈ A under this mapping is denoted |A|. A étale word
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over α is a pair (an α-alphabet, a word on A). A nanoword over α is a pair (an
α-alphabet, a Gauss word on α). An empty étale word in an empty α-alphabet is
a nanoword called the empty nanoword ∅ of length 0.

A morphism of α-alphabets A1, A2 is a set-theoric mapping f : A1 −→ A2

such that |A| = |f(A)| for all A ∈ A1. If f is bijective, then this morphism is an
isomorphism. Two étale words (A1, w1) and (A2, w2) over α are isomorphic if there
is an isomorphism f : A1 −→ A2 such that w2 = f ◦ w1.

To define homotopy of nanowords we fix a set α with an involution τ : α −→ α

and a subset S ⊂ α × α × α. We call the pair (α, S) homotopy data.

Definition 2.1. Let (α, S) be homotopy data. We define a homotopy moves (1) -
(3) as follows:

(1) (A, xAAy) −→ (A \ {A}, xy)
for all A ∈ A and x, y are words in A \ {A}.

(2) (A, xAByBAz) −→ (A \ {A, B}, xyz)
if A,B ∈ A with |B| = τ(|A|). x, y, z are words in A \ {A,B}.

(3) (A, xAByACzBCt) −→ (A, xBAyCAzCBt)
if A,B,C ∈ A satisfy (|A|, |B|, |C|) ∈ S. x, y, z, t are words in A.

Definition 2.2. Let (α, S) be a homotopy data. Then nanowords (A1, w1) and
(A2, w2) over α are S-homotopic (denote (A1, w1) 'S (A2, w2)) if (A2, w2) can be
obtained from (A1, w1) by a finite sequence of isomorphism, S-homotopy moves (1)
- (3) and the inverse moves.

The set of S-homotopy classes of nanowords over α is denoted as N (α, S).
To define S-homotopy of étale words. We define desingularization of étale words

(A, w) over α as follows: Ad := {Ai,j := (A, i, j)|A ∈ A, 1 ≤ i < j ≤ mw(A)} with
projection |Ai,j | := |A| ∈ α for all A, i, j (where mw(A) := Card(w−1(A)) ). The
word wd is obtained from w by first deleting all A ∈ A with mw(A) = 1. Then for
each A ∈ A with mw(A) ≥ 2 and each i = 1, 2, . . .mw(A), we replace the i-th entry
of A in w by

A1,iA2,i . . . Ai−1,iAi,i+1Ai,i+2 . . . Ai,mw(A).

The resulting (Ad, wd) is a nanoword of length Σmw(A)(mw(A) − 1) and called a
desingularization of (A, w). Then we define S-homotopy of étale words as following:

Definition 2.3. Let w1 and w2 be étale words over α. Then w1 and w2 are S-
homotopic if wd

1 and wd
2 are S-homotopic.

Recall the following three lemmas from [5].

Lemma 2.4. Let (α, S) be a homotopy data and A be an α-alphabet. A,B,C are
distinct letters in A. x, y, z, w are words in A\ {A,B,C} with xyzt is Gauss word.
Then following (i)-(iii) are hold :

(i) (A, xAByCAzBCt) 'S (A, xAByACzCBt)
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if (|A|, τ(|B|), |C|) ∈ S,
(ii) (A, xAByCAzCBt) 'S (A, xBAyACzBCt)

if (τ(|A|), τ(|B|), |C|) ∈ S,
(iii)(A, xAByACzCBt) 'S (A, xBAyCAzBCt)

if (|A|, τ(|B|), τ(|C|)) ∈ S.

Lemma 2.5. Suppose that S ∩ (α × b × b) 6= ∅ for all b ∈ α. Let (A, xAByABz)
be nanoword over α with |B| = τ(|A|).x, y, z are words in A \ {A,B}.Then

(A, xAByABz) 'S (A \ {A,B}, xyz).

In the remaining part of the paper we assume that S is the diagonal of α3 that is
{(a, a, a)}a∈α. Under this convention, we shall omit the prefix S- and speak simply
of homotopy rather than S-homotopy. We shall also omit index S and write ', || · ||,
N•(α) for 'S , || · ||S , N S

• (α).

Lemma 2.6. Let β be τ -invariant subset of α. If two étale words over β are ho-
motopic in the class of étale words over α, then they are homotopic in the class of
étale words over β.

V.Turaev gives a homotopy classification of nanowords of length 4 in [5].

Theorem 2.7. Let w be a nanoword of length 4 over α. Then w is either w ' ∅
or isomorphic to the nanoword wa,b := (A = {A,B}, ABAB) where |A| = a, |B| =
b ∈ α with a 6= τ(b). Moreover for a 6= τ(b), the nanoword wa,b is non-contractible
and two nanowords wa,b and wa′,b′ are homotopic if and only if (a, b) = (a′, b′).

In this paper we generalize Turaev’s result to the case of “nanophrases”.

2.2. Nanophrases and their homotopy.

Definition 2.8. A nanophrase (A, (w1|w2| · · · |wk)) of length k ≥ 0 over a set α is a
pair consisting of an α-alphabet A and a sequence of k words w1, · · · , wk on A such
that w1w2 · · ·wk is a Gauss word on A. We denote it shortly by (w1|w2| · · · |wk).
We denote a set of nanophrases of length k over α by Pk(α).

By definition, there is a unique empty nanophrase of length 0 (the corresponding
α-alphabet A is void).

Remark 2.9. Any nanoword w over α yields a nanophrase (w) of length 1.

A mapping f : A1 −→ A2 is isomorphism of two nanophrases if f is an isomor-
phism of α-alphabets transforming the first nanophrase into second one.

Given a homotopy data (α, τ, S), we define homotopy move on nanophrases as
in section 2.1 with the only difference that the 2-letter subwords AA, AB, BA, AC,
BC modified by these moves may occur in different words of phrase. Isomorphism
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and homotopy moves generate an equivalence relation 'S of S-homotopy on the
class of nanophrases over α. We denote a set of S-homotopy class of nanophrases
of length k by Pk(α, S).

Example 2.10. Nanophrases (AB|ADDCBC) and (BA|CACB) with |A| =
|B| = |C| ∈ α over α are homotopic. Indeed

(AB|ADDCBC) ' (AB|ACBC) ' (BA|CACB).

Lemmas2.4 and 2.5 extend to nanophrases with the only change that the 2-letter
subwords AB,BA,CA, and so forth may occur in different word of the phrase.

3. Some Homotopy Invariants of Nanophrases.

In this section, we define three new homotopy invariants of nanophrases. They will
be used in the next section.

3.1. Invariant γ.

Recall that an orbit of the involution τ : α −→ α is a subset of α consisting either
of one element or of two elements; in latter case the orbit is called free. Let Π be
the group which defined as follows:

Π := ({za}a∈α|zazτ(a) = 1 for all a ∈ α).

Let ZΠ be the integral group-ring of Π.

Definition 3.1. Let P = (A, (w1|w2| · · · |wk)) be a nanophrase of length k over α

and ni the length of nanoword wi. Set n =
∑

1≤i≤k ni. Then we define n elements
γi
1, γi

2, · · · , γi
ni

(i ∈ {1, 2, · · · , k}) of Π by γj
i := z|wj(i))| if wj(i) 6= wl(m) for all

l < j and for all m < i when l = j. Otherwise γj
i := zτ(|wj(i)|). Then we define

γ(P ) ∈ ⊗kZΠ by

γ(P ) := γ1
1γ1

2 · · · γ1
n1

⊗ γ2
1γ2

2 · · · γ2
n2

⊗ · · · ⊗ γk
1γk

2 · · · γk
nk

.

Then we obtain following theorem.

Theorem 3.2. The γ is a homotopy invariant of nanophrases.

Remark 3.3. By definition, for nanophrases of length 1 the invariant γ for
nanophrases is equal to Turaev’s invariant γ defined in [5].

Example 3.4. Let A := {A, B,C} be an α-alphabet. Set |A| = a, |B| = b, |C| =
c ∈ α. Consider a nanophrase P = (ABC|CB|A), then

γ(P ) = zazbzc ⊗ zτ(c)zτ(b) ⊗ zτ(a).
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3.2. Invariant T .

In this subsection we define homotopy invariants of nanophrases over α0 := {a, b}
with involution τ0 permuting a, b and nanophrases over one-point set. At first, we
define a homotopy invariant of nanophrases T over α0. To define this invariant, we
define some notation as follows.

Definition 3.5. Let P = (A, (w1| · · · |wk)) be a nanophrase over α0 and A,B ∈ A.
Then we define σP (A,B) as follows: If A and B form · · ·A · · ·B · · ·A · · ·B · · · in
P and |B| = a, or · · ·B · · ·A · · ·B · · ·A · · · in P and |B| = b, then σP (A,B) := 1.
If · · ·A · · ·B · · ·A · · ·B · · · in P and |B| = b, or · · ·B · · ·A · · ·B · · ·A · · · in P and
|B| = a, then σP (A,B) := −1. Otherwise σP (A,B) := 0.

Definition 3.6. For A ∈ A we define ε(A) ∈ {±1} by

ε(A) :=

{
1 ( if |A| = a ),

−1 ( if |A| = b ).

Definition 3.7. Let P = (A, (w1|w2| · · · |wk)) be a nanophrase of length k over
α0. For A ∈ A such that there exist i ∈ {1, 2, · · · , k} such that Card(w−1

i (A)) = 2,
we define TP (A) ∈ Z by

TP (A) := ε(A)
∑
B∈A

σP (A,B),

and we define TP (wi) ∈ Z by

TP (wi) :=
∑

A∈A, Card(w−1
i (A))=2

TP (A).

Then we define T (P ) ∈ Zk by

T (P ) := (TP (w1), TP (w2), · · · , TP (wk)).

Theorem 3.8. The T is a homotopy invariant of nanophrases over α0.

Proof. Consider the 1-st homotopy move
P1 := (w1| · · · |wl−1|xAAy|wl+1| · · · |wk) −→

P2 := (w1| · · · |wl−1|xy|wl+1| · · · |wk).
It is clear that TP1(wi) = TP2(wi) for all i 6= l. We show that TP1(xAAy) = TP2(xy).
Note that σP1(A,B) = 0 for all B ∈ A by definition. Therefore TP1(A) = 0.
Moreover σP1(E,A) = 0 for all E ∈ A. So A does not contribute to TP1(E) for all
E ∈ A. Therefore TP1(xAAy) = TP2(xy).

Consider the 2-nd homotopy move such that A and B occur in some words once
P1 := (w1| · · · |x1ABy1| · · · |x2BAy2| · · · |wk) −→

P2 := (w1| · · · |x1y1| · · · |x2y2| · · · |wk).
with |A| = τ(|B|).



Homotopy Classification of Nanophrases in Turaev’s Theory of Words 7

It is sufficient to show that TP1(x1ABy1) = TP2(x1y1) and TP1(x2BAy2) =
TP2(x2y2). Note that A and B occur in P once. Moreover for all E such that
· · ·E · · ·AB · · ·E · · · in P1

TP1(E) = ε(E)(n1 + σP1(E,A) + σP1(E,B) + n2)

= ε(E)(n1 + n2)

= TP2(E)

where n1, n2 are integers. Therefore TP1(x1ABy1) = TP2(x1y1). TP1(x2BAy2) =
TP2(x2y2) is proved similarly.

Consider the 2-nd homotopy move such that A and B occur in some word twice
P1 := (w1| · · · |wl−1|xAByBAz|wl+1| · · · |wk) −→ P2 := (w1| · · · |xyz| · · · |wk) with
|A| = τ(|B|). It is sufficient to show that TP1(wl) = TP2(wl). At first we show
TP1(A) + TP1(B) = 0. Indeed

TP1(A) = ε(A)(σP1(A,B) + n + σP1(A, B))

= ε(A)n

= −ε(B)n

= −TP1(B)

where n is an integer. Now we show TP1(E) = TP2(E) for all E 6= A,B. If
· · ·E · · ·AB · · ·E · · ·BA · · · or · · ·AB · · ·E · · ·BA · · ·E, then

TP1(E) = ε(E)(n1 + σP1(E,A) + σP1(E,B) + n2)

= ε(E)(n1 + n2)

= TP2(E)

where n1, n2, n3 are integers If · · ·E · · ·AB · · ·BA · · ·E · · · , then

TP1(E) = ε(E)(n1 + σP1(E,A) + σP1(E,B) + n2

+σP1(E,B) + σP1(E,A) + n3)

= ε(E)(n1 + n2 + n3)

= TP2(E)

where n1, n2, n3 are integers. Therefore TP1(E) = TP2(E) for all E 6= A,B.
Consider the 3-rd homotopy move

P1 := (w1| · · · |x1ABy1| · · · |x2ACy2| · · · |x3BCy3| · · · |wk) −→
P2 := (w1| · · · |x1BAy1| · · · |x2CAy2| · · · |x3CBy3| · · · |wk)

with |A| = |B| = |C|. In this case it is clear that T (P1) = T (P2).
Consider the 3-rd homotopy move

P1 := (w1| · · · |x1ABy1ACz1| · · · |x2BCy2| · · · |wk) −→
P2 := (w1| · · · |x1BAy1CAz1| · · · |x2CBy2| · · · |wk)

with |A| = |B| = |C|.
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It is sufficient to show TP1(x1ABy1ACz1) = TP2(x1BAy1CAz1) and TP1(x2BCy2)
= TP2(x2CBy2).

TP1(A) = ε(A)(σP1(A,B) + n1)

= ε(A)(n1 + σP2(A,C))

= TP2(A),

where n1 an integer. So TP1(x1ABy1ACz1) = TP2(x1BAy1CAz1) holds.
TP1(x2BCy2) = TP2(x2CBy2) is clear.

Consider the 3-rd homotopy move
P1 := (w1| · · · |x1ABy1| · · · |x2ACy2BCz2| · · · |wk) −→

P2 := (w1| · · · |x1BAy1| · · · |x2CAy2CBz2| · · · |wk)
with |A| = |B| = |C|. In this case T (P1) = T (P2) is proved similarly to above case.

Consider the 3-rd homotopy move
P1 := (w1| · · · |xAByACzBCt| · · · |wk) −→

P2 := (w1| · · · |xBAyCAzCBt| · · · |wk)
with |A| = |B| = |C|. In this case it is sufficient to show that TP1(xAByACzBCt)
= TP2(xBAyCAzCBt). TP1(A) = TP2(A) and TP1(C) = TP2(C) is clear. Note that
σP1(B,A) = −σP1(B,C) and σP2(B,A) = σP2(B,C) = 0. We obtain TP1(B) =
TP2(B). TP1(E) = TP2(E) for all E 6= A,B,C is checked easily. So we obtain
T (P1) = T (P2).

Next we define invariant T for nanophrases over one-point set. To define this
invariant, we define some notation as followings.

Definition 3.9. Let P := (A, (w1| · · · |wk)) be a nanophrase over one-point set
α := {a}. Let A,B ∈ A be letters. Then we define σ̃P (A,B) ∈ Z/2Z as followings:
If A and B forms · · ·A · · ·B · · ·A · · ·B · · · or · · ·B · · ·A · · ·B · · ·A · · · in P , then
σ̃P (A,B) := 1. Otherwise σ̃P (A,B) := 0.

Definition 3.10. Let P := (A, (w1| · · · |wk)) be a nanophrase over α := {a}. For
A ∈ A such that there exist i ∈ {1, 2, · · · , k} such that Card(w−1

i (A)) = 2, we
define TP (A) ∈ Z/2Z by

TP (A) :=
∑
B∈A

σ̃P (A,B) ∈ Z/2Z,

and TP (wi) ∈ Z/2Z by

TP (wi) :=
∑

A∈A, Card(w−1
i (A))=2

TP (A).

Then we define T (P ) ∈ (Z/2Z)k by

T (P ) := (TP (w1), TP (w2), · · · , TP (wk)).
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Then next theorem follows.

Theorem 3.11. The T is a homotopy invariant of nanophrases over one-point
set.

Proof. Consider the 1-st homotopy move
P1 := (w1| · · · |wl−1|xAAy|wl+1| · · · |wk) −→

P2 := (w1| · · · |wl−1|xy|wl+1| · · · |wk).
It is clear that TP1(wi) = TP2(wi) for all i 6= l. We show that TP1(xAAy) = TP2(xy).
Note that σ̃P1(A,B) = 0 for all B ∈ A by definition. Therefore TP1(A) = 0.
Moreover σ̃P1(E,A) = 0 for all E ∈ A. So A does not contribute to TP1(E) for all
E ∈ A. Therefore TP1(xAAy) = TP2(xy).

Consider the 2-nd homotopy move such that A and B occur in some words once
P1 := (w1| · · · |x1ABy1| · · · |x2BAy2| · · · |wk) −→

P2 := (w1| · · · |x1y1| · · · |x2y2| · · · |wk)
with |A| = τ(|B|). It is sufficient to show that TP1(x1ABy1) = TP2(x1y1) and
TP1(x2BAy2) = TP2(x2y2). Note that A and B occur in P once. Moreover for all
E such that · · ·E · · ·AB · · ·E · · · in P1

TP1(E) = ε(E)(n1 + σ̃P1(E,A) + σ̃P1(E,B) + n2)

= ε(E)(n1 + 2 + n2)

= ε(E)(n1 + n2)

= TP2(E)

where n1, n2 are integers. Therefore TP1(x1ABy1) = TP2(x1y1). TP1(x2BAy2) =
TP2(x2y2) is proved similarly. The case of other type homotopy moves is proved
similarly to above.

Remark 3.12. Any nanoword w over α yields a nanophrase (w) of length 1. So
we can consider the invariant of nanophrases over α0 (resp. one-point set) T as
a invariant of nanowords over α0 (resp. one-point set). But these invariants are
useless. In fact it is easily checked that T ((w)) = 0 for all nanowords over α0 and
nanowords over one-point set.

4. Classification of Nanophrases of Length 2 with 4 Letters.

In this section we give the homotopy classification of nanophrases of length 2 less
than 4 letters.

4.1. Classification of nanophrases of length 2 with 2 letters.

In this subsection we give the homotopy classification of nanowords of length 2 with
2 letter.

Consider a nanophrase of length 2 with 2 letter Pa := (A|A) with |A| = a.
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Theorem 4.1. Let P be a nanophrase of length 2 with 2 letters. Then P 6' (∅|∅)
if and only if P ≈ Pa. Moreover Pa ' Pa′ if and only if a = a′.

Proof. The first part of this theorem is clear. We show the second part of this
theorem. Suppose Pa ' Pa′ . Then γ(Pa) = γ(Pa′). This implies za ⊗ zτ(a) =
za′ ⊗ zτ(a′). Therefore za = za′ in Π. It is possible only if a = a′. So the theorem is
proved.

4.2. Classification of nanophrases of length 2 with 4 letters.

First, we show following lemmas.

Lemma 4.2. Let β be τ -invariant subset of α. If two nanophrases over β are
homotopic in the class of nanophrases over α, then they are homotopic in the class
of nanophrases over β.

Proof. This lemma is proved similarly to Lemma 2.6.

Lemma 4.3. Let P1 = (w1|w2| · · · |wk) and P2 = (v1|v2| · · · |vk) be nanophrases of
length k over α. If P1 and P2 are homotopic as nanophrases, then w1w2 · · ·wk and
v1v2 · · · vk are homotopic as nanowords over α.

Proof. It follows from definitions of homotopy of nanowords and homotopy of
nanophrases.

Lemma 4.4. Let P1 = (w1|w2| · · · |wk) and P2 = (v1|v2| · · · |vk) be nanophrases of
length k over α. If P1 and P2 are homotopic as nanophrases, then wi and vi are
homotopic as étale words for all i ∈ {1, 2, , · · · , k}.

Proof. This follows from the definition of homotopy moves and the desingulariza-
tion of étale words.

The following lemma follows from the definition of homotopy moves of
nanophrases.

Lemma 4.5. Let P1 = (w1| · · · |wk) and P2 = (v1| · · · |vk) are nanophrases of length
k. If P1 and P2 are homotopic, then length of wi is equal to length of vi modulo 2
for all i ∈ {1, 2, · · · , k}.

Take two letters a, b ∈ α (possibly a = b). Let A be the α-alphabet consisting the
three letters A,B with |A| = a, |B| = b ∈ α. Consider the following nanophrases:
P 4,0

a,b := (ABAB|∅), P 3,1
a,b := (ABA|B), P 2,2I

a,b := (AB|AB), P 2,2II
a,b := (AB|BA),

P 1,3
a,b := (A|BAB), P 0,4

a,b := (∅|ABAB). If a = τ(b), then P 4,0
a,b ' P 2,2I

a,b ' P 2,2II
a,b '

P 0,4
a,b ' (∅|∅). So in this paper, if we write P 4,0

a,b , P 2,2I
a,b , P 2,2II

a,b , P 0,4
a,b , then we always
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assume that a 6= τ(b). The following theorem gives the classification of nanophrases
of length 2 with 4 letters.

Theorem 4.6. Let P be a nanophrase of length 2 with 4 letters, then P is
either homotopic to nanophrases of length 2 with 2 letters or isomorphic to a
nanophrase one of followings: P 4,0

a,b , P 3,1
a,b , P 2,2I

a,b , P 2,2II
a,b , P 1,3

a,b , P 0,4
a,b . For (i, j) ∈

{(4, 0), (3, 1), (2, 2I), (2, 2II), (1, 3), (0, 4)} and any a, b ∈ α. The nanophrase P i,j
a,b

is neither homotopic to (∅|∅) nor homotopic to nanophrases of length 2 with 2 let-
ters. The nanophrases P i,j

a,b and P i,j
a′,b′ are homotopic if and only if (a, b) = (a′, b′).

For (i, j) 6= (i′, j′), the nanophrases P i,j
a,b and P i′,j′

a′,b′ are not homotopic for any
a, b, a′, b′ ∈ α.

In [6], Turaev showed a stable equivalence class of an oriented, ordered, pointed
multi-component curve on a surface is identified with a homotopy classes of a
nanophrase in a 2-letter alphabet. So we obtain a following corollary.

Corollary 4.7. ([1]).
There are exactly 19 stable equivalence classes of two components pointed ordered,
oriented, curves on surfaces with minimum crossing number ≤ 2.

Proof of Theorem 4.6. The first claim of this theorem is clear. We prove
latter part of this theorem.

Consider a nanophrase P 4,0
a,b . P 4,0

a,b 6' (∅|∅) and P 4,0
a,b 6' Pa′ for any a′ ∈ α are

follows from Lemma 4.5. P 4,0
a,b 6' P 3,1

a′,b′ and P 4,0
a,b 6' P 1,3

a′,b′ are follows from Lemma 4.5.
P 4,0

a,b 6' P 0,4
a′,b′ is follows from Lemma 4.4. Indeed the first étale word of P 4,0

a,b is ABAB

and the first étale word of P 0,4
a′,b′ is ∅. ABAB is not homotopic to ∅ by Theorem 2.7.

( Note that we assume a 6= τ(b) and a′ 6= τ(b′) in this case ). P 4,0
a,b 6' P 2,2II

a′,b′ follows
from Lemma 4.3. Indeed a nanoword ABBA with |A| = a′, |B| = b′ is homotopic to
∅. On the other hand, a nanoword ABAB with |A| = a, |B| = b with a 6= τ(b) is not
homotopic to ∅. Suppose that P 4,0

a,b ' P 2,2I
a′,b′ . Then γ(P 4,0

a,b ) = γ(P 2,2I
a′,b′ ). γ(P 4,0

a,b ) =
zazbzτ(a)zτ(b)⊗1 and γ(P 2,2I

a′,b′ ) = za′zb′⊗zτ(a′)zτ(b′). So zτ(a′)zτ(b′) = 1. This implies
a′ = τ(b′). But this contradicts to a′ 6= τ(b′). Therefore P 4,0

a,b 6' P 2,2I
a′,b′ . P 4,0

a,b ' P 4,0
a′,b′

only if (a, b) = (a′, b′) follows from Lemma 4.3 and Theorem 2.7.
Consider the nanophrase P 3,1

a,b . P 3,1
a,b 6' (∅|∅) follows from Lemma 4.5. P 3,1

a,b 6' Pa′

is proved later. P 3,1
a,b 6' P 2,2I

a′,b′ and P 3,1
a,b 6' P 2,2II

a′,b′ follows by Lemma 4.5. P 3,1
a,b 6' P 1,3

a′,b′

is proved later. P 3,1
a,b 6' P 0,4

a′,b′ follows from Lemma 4.5. Suppose P a,b
3,1 ' P a′,b′

3,1 . If
a 6= τ(b), then (a, b) = (a′, b′) by Theorem 2.7. If a = τ(b), then a′ = τ(b′) by
Theorem2.7 and Lemma 4.3. So γ(P a,b

3,1 ) = zazbzτ(a) ⊗ zτ(b) = zτ(a) ⊗ zτ(b) and

γ(P a′,b′

3,1 ) = z′az′bzτ(a′) ⊗ zτ(b′) = zτ(a′) ⊗ zτ(b′). This implies zτ(a) = zτ(a′) and
zτ(b) = zτ(b′). Therefore (a, b) = (a′, b′).

Consider the nanophrase P 2,2I
a,b . P 2,2I

a,b 6' (∅|∅) and P 2,2I
a,b 6' Pa′ follows from

Lemma 4.3. P 2,2I
a,b 6' P 2,2II

a′,b′ follows from Lemma 4.3. P 2,2I
a,b 6' P 1,3

a′,b′ follows from
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Lemma4.5. Suppose P 2,2I
a,b ' P 0,4

a′,b′ . Then γ(P 2,2I
a,b ) = γ(P 0,4

a′,b′). This implies zazb =
1. This is possible only if a = τ(b). But this contradicts to assumption. So P 2,2I

a,b 6'
P 0,4

a′,b′ . P 2,2I
a,b ' P 2,2I

a′,b′ if and only if (a, b) = (a′, b′) follows by Lemma 4.3.
Consider the nanophrase P 2,2II

a,b . Suppose P 2,2II
a,b ' (∅|∅). Then γ(P 2,2II

a,b ) =
γ((∅|∅)) = 1 ⊗ 1. This implies zazb = 1. So a = τ(b). But this contradicts to
a 6= τ(b). Therefore P 2,2II

a,b 6' (∅|∅). P 2,2II
a,b 6' Pa′ follows from Lemma 4.5. P 2,2II

a,b 6'
P 1,3

a′,b′ follows from Lemma4.5. Suppose P 2,2II
a,b ' P 0,4

a′,b′ . Then γ(P 2,2II
a,b ) = γ(P 0,4

a′,b′).
This implies zazb = 1. This is possible only if a = τ(b). But this contradicts
to assumption. So P 2,2II

a,b 6' P 0,4
a′,b′ . Suppose P 2,2II

a,b ' P 2,2II
a′,b′ . Then γ(P 2,2II

a,b ) =
γ(P 2,2II

a′,b′ ). This implies to zazb = za′zb′ . This is possible only if either “a = a′ and
b = b′” or “a = τ(b) and a′ = τ(b′)”. The latter case contradicts to a 6= τ(b). So
(a, b) = (a′, b′). Therefore P 2,2II

a,b ' P 2,2II
a′,b′ if and only if (a, b) = (a′, b′).

Consider the nanophrase P 1,3
a,b . P 1,3

a,b 6' (∅|∅) follows from Lemma 4.5. P 1,3
a,b 6' Pa′

is proved later. P 1,3
a,b 6' P 0,4

a′,b′ follows from Lemma 4.5. Suppose P 1,3
a,b ' P 1,3

a′,b′ . If
a 6= τ(b), then (a, b) = (a′, b′) by Lemma 4.3 and Theorem 2.7. If a = τ(b), then
a′ = τ(b′). So if γ(P 1,3

a,b ) = γ(P 1,3
a′,b′), then za = za′ and zb = zb′ . This implies

(a, b) = (a′, b′).
Consider the nanophrase P 0,4

a,b . P 0,4
a,b 6' (∅|∅) and P 0,4

a,b 6' Pa′ follow from Lemma
4.4. P 0,4

a,b ' P 0,4
a′,b′ if and only if (a, b) = (a′, b′) follows from Lemma 4.3.

Now we proof following three remain parts of proof: P 3,1
a,b 6' Pa′ , P 3,1

a,b 6' P 1,3
a′,b′ ,

and P 1,3
a,b 6' Pa′ .

Suppose P 3,1
a,b ' Pa′ . γ(P 3,1

a,b ) = zazbzτ(a) ⊗ zτ(b) and γ(Pa′) = za′ ⊗ zτ(a′). This
implies a′ = b. Moreover a = τ(b) by Lemma 4.3. So if a 6= b, then P 3,1

a,b ' Pb as
nanophrases over α0. However,

T (P 3,1
a,b ) = (TP 3,1

a,b
(ABA), TP 3,1

a,b
(B))

= (ε(A)σP 3,1
a,b

(A,B), 0)

= (−1, 0),

and

T (Pb) = (0, 0).

This contradicts to homotopy invariance of T . If a = b, then P 3,1
a,a ' Pa as

nanophrases over α = {a}. However

T (P 3,1
a,a ) = (1, 0) ∈ (Z/2Z)2,

T (Pa) = (0, 0) ∈ (Z/2Z)2.

This contradicts to homotopy invariance of T . Therefore P 3,1
a,b 6' Pa′ .

P 1,3
a,b 6' Pa′ is proved similarly to above.

Suppose P 3,1
a,b ' P 1,3

a′,b′ . If a 6= τ(b), then a′ 6= τ(b′) and (a, b) = (a′, b′) by Lemma
4.3. Moreover γ(P 1,3

a,b ) = γ(P 1,3
a′,b′) implies zazbzτ(a) = za and zτ(b) = zbzτ(a)zτ(b). So
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zbzτ(a) = 1 and this is possible only if a = b. Therefore P 3,1
a,a ' P 1,3

a,a as nanowords
over α0 = {a, τ(a)} by Lemma 4.2. However,

T (P 3,1
a,a ) = (TP 3,1

a,a
(ABA), TP 3,1

a,a
(B))

= (ε(A)σP 3,1
a,a

(A,B), 0)

= (1, 0),

and

T (P 1,3
a,a ) = (TP 1,3

a,a
(A), TP 1,3

a,a
(BAB))

= (0, ε(B)σP 1,3
a,a

(B,A))

= (0,−1).

This contradicts to homotopy invariance of T . If a = τ(b), then a′ = τ(b′) by
Lemma 4.3. Moreover γ(P 1,3

a,b ) = γ(P 1,3
a′,b′). This implies zτ(a) = za′ and zτ(b) = zb′ .

So a = τ(a′) and b = τ(b′). If a = τ(a), then a = a′ = b = b′ by above equations.
Therefore P 3,1

a,a ' P 1,3
a,a as nanophrases over α = {a}. However,

T (P 3,1
a,a ) = (1, 0) ∈ (Z/2Z)2,

T (P 1,3
a,a ) = (0, 1) ∈ (Z/2Z)2.

This contradicts to homotopy invariance of T . If a 6= τ(a), then P 3,1
a,b ' P 1,3

b,a as
nanophrases over α0. However,

T (P 3,1
a,b ) = (ε(A)σP 3,1

a,b
(A,B), 0) = (−1, 0)

T (P 1,3
b,a ) = (0, ε(B)σP 1,3

b,a
(B,A)) = (0, 1).

This contradicts to homotopy invariance of T . Therefore P 3,1
a,b 6' P 1,3

a′,b′ .
Now we have completed the homotopy classification of nanophrases of length 2

with 4 letters. ¤
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