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HOMOTOPY COHERENT CATEGORY THEORY

JEAN-MARC CORDIER AND TIMOTHY PORTER

Abstract. This article is an introduction to the categorical theory of homo-
topy coherence. It is based on the construction of the homotopy coherent
analogues of end and coend, extending ideas of Meyer and others. The paper
aims to develop homotopy coherent analogues of many of the results of ele-
mentary category theory, in particular it handles a homotopy coherent form
of the Yoneda lemma and of Kan extensions. This latter area is linked with
the theory of generalised derived functors.

In homotopy theory, one often needs to “do” universal algebra “up to homotopy”
for instance in the theory of homotopy everything H-spaces. Universal algebra
nowadays is most easily expressed in categorical terms, so this calls for a form of
category theory “up to homotopy” (cf. Heller [34]).

In studying the homotopy theory of compact metric spaces, there is the classically
known complication that the assignment of the nerve of an open cover to a cover
is only a functor up to homotopy. Thus in shape theory, [39], one does not have a
very rich underlying homotopy theory. Strong shape (cf. Lisica and Mardešić, [37])
and Steenrod homotopy (cf. Edwards and Hastings [27]) have a richer theory but
at the cost of much harder proofs. Shape theory has been interpreted categorically
in an elegant way. This provides an overview of most aspects of the theory, as
well as the basic proobject formulation that it shares with étale homotopy and the
theory of derived categories. Can one perform a similar process with strong shape
and hence provide tools for enriching that theory, rigidifying étale homotopy and
enriching derived categories? We note, in particular, Grothendieck’s plan for the
theory of derived categories, sketched out in ‘Pursuing Stacks’, [31], which bears
an uncanny ressemblance to the view of homotopy theory put forward by Heller in
[34].

Grothendieck’s ‘Pursuing Stacks’ program, in fact, again raises the spectre of
doing categorical construction ‘up to homotopy’, as his image of a stack is as a
sheaf ‘up to homotopy’ in which the stalks are algebraic models of homotopy types
and the whole object has geometric meaning.

Problems of homotopy coherence also arise naturally in studying equivariant
homotopy theory. If G is a group then the equivariant homotopy of G-complexes
can be studied in a useful way by translating to a category of diagrams indexed
by the orbit category of G, that is the full subcategory of G-sets determined by
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2 J.-M. CORDIER AND T. PORTER

the coset spaces G/H. If however G is a topological group then this category is
more naturally considered to be simplicially enriched and the equivariant homotopy
theory of the G-complexes ends up benefitting from results on homotopy coherence
to handle the bar-resolutions etc. used to translate from the equivariant setting
to the category of diagrams; see [24] and the references it contains. Again the
equivariant theory looks like the discrete case but with the categorical arguments
done ‘up to homotopy’.

In this paper we try to lay some of the foundations of such a theory of categories
‘up to homotopy’ or more exactly ‘up to coherent homotopies’. The method we use
is based on earlier work on:

1. simplicial descriptions of homotopy coherence, [16];
2. Vogt’s theorem, [52], interpreting homotopy categories of diagrams as cate-

gories of coherent diagrams [21], see also [20] and more recently, [7];
3. rectifications of coherent diagrams, [18] and [23];
4. simplicial formulation of homotopy limits, [10] and [18];
5. descriptions of Steenrod homology, [19] and [27];
6. ideas independently developed by Heller [33] and others;
7. geometric constructions in strong shape theory, cf. [37] and [32],

and of course,

8. category theory and enriched category theory.

We aim for a simplicially enriched category theory with a simplicially based ∞-
laxification of the structure. The simplicially enriched categories will usually be
locally weakly Kan or locally Kan, corresponding to a lax ∞-category or lax ∞-
groupoid structure via their nerves. Using ∞-lax or homotopy coherent ends and
coends generalising the formulation of homotopy limits of homotopy coherent di-
agrams given in [10] or [18], we develop further the theory of homotopy coherent
Kan extensions (related to ideas of Heller in [33] and earlier work by other authors).
This yields a homotopy coherent form of the Yoneda lemma, the ‘revelation’ of a
homotopy associative composition on the simplicial sets of coherent transforma-
tions between simplicial functors, which satisfies a “Godement interchange rule”
in a homotopy coherent way. Homotopy coherent forms of adjointness result as
well as representability up to homotopy coherence for certain simplicially enriched
functors, a result that generalises to some extent both the formal representability
results of Bénabou (cf. Mac Lane [38]) and the Brown representability theorem
from algebraic topology (cf. Spanier [47], Adams [1] etc). The detailed proofs of
these latter results are not given in this article.

Some of the results in the early sections of this paper were already contained the
preprints [17] and [22].
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Notation and Terminology

The basic category theory we will need can be found in Mac Lane, [38], especially
the theory of ends and their link with Kan extensions. The theory of enriched
categories, indexed limits, etc., can be found in Kelly, [36], or Gray’s article, [30].
For simplicial techniques the reference we will most often use is Bousfield and Kan,
[11].

This may seem a lot of prerequisites, so a brief explanation is perhaps called
for. The use of ends and coends extends that of limits and colimits, which is well
known amongst homotopy theorists. Ends are a type of limit for “functors of two
variables”, T : Aop×A→ B. The best illustration is probably when F,G : A→ B
are two functors with A small; then set T (A,A′) = B(FA,GA′). The corresponding
end

∫
A T (A,A) is the set of natural transformations from F to G. It is constructed

by ‘averaging out’ the action of A on both the left and right of the collection of sets

T (A,A′), picking out the fixed points of this action. Dually a coend,
∫ A

T (A,A),
will correspond to the set of orbits of the action. Examples of coends include the
geometric realisation functor giving | X | for a simplicial set X via a coend formula

| X |=
∫ n

Xn ×∆n.

The main method used in this paper is to place ourselves in an enriched setting (see
below), to develop homotopy end and coend constructions analogous to homotopy
limits and colimits, and to combine them to get a homotopy coherent analogue of
the natural transformations. Then we exploit this notion systematically attempting
to obtain analogues of other ‘well-loved’ constructions of category theory. The
particular form of enriched setting we use will be that of simplicially enriched
categories.

The category of combinatorial simplices will be denoted ∆. The symbol, S,
will denote the category of simplicial sets, so that S = Func(∆op, Sets); Top
will denote the category of compactly generated spaces and Top will denote the
S-enriched category (or S-category) obtained by setting, for each n ≥ 0,

Top(X,Y )n = Top(X ×∆n, Y ).

In general, if a category is considered both in an S-enriched form and without its
S-enrichment, the notation will reflect this by using a bold type for the S-enriched
version. Thus B is S-enriched, but B is simply a category. At some points, it is
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4 J.-M. CORDIER AND T. PORTER

difficult to be entirely thorough with this convention due to interference with other
notation, but this convention will in general be adopted throughout the paper.

If A,B are objects in a general S-category B, the simplicial hom-set correspond-
ing to (A,B) will be denoted B(A,B). In considering S, the simplicially enriched
category of simplicial sets, we have

S(X,Y )n = S(X ×∆[n], Y ).

(Here ∆[n] is the simplicial n-simplex, ∆[n] = ∆( , [n]).)
If K is a simplicial set and B is an object of B, the tensor of B by K, K⊗B, if

it exists, satisfies the universal property given by the isomorphism (natural in B′)

B(K⊗B,B′) ∼= S(K,B(B,B′)).

The cotensor B(K,B) is defined to be the object of B, again if it exists, satisfying

B(B′,B(K,B)) ∼= S(K,B(B′, B)),

naturally in B′ . For more details on tensor and cotensors, see Quillen, [45], Gray,
[30] or Kelly, [36]. For us a tensor K⊗B replaces a product K×B when the ambient
S-category, B, is not that of simplicial sets. Dually the cotensor B(K,B) replaces
a ‘mapping space’ object. In particular we will need these with K = ∆[1], the 1-
simplex, giving a natural cylinder or cocylinder construction, and thus a homotopy
theory. We also will need the case K = (∆[1])n, the n-cube, so as to handle and
internalise the homotopy coherence that is initially coded in the ‘external’ hom-
objects B(X,Y ).

The subcategory of S determined by the Kan complexes will be denoted Kan
and a general S-category B will be said to be locally Kan if for each pair, (A,B), of
objects of B,B(A,B) is a Kan complex. If B is locally Kan, and is either tensored
or cotensored then it is comparatively easy to develop a well-behaved homotopy
theory in B (cf. Kamps and Porter [35]). Similarly “locally weakly Kan” will mean
that the hom-objects are weak Kan complexes, that is, that fillers of zeroth or last
face horns are not demanded in these hom-objects.

An unknown referee asked why locally weakly Kan categories were important.
The motive for studying them is that whilst categories such as spaces, chain com-
plexes, ω-groupoids, crossed complexes, etc. are locally Kan, the category of ∞-
categories would seem to be enriched over weak Kan simplicial sets having a nice
canonical filler condition, discovered by J. E. Roberts, [43] and used by Street, [48],
and Verity, [51], in their theory of Complicial Sets. When, as in recent work in
topological quantum field theory, the objects encountered look like lax infinity cat-
egories, then experience with general Kan complexes, as against simplicial groups,
suggests that the ‘laxity’ corresponds to non-canonical fillers. Thus locally weakly
Kan categories seem to be one possible lax-analogue of ∞-categories and in part,
our attempt here to mimic large chunks of basic category theory can be interpreted
as a ‘test bed’ for the partial validation of such a hypothesis.

1. Simplicially coherent ends and coends

As pointed out above, end and coends are basic constructions in category theory.
Mac Lane, [38], shows, for example, how the important notion of Kan extension can
be encoded in the language of ends and coends and then that formulation can be
used together with the ‘end-calculus’ and results such as ‘Fubini’s theorem’, to give
quick, elegant proofs of some of the important results in the development of that
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HOMOTOPY COHERENT CATEGORY THEORY 5

subject. In this section, we develop the basic machinery of simplicially coherent
ends and coends in a general S-enriched category. Results that depend on the
S-category being locally Kan will be postponed to section 2.

Variants of these have been proposed by several authors (Segal, [46], Meyer, [41],
Heller, [33], Dwyer, and Kan, [26] as well as Cordier, [18] and Cordier and Porter,
[21]). They generalise homotopy limits, and as we will show, can be used with good
effect to construct a homotopy coherent version of category theory.

Let A be a small S-category. For A,B in A, form the bisimplicial set X(A,B)
defined by

X(A,B)n,? =
∐

A0...An

A(A,A0)? ×A(A0, A1)? × . . .×A(An, B)?

where

dj : X(A,B)n,? → X(A,B)n−1,?

is defined by composition in A,

A(Ai−1, Ai)×A(Ai, Ai+1)→ A(Ai−1, Ai+1)

(we write A−1 = A,An+1 = B for the purposes of this definition), and si :
X(A,B)n → X(A,B)n+1 is induced by the morphism,

∆[0]→ A(Ai, Ai),

the simplicial morphism ‘constant on IdAi ’.

Now set Â(A,B) = DiagX(A,B), the diagonal simplicial set. We note that, in
general, for a bisimplicial set, X•,?,

Diag X?
∼=
∫ [n]

∆[n]×Xn,?.

Example. Let A be a small category, A,B objects of A. Consider A as an S-
category with the trivial simplicial enrichment. Let A ↓ A ↓ B be the category of
objects under A and over B; then X(A,B) ∼= Ner(A ↓ A ↓ B), the nerve of this
category.

This example suggests the use we will make of the X(A,B), especially if one
considers the use of the comma categories A ↓ A by Bousfield and Kan, [11], and
the extension to S-enriched indexing categories given by Bourn and the first author,
[10].

Definition 1.1. Let B be a complete S-category, A, as above, a (small) S-category
and T : Aop ×A→ B, an S-functor.

The simplicially coherent end of T will be the object
∮
A T (A,A) of B defined by∮

A

T (A,A) =

∫
(A′,A′′)

B(Â(A′, A′′), T (A′, A′′))

where (A′, A′′) ∈ Aop ×A.

Remark. We will be consistently using Â to index these coherent ends; however
it is important to note that if we were to replace X(A,B) by X(A,B)∗ where
dn∗i = dnn−i, s

n∗
i = snn−i, we would obtain a parallel theory.
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6 J.-M. CORDIER AND T. PORTER

Given any cosimplicial object Y in B (so Y : ∆ → B), we can form the total
object of Y in B defined by ∫

[n]

B(∆[n], Y n).

Thus in the case when B = S, Y is a cosimplicial simplicial set and the total
complex, denoted Tot(Y ) or hom(∆, Y ), introduced by Bousfield and Kan [11], is∫

[n] S(∆[n], Y n). This construction was used together with a cosimplicial replace-

ment formula to provide a useful reformulation of the homotopy limit functor in [10].
Here we will give a similar description of

∮
A T (A,A). Again let T : Aop ×A→ B

and set

Y (T )n =
∏

A0,... ,An

B(A(A0, A1)× . . .×A(An−1, An), T (A0, An)).

These form the basis for the cosimplicial object, Y (T ), where the coface and code-
generacy maps of Y (T ) are defined as follows: First let

pA0,... ,An : Y (T )n → B(A(A0, A1)× . . .×A(An−1, An), T (A0, An))

denote the projection;

• for 0 < i < n, ci will denote the map from

A(A0, A1)× . . .×A(Ai−1, Ai)×A(Ai, Ai+1)× . . .×A(An−1, An)

to

A(A0, A1)× . . .×A(Ai−1, Ai+1)× . . .×A(An−1, An)

induced by the composition from A(Ai−1, Ai)×A(Ai, Ai+1) to A(Ai−1, Ai+1);
• for 0 ≤ i ≤ n− 1, ki will denote the map

A(A0, A1)× . . .×A(An−2, An−1)

→ A(A0, A1)× . . .×A(Ai, Ai)× . . .×A(An−2, An−1)

induced by the map ∆[0]→ A(Ai, Ai) which picks out the identity map, (i.e.
the “name of the identity map”);
• for any objects A,A′, A′′;

T ( , A)A′,A′′ : A(A′, A′′)→ B(T (A′′, A), T (A′, A))

and

T (A, )A′,A′′ : A(A′, A′′)→ B(T (A,A′), T (A,A′′))

will denote the maps corresponding to the fact that T ( , A) and T (A, ) are
S-functors.

Now the codegeneracies si of Y (T ) are given by

pA0,... ,An−1s
i = B(ki, T (A0, An−1))pA0,... ,Ai,Ai,... ,An−2 , for 0 ≤ i ≤ n− 1,

whilst for 0 < i < n, the coface map di is given by

pA0,... ,And
i = B(ci, T (A0, An−1))pA0,... ,Ai−1,Ai+1,... ,An

(i.e. si and di are induced by the inclusion of identities and the composition in
the usual way; the slightly more complicated formulation is forced on us by the
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HOMOTOPY COHERENT CATEGORY THEORY 7

setting). This leaves d0 and dn. These are slightly more difficult to specify. The
map T (−, A)A′,A′′ : A(A′, A′′)→ B(T (A′′, A), T (A′, A)) gives an element in

S(A(A′, A′′),B(T (A′′, A), T (A′, A)))0

and hence in

B(T (A′′, A),B(A(A′, A′′), T (A′, A)))0

(as, by assumption, B is cotensored). This is thus a map

T ( , A)A′,A′′ : T (A′′, A)→ B(A(A′, A′′), T (A′, A))0.

We also need the isomorphism

τ :B(A(A0, A1)× . . .×A(An−1, An), T (A0, An))

→ B(A(A1, A2)× . . .×A(An−1, An),B(A(A0, A1), T (A0, An))).

Define d0 by pA0,... ,And
0 = τ ◦ B(A(A1, A2) × . . . ×A(An−1, An), T ( , An)A0,A1).

Similarly T (A, )A′,A′′ : A(A′, A′′)→ B(T (A,A′), T (A,A′′)) gives us

T (A, )A′,A′′ : T (A,A′)→ B(A(A′, A′′), T (A,A′′)),

and

pA0,... ,And
n = τ ′ ◦ T (A0, )An−1,An ,

where τ ′ is the analogous isomorphism. In practice we pretend that τ and τ ′ are
identities so that

pA0,... ,And
n = B(c0, T ( , An)A0,A1)pA1,... ,An ,

pA0,... ,And
n = B(cn, T (A0, )An−1,An)pA0,... ,An−1

where c0 and cn are the obvious projections. Hence we have here a very similar
formulation to that in the case of Bousfield and Kan’s cosimplicial replacement
functor.

Proposition 1.2 (Cosimplicial replacement). Let T be an S-functor from Aop×A
to a complete S-category B. Then the simplicially coherent end of T is isomorphic
to the total object of the cosimplicial object Y (T ) and hence has the following uni-
versal property: for n ∈ N, let pn : N =

∮
A
T (A,A) → B(∆[n], Y (T )n) be the

canonical projection. Then for µ : [n]→ [m] ∈∆,

B(∆[n], Y (T )µ)pn = B(∆[µ], Y (T )m)pm

and if N ′ is in B, and qn : N ′ → B(∆[n], Y (T )n), n ∈ N, is a family of morphisms
so that for each µ : [n]→ [m]

B(∆[n], Y (T )µ)qn = B(∆[µ], Y (T )m)qm,

then there is a unique morphism b : N ′ → N in B such that for all n, pnb = qn.

Proof. We start by noting that by the usual construction of the enriched end ap-
plied to the functor from ∆op × ∆ to B which assigns to ([n], [m]) the object
B(∆[n], Y (T )m), the total object of Y (T ) is the kernel of the pair of morphisms,∏

n B(∆[n], Y (T )n)
∏
µ:[n]→[m] B(∆[n], Y (T )m),

given by B(∆[n], Y (T )µ) and B(∆[µ], Y (T )m). This implies that the universal
property is immediate, once the first part is proved. This first part is however

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8 J.-M. CORDIER AND T. PORTER

merely an exercise in the end calculus (using “Fubini” (cf. Mac Lane, [38]) several
times):∮

A

T (A,A)

=

∫
A′

∫
A′′

B(

∫ n

∆[n]×
∐

A(A′, A0)× . . .×A(An, A
′′), T (A′, A′′))

=

∫
n

∫
A′

∫
A′′

∏
B(∆[n]×A(A′, A0)× . . .×A(An−1, An),

B(A(An, A
′′), T (A′, A′′)))

=

∫
n

∫
A′

∏
B(∆[n]×A(A′, A0)× . . .×A(An−1, An),∫

A′′
B(A(An, A

′′), T (A′, A′′)))

where the indexation of the (co)products is over all A0, . . . , An in A. The “en-
riched Yoneda lemma” (see Kelly, [36]) allows one to evaluate the last part of this
end. (The classical Yoneda lemma tells one that given a functor F : A → Sets,
the natural transformations from a ‘hom-set’ functor A(a,−) to F are in bijective
correspondence with the elements of F (a). This is easily encoded into the language
of ends, and then the natural way of enriching this gives the following isomorphism
in our context.) ∫

A′′
B(A(An, A

′′), T (A′, A′′)) ∼= T (A′, An).

Continuing we get∮
A

T (A,A)

∼=
∫
n

∫
A′

∏
B(∆[n]×A(A′, A0)× . . .×A(An−1, An), T (A′, An))

∼=
∫
n

∏
B(∆[n]×A(A0, A1)× . . .×A(An−1, An),

∫
A′

B(A(A′, A0), (T (A′, An))))

∼=
∫
n

B(∆[n],
∏

B(A(A0, A1)× . . .×A(An−1, An), T (A0, An)))

∼=
∫
n

B(∆[n], Y (T )n),

as required.

Examples. 1. Let A be an S-category and T : Aop×A→ S an S-functor. Then∮
A T (A,A) = Tot(Y (T )) in the sense of Bousfield and Kan, i.e. Y is “cosimplicial

replacement”.
One can handle the elements of

∮
A T (A,A) as follows, at least in low dimensions:

if σ ∈ Y (T )0
n, then p(A)σ ∈ S(∆[0], T (A,A))n = S(∆[n], T (A,A)) and so can be

represented by a map from ∆[n] to T (A,A). The coface d0σ ∈ Y (T )1
n projects via

p(A0, A1) to an element in

S(A(A0, A1), T (A0, A1))n,
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HOMOTOPY COHERENT CATEGORY THEORY 9

thus is represented by some map

p(A0, A1)d0σ : A(A0, A1)×∆[n]→ T (A0, A1).

This, if one interprets the general coface formula above, is the composite

A(A0, A1)×∆[n]→ A(A0, A1)× T (A1, A1)→ T (A0, A1),

where the first map is A(A0, A1) × p(A1)σ and the second is the left action of
A(A0, A1) on T (A1, A1), i.e. “precomposition”. Similarly for p(A0, A1)d1σ which
thus is the composite

A(A0, A1)×∆[n]→ A(A0, A1)× T (A0, A0)→ T (A0, A1)

involving A(A0, A1)× p(A0)σ and the “post composition” map or right action.
With longer strings A0, A1, . . . , An, the intermediate cofaces cause no problems

and, following the detailed description given earlier, it is easy to write down diσ
for all σ ∈ Y (T )mn .

If σ ∈ (
∮
A
T (A,A))n, then σ : ∆ ×∆[n] → Y (T ). We will consider only n = 0

and 1, as it is only these that we will need in such detail later and this case is,
here, quite typical of the general one. The extension to the general case poses
no problems. Then σ = (σm) where σm : ∆[m] → Y (T )m and for each m and
0 ≤ i ≤ m, σmdi = diσm+1, similarly for degeneracies. We examine σ1d0 = d0σ0

in detail. As both maps end up in Y (T )1, we project via p(A0, A1) and get that
p(A0, A1)d0σ0 is as we have written earlier, whilst p(A0, A1)(σ1d0) is

A(A0, A1)→ A(A0, A1)×∆[1]
p(A0,A1)σ1

→ T (A0, A1),

where the first map is the inclusion into the top of the cylinder, i.e. interpreting
p(A0, A1)σ1d0 as d0(p(A0, A1)σ1). We have

d0(p(A0, A1)σ1) = p(A0, A1)d0σ0

and similarly

d1(p(A0, A1)σ1) = p(A0, A1)d1σ0,

i.e. p(A0, A1)σ1 is a homotopy between p(A0, A1)d1σ0 and p(A0, A1)d0σ0. We will
return to this later in specific examples, for instance when we wish to interpret
what it means for a collection of maps (fA : F (A) → G(A)) to be a “coherent
transformation”.

2. Consider a 2-category A as an S-category by taking the nerve of each hom-
category and let T : Aop × A → Cat be a 2-functor, again considered as being
S-enriched rather than Cat-enriched. Then the above description of

∮
A T (A,A)

shows that this simplicially coherent end construction is isomorphic to the lax end
construction of Bozapalides, [12], cf. [13].

3. Let A be an ordinary small category considered as a trivially enriched S-
category, and T : Aop ×A→ Top be a functor; then∮

A

T (A,A) =

∫
n

∏
Top(∆n, T (A0, An)),

where the product is over all n-simplices, A
f1→ A→ · · · fn→ An in NerA.

This sort of construction is well known in special cases, cf. Cordier, [18] or Vogt,
[52], and interprets geometrically as saying that the elements of (

∮
A
T (A,A))0 are

the families of functions

h(f1, . . . , fn) : ∆n → T (A0, An)
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10 J.-M. CORDIER AND T. PORTER

such that, on writing a point in ∆n as an n-tuple (v1, . . . , vn) with

0 ≤ v1 ≤ . . . ≤ vn ≤ 1,

we have:

h(f1, . . . , fn)(v1 ≤ . . . ≤ vn)

=


T (f1, An)h(f2, . . . , fn)(v2 ≤ . . . ≤ vn) if v1 = 0
h(f1, . . . , fi+1fi, . . . , fn)(v1 ≤ . . . vi ≤ vi+2 ≤ . . . ≤ vn) if vi = vi+1

T (A0, fn)h(f1, . . . , fn−1)(v1 ≤ . . . ≤ vn−1) if vn = 1
h(f1, . . . , fi−1, fi+1, . . . , fn)(v1 ≤ . . . ≤ vi−1 ≤ vi+1 ≤ . . . vn) if fi = id.

This can be interpreted geometrically if T (A,A′) is Top(FA,GA′), for instance.

Definition 1.3. Let A be an S-category and T an S-functor from Aop ×A to a
cocomplete S-category B, tensored by −⊗− : S×B→ B.

The simplicially coherent coend of T will be the object∮ A

T (A,A) =

∫ A′,A′′

(Âop)(A′, A′′)⊗T (A′, A′′)

where (Âop)( , ) is the S-functor from A × Aop to S given by (Âop)(A′, A′′) =
DiagX(A′′, A′).

Proposition 1.4 (dual form).∮ A

T (A,A) =

∫ n

∆[n]⊗((
∐

A(A0, A1)× . . .×A(An−1, An))⊗T (An, A0))

where as usual the indexation of the coproduct is over all A0, . . . , An in A.

Remarks. 1. As we already have noted, if Y is a bisimplicial set, Diag Y is given
by

(Diag Y )• =

∫ n

∆[n]× Yn,•;

thus the formula given for
∮ A

T (A,A) by the above is a generalisation of the diag-
onal, applied to a simplicial object Y (T ) in B, given by the term in brackets. If
B = S, we retrieve a diagonal; if B = Cat then we have a description similar to
that of a lax coend and for B = Top, we get a description in terms of higher ho-
motopy coherence data, since the tensor, K⊗ , is the product with the geometric
realisation, | K | × . This can be compared with the cobar construction of May,
[40], Elmendorf, [28], Meyer, [41], and others.

2. We note that our results on coherent ends and coends are formal in the sense
that they do not depend on the existence of the objects supposedly represented by
the formula, but only on the formal manipulation of these formulae. Thus if Y (T )
is to exist, then it must be possible to handle the product within B, over all ordered
sets of objects, {A0, . . . , An}, in A. Of course

∮
A T (A,A) might exist, even if such

products do not exist, but in any case these considerations are extraneous to our
work here. Our results describe how

∮
A T (A,A) reacts when it exists, regardless of

questions related to the size of A.
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HOMOTOPY COHERENT CATEGORY THEORY 11

2. Coherent ends and Kan complexes

In the category of simplicial sets, S, the enriched hom-object, S(X,Y ) is a Kan
complex if Y is Kan, or, adopting the terminology of Quillen’s model category
theory, if Y is fibrant. Thus to some extent locally Kan S-categories are like
categories in which every object is fibrant. This, of course, greatly enriches the
potential of the theory as will be seen later. Partially because of this, it is useful
to know conditions that imply that

∮
A T (A,A) will be a Kan complex for T :

Aop ×A → S. The methods we will use are based heavily on those developed for
use with homotopy limits by Bousfield and Kan, [11].

Proposition 2.1. If A is an S-category and T : Aop ×A → S is an S-functor
such that each T (A′, A′′) is a Kan complex, then

∮
A
T (A,A) is a Kan complex.

Proof. Recall [11], Ch.X, that if X is a cosimplicial simplicial set and n ≥ −1, the
matching space MnX is the simplicial set with simplices (n+ 1)-tuples

(x0, . . . , xn) ∈ Xn × . . .×Xn

for which sixj = sj−1xi whenever 0 ≤ i < j ≤ n. (Thus MnX is a cosimplicial
analogue of the simplicial kernel construction often considered in simplicial set
theory.) There is a natural map

s : Xn+1 →MnX

in S, given by s(x) = (s0x, . . . , snx) for all x ∈ Xn+1. Clearly M−1X ∼= ∆[0] and
M0X = X0. Following Bousfield and Kan [11], we will say X is fibrant if for each
n ≥ −1

s : Xn+1 →MnX

is a Kan fibration.
A special case of Axiom SM7 on page 277 of [11] (corresponding to A = ∅, B =

∆, X = X,Y = ∆[0]) gives:

If X is a fibrant cosimplicial simplicial set, then TotX is a Kan complex.

Thus to prove the above proposition it suffices to prove that each

s : Y (T )n+1 →MnY (T )

is a fibration. The proof of this is based on the following idea: s is a map between
products. By introducing some “dummy” trivial factors into MnY (T ) in a natural
way, we can decompose s as a product of simpler maps and it will be sufficient to
prove that each of these simpler factors is a Kan fibration. To do this, we will show
that each is of the form

S(X,Y )→ S(A, Y )

for i : A → X an inclusion/cofibration and Y Kan. The simplicial set Y (T )n in
this case has a simpler description∏

S(A(A0, A1)× . . .×A(An−1, An), T (A0, An))

since we are in the base B = S. The codegeneracies

si : Y (T )n+1 → Y (T )n

are induced by the ki’s introduced earlier, given by inclusion of the ith identity

∆[0]→ A(Ai, Ai).
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12 J.-M. CORDIER AND T. PORTER

We will consider ki as an inclusion of

A(A0, A1)× . . .×A(Ai−1, Ai)×∆[0]×A(Ai, Ai+1)× . . .×A(An−1, An)

into

A(A0, A1)× . . .×A(Ai−1, Ai)×A(Ai, Ai)×A(Ai, Ai+1)× . . .×A(An−1, An).

For a given indexing sequence (A0, . . . , An+1), we set

D(A0, . . . , An+1)

=
⋃

1≤i≤n+1

Domain of ki = {(a0, . . . , an) | there is some i,

0 ≤ i ≤ n, ai = identity}
⊆ A(A0, A1)× . . .×A(An, An+1).

We note that if for each j, Aj 6= Aj+1, then D(A0, . . . , An+1) is empty, since no
ki can have codomain A(A0, A1) × . . . × A(An−1, An). Similarly if a repetition
Ai = Ai+1 occurs exactly once in the sequence then D(A0, . . . , An+1) = domain of
ki. With this notation ki can be considered as a composite:

Domain of ki → D(A0, . . . An+1)→ A(A0, A1)× . . .×A(An, An+1).

Moreover if Ai = Ai+1 and Aj = Aj+1, Domain of ki ∩ Domain of kj can be
identified with the simplicial set corresponding to the index

(A0, . . . , Ai−1, Ai, Ai+2, . . . , Aj−1, Aj , Aj+2, . . . , An+1).

Now suppose f ∈ S(D(A0, . . . , An+1), T (A0, An+1)). Set fi = f | Domain of ki
and, abusing notation, write kj for kj | (Domain of ki∩Domain of kj). Then for
0 ≤ i < j ≤ n,

fjki = fikj .

Similarly if (f0, . . . , fn) is a sequence of simplices satisfying the above equations
(possibly some with empty domain), then they glue together to give a simplex

f ∈ S(D(A0, . . . , An+1), T (A0, An+1)).

This correspondence between compatible sequences of simplices

fi ∈ S(Domain of ki, T (A0, An+1))

and simplices

f ∈ S(D(A0, . . . , An+1), T (A0, An+1))

enables us to

1. write MnY (T ) as a product∏
S(D(A0, . . . , An+1), T (A0, An+1))

with the product taken over all sequences (A0, . . . , An+1) of objects in A, (re-
member if (A0, . . . , An+1) contains no repetitions, D(A0, . . . , An+1) is empty
and

S(D(A0, . . . , An+1), T (A0, An+1)) ∼= ∆[0]);
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2. write s : Y (T )n+1 →MnY (T ) as a product of maps from

S(A(A0, A1)× . . .×A(An, An+1), T (A0, An+1))

to

S(D(A0, . . . , An+1), T (A0, An+1)),

each induced by the inclusion of the corresponding D(A0, . . . , An+1).

As each inclusion

D(A0, . . . , An+1)→ A(A0, A1)× . . .×A(An, An+1),

is a cofibration and each T (A0, An+1) is a Kan complex, each of these factor maps
is a Kan fibration, hence so is s itself and the proof is complete.

Corollary 2.2. If T0, T1 : Aop ×A→ S are S-functors such that each T0(A′, A′′)
and each T1(A′, A′′) is a Kan complex and

{η(A′, A′′) : T0(A′, A′′)→ T1(A′, A′′)}
is an S-natural transformation of S-functors such that each η(A′, A′′) is a homotopy
equivalence, then η induces a homotopy equivalence∮

A

η(A,A) :

∮
A

T0(A,A)→
∮
A

T1(A,A).

Proof. It is immediate that η induces a map of cosimplicial simplicial sets Y (η) :
Y (T0)→ Y (T1) and that Y (η) is a weak equivalence in the sense of Bousfield and
Kan ([11], Ch.X §4), i.e. that for each n ≥ 0, Y (η)n : Y (T0)n → Y (T1)n is a
homotopy equivalence.

(In fact they only require that each Y (η)n be a weak equivalence, but as Y (T0)n

and Y (T1)n are Kan complexes, this implies that each Y (η)n is a homotopy equiv-
alence.) As a consequence we can conclude, [11], Ch.X §5, that TotY (η) is a
homotopy equivalence in S, but TotY (η) is, of course,

∮
A
η(A,A).

In the next corollary, we extend the proposition above to an arbitrary complete
S-category B. We will say an object B in B is fibrant if B(X,B) is a Kan complex
for all objects X in B. Thus if B is locally Kan, all objects are fibrant. The method
we use below will be used many times later in this article.

Corollary 2.3. Let T : Aop ×A → B be an S-functor where B is a complete S-
category and for each A′, A′′ in A, T (A′, A′′) is fibrant. Then

∮
A
T (A,A) is fibrant.

Proof. Let X be an arbitrary object of B. One easily checks

B(X,

∮
A

T (A,A)) ∼=
∮
A

B(X,T (A,A))

since B(X, ) preserves limits, but as B(X,T ( , )) : Aop × A → S takes “Kan”
values,

∮
A

B(X,T (A,A)) is Kan. As X was arbitrary, this interprets as saying∮
A
T (A,A) is fibrant.

Remark. This corollary is the result mentioned in [21] for extending that version
of Vogt’s theorem to the case where B is a locally Kan full sub S-category of a
complete S-category and the rectification used in the proof (which was an example
of a coherent end) involves fibrant objects, since B is locally Kan. This use of
subcategories of fibrant objects mirrors that given in Quillen’s theory, the idea
being that on fibrant (cofibrant) objects, the homotopy theory is more easy to
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14 J.-M. CORDIER AND T. PORTER

manipulate. As we are using ends, i.e. limits, here the key ideas relate to fibrations
and fibrant objects as in K. S. Brown’s, [14], rather than cofibrations and cofibrant
objects.

The internal homotopy theory in a locally Kan S-category has been mentioned
earlier and we will not develop it as such here; however we will define f : B → B′

in an S-category B to be a homotopy equivalence if for all X in B, B(X, f) is a
homotopy equivalence. This external homotopy equivalence can be internalised
provided B is locally Kan and is a full sub S-category of a complete (or cocomplete)
S-category.

Corollary 2.4. If T0, T1 : Aop × A → B, η : T0 → T1 is a natural homotopy
equivalence, and T0, T1 take fibrant values, then

∮
A η is a homotopy equivalence in

B.

The proof should now be clear as it combines the methods of 2.2 and 2.3.

3. Coherent transformations and the coherent Yoneda lemma

Our guiding principle is that when looking for the coherent analogue of categori-
cal constructions, the way to proceed is to replace sets by simplicial sets, categories
by S-categories, functors by S-functors, etc., and ends by coherent ends. It is rou-
tine that if A and B are categories and F,G : A→ B are functors, the set of natural
transformations from F to G is given by

∫
A
B(FA,GA). (It is well known, but less

routine, that in the analogous 2-categorical situation, one can use lax ends to get
the lax analogue.) This suggests the following:

Definition 3.1. Let F,G : A → B be two S-functors; then the simplicial set of
coherent transformations from F to G denoted Coh(A,B)(F,G) is defined to be

Coh(A,B)(F,G) =

∮
A

B(FA,GA).

This is thus given as a total object by the formula∫
n

S(∆[n],
∏

A0,... ,An

S(A(A0, A1)× . . .×A(An−1, An),B(FA0, GAn))).

Example. Let A = A be an ordinary category, F,G : A → Top be two ordinary
functors; then

Coh(A,Top)(F,G) =

∫
n

Top(∆n ×
∐

A0
f1→...fn→An

FA0, GAn).

Specifying a coherent morphism

m : F → G

thus corresponds to a 0-simplex of Coh(A,Top)(F,G), that is, to the specification
of a higher ‘homotopy’,

h(f1, . . . , fn) : FA0 ×∆n → GAn,

for each n-tuple of composable morphisms, A0
f1→ A1 → . . .

fn→ An. These homo-
topies are compatible with each other in the following sense (essentially read off
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from the face and degeneracy information encoded in the coherent end):

h(f1, . . . , fn)(x, v1 ≤ . . . ≤ vn) is h(f2, . . . , fn)(F (f1)x, v2 ≤ . . . ≤ vn) if v1 = 0;

h(f1, . . . , fi+1fi, . . . , fn)(x, v1 ≤ . . . ≤ vi ≤ vi+2 ≤ . . . ≤ vn)

if vi = vi+1 for 0 < i < n;

G(fn)h(f1, . . . , fn−1)(x, v1 ≤ . . . ≤ vn−1) if vn = 1; and

h(f1, . . . , fi−1, fi+1, . . . , fn)(x, v1 ≤ . . . ≤ vi−1 ≤ vi+1 ≤ . . . ≤ vn) if fi = id.

Remark. 1. These are only the 0-simplices. There are higher order simplices giving
homotopies between these coherent morphisms and so on.

2. It is simple to extend this detailed description to the case where F,G are
homotopy coherent diagrams of type A. One replaces A by S(A), the S-category
resolving A, cf. Cordier, [16], and also [21]. The data for a coherent transformation
as defined geometrically in those papers is slightly more general than that used here.
The two simplicial sets have the same homotopy type however since the “receiving
category” Top is locally Kan.

Proposition 3.2. Given F,G : A→ B, where B is locally Kan, then the simplicial
set Coh(A,B)(F,G) is a Kan complex.

The proof is immediate from the definition given the results of section 2. Later
on we will examine the question of composition of coherent transformations, but
before that we will look at a representation of coherent transformations as being
S-natural transformations between related S-functors.

The augmentation of the indexation. A technical tool we shall use several
times in the following is the augmentation of the indexation functor.

The bisimplicial set X(A,B) comes with a natural augmentation

d0 : X(A,B)0 → A(A,B)

given by composition:

X(A,B)0 =
∐
A0

A(A,A0)×A(A0, B)→ A(A,B).

This has a homotopy inverse given by s−1, i.e. it sends g ∈ A(A,B)n to (idA, g).
These two maps pass to the diagonal to give

d0 : Â(A,B)→ A(A,B),

and

s−1 : A(A,B)→ Â(A,B),

which are both homotopy equivalences. The important difference between them is
that whilst d0 is natural in A and B, s−1 is natural in B but not in A. Furthermore
whilst d0s−1 is the identity, s−1d0 is homotopic to the identity by a homotopy
which, again, is natural in B but not in A. In fact both s−1 and this homotopy are
coherent in A as is easily checked.

Now suppose B is a complete locally Kan S-category and that F : A → B,
G : A→ S are S-functors. We define the coherent mean cotensor of F and G by

BA(G,F ) =

∮
A

B(GA,FA).
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16 J.-M. CORDIER AND T. PORTER

In particular, we get a new functor F : A → B, which is defined by F (A) =

BA(A(A, ), F ( )).
For S-functors, F,G : A → B, BA(G,F ) =

∫
A

B(GA,FA) is the simplicial set
of natural transformations, so this coherent mean cotensor generalises this both by
replacing G by G : A→ S and by replacing the end by a coherent end.

Dually if G : Aop → S, then the coherent mean tensor, G⊗F , will exist if B is
cocomplete:

G⊗F =

∮ A

GA⊗FA.

In particular we will write F : A → B for the functor given by F (A) =
A( , A)⊗F .

These functors F and F “absorb coherence” as follows:

Proposition 3.3. (i) If B is complete, there is a natural isomorphism

Coh(A,B)(F,G) ∼= BA(F,G)

for any F,G : A → B, where, as above, BA(F,G) is the simplicial set of natural
transformations from F to G.

(ii) If B is cocomplete, there is a natural isomorphism

Coh(A,B)(F,G) ∼= BA(F,G).

Proof. We will only give the proof of (ii). That of (i) is dual.

BA(F,G) =

∫
A

B(FA,GA)

=

∫
A

B(

∫ A′,A′′

(Âop)(A′, A′′)⊗(A(A′, A)⊗FA′′), GA)

∼=
∫
A,A′,A′′

S(DiagX(A′′, A′)×A(A′, A),B(FA′′, GA))

∼=
∫
A,A′′

S(Â(A′′, A),B(FA′′, GA))

= Coh(A,B)(F,G).

Examples. 1. For fixed A in A, let F = A(A, ) : A→ S, then

F (B) =

∫ A′,A′′

(Âop)(A′, A′′)×A(A′, B)×A(A,A′′)

∼=
∫ A′,A′′

A(A,A′′)× Â(A′′, A′)×A(A′, B)

∼= Â(A,B).

The isomorphism of 3.3 (ii) specialises to give

SA(Â(A, ),A(A, )) ∼= Coh(A,S)(A(A, ),A(A, ))

and the S-natural transformation corresponding to the identity coherent transfor-
mation is d0, as it is induced by composition.

2. Reversing the rôles of Â(A, ) and A(A, ), we get that to the identity in

SA(Â(A, ), Â(A, )),
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there corresponds a coherent transformation, σ, in

Coh(A,S)(A(A, ), Â(A, ))0.

Direct calculation of σ shows it to be given by a natural map

σ : Â(A′′, )→ S(A(A,A′′), Â(A, ))

which is adjoint to the A-action

σ : A(A,A′′)× Â(A′′, )→ Â(A, )

given by composition. Thus to the identity string in Â(A′′, A′′), there corresponds

a natural map σ(id) : A(A,A′′)→ Â(A,A′′) and if g ∈ A(A,A′′)n, then σ(id)(g) =
(idA, g). In other words σ(id) is the homotopy inverse to the augmentation and is,
in fact, a natural transformation in the variable A′′.

3. In general if B is complete and F : A→ B, then there is a natural transfor-
mation,

ηF : F → F,

corresponding, via 3.2 (i), to the identity coherent transformation on F . Dually if
B is cocomplete, there is a natural transformation

ηF : F → F.

Proposition 3.4. (i) If B is complete, then ηF : F → F is a levelwise homotopy
equivalence, i.e. for each A in A, ηF (A) is a homotopy equivalence.

(ii) If B is cocomplete then ηF : F → F is a levelwise homotopy equivalence.

Before we prove this, we extend and adapt some ideas and results from Cordier-
Porter, [21].

Suppose F, F ′ : A → S, G : A → B are S-functors, f0, f1 : F → F ′ are two
natural transformations and h : F×∆[1]→ F ′ is a natural homotopy between them.
Suppose that B is cotensored; then we can form

∫
A B(FA,GA) and

∫
A B(F ′A,GA)

and f0, f1 induce natural transformations

f#
0 , f

#
1 :

∫
A

B(F ′A,GA)→
∫
A

B(FA,GA).

Proposition 3.5. The natural homotopy h : f0 ' f1 induces a natural homotopy

h# : f#
0 ' f

#
1 .

Proof. The natural transformation h induces a map∫
A

B(hA,GA) :

∫
A

B(F ′A,GA)→
∫
A

B(FA×∆[1], GA)

(which we will normally shorten to
∫
A h), but∫

A

B(FA×∆[1], GA) ∼=
∫
A

B(∆[1],B(FA,GA))

∼= B(∆[1],

∫
A

B(FA,GA))

and it is easily checked that h# =
∫
A
h gives the required homotopy.
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18 J.-M. CORDIER AND T. PORTER

Corollary 3.6. Suppose F, F ′ : A→ S. If f : F → F ′ and g : F ′ → F are natural
homotopy inverses (i.e. there are natural homotopies h : fg ' Id, k : gf ' Id) then
for any G : A→ B with B cocomplete,

∫
A
f and

∫
A
g form a homotopy equivalence

between
∫
A B(FA,GA) and

∫
A B(F ′A,GA).

The proof is a simple application of 3.4.
There are, of course, dual versions of 3.5 and 3.6 whose formulation and proof

we leave to the reader.

Proof of 3.4 (i). Since by the Yoneda lemma

FA =

∫
A′

B(A(A,A′), FA′),

whilst

FA ∼=
∫
A′

B(Â(A,A′), FA′),

the natural homotopy inverses d0 : Â(A, )→ A(A, ) and s−1 : A(A, )→ Â(A, )
provide the solution to constructing a homotopy equivalence from FA to FA. It
remains to check that this is ηF , but this is routine, using the usual techniques of
the proof of the Yoneda lemma.

The proof of 3.4 (ii) is dual, using the dual forms of 3.5 and 3.6. It is important to
note that although ηF is a natural (levelwise) homotopy equivalence, its homotopy
inverse

∫
A
s−1 is not natural.

Corollary 3.7. Suppose that B is a complete cotensored locally Kan S-category
and F,G : A → B two S-functors. Then the augmentation induces a homotopy
equivalence

Coh(A,B)(G,F )→ Coh(A,B)(G,F ).

Remark. Noting that Coh(A,B)(G,F ) ∼= BA(G,F ) by 3.2(i), this homotopy
equivalence is the natural inclusion (up to identification via this isomorphism) of
BA(G,F ) into Coh(A,B)(G,F ).

Proof of 3.7. First we write FA ∼=
∫
A′ B(Â(A,A′), FA′) by the isomorphism used

previously; then

Coh(A,B)(G,F ) ∼=
∫
A,A′

S(Â(A,A),B(GA,

∫
A′′

B(Â(A′, A′′), FA′′)))

∼=
∫
A,A′

S(Â(A,A′),

∫
A′′

S(Â(A′, A′′),B(GA,FA′′))).

Similarly

Coh(A,B)(G,F ) ∼=
∫
A,A′

S(Â(A,A′),

∫
A′′

S(A(A′, A′′),B(GA,FA′′))).

Writing

H(A,A′) =

∫
A′′

S(Â(A′, A′′),B(GA,FA′′))

and

K(A,A) =

∫
A′′

S(A(A′, A′′),B(GA,FA′′)),
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then

a. H,K : Aop ×A→ S take Kan values since B is locally Kan,
b. the augmentation d0 : Â(A′, A′′) → A(A′, A′′) induces, by 3.6, a homotopy

equivalence

K(A,A′)→ H(A,A′),

natural in A and A′,
c. Coh(A,B)(G,F ) ∼=

∮
AK(A,A) and Coh(A,B)(G,F ) ∼=

∮
AH(A,A), so the

result follows from 2.2.

Remark. Proposition 3.4(i) is a strong form of what might be called the homotopy
coherent Yoneda lemma. If B = S, this then reads as: for each F : A→ S, there
is a homotopy equivalence

ηF (A) : F (A)→ Coh(A,S)(A(A, ), F ).

In the next section we will need to use the description of FA as a total object of a
cosimplicial object and to this we turn next. If F : A→ B and A is in A, then

FA =

∫
A′,A′′

B(Â(A′, A′′),B(A(A,A′), FA′′))

∼=
∫
A′,A′′

B(A(A,A′)× Â(A′, A′′), FA′′)

∼=
∫
A′′

B(Â(A,A′′), FA′′)

=

∫
[n]

∫
A′′

B(X(A,A′′)n ×∆[n], FA′′)

∼=
∫

[n]

B(∆[n],

∫
A′′

B(X(A,A′′)n, FA
′′)),

so we take Y (F,A)n =
∫
A′′

B(X(A,A′′), FA′′) to get a cosimplicial object in B,

whose total object, hom(∆, Y (F,A)), is FA. We leave to the reader the task of
writing this in its product form.

Given this description, we note that there is a natural map from ∆ to ∗, the con-
stant cosimplicial simplicial set with value ∆[0]. This induces a map with codomain
FA from the object defined by the end∫

n

B(∗,
∫
A′′

B(X(A,A′′)n, FA
′′))

i.e. hom(∗, Y (F,A)). The following proposition is sometimes of use.

Proposition 3.8. There is a natural isomorphism

F (A) ∼= hom(∗, Y (F,A))

such that, modulo identifying these two objects, the natural map

hom(∗, Y (F,A))→ F (A)

induced by ∆→ ∗ is the map ηF (A).
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Proof. The proof is simply to note that as ∗ is constant in n ,∫
n

B(∗,
∫
A′′

B(X(A,A′′)n, FA
′′)) ∼= B(∗,

∫
A′′

B(colimnX(A,A′′)n, FA
′′))

∼= B(∗,
∫
A′′

B(A(A,A′′), F (A′′))

∼= FA

by the Yoneda lemma. The identification of the induced map as ηF (A) is now easy.

Corollary 3.9. Suppose F,G : A → B are S-functors. The natural map from ∆
to ∗ induces a map

hom(∗, Y (F,G))→ hom(∆, Y (F,G))

which is isomorphic to the natural inclusion,

BA(F,G)→ Coh(A,B)(F,G).

The proof of this using ηG : G → G and the previous result is clear. There is
also a proof establishing the natural isomorphism

hom(∗, Y (F,G)) ∼= BA(F,G)

directly.
We next turn to the problem of ‘interpreting’ the simplices in the simplicial set,

Coh(A,B)(F,G)

(which we will sometimes abbreviate to Coh(F,G) if the context is clear). One
expects 0-simplices of Coh(F,G) to correspond to families of maps,

{fA : F (A)→ G(A)},
indexed by the objects of A, together with higher homotopy information on the
“homotopy commutativity” of various “diagrams”. We have already briefly seen
this earlier when we looked at the geometric example of B = Top and A, an
ordinary category with F,G ordinary functors. Our aim is thus to make precise
what it means to say that {fA}, as above, is “coherent in A” as one might say
“{fA} is natural in A”.

Suppose f ∈ Coh(F,G)0. Using our interpretation of Coh(F,G) as the total
object of Y (F,G), we have that f : ∆ → Y (F,G) and hence f = (fn) where
fn : ∆[n]→ Y (F,G)n and difn+1 = fndi.

We start by examining n = 0. Thus, referring back to our interpretation of the
elements of

∮
A T (A,A)0 in section 1, f(A) = p(A)f0 ∈ S(FA,GA)0, so is a map

from FA to GA in B, whilst

p(A0, A1)f1 : A(A0, A1)×∆[1]→ B(FA0, GA1).

For simplicity of interpretation we assume that B is tensored and hence we can
rewrite p(A0, A1)f1 as a homotopy from A(A0, A1)⊗FA0 to GA1 . The two ends
of this homotopy then correspond to the two composites around the square

A(A0, A1)⊗FA0

A(A0,A1)⊗f(A0)

FA1

f(A1)

A(A0, A1)⊗GA0 GA1
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where the horizontal arrows come from the actions of A on F , and G, respectively,
adjoint to the structure maps, A(A0, A1) → B(FA0, FA1), etc. Similarly in the
next dimension, the actions

(A(A0, A1)×A(A1, A2))⊗FA0 → FA2,

(A(A0, A1)×A(A1, A2))⊗FA0 → A(A1, A2)⊗FA1

and

A(A1, A2)⊗FA1 → FA2,

and similarly for G, are linked via the various f(A)s and the higher homotopy

p(A0, A1, A2)f2 : (A(A0, A1)×A(A1, A2)×∆[2])⊗FA0 → GA2

provides a homotopy linking them. More accurately the faces of this are:

d0 is (A(A1, A2)×∆[1])⊗FA1
p(A1,A2)f1

→ GA2,

d1 is (A(A0, A2)×∆[1])⊗FA0
p(A0,A2)f1

→ GA2,

d2 is (A(A0, A1)×∆[1])⊗FA0
p(A0,A1)f1

→ GA1.

Each of these correspond to a square as above and these squares fit to form a
homotopy coherent prism. It is however clearest to think of the higher homotopy
f2 in the original form as

(A(A0, A1)×A(A1, A2)×∆[2])⊗FA0 → GA2

(or

A(A0, A1)×A(A1, A2)×∆[2]→ B(FA0, GA2)),

together with the face information. We leave the reader the joy of writing down
the information corresponding to p(A0, A1, A2, A3)f3 etc.

It should now be clear how to specify what it means for a family {f(A) : FA→
GA} to be coherent in A, namely the existence of homotopies, higher homotopies,
etc. linking the f(A) with the iterated actions of A.

4. Ordinal sum and composition of coherent transformations

The description of Coh(A,B)(F,G) as Nat(F, Ḡ) is reminiscent of the construc-
tion of a Kleisli category (cf. Mac Lane, [38]) where, given a monad (T, η, µ)
on a category, C, KlT is the category having the same objects as C, but with
KlT (C1, C2) = C(C1, TC2). Composition of these morphisms is given by

C(C1, TC2)×C(C2, TC3)→ C(C1, TC2)×C(TC2, T
2C3),

followed by composition in C to get to C(C1, T
2C3); finally to arrive back where we

want to (i.e. in C(C1, TC3)), we use µ : T 2 → T , the multiplication of the monad.
By analogy if we have S-functors F,G,H from A to B, we can define

Coh(F,G) × Coh(G,H)→ Nat(F, Ḡ)×Nat(Ḡ, ¯̄H),

and then compose to get to Nat(F, ¯̄H). The analogy with the Kleisli construction

then suggests that we look for a natural map from ¯̄H to H̄ satisfying properties
analogous to the multiplication of a monad, µ : T 2 → T . The first author found such
a map for the case where B is Top (cf. [18]). The construction given there involved
a subdivision of the topological n-simplex for each n. This allowed compositions to
be made consistently and naturally. This subdivision had previously been used by
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Lisica and Mardešić in their theory of coherent prohomotopy [37] and the connection
with monad structures has recently been noted independently by Batanin, [7]. In
general µ does not exist in such an elegant form. The best one can do is to define
a µ up to homotopy. This again involves subdivision in a natural way and links up
this area with various important classical results of algebraic topology.

We thus need to look first at ¯̄H . Suppose A is an object of A; then

¯̄H(A) =

∮
A′

B̄(A(A,A′),

∮
A′′

B̄(A(A′, A′′), HA′′))

∼=
∫
A0,A1,A2

B̄(Â(A0, A1), B̄(A(A,A0), B̄(Â(A2, A3), B̄(A(A1, A2), HA3))))

∼=
∫
A0,A1,A2,A3

B̄(A(A,A0)× Â(A0, A1)×A(A1, A2)× Â(A2, A3), HA3)

∼=
∫

[p],[q]

∫
A0,A1,A2,A3

B̄(A(A,A0)×X(A0, A1)p

×A(A1, A2)×X(A2, A3)q ×∆[p]×∆[q], HA3)

∼=
∫
A0,A3

B̄(A(A,A0)×X(A0, A3)p+q+1 ×∆[p]×∆[q], HA3)

∼=
∫

[n]

B̄(Sd∆[n],

∫
A0,A3

B̄(X(A0, A3)n, B̄(A(A,A0), HA3)))

by using the reverse process and the analogue of the argument in Proposition 1.2
(Cosimplicial Replacement). Here we have used Sd∆[n] as a shorthand for∫

[p],[q]

∆([p] + [q], [n])×∆[p]×∆[q].

It is this cosimplicial simplicial set that is the “subdivision” of ∆ mentioned above.
The ordinal sum, [p] + [q], of [p] and [q] will be looked at in detail later.

We thus have a natural map from ¯̄H(A) to hom(Sd∆, Y (H,A)), where Y (H,A)
satisfies H̄(A) = hom(∆, Y (H,A)). The argument if B is Top (given by the first
author in [18]) is essentially to replace Sd∆ by | Sd∆ | and to note that each
| Sd∆[n] | is homeomorphic to the corresponding | ∆[n] |, i.e. to the corresponding
∆n, thus showing that H̄(A) ∼= hom(Sd∆, Y (H,A)). If B is the S-category of
simplicial abelian groups, again

H̄(A) ∼= hom(Sd∆, Y (H,A)).

This follows from classical ideas related to the Eilenberg-Zilber theorem or alterna-
tively from the discussion that follows here. In general we will be able to prove that
H̄(A) is homotopically equivalent to hom(Sd∆, Y (H,A)) provided that B is locally
weakly Kan. (Recall that a simplicial set, K, is weakly Kan if any map Λi[n]→ K
for 0 < i < n extends to one defined on ∆[n], where Λi[n] is the (n, i)-horn that is
the “union of the n− 1 dimensional faces of ∆[n], except the ith face”.) We must
next turn our attention to a more detailed study of Sd∆ and ordinal sum.

Given p, q ∈ N, and the corresponding ordinals [p], [q] in ∆, we form their ordinal
sum by concatenation

[p] + [q] = {0 < 1 . . . < p < 0′ < 1′ . . . < q′}
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where for convenience, we have put primes, “ ′ ”, on those elements corresponding
to elements of [q]. We thus have, for instance, [2] + [0] ∼= [3]; however when using
ordinal sum within a simplicial context, functorial variation within [p] + [q] can
occur in [p] or in [q], but not at the divide so even if [2] + [0] ∼= [3], the result does
not have a d3-face, since there is no [−1] to which we can map [0]. To help visualise
Sd∆, it pays to calculate at least Sd∆[1] and Sd∆[2] in detail.

Lemma 4.1. (i) The simplicial set Sd∆[n] can be decomposed into a collection of
generalised prisms, P (p) = ∆[p]×∆[n− p] where

(∆[p]× d0)P (p) = (dp+1 ×∆[n− p− 1])P (p+ 1).

(ii) There is a natural embedding

Sd∆→ Subdiag(∆×∆),

where in dimension n, Subdiag(∆[n]×∆[n]) is the subsimplicial set of ∆[n]×∆[n]
under the diagonal, i.e. determined by those vertices (i, j) with i ≤ j.

Remarks. The two results making up this lemma indicate three important connec-
tions between Sd∆ and other parts of Algebraic Topology.

(i) should be compared with the formula for the simplicial codiagonal functor
often called ∇ or W̄ , developed by Artin and Mazur, [5]. That functor from bisim-
plicial sets (groups, etc.) to simplicial sets (groups, etc.) is left adjoint to the
functor induced by composition with ordinal sum. It is thus a Kan extension, given
for a bisimplicial object {Xp,q} by the coend

(∇X)n =

∫ [p],[q]

∆([p] + [q], [n])×Xp,q,

and usually interpreted in low dimensions via a diagram

x0,2 x1,1

x2,0

This same type of diagram occurs in numerous other contexts, for instance in
Brown-Gilbert, [15].

(ii) is related to the constructions of “cellular approximations to the diagonal”,
(cf. Baues [8] p.16). The subdivision in the topological case is also used by Segal,
[46].

Proof of 4.1. It suffices to note that the only maps in ∆([p] + [q], [n]) that do not
correspond to degenerate blocks or faces of higher dimensional blocks must have
p+ q = n and be of the form

0 1 . . . , p, 0′, . . . q′

0, 1, . . . , p, p, . . . n

This gives normal forms for a sufficient set of non-degenerate prismal blocks glued
together as claimed. These blocks can now be embedded into ∆[n]×∆[n] as follows:
If σ : [p] + [q] → [n], write σp = σ | [p] and σq = σ | [q]; thus for instance in the
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above σp(i) = i and σq(i
′) = p + i (remember the primes “ ′ ” are only there to

distinguish the first and second parts of the decomposition).
This means that σ induces a simplicial map

σ : ∆[p]×∆[q]→ ∆[n]×∆[n]

(in fact into Subdiag(∆[n]×∆[n])). It is routine to check that on the generating
prisms of part (i) of this lemma, these various simplicial maps are compatible with
the gluing face maps, thus giving the result.

Proposition 4.2 (Existence of Filling Schemes). Given any cosimplicial simpli-
cial set, Kn, such that each Kn is a weak Kan complex, then any map

f : Sd∆→ K

extends to one defined on Subdiag(∆×∆) and any two such extensions are homo-
topic.

Proof. As Sd∆[0] ∼= ∆[0], there is no difficulty in starting an induction on n. As-
suming that such a map has been constructed on Subdiag(∆[n]×∆[n]), we can use
cofaces to extend it over part of the next level up, namely that part corresponding
to Subdiag(skn∆[n+1]×skn∆[n+1]) where skn is the n-skeleton functor. Within
Subdiag(∆[n+ 1]×∆[n + 1]), there are C(n + 1) simplices of dimension 2(n+ 1)
where C(k) is the kth Catalan number. These simplices, of course, correspond to
paths of maximal length in the subdiagonal of the ordered set [n + 1] × [n + 1].
Listing these paths and the face relations between them gives a graph on which is
defined a natural depth function: For an illustrative example we take n = 3; the
subdiagonal is

33

22 23

11 12 13

00 01 02 03

The 6-simplex (00, 01, 02, 03, 13, 23, 33) will be the starting point, whilst the 6-
simplex with the diagonal as face is (00, 01, 11, 12, 22, 23, 33). Each square repre-
sents a common face between two simplices, but this correspondence is not unique.
Thus the square

11 12
01 02

links

(00, 01, 02, 12, 13, 23, 33)

with

(00, 01, 11, 12, 13, 23, 33)
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as it provides a common d2, namely

(00, 01, 12, 13, 23, 33);

however this square also gives the link between

(00, 01, 11, 12, 22, 23, 33)

and

(00, 01, 11, 12, 22, 23, 33).

The various maximal paths and their linking squares can be represented by the
graph

◦ 0

◦ 1

◦ ◦ 2

◦ 3

where the start vertex is at the top. The depth function measures the number of
moves needed to get to that chain from the start 6-simplex. List the simplices so
that ones of depth i are listed before those of depth i+ 1, for each i.

As we are assuming that the extension has already been made up to the nth

level of ∆[n + 1]×∆[n + 1], we are assuming known the value of the maps on all
the simplices of Subdiag(∆[n+ 1]×∆[n+ 1]) that correspond to the inclusions of
Subdiag(∆[n]×∆[n]) via coface maps. This knowledge interprets as knowledge of
the extension on any subdiagram of the subdiagonal obtained by deleting an ith

row and an ith column.
We start with a key observation, namely that to construct the overall extension

it suffices to be able to extend f over subdiagrams of the form

b′

. . . a c . . .

b

as each of the transitions is of this form. Thus we assume f is already defined on
the lower chain that goes via abc and try to extend it to the whole diagram thus
obtaining it on the upper chain via ab′c, which will be used to feed into a later step
in the construction. This key step can be further broken down into checking that
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f extends over all subdiagrams of form

. . .

or

. . .

and then that it extends over all subdiagrams of a similar form but with the two
adjacent 2-simplices replaced by r-simplices with their dr−1 (or their d1) faces
combined. (Recall that these diagrams show partially ordered sets and we are
working with an f that to start with is known only on certain (n + 1)-simplices
in the nerve.) To illustrate the process, and before passing to the general case, we
look at the start position,

(1, n)

(0, 0) (0, 1) . . . (0, n) (1, n+ 1) . . . (n+ 1, n+ 1)

(0, n+ 1)

To start with f is given on the (n+ 1)-simplices

(0, 0), . . . , (0, n+ 1)
(0, 1), . . . , (0, n+ 1), (1, n+ 1)

. . .
(0, n+ 1) . . . (n+ 1, n+ 1)

also on those simplices with (1, n) replacing (0, n+1) and, by inductive hypothesis,
on any subdiagram that can be obtained by deleting an ith row and an ith column
in the original diagram. We first attack the left-hand “half” of the diagram ending
with (1, n+ 1), to try to extend f over the resulting (n+ 2)-simplices which share
a common face.

We assume as an induction hypothesis that provided the length of the lead-in
string is less than n, then an extension exists. We find that in the (n+ 2)-simplex

(0, 0), . . . , (0, n), (0, n+ 1), (1, n+ 1),

we know already the value of f on all faces except d1 and dn+1. We note d1 is the
face

(0, 0), (0, 2), . . . (0, n), (0, n+ 1), (1, n+ 1)

and by inductive hypothesis this causes no difficulties.
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This leaves a Λn+1[n+ 2] over which it is easy to extend f . Now in the simplex

(0, 0), . . . , (0, n), (1, n), (1, n+ 1),

we know f on dn+1 as that face is shared with the simplex we have just handled.
We know f on di , 2 ≤ i < n, as before, since we know f on Sd(skn∆). We know
f on d0, since this forms part of the prism, ∆[1] × ∆[n], within Sd∆[n + 1] and
d1 can be handled as before by our inductive hypothesis. This leaves f known on
a Λn[n + 2], which can be filled using the fact that Kn is weakly Kan. (The case
n = 0 does not cause any difficulty as is easily checked.)

Building on from this to extend f over the two (2n + 2) simplices is now easy.
The neatest way to do this is via an inductive argument up the “tail” between
(1, n+ 1) and say (i, n+ 1).

The plan sketched earlier now suggests extending f over

(0, 0), . . . , (0, n− 1), (1, n− 1), (1, n), (1, n+ 1).

Our previous calculation gives us dn. For i in the range 2 ≤ i < n−1, the boundary
of Sd∆[n + 1] gives us an extension. As before d1 can be handled by inductive
hypothesis and d0 is given. This leaves a Λn−1[n+ 2] on which f is known and the
extension proceeds as planned. Extending f over the (2n+ 2)-simplex obtained by
adding the tail causes no problems.

Returning to the other simplex

(0, 0), . . . (0, n), (1, n), (2, n), (2, n+ 1), . . . , (n+ 1, n+ 1),

it is simplest to view this in the other direction first extending f over

(0, n), (1, n), (2, n), (2, n+ 1) . . . (n+ 1, n+ 1),

then adding a “head” string from (0, 0) to (0, n). We omit the details.
The extension of f over the 2n + 2 simplices of Subdiag(∆[n + 1] × ∆[n + 1])

continues in this way. If the path giving the simplex has a “new part” at vertex
(i, j) in its kth position

(i, j) (i, j + 1)

(i− 1, j) (i− 1, j + 1)

then provided k ≤ n+1, we can extend f using a Λk−1[n+2] over which f is either
given ab initio, given by the extension already made to level n in the cosimplicial
dimension, or can be extended by application of the inductive hypothesis. (If
k ≥ n+ 1, then operation using the “tail” rather than the start is used.)

The filling scheme extends over all simplices at a given depth k before passing
to the next. This ensures that enough faces have already been constructed for
the extension to work and makes certain that no conflict occurs with a face being
needed for filling whilst it has already been used by another part of the process.

This completes the extension process. Any two such extensions will be homotopic
as the extension schema can also be used to extend any map defined from Sd∆ to
S(∆[1],K) to one defined on Subdiag(∆×∆).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



28 J.-M. CORDIER AND T. PORTER

The final points to make are that we have, as we progressed, effectively con-
structed a proof scheme that allows the proof of the inductive hypothesis concern-
ing the lengths of “head” or “tail” over which extensions can be made. Moreover,
nowhere in the above did it prove necessary to fill a Λ0[k] or a Λk[k] for any k.

Corollary 4.3. Given a cosimplicial simplicial set Y such that each Y n is a weak
Kan complex, there is a map

hom(Sd∆, Y )→ hom(Subdiag(∆×∆), Y ),

which is left inverse to the restriction map, i.e. composition with the restriction map
gives the identity on hom(Sd∆, Y ). Moreover any two such maps are homotopic.

This corollary applied to Y (H,A) gives a map

Coh(F,G) × Coh(G,H)→ hom(Subdiag(∆×∆), Y (F,H)),

and by composition with the restriction to the diagonal a choice of “composition”
map:

cGF,H : Coh(F,G) × Coh(G,H)→ Coh(F,H).

Unfortunately, with all the choices we have made, it is extremely unlikely that this
“composition” will be associative, and in general it will not be. On the other hand
it is as coherently associative as we might want; e.g. for any H, the square

¯̄̄
H

Hµ

µH

¯̄H

µ

¯̄H
µ

H

will be homotopy coherent and so for F,G,H,K being S-functors from A to B, the
two composites

Coh(F,G) × Coh(G,H)× Coh(H,K) Coh(F,K)

will be homotopic. The proof of this involves the triple ordinal sum [p] + [q] + [r],
a triple subdivision of ∆ and a modification of the filling scheme of 4.2 to allow for
the third direction in ∆×∆×∆.

This means that Coh(A,B), for A small and B locally weakly Kan, has the
structure of what one might call an H-category, i.e. a homotopy coherent model of
the theory of categories. As a result, on taking π0Coh(F,G) = coh(F,G), we get
an actual category coh(A,B) (which is essentially that introduced by Batanin, [7]
for the case that B is locally Kan).

We sum this up in the following:

Theorem 4.4. If A is a small S-category and B is a locally weakly Kan S-
category, then there are simplicial composition maps

cGF,H : Coh(A,B)(F,G) × Coh(A,B)(G,H)→ Coh(A,B)(F,H),

which are well defined up to homotopy and are coherently associative.
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Remark. The passage via ¯̄H and a “multiplication map” to H̄ may not seem to be
“geometric” enough for some readers; however it is easy to obtain the composite in
an alternative way.

Coh(A,B)(F,G) =

∫
A,A′

S(Â(A,A′),B(FA,GA′))

∼=
∫
A,A′

S

(∫ [m]

∆[m]×X(A,A′)m,B(FA,GA′)

)
and

Coh(A,B)(G,H) ∼=
∫
A′′,A′′′

S(

∫ [n]

∆[n]×X(A′′, A′′′)n,B(GA′′, HA′′′)).

Restricting to composable pairs gives a map from

Coh(A,B)(F,G) × Coh(A,B)(G,H)

to∫
A,A′,A′′

S(

∫ [m],[n]

X(A,A′′)m+n+1 ×∆[m]×∆[n],B(FA,GA′)×B(GA′, HA′′))

and thus by composition to∫
A,A′′

S(

∫ [m],[n]

X(A,A′′)m+n+1 ×∆[m]×∆[n],B(FA,HA′′)),

but this is hom(Sd∆, Y (F,H)) as before and the map is the same.

We finish this section by examining the relation of the coherent “composition”
that has just been studied and the natural composition

BA(F,G) ×BA(G,H)→ BA(F,H).

We noted in section 3 that the augmentation of the Â(A,A′) defined the natural
map from G to Ḡ and hence the natural map from BA(F,G) to Coh(A,B)(F,G).
We thus have a diagram

BA(F,G) ×BA(G,H) BA(F,H)

BA(F,G) ×BA(Ḡ, ¯̄H)
cGF,H

BA(F, H̄)

which it might be hoped would be commutative, at least up to homotopy. We noted
that the homotopy class of cGF,H was well defined, so to verify the commutativity

of this diagram up to homotopy, it suffices to produce a choice of cGF,H that ex-
tends the natural composition at the top of the square. The earlier results on the
passage from Â(A,A′) to A(A,A′) allow one to identify the natural maps within
Coh(A,B)(F,G) and within Coh(A,B)(G,H) (cf. 3.9). Feeding this information
into the filling scheme, one finds that canonical extensions exist for these as they
are constant on simplices of ∆.

Thus when constructing the map from

hom(Sd∆, Y (F,H))
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to

hom(Subdiag(∆×∆), Y (F,H)),

the mapping of simplices corresponding to pairs of natural transformations causes
no difficulty. Agreeing that this is done first, one can construct the rest of the
mapping using the filling scheme as given. A slight modification of this argu-
ment shows that one can choose the restriction of cGF,H to the subsimplicial sets,

BA(F,G)×Coh(A,B)(G,H) and Coh(A,B)(F,G)×BA(G,H), so as to coincide
with the obvious compositions.

BA(F,G)×BA(G, H̄)→ BA(F, H̄)

and

BA(F, Ḡ)×BA(Ḡ, H̄)→ BA(F, H̄),

as in each case, on one of the two directions, the resulting simplices correspond to
constant simplicial maps.

We summarise this in the following.

Proposition 4.5. The coherent composition cGF,H of 4.4 can be chosen to extend
the natural composition defined on

BA(F,G) × Coh(A,B)(G,H) ∪ Coh(A,B)(F,G) ×BA(G,H).

The above argument can be seen to depend implicitly on the identification of
BA(F,G) with hom(∗, Y (F,G)), where ∗ is the constant cosimplicial simplicial
set with value ∆[0]. In the case of a locally Kan S-category B, rather than a
locally weakly Kan one, this allows a simpler proof of the above result using certain
diagrams in the category of cosimplicial simplicial sets and their realisations in the
category of cosimplicial spaces.

5. Coherent extensions

The standard treatment of (right) Kan extensions takes functors K : A→ B, F :
A → C and asks for a universal solution RKF : B → C to extending F along K;
i.e. if G : B→ C is any functor, one wants

Nat(GK,F ) ∼= Nat(G,RKF ).

This then leads to an end formula for RKF

RKF (B) =

∫
A

C(B(B,KA), FA)

(see Mac Lane, [38]).
Attempts to generalise this to the simplicial coherence context are complicated

by the choices available. Clearly one can replace “Nat” by “Coh”, but should iso-
morphism be replaced by homotopy equivalence, should this be natural, in which
direction should it go, etc., so to start our investigation of “coherent Kan exten-
sions”, we will study the “obvious” construction of a right coherent extension

RKF (B) =

∮
A

C(B(B,KA), FA)(1)

using a coherent end where A, B, C, and F and K are all S-enriched. This gives
constructions related to the bar and cobar resolutions (Meyer, [41], [42]) and to
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ideas exploited by Dwyer and Kan, [25], Heller, [33] and others. There is a similar
formula for a left extension

LKF (B) =

∮ A

B(KA,B)⊗FA.(2)

Our aim is to study the properties of these to show that it is justifiable to claim
that, as these satisfy suitable coherent versions of standard theorems, they can
safely be considered to be coherent Kan extensions.

We thus fix the above data : K : A → B,F : A → C with C complete or
cocomplete as necessary and RKF and LKF defined as in (1) and (2) above.

Proposition 5.1. Let G : B → C be any S-functor. Then there is a natural
isomorphism

Coh(A,C)(GK,F ) ∼= CB(G,RKF )

(dually:

Coh(A,C)(F,GK) ∼= CB(LKF,G)).

Proof. (This is similar to that of 3.3.)

CB(G,RKF ) =

∫
B

C(GB,RKFB)

∼=
∫
B

C(GB,

∫
A′,A′′

C(Â(A′, A′′),C(B(B,KA′), FA′′)))

∼=
∫
A′,A′′

S(Â(A′, A′′),

∫
B

S(B(B,KA′),C(GB,FA′′)))

∼=
∫
A′,A′′

S(Â(A′, A′′),C(GKA′, FA′′)) by Yoneda

∼= Coh(A,C)(GK,F ).

The dual proof proves the dual statement.

Examples and remarks

1. The case where K is the identity functor reduces to the definition of F (resp:
F ) in section 4. The properties of the construction, F , for the case C = Top are
considered in detail in [23].

2. If one uses Â∗( , ) instead of Â( , ) as the indexation, the construction
of LKF is related to that of the π∗F of Segal, [46]. Replacing A and B by the
corresponding Top-enriched categories via the geometric realisation of their hom-
objects, π∗F corresponds to LKF in the case Kop = πop : Aop → Bop.

3. Recall from [10] that the Bousfield-Kan homotopy limit can be extended to
one defined at the simplicially enriched level, thus covering the case of homotopy
coherent diagrams. Explicitly let F : A → C be given and define HA : A → S by
HA(A) = DiagY (A), where

Y (A)n, =
∐

A0,... ,An

A(A0, A1)× . . .×A(An−1, An)×A(An, A);

then define

holimF =

∫
A

C(HA(A), FA)
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and dually

hocolimF =

∫ A

HAop(A)⊗FA.

If A is an ordinary small category considered with the trivial S-category structure,
then these are precisely the Bousfield-Kan homotopy limit and colimit since in that
case HA(A) = Ner(A/A).

Proposition 5.2. Let F : A → C be an S-functor where C is a complete (resp.
cocomplete) S-category. Then taking K : A→ I to be the unique S-functor to the S-
category with one object, ∗, and one non-degenerate morphism, the Bourn-Cordier
homotopy limit, holimF , (resp. the homotopy colimit, hocolimF ), is isomorphic
to RKF (resp. LKR).

Proof. We have

RKF (∗) =

∮
A

C(∆[0], FA)

=

∫
A,A′

C(Â(A,A′),C(∆[0], FA′))

=

∫
A′

C(

∫ A

Â(A,A′), FA′)

but

Â(A,A′)n =
∐

A0,... ,An

A(A0, A1)n × . . .×A(An−1, An)n ×A(An, A
′)n,

so ∫ A

Â(A,A′) = colimAÂ(A,A′) ∼= HA(A′).

The result follows.
4. If A is any small category, then homotopy coherent diagrams of type A in

the S-category C correspond, by [16], to S-functors from S(A) to C, where S(A)
is the S-category constructed using the “free-forget” resolution as in [16]. There is
an augmentation S-functor

K : S(A)→ A,

where A is given the trivial S-category structure. If C is a complete (resp. cocom-
plete) S-category and F : S(A) → C is a homotopy coherent diagram of type A,
then RKF : A → C (resp. LKF : A → C) is an actual functor. In [23], we used
the term “rectification” for this functor although our definition there is apparently
different.

It is interesting to note that in general it would seem difficult, if not impossible,
to express a coherent extension as a homotopy limit (or colimit) of a functor with
domain some “comma S-category”. The problem is to know how such a “comma
S-category” should be formed. In this last case however such a reduction is possible.

Proposition 5.3. Let A be a small category, K : S(A) → A, the augmentation
S-functor and F : S(A)→ C a homotopy coherent diagram in a complete (resp. co-
complete) S-category, C. For B an object of A, one has RKF (B) = holimFS(δB)
(resp. LKF (B) = hocolimFS(δB)) where δB is the canonical functor from the
comma category B ↓ A to A (resp. from the comma category A ↓ B to A).
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Proof. Let S(δB) : S(B ↓ A)→ S(A); then for F : S(A)→ C, one has

holimFS(δB) =

∫
(A,f)

C(

∫ [n]

∆[n]×
∐

S(B ↓ A)((A0, f0), (A1, f1))

× . . .× S(B ↓ A)((An, fn), (A, f)), FA),

where the indexation of the coproduct is over all (A0, f0), . . . , (An, fn), since of
course FS(δB)(A, f) = FA. The end formula for RKF (B) involves a similar term
but with ∐

A0,... ,An

A(B,A0)× S(A)(A0, A1)× . . .× S(A)(An−1, An)

and the each term splits up as a disjoint union of terms of the form

S(B ↓ A)((A0, f0), (A1, f1))× . . .× S(B ↓ A)((An, fn)(A, f)).

It is now easily checked that the result holds.

6. Coherent extensions with locally Kan codomain

In section 2, we showed that the theory of coherent ends and coends was es-
pecially nice when the codomain category was locally Kan. This, of course, has
consequences for the theory of coherent extensions.

Proposition 6.1. If C is a complete cotensored locally Kan S-category, K : A→
B and F : A → C are S-functors and RKF is defined as above then there is a
homotopy equivalence

Coh(A,C)(GK,F ) ' Coh(B,C)(G,RKF ).

The proof of this is a combination of 5.1 and the following lemma, which should
be compared with Corollary 3.7.

Lemma 6.2. With the same data as 6.1, the natural map

CB(G,RKF )→ Coh(B,C)(G,RKF )

is a homotopy equivalence.

Proof. We know

Coh(B,C)(G,RKF ) =

∮
B

C(GB,

∮
A

C(B(B,KA), FA))

∼=
∮
A

∮
B

S(B(B,KA),C(GB,FA))

and

CB(G,RKF ) =

∮
A

∫
B

S(B(B,KA),C(GB,FA′)).

We set

T0(A,A′) =

∫
B

S(B(B,KA),C(GB,FA′))

∼= C(GKA,FA′)
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and

T1(A,A′) =

∮
B

S(B(B,KA),C(GB,FA′))

∼=
∫
B′,B′′

S(B̂(B′, B′′)×B(B′′,KA),C(GB′, FA′′))

∼=
∫
B′

S(B̂(B′,KA),C(GB′, FA′)).

There is a natural homotopy equivalence, induced by the augmentation d0 : B̂(B′, )
→ B(B′, ) and its homotopy inverse s−1, which gives a homotopy equivalence from
T0(A,A′) to T1(A,A′). If C is locally Kan, then both T0 and T1 take Kan values
and 2.4 finishes the proof.

Thus if C is locally Kan, the coherent extension construction performs exactly
as one would hope a homotopy coherent Kan extension would perform. There is a
dual form of 6.1 involving LKF which we will leave the reader to state and prove.

We pointed out in section 4 that if we defined

coh(A,C)(F,G) = π0Coh(A,C)(F,G),

we obtained a category.

Corollary 6.3. If C is a complete cotensored locally Kan S-category, K : A→ B
and F : A→ C are S-functors and RKF is as above then

coh(A,C)(GK,F ) ∼= coh(B,C)(G,RKF ).

(There is a dual form involving LKF.)

This result, or rather a special case of it has been noted several times by other
authors. If A = S(I), B = S(J), where S is the construction studied by the first
author in [16], then coh(A,C) ∼= Ho(CI) by the extension of Vogt’s theorem, [21].
Thus a functor K : I → J induces S(K) : S(I) → S(J) and if C is as above, we
have a functor,

Ho(CK) : Ho(CJ)→ Ho(CI),

and RK induces a right adjoint to this. In other words the RK construction yields
a “homotopy Kan extension” as introduced by Anderson, [2] and studied by Heller
[33], [34]. Dwyer and Kan, [25], have also given such a construction. Heller [34] has
argued convincingly that the “hyper-functor”, which to a small category I assigns
Ho(CI) and to a functor K assigns the induced functor together with homotopy
Kan extensions, makes up the essential structure of a homotopy theory. It is of
interest to note that Grothendieck in [31] argues in a parallel way for studying
the categories D(AI) and the induced functors with the corresponding extensions
to give a more complete version of Verdier’s theory of derived categories. We feel
that the categories Ho(CI) and D(AI), as they are, roughly speaking, the π0 level
of a much richer structure, only reflect a small amount of the structure that is
there and that, if a theory can be developed that can handle the corresponding
structures Coh(A,C) etc., then this may provide a very significant tool for the
future development of this area of abstract homotopy theory.

Another application of these coherent Kan extensions is in the theory of gen-
eralised derived functors. This aspect is already implicit in the brief discussion
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above of Grothendieck’s views on the development of the theory of derived cate-
gories. Here we will mention another link, briefly sketching the way that a trivial
case of the LK-construction yields a theory of derived functors that generalises
the comonad derived functors considered by Quillen, [45], Tierney and Vogel, [49],
André, [3] and Ulmer, [50]. They thus, among other things, generalise classical
derived functors. The basic idea for the construction used is taken from the un-
published thesis of P. Gardener [29], which generalised results of Alan Robinson,
[44].

We take as given a category B with an initial object I and a subcategory A of B.
(The objects of A will be called the models and play here the rôle of the projective
objects in the classical theory of derived functors.) This category A will be the
domain of a functor F with codomain a category of “based sets with structure”,
which we will tacitly assume most of the time is just the category of pointed sets.
Finally we assume I is a model. Given this data and an object B of B, form up
a category τ(B,F ) having as objects pairs (f, x) where f : M → B is a morphism
of B with domain in A and x ∈ FM . The morphisms of τ(B,F ) from (f1, x1) to
(f2, x2) correspond to A-morphisms ξ : M1 →M2 so that

M1
ξ

f1

M2

f2

B

commutes and Fξ(x1) = x2. Denoting the nerve of τ(B,F ) by Ner(τ(B,F )), the
candidates for the derived functors of F evaluated at B are the homotopy groups,
πn(Ner(τ(B,F ))).

These functors behave well; for instance the functor π0(Ner(τ( , F ))) is just the
Kan extension of F along the inclusion of A into B.

If it is assumed that B is an abelian category with enough projectives and A is the
full subcategory of projectives, then if F has codomain an abelian category, these
“derived functors” are isomorphic to the classical derived functors of Cartan and
Eilenberg. Other less classical situations can also be brought into this description.
In particular, if B is a category on which we are given a comonad, G, and A is
the full subcategory of the G-free objects then for F having abelian domain, these
derived functors coincide with those of Barr and Beck, [6]. Finally we note that
Gardener, [29], proves that taking B to be the category of based topological spaces
and A, the full subcategory of spaces homotopy equivalent to finite discrete spaces,
then πn(Ner(τ(B, π0))) ∼= πnB, so the homotopy groups are also derived functors
in this sense.

Given this situation with data (B,A, F ), we replace F by the functor K(F,O) :
A→ S∗ where K(FM,O) will be the constant pointed simplicial set on the pointed
set FM . Abusing notation, we will write F for this functor as well, and similarly
consider A and B as having trivial S-enrichment.

Proposition 6.4. There is a natural isomorphism

LKF (B) ∼= Ner(τ(B,F ))

where K : A→ B is the inclusion.
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Proof. We note

LKF (C) =

∮ M

B(KM,B)⊗FM

∼=
∫ M,M′

Â(M ′,M)×B(KM,B)× FM ′

∼=
∫ [n]

∆[n]×
∐

A(M0,M1)× . . .×A(Mn−1,Mn)

×B(KMn, B)× FM0,

where the coproduct is taken over all ordered lists, M0, . . . ,Mn. Thus each n sim-
plex of LKF (C) consists of a chain of maps f1, . . . , fn in A, a map f : codomain(fn)
→ B in B and an element of FM0 . The isomorphism is thus obvious.

This proposition allows an easy proof to be given of the fact that the set of
connected components, π0(Ner(τ(B,F ))), is the Kan extension.

Proposition 6.5. There is a natural isomorphism

π0LKF ∼= LanKF.

Proof. Recall that we have abused notation in writing F : A→ S∗ for what should
have been K(F,O); this will be crucial in what follows.

Suppose G : B→ Sets∗; then

SetsB∗ (π0LKF,G) ∼= SB
∗ (LF,K(G,O))

∼= SA
∗ (K(F,O),K(GK,O))

∼= SetsA∗ (F,GK)

∼= SetsB∗ (LanKF,G),

as expected.

This proposition not only suggests a potential link in general between coher-
ent extensions and derived functors, but helps the interpretation of the coherent
extensions in a special case.

The usefulness of the general formulation of coherent extension as an extension
of the derived functor formulation and also as a potential foundation for abstract
homotopy theories, as suggested by Heller and Grothendieck, will depend on our
ability to mimic for the coherent situation the principal results and methods of
ordinary category theory. One such, the Yoneda lemma formulation, has already
been studied; another, the Godement interchange law, will be looked at in the next
section.

7. The coherent Godement law

Given functors M,N : A → B, F,G : B → C, there are two obvious ways to
define a “composition”

Nat(M,N)×Nat(F,G)→ Nat(FM,GN).

The two composites send (α, β) to βN ◦ Fα and to Gα ◦ βM respectively and it is
an elementary exercise to prove these are equal.

Although elementary, this interchange law,

βN ◦ Fα = Gα ◦ βM,
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is fundamental to the development of the calculus of natural transformations and
thus to category theory. The corresponding law for coherent transformations is
equally important, but is not elementary to prove.

Suppose that A,B,C are S-categories, with C locally weakly Kan, and that
M,N : A→ B, F,G : B→ C are S-functors. Then we have two simplicial maps

Coh(M,N)× Coh(F,G) Coh(FM,GN)

defined up to homotopy. These use the composition studied in section 4, hence
their definition only up to homotopy.

The general “yoga” of homotopy coherence should suggest that these two com-
posites,

Coh(M,N)× Coh(F,G)→ Coh(FM,GN),

should be homotopic by a constructible homotopy. Again the experience of handling
composition in section 4 suggests that there might hopefully be some “subdivision”
of ∆×∆[1] with a fairly naturally defined map from Coh(M,N)× Coh(F,G) to

hom(Subdivision, Y (FM,GN)),

and then a filling argument to get from there to

hom(∆, Y (FM,GN)) = Coh(FM,GN).

This is the plan we follow, but first we note:

Lemma 7.1. There is a natural isomorphism

∆[n]×∆[1] =

∫ [p],[q]

∆([p] + [q], [n])×∆([p] + [q]).

Proof. (Although this is fairly obvious, the insight gained here will be used later
on and so we provide a proof.)

We first note that

(∆[n]×∆[1])r = ∆([r], [n]) ×∆([r], [1]).

Any surjective map, σ, from [r] to [1] partitions [r] as [p] + [q] where σ([p]) = {0},
σ([q]) = {1}. The top dimensional simplices of ∆[n]×∆[1] are of dimension n+ 1
and correspond exactly to those p, q with p+ q = n.

(One can interpret ∆([p]+[q]) as ∆[p]∗∆[q], that is, the join of the two simplices.
In this way the lemma reduces to an interpretation of well known combinatorial
features within the formation of a coend.)

We will write D(p, q;n) for the set of pairs (f, g) where f ∈ ∆([p] + [q], [n]),
g ∈ ∆([p] + [q], [1]) such that g(i) = 0 if i ≤ p, g(i) = 1 if i > p. In this notation we
have

∆[n]×∆[1] =

∫ [p],[q]

D(p, q;n)×∆([p] + [q]).

We return next to the given data M,N : A → B, F,G : B → C, and assume
we are given A0, . . . , An. With this we can pick p, q, r such that p+ q + r = n and
then try to make the transition between the two hopefully homotopic maps bit by
bit.
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We suppose that we have all the coherence data encoded in the cosimplicial sim-
plicial sets Y (M,N) and Y (F,G). From Ap, . . . , Ap+q, we obtain (from Y (M,N))
a map:

A(Ap, Ap+1)× . . .×A(Ap+q−1, Ap+q)×∆[q]→ B(MAp, NAp+q).

From Lemma 7.1, we have maps

A(A0, A1)× . . .×A(Ap−1, Ap)→ B(MA0,MA1)× . . .×B(MAp−1,MAp),

and (for p+ q + r = n),

A(Ap+q, Ap+q+1)× . . .×A(An−1, An)

→ B(NAp+q, NAp+q+1)× . . .×B(NAn−1, NAn),

which combine to give a map

A(A0, A1)× . . .×A(An−1, An)×∆[q]→ B(MA0, )× . . .×B( , NAn).

(Note this construction may jump to N immediately or at the last moment or
somewhere in between; however it will always end up at an NA and start at an
MA.) Thus the codomain of this map has p+ r+ 1 terms in it and within Y (F,G),
we have the data indexed by MA0, . . . ,MAp, NAp+q, . . . , NAn. Combining this
gives us elements of the form

A(A0, A1)× . . .×A(An−1, An)×∆[q]×∆([p] + [r])→ C(FMA0, GNAn),

which in the two cases p = 0 and r = 0 correspond to the two maps defined earlier.
We are now, as hoped, in a similar position to our earlier one involving the

Sd∆[n] and hom(Sd∆, Y (F,H)). We denote by D(n) the simplicial set∫ [p],[q],[r]

D(p, q, r;n)×∆([p] + [r]) ×∆[q],

where D(p, q, r;n) = {(f, g) : f ∈ ∆([p] + [q] + [r], [n]), g ∈ ∆([p] + [r], [1]) such that
g(i) = 0 if i ≤ p, g(i) = 1 if i > p}. The above discussion can be summarised as
follows:

Lemma 7.2. There is a natural map

Coh(M,N)× Coh(F,G)→ hom(D,Y (FM,GN)).

The points we have not proved explicitly are the variance of D(n) with n, the
way in which the dp on the first p are compatible with the d0 on the q-terms, etc.
Each of these is routine and so is left out.

We are now in a position to state the main coherent interchange theorem

Theorem 7.3. Let C be a locally weakly Kan category and let M,N : A → B,
F,G : B→ C be S-functors. Given a choice of filling scheme for Subdiag(∆×∆)
(as outlined in section 4), there is a homotopy

Coh(M,N)× Coh(F,G)→ Coh(FM,GN)∆[1],

between the two evident composites from

Coh(M,N)× Coh(F,G)

to

Coh(FM,GN).
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The proof can be reduced, using 7.2, to proving that there is a map from

hom(D,Y (FM,GN))

to

hom(∆×∆[1], Y (FM,GN))

that restricts to the filling scheme map on the two ends of the cylinder. (Recall
we are thinking of D(n) as being a “subdivision” of ∆[n] × ∆[1], the two ends
corresponding to p = 0 and r = 0 respectively.)

Lemma 7.4. There is an embedding

D → Subdiag(∆×∆)×∆[1]

extending the embedding of Sd∆ on the two ends.

Proof. Recall

D(n) =

∫ [p],[q],[r]

D(p, q, r;n)×∆([p] + [r]) ×∆[q].

where (f, g) ∈ D(p, q, r;n) if f : [p] + [q] + [r] → [n] and g : [p] + [r] → [1] is such
that g(i) = 0 if i ≤ p, g(i) = 1 if i > p; i.e. g is a map from [p + r + 1] onto [1]
corresponding to the division of [p+ r + 1] as [p] + [r].

This pair (f, g) defines a map

(f, g) : ∆([p] + [r])→ ∆[n]×∆[1]

by

(f, g)(i) =

{
(f(i), 0) if i ≤ p,
(f(q + i), 1) if i > p,

whilst f restricted to [q] defines a map from ∆[q] into ∆[n]. The checking that this
defines an embedding as claimed resembles that giving the embedding of Sd∆ into
Subdiag(∆×∆) and will be omitted.

We had a decomposition of ∆[n] × ∆[1] into its constituent (n + 1)-simplices,
labelled by the surjections from [n + 1] to [1] and hence by decompositions of
[n+ 1] as [p] + [r]. For each triple p, q, r as in the above, we have a certain class of
decompositions [s] + [t] of p+ q + r where s ≥ p and t ≥ r; i.e. the concatenation
point of [s] + [t] occurs within the [q] of [p] + [q] + [r]. For each such, we obtain a
subdivision of [q] as [s1] + [t1] and ([p] + [s1]) + ([t1] + [r]) = [p] + [q] + [r].

Lemma 7.5. There is a decomposition of D(n), analogous to that of ∆[n]×∆[1]
in terms of (n+ 1)-simplices, such that corresponding to [s] + [t] we have Sd∆[s] ∗
Sd∆[t], the join of the two subdivided complexes.

The proof is merely the verification that for given [s], [t], the set of [p] + [q] + [r]
with p ≤ s and r ≤ t defines the join; however this is essentially what we have
checked above.

Corollary 7.6. The geometric realisation | D(n) | is naturally homeomorphic to
| ∆[n]×∆[1] |.

Proof. It suffices to point out that | Sd∆[s] ∗ Sd∆[t] |∼=| ∆[s] ∗∆[t] |.

Corollary 7.7. The coherent interchange law holds when C is a locally Kan cate-
gory.
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Proof. As in the case that Y (FM,GN) is a fibrant cosimplicial simplicial set, we
can replace each level by Sing | Y (FM,GN) | and obtain a homotopy equivalence

hom(D,Y (FM,GN))→ hom(D, Sing | Y (FM,GN |),
but the codomain here is canonically isomorphic to

hom(| D |, | Y (FM,GN |),
which by Corollary 7.6 is

hom(| ∆×∆[1] |, | Y (FM,GN) |).
Reversing the argument yields a map,

hom(D,Y (FM,GN))→ hom(∆, Y (FM,GN)),

with the desired properties.

The version of the interchange law with a locally weakly Kan S-category C
requires more care. We first note that a filling scheme for Sd∆ gives fillers for
Sd∆[s] ∗ Sd∆[t] within Subdiag(∆[s]×∆[s]) ∗ Subdiag(∆[t]×∆[t]) for each s, t.
The final stage is then to note the decomposition (7.1) of ∆[n]×∆[1]:

∆[n]×∆[1] =

∫ [s],[t]

D(s, t;n)×∆([s] + [t]).

Using the “gluing instructions” for the ∆([s]+ [t]), we can extend the filling scheme
to extend maps with weak Kan codomain from D to a cosimplicial simplicial set E
where

E(n) =

∫ [s],[t]

D(s, t;n)× Subdiag(∆[s]×∆[s]) ∗ Subdiag(∆[t]×∆[t]).

(Note this will not be the subdiagonal of ∆[n] ×∆[n] ×∆[1] ×∆[1].) As the sub-
diagonals contain the diagonals, there is a map

∆[n]×∆[1]→ E(n)

natural in [n]. We thus obtain

hom(D,Y )
filling→ hom(E, Y )

rest→ hom(∆×∆[1], Y ),

where Y is Y (FM,GN). As the filling map is defined using the filling scheme for
Sd∆, the extensions can be chosen compatibly with those assumed to be chosen for
the compositions. This completes the proof of the coherent Godement interchange
law (7.3).

8. Universality results in a coherent setting

It is natural to use the term ‘natural’. We have established, for instance, an
isomorphism

Coh(A,C)(GK,F ) ∼= CB(G,RKF )

which is natural in G. Here however it would be better to cite the homotopy
equivalence (cf. 6.1),

Coh(A,C)(GK,F ) ' Coh(B,C)(G,RKF ),

which is again natural in G. It does not seem to be easy to prove that this homotopy
equivalence determines RKF “up to coherent homotopy equivalence” just by using
its naturality with respect to G. To get such a desirable result, we need to ask what
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happens when G varies coherently. We introduce this idea only in a simple case but
feel that, for a thorough development of coherent category theory, an extension of
the concept will be necessary.

We say a family of homotopy equivalences

Coh(G,F )
fG

Coh(G,F ′)
gG

with homotopies HG : gGfG ' Id, KG : fGgG ' Id, is 1-coherent if for any
G0, G1,the following diagram in which the horizontal maps are compositions,

Coh(G0, G1)× Coh(G1, F )

Id×fG1

Coh(G0, F )

fG0

Coh(G0, G1)× Coh(G1, F
′) Coh(G0, F

′)

commutes up to a (specified) homotopy.

Remarks. (i) For most of our examples, 1-coherence suffices; however it is the low-
est case of a family of “n-coherence” conditions. We say a family of homotopy
equivalences as above is n-coherent if for any G0, G1, . . . , Gn, the evident (n + 1)
cube given by composition made up of a base

Coh(G0, G1)× . . .× Coh(Gn, F )

Id×fGn

Coh(G0, F )

fG0

Coh(G0, G1)× . . .× Coh(Gn, F
′) Coh(G0, F

′)

together with the squares coming from partial compositions is a homotopy commu-
tative cube. It is clear (but not proved explicitly) that composition is “coherently
as associative as we need”, i.e. it is coherently n-associative for any n, so the above
makes sense. We say it is coherent in G if it is n-coherent in G for all n.

(ii) The adaption needed to say that the homotopy equivalences

Coh(GK,F ) ' Coh(G,RKF )

are n-coherent in G is minor and will be omitted.

We next point out the ‘obvious’ meaning of saying that F and F ′ are (coher-
ently) homotopy equivalent. This clearly should mean that there are vertices f ∈
Coh(F, F ′)0, g ∈ Coh(F ′, F )0 and 1-simplices H ∈ Coh(F, F ), K ∈ Coh(F ′, F ′),

so that writing gf for cF
′

F,F (f, g), etc., we have

d0H = gf, d1H = IdF ,
d0K = fg, d1K = IdF ′ .

Provided the ambient category codomain of all these functors is locally weakly Kan,
we can build up such an H or K by a composite of 1-simplices, as we shall need to
do shortly.

The best example of a family of homotopy equivalences

Coh(G,F )→ Coh(G,F ′)

which is coherent in G, as above, comes from composition along a coherent homo-
topy equivalence. Before stating and proving a converse, we note the following:
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Proposition 8.1. If fG : Coh(G,F )→ Coh(G,F ′) is a family of homotopy equiv-
alences satisfying n-coherence in G, then provided the ambient category is locally
Kan, for any choices gG : Coh(G,F ′) → Coh(G,F ) of homotopy inverses for fG,
the family {gG} also satisfies n-coherence in G.

Proof. This is a fairly routine application of Theorem 1.1 of our paper [21] applied
to the n-cube of partial compositions following from that result by considering f
as the homotopy coherent mapping from the n-cube corresponding to F to that
corresponding to F ′.

This proposition thus points out that the lack of symmetry in the definition of
“1-coherent in G” is not really there.

Theorem 8.2 (Universality up to coherent homotopy equivalences). Let A,B be
S-categories with B locally Kan and let F, F ′,A→ B be S-functors. Suppose there
is a family of homotopy equivalences

{fG : Coh(G,F )→ Coh(G,F ′)}
with supplementary data {gG, HG,KG}, that is 1-coherent in G; then there is a
coherent homotopy equivalence

f : F → F ′

and fG is homotopic to the family induced by f .

Proof. TakingG = F gives fF and we set f = fF (IdF ). Similarly we have gF ′(IdF ′)
and set it equal to g. Thus f : F → F ′, g : F ′ → F .

Since f is 1-coherent we have a diagram

Coh(F ′, F )× Coh(F, F )

Id×fF

Coh(F ′, F )

fF ′

Coh(F ′, F )× Coh(F, F ′) Coh(F ′, F ′)

and a homotopy between the composites.
We follow around the pair of 0-simplices corresponding to (g, IdF ). Since IdF is

natural, the composite of these two will be g itself, so around the square clockwise
gives us

fF ′(g) = fF ′gF ′(IdF ′) ' IdF ′
by the homotopy KF ′ . Going around counterclockwise gives the (chosen) composite
fg. The homotopy in the square restricted to {(g, IdF )} gives a 1-simplex joining
fg and fF ′(g) and as Coh(F, F ′) is a Kan complex, we obtain a 1-simplex joining
fg to the identity on F ′.

Using 8.1 we next reverse the rôles of f and g to obtain the first part of the
result.

For the second part we use 1-coherence in G in the general case giving

Coh(G,F ) × Coh(F, F )

Id×fF

Coh(G,F )

fG

Coh(G,F )× Coh(F, F ′) Coh(G,F ′)

Now restrict to Coh(G,F ) × {IdF} in the top left corner.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOMOTOPY COHERENT CATEGORY THEORY 43

The top horizontal map is, by assumption (see Proposition 4.5), the identity
whilst the counterclockwise path yields post-composition with f . Thus fG is ho-
motopic to the map induced by postcomposition with f as claimed.

This result allows us to “tidy up” the ideas introduced in sections 5 and 6 about
coherent extensions. The “obvious” coherent version of the definition of a (right)
coherent Kan extension would now be:
Let K : A→ B, F : A→ C be S-functors; then a functor R : B→ C is a coherent
(right) Kan extension of F along K if there is a family of homotopy equivalences

Coh(GK,F )→ Coh(G,R)

that are coherent in G : B→ C.
We can draw several immediate consequences of this, given the results of section

6.

Corollary 8.3. (i) If C is a locally Kan S-category in the above definition, then
R is determined up to coherent homotopy equivalence.

(ii) If C is a locally Kan and complete, cotensored S-category, then any coherent
right Kan extension R (as above) is coherently homotopy equivalence to RKF.

Proof. (i) is immediate; (ii) needs a verification that the homotopy equivalences of
6.1 are (at least) 1-coherent, but that is clear.

Remarks. (i) It would be pleasing and useful to be able to weaken ‘locally Kan’ in
the above to ‘locally weakly Kan’ as this would allow an interpretation in terms of
∞-categories.

(ii) There is an obvious similarity between the above definition of “coherent in
G” and our earlier discussion of morphisms {f(A)} that vary coherently in A to
give a coherent map f ∈ Coh(F,G). The main difference is that for the version
needed here, the specification of a single higher homotopy will not suffice. Even for
2-coherence, the result is a homotopy coherent cube or prism rather than a single 2-
simplex. This complication occurs because the composition and higher associativity
of the information in A is exact, whilst in the “H-category” Coh(A,B), these
are coherent only. We still can do much but it takes more care! This suggests
that a theory of H-simplicial categories might be developed in which one had H-
simplicial functors etc., in such a way that the two concepts were special cases of a
wider concept. The ‘pay-off’ of such a conjectured theory is not yet clear and the
technical difficulties that might be encountered have not been analysed.

9. Evaluation of coherent morphisms

Given two bifunctors, S, T : Aop ×A→ S there is an “evaluation map”:

Nat(S, T )×
∫
A

S(A,A)→
∫
A

T (A,A)

by the universal property of ends. Here we use Nat as a shorthand for the simplicial
set of S-natural transformations.

There is a coherent version of this, but as one might expect, the map is only
defined up to homotopy as it is given by a choice of filler and, of course, T must
take ‘Kan’ values.
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Proposition 9.1. Let S, T : Aop×A→ S be S-functors so that T (A,A′) is always
a Kan complex. Then there is a map

Coh(S, T )×
∮
A

S(A,A)→
∮
A

T (A,A),

defined uniquely up to homotopy, induced by evaluation of coherent transformations
at the various indices.

Proof. Collecting up the various defining formulae:

(i) Coh(S, T ) =
∫

S( ̂(Aop ×A)((A,A′), (B,B′)),S(S(A,A′), T (B,B′))) where
the end is taken over all pairs (A,A′) and (B,B′) in Aop ×A and

(ii)
∮
A S(A,A) =

∫
C,C′ S(Â(C,C′), S(C,C′)).

Together these give us a map from Coh(S, T )×
∮
A
S(A,A) to∫

S( ̂(Aop ×A)((A,A′), (B,B′))× Â(C,C′),S(S(A,A′), T (B,B′))× S(C,C′))

where the end is taken over all triples, (A,A′), (B,B′), (C,C′) in Aop×A. Hence
by restriction of the indexing category for the end together with use of the natural
maps:

S(S(A,A′), T (B,B′))× S(A,A′)→ T (B,B′),

we get a map from Coh(S, T )×
∮
A S(A,A) to∫

(A,A′),(B,B′)

S( ̂(Aop ×A)((A,A′), (B,B′))× Â(A,A′), T (B,B′)),

which is isomorphic to∫
B,B′

S(

∫ (A,A′)
̂(Aop ×A)((A,A′), (B,B′))× Â(A,A′), T (B,B′)).

Our aim is to get to
∫
B,B′ S(Â(B,B′), T (B,B′)); hence we extract the term in the

coend part of the expression:

∫ (A,A′)
̂(Aop ×A)((A,A′), (B,B′))× Â(A,A′)

=

∫ (A,A′) ∫ [n],[m]

XAop×A((A,A′), (B,B′))n, ×∆[n]×A(A,A′)m, ×∆[m].

(∗)

This gives as ‘integrand’∐
In,m

(Aop ×A)((A,A′), (A0, A
′
0))× . . .× (Aop ×A)((An, A

′
n), (B,B′))

×∆[n]×A(A,C0)× . . .×A(Cm, A
′)×∆[m]

where In,m = {A0, . . . , An, A
′
0, . . . , A

′
n, C0, . . . Cm} and since

(Aop ×A)((W,X), (Y, Z)) = A(Y,W )×A(X,Z),
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this can be rewritten as∐
In,m

A(B,An)× . . .×A(A0, A)×A(A,C0)× . . .×A(Cm, A
′)

×A(A′, A′0)× . . .×A(A′n, B
′)×∆[n]×∆[m].

Now “integrating” over A and A′, we get that the coend (∗) above reduces by
‘Fubini’ to ∫ [m],[n]

∆([n]op + [m] + [n], [s])×∆[n]×∆[m]×X(B,B′)s,

somewhat as in our discussion of composition in section 4. Thus we have shown
that the evaluation maps induce a natural map

Coh(S, T )×
∮
S(A,A)→ hom(E, Y (T )),

where E is the cosimplicial simplicial set given by

E(s) =

∫ [m],[n]

∆([n]op + [m] + [n], [s])×∆[n]×∆[m].

Each “block” of maximal dimension, s, in this, i.e. each ∆[n]×∆[m] with m+n = s,
can be assigned a labelling map with domain [n]op+[m]+[n] with the characteristics:
restricted to the central [m], it is injective, whilst on the side it repeats values at
different positions in the two copies of [n]. For example, for s = 2 with m = 0,
n = 2, we have labels

domain 2 < 1 < 0 < 0′ < 0′′ < 1′′ < 2′′

image 0 < 1 = 1 = 1 = 1 < 2 = 2
0 = 0 < 1 = 1 = 1 = 1 < 2
0 < 1 < 2 = 2 = 2 = 2 = 2
0 = 0 = 0 = 0 = 0 < 1 < 2

similarly for m = 1, n = 1 and m = 2, n = 0, again for s = 2. Any other labelling
map can be reduced to a face or degeneracy of one of these. The combinatorial
structure of these simplicial sets is similar to that of the triple subdivision of ∆
discussed briefly when we discussed the coherent associativity of compositions. The
only difference is the reverse direction on the first sector. For fixed s and m, take
n1, n2 such that n1 + n2 = n = s−m; then ∆[n1] ×∆[n2] is given by all shuffles
of n1 through n2, hence by the distinct positions at which repeats can occur in the
two copies of n in the expression for E(s), so apart from the reversal of the order,
E(s) is “essentially” the same as∫ [m],[n1],[n2]

∆([n1] + [m] + [n2])×∆[n1]×∆[m]×∆[n2],

i.e. the triple subdivision of ∆[s].
By “essentially the same”, we mean that

| E(s) |∼=| ∆[s] |∼= ∆s,

so provided T takes Kan values, we can construct a map

hom(E, Y (T ))→ hom(∆, Y (T ))

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



46 J.-M. CORDIER AND T. PORTER

by choosing an inverse for the natural homotopy equivalence between Y (T ) and
Sing(| Y (T ) |), then using adjunctions to give

hom(E, Y (T )) hom(E,Sing(| Y (T ) |))
∼=

hom(| E |, | Y (T ) |)
∼=

hom(∆, Y (T )) hom(∆, Sing(| Y (T ) |) hom(| ∆ |, | Y (T ) |)
This completes the proof.

Corollary 9.2. Let S : Aop ×A→ S, T : Aop ×A→ B be S-bifunctors such that
T (A,A′) is always fibrant and suppose B is cotensored. Then evaluation induces a
map

B(S, T )→ B(

∮
S,

∮
T ).

Proof. First note that, when B = S, this is a restatement of 9.1. To reduce it to 9.1
in general, suppose B is an object of B and apply 9.1 to the functor B(B, T ( , ))
in place of T . This, after manipulation using the various adjunctions, gives a map

B(B,B(S, T ))→ B(B,B(

∮
S,

∮
T ))

induced by evaluation. This map is natural in B.
Finally put B = B(S, T ) and look at the image of the identity map.

Proposition 9.3 (Evaluation is compatible with composition). If S, T0, T1 :
Aop × A → S are S-bifunctors so that each Ti takes Kan values, then there is
a homotopy making the square∮

A
S × Coh(S, T0)× Coh(T0, T1)

comp

ev

∮
A
S × Coh(S, T1)

ev∮
A
T0 × Coh(T0, T1)

ev ∮
A
T1

homotopy coherent.

Proof. (This is very similar to the higher associativity results mentioned in section
4.) Evaluating the ends in the top left-hand corner leads once again to a map to
an object of the form hom(X,Y (T1)) where X is a cosimplicial simplicial set with
realisation ∆n in codimension n. (We leave the precise description of X to the
reader.) This as before defines a diagonal for the square. The uniqueness, up to
homotopy, of this map then implies that the two composites around the sides of
the square are homotopic to it, giving the result.

Remarks. (i) This result, which expresses the 1-coherence of evaluation, has ex-
tensions to n-coherence and to sequences of bifunctors Ti with fibrant values in a
cotensored S-category B.

(ii) It seems certain that, like many of our results, a finer proof of this result
should exist, i.e. one that provides a sequence of fillers for extending maps defined
on X over some subdiagonal and hence the possibility of an extension to the weak
Kan situation. Such a proof would seem necessary if one is to escape from the
locally Kan case. This case corresponds intuitively to a laxification of a∞-groupoid
enriched category whilst the weakly Kan context includes ∞-categories.
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10. Coherent adjunctions

Following the logic of the previous sections, we next look at the coherent analogue
of adjunction. For technical reasons we restrict to locally Kan categories A and B,
and suppose we are given S-functors F : A→ B and G : B→ A. We will say the
functors, F and G are coherent adjoints if there is a coherent homotopy equivalence
between B(F , ∗) and A( , G∗), where and ∗ are here used as ‘placemarkers’,
from A and ∗ from B. Thus we suppose given

f ∈ Coh(B(F , ∗),A( , G∗))0,

g ∈ Coh(A( , G∗),B(F , ∗))0,

H ∈ Coh(B(F , ∗),B(F , ∗))1,

K ∈ Coh(A( , G∗),A( , G∗))1

such that H : gf ' Id, K : fg ' Id, assuming a choice of composition has been
made. Restricting f along F , we get

f ,F ∈ Coh(B(F , F ),A( , GF ))0

and hence by 9.1, a coherent map

η = f ,F (IdF ) ∈ Coh(IdA, GF )0.

Similarly one gets

ε = gG , (IdG) ∈ Coh(FG, IdB)0.

Proposition 10.1. Suppose A,B locally Kan, and F : A → B, G : B → A are
given S-functors. Then for any S-functors H0, H1 : B → A, the two composite
maps:

Coh(H1, H0)× Coh(B(F , IdB),A(IdA, G)) × Coh(FH0, IdB)

→ Coh(B(FH0, IdB),B(FH1, IdB))

× Coh(B(FH, IdB),A(H1, G))× Coh(FH0, IdB))
comp→ Coh(B(FH0, IdB),A(H1, G))× Coh(FH0, IdB)

eval→ Coh(H1, G)

and

Coh(H1, H0)× Coh(B(F , IdB),A(IdA, G))× Coh(FH0, IdB)

→ Coh(B(FH0, IdB),A(H0, G)) × Coh(A(H0, G),A(H1, G))

× Coh(FH0, IdB)

eval→ Coh(H0, G)× Coh(A(H0, G),A(H1, G))

eval→ Coh(H1, G)

are homotopic.

Proof. Ignoring for the moment the factor Coh(FH0, IdB), we note that by the
coherent form of the Godement interchange law, the composite:

Coh(H1, H0)× Coh(B(F , IdB),A(IdA, G))

→ Coh(B(FH0, IdB),B(FH1, IdB)× Coh(B(FH1, IdB),A(H1, G))
comp→ Coh(B(FH0, IdB),A(H1, G))
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is homotopic to the composite

Coh(H1, H0)× Coh(B(F , IdB),A(IdA, G))

→ Coh(B(FH0, IdB),A(H0, G)) × Coh(A(H0, G),A(H1, G))

→ Coh(B(FH0, IdB),A(H1, G)).

After forming its product with Coh(FH0, IdB) and composing with the evaluation
map, this latter composite gives a map which is homotopic to the second composite
of the statement of the proposition.

Corollary 10.2. If F and G are coherent adjoints with data as given above then
for any H : B→ A, the family of mappings

f∗ H, : Coh(FH, IdB)→ Coh(H,G)

is 1-coherent in H.

Proof. We need to prove there is a homotopy between the two composites along
the sides of the square

Coh(H1, H0)× Coh(FH0, Id)
Id×FH0

comp

Coh(H1, H0)× Coh(H0, G)

comp

Coh(FH1, Id) Coh(H1, G)

but these two composites are exactly the composite maps of 10.1 restricted, in the
second factor, to the 0-simplex f .

We note that the method of proof of 10.1 does not depend on the particular
forms B(F, Id) and A(Id,G); thus we also have variants of 10.1, 10.2 valid for g
and the homotopies H and K. As a result we obtain:

Corollary 10.3. If L : B→ A is an S-functor, then the data
fL : Coh(FL, IdB)→ Coh(L,G),
gL : Coh(L,G)→ Coh(FL, IdB),
HL : Coh(FL, IdB)×∆[1]→ Coh(FL, IdB),
KL : Coh(L,G)×∆[1]→ Coh(L,G),

(i) vary 1-coherently in L,
(ii) satisfy

HL : gLfL ' Id,
KL : fLgL ' Id.

Thus fL is a 1-coherent homotopy equivalence.

It seems almost certain that, in fact, these data vary coherently in L. The proof
of this would require certain refinements of earlier results and as only 1-coherence
will be needed later, we limit ourselves to this for the moment.

The results we have been using have analogues which prove 1-coherence in the
covariant variable.
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Proposition 10.4. Suppose A,B locally Kan, and F : A → B, G : B → A are
given S-functors. Then for any S-functors L0, L1 : A → B, the two composite
maps,

Coh(L0, L1)× Coh(B(F, IdB), (A(IdA, G)) × Coh(F,L0)

→ Coh(B(F,L0),B(F,L1))× Coh(B(F,L1),A(IdA, GL1)× Coh(F,L0)

eval→ Coh(B(F,L0),A(Id,GL1))× Coh(F,L0)

eval→ Coh(IdA, GL1),

and

Coh(L0, L1)× Coh(B(F, IdB),A(IdA, G)) × Coh(F,L0)

→ Coh(B(F,L0),A(IdA, GL0))

× Coh(A(IdA, GL1),A(IdA, GL1))× Coh(F,L0)

eval→ Coh(IdA, GL0)× Coh(A(IdA, GL0),A(IdA, GL1))

eval→ Coh(IdA, GL1),

are homotopic.

The proof is more or less identical to that of 10.1, so will be omitted.

Corollary 10.5. If F and G are coherent adjoints with data as above then (i) the
family of mappings

f ,L : Coh(F,L)→ Coh(IdA, GL)

is 1-coherent, and
(ii) each f ,L is a 1-coherent homotopy equivalence (as in 10.3).

Of course the two forms, co- and contravariant, of coherence do not interfere with
each other, and there is a corresponding bicoherent form of 10.1 and 10.4 unifying
the two results. The proof is less neat and as any use of such a result could be
reduced to successive uses of 10.1 and 10.3, this result will not be stated here.

Proposition 10.6. Given that F , G are coherent adjoints, there is a homotopy
between the two composites of the square

Coh(FG, Id) × Coh(FG,FG)

id×f

Coh(FG, Id)

f

Coh(FG, Id)× Coh(G,GFG) Coh(G,G).

Proof. In 10.4, replace B(F, IdB) by B(FG, IdB) and A(IdA, G) by A(G,G). Then
taking L0, L1 : B → B, the same proof works, giving a homotopy between the
two composites from Coh(L0, L1)×Coh(B(FG, IdB),A(G,G))×Coh(FG,L0) to
Coh(G,GL1). The proof (e.g. in 10.1) of the 1-coherence of f now gives, after
slight modification, the homotopy coherence of the square,

Coh(L0, L1)× Coh(FG,L0)

id×f

Coh(FG,L1)

f

Coh(L0, L1)× Coh(G,GL0) Coh(G,GL1).
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Finally take L0 = FG, L1 = IdB to get the required result.

Corollary 10.7 (Triangle rule). Given coherent adjoints F , G, there is a 1-
simplex in Coh(G,G) linking IdG with G(ε).ηG.

Proof. (see below in 10.9 and dualise)
We state, without explicit proof, the dual of 10.6.

Proposition 10.8. Given coherent adjoints F , G, there is a homotopy between the
two composites of the square

Coh(Id,GF ) × Coh(GF,GF )
comp

id×g

Coh(Id,GF )

g

Coh(FG, Id)× Coh(G,GFG) Coh(G,G).

Corollary 10.9 (2nd Triangle rule). Given coherent adjoints F,G, there is a 1-
simplex in Coh(F, F ) linking IdF with εF .F (η).

Proof. Evaluate the homotopy from 10.8 at the 0-simplex, {η, IdGF }. The resulting
1-simplex links εF .F (η) with gf(IdF ) but K : gf ' Id, so using the Kan condition
to ‘compose’ 1-simplices, we get the required 1-simplex joining IdF and εF .F (η).

The interpretation of adjoint functors, and even their construction, are aided
greatly by the ‘universal arrow’ type description given for instance in Mac Lane,
[38]:

given F : A → B, G : B → A, ordinary functors between ordinary
categories, to say F is left adjoint to G is to say that there is a map
ηA : A→ GFA universal for maps into objects of the form GB.

This can be conveniently expressed in terms of comma categories or cones. There
is an analogous coherent version of this property and as comma S-categories do
not seem to be available in the coherent context, we will use instead the notion of
homotopy cone (and cocone) introduced by the first author with Bourn in [10].

Given an S-functor F : A→ B, the homotopy cone on F is a functor

hocone( , F ) : Bop → S,

given by hocone(B,F ) = Tot
∏·(B,F ), where

∏·(B,F ) is the cosimplicial simpli-
cial set given by∏

(B,F )n =
∏

A0,... ,An

S(A(A0, A1)× . . .×A(An−1, An),B(B,FAn));

i.e. if cB : A → B is the S-functor with constant value B, then
∏•

(B,F ) =
Y (cB , F ) and so

hocone(B,F ) ∼= Coh(cB, F ).

Remark. We point out (cf. [10]) that holimF , if it exists, is a representative of
hocone( , F ), i.e.

B(B, holimF ) ∼= hocone(B,F ).

If f : B → B′ is any morphism in B, we will write f∗ : hocone(B′, F ) →
hocone(B,F ) for the induced map, i.e. f∗ = hocone(f, F ).
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Dually we have homotopy cocones, hococone(F,B), defined by Coh(F, cB) and
a representative for hococone(F, ) will be a homotopy colimit for F .

We apply this terminology to the coherent adjoint situation in the following
proposition.

Proposition 10.10. Suppose F , G form a coherent adjoint pair with unit η and
data H, K, etc., as before. Then for any A, the identity map on hocone(A,G)
factorises up to homotopy as follows:

hocone(A,G)
Id

hocone(A,G)

hocone(GFA,G)

η∗A

moreover the homotopy varies 1-coherently with A.

Proof. As always we will denote by cA : B→ A, the constant S-functor with value
A, thus cFA = FcA etc. The identification of hocone(A,G) as Coh(cA, G) means
that g, the coherent transformation obtained from the initial data by evaluation,
induces a map

Coh(cA, G)→ Coh(cFA, Id),

which we will denote gA.
Proposition 10.4 gives us a homotopy between the two composites in the square

(cf. proof of 10.6):

Coh(cFA, Id)× Coh(cFA, cFA)
comp

id×f

Coh(cFA, Id)

f

Coh(cFA, Id)× Coh(cA, GcFA)
comp

Coh(ca, GL).

Since f : Coh(F, F )→ Coh(Id,GF ) gives η = f(IdF ), composition with cA : B→
A gives

ηA = f(IdFA) : Coh(cFA, cFA)→ Coh(cA, GFcA),

we can evaluate the above homotopy on the subsimplicial set Coh(cFA, Id)×{IdFA}
to get a homotopy between f and the composite

Coh(cFA, Id)
G

Coh(cGFA, G)
η∗A

Coh(cA, G),

where G denotes the usual mapping associated with composition with the functor
G. Thus we get

Coh(cA, G)
G(g)→ Coh(cGFA, G)

η∗A→ Coh(cA, G)

is homotopic to f.g and hence to the identity on Coh(cA, G) by evaluation of K.
The result follows since each of the constructions given is 1-coherent in A. (As
usual “1-coherent” can probably be replaced by “coherent” here.)

There is clearly a dual to this that we give without separate proof.
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Proposition 10.11. Suppose F,G form a coherent adjoint pair with counit, ε as
above. Then for any B, the identity map on hococone(F,B) factorises up to ho-
motopy as follows

hococone(F,B)
Id

hococone(F,B)

hocone(F, FGB)

ε∗B

Moreover the homotopy varies 1-coherently in B.

Remark. The mapping from hococone(F,B) to hococone(F, FGB) in this diagram
is given by the composite

Coh(F, cB)
f→ Coh(Id,GcB)

F→ Coh(F, FGcB).
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