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HOMOTOPY-DETERMINANT ALGORITHM FOR SOLVING
NONSYMMETRIC EIGENVALUE PROBLEMS

T. Y. LI AND ZHONGGANG ZENG

Abstract. The eigenvalues of a matrix A are the zeros of its characteristic
polynomial

fiX) = dtt[A - XI].
With Hyman's method of determinant evaluation, a new homotopy continu-
ation method, homotopy-determinant method, is developed in this paper for
finding all eigenvalues of a real upper Hessenberg matrix. In contrast to other
homotopy continuation methods, the homotopy-determinant method calculates
eigenvalues without computing their corresponding eigenvectors. Like all homo-
topy methods, our method solves the eigenvalue problem by following eigen-
value paths of a real homotopy whose regularity is established to the extent
necessary. The inevitable bifurcation and possible path jumping are handled by
effective processes.

The numerical results of our algorithm, and a comparison with its counter-
part, subroutine HQR in EISPACK, are presented for upper Hessenberg ma-
trices of numerous dimensions, with randomly generated entries. Although the
main advantage of our method lies in its natural parallelism, the numerical
results show our algorithm to be strongly competitive also in serial mode.

1. Introduction

Consider the eigenvalue problem

(1.1) Ax = Xx,

where A is an n x n nonsymmetric matrix and x = (xj, ... , x„)T. By an
orthogonal transformation, A is similar to a matrix in upper Hessenberg form.
Hence we shall assume throughout this paper that A is an upper Hessenberg
matrix,

A = (a,;)
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484 T. Y. LI AND ZHONGGANG ZENG

We further assume A is irreducible, that is, none of the subdiagonal entries
ajj-X, j = 2, ... , n , are zero; otherwise, we can consider a reduced matrix.

The purpose of this paper is to use the homotopy continuation method to find
all eigenvalues of A . Homotopy continuation methods have been successfully
applied to symmetric tridiagonal eigenvalue problems with remarkable numer-
ical results [10, 14]. The implementation of the continuation algorithm for the
real nonsymmetric case has been discussed in detail in [13]. While the algorithm
in [13] calculates the eigenvalue and its corresponding eigenvector simultane-
ously, the method we propose here focuses on finding only the eigenvalues of
A without computing the eigenvectors. Our homotopy deforms the character-
istic equation of A into the characteristic equation of a matrix D with known
eigenvalues. To distinguish our homotopy from the previous one in [13], we
shall name our method the homotopy-determinant algorithm.

For t£[0, 1 ], let

Ait) = ia.jit)) = il - t)D + tA,

where D = (í7,j) is a matrix, usually called the initial matrix, also in upper
Hessenberg form but with known eigenvalues. Let 77: C x [0, 1] -» C be
defined by

(1.2) HiX,t) = det[Ait)-U].
Let Hx and 77, denote the partial derivatives of 77 with respect to X and
t, respectively. When 2 H = (77A, 77,) is of full rank at (A0, t°) £ H~xi0),
then locally the solution set of 77(A, t) = 0 consists of a smooth 1-manifold
(A(i), tis)) passing through (A0, t°). We shall call such a curve (A(s), tis))
an eigenvalue path. These eigenvalue paths connect the eigenvalues of D and
those of A and satisfy the ordinary differential equation

To effectively follow the eigenvalue paths for finding all eigenvalues of A,
one must efficiently evaluate 77, 77¿, and 77,. For this purpose, the method
of Hyman [7, 18] for evaluating determinants of Hessenberg matrices and their
derivatives will be used. The details will be discussed in §2.

The regularity of the eigenvalue paths needed for a general homotopy algo-
rithm is usually achieved by random perturbation of certain parameters. To
maintain the conjugacy of the eigenvalues of Ait) for each t, so that when a
complex eigenvalue path (A(s), tis)) is followed its conjugate eigenvalue path
is obtained as a by-product without further computations, we restrict the per-
turbation to be real. In contrast to the complex perturbation used in [2, 3, 14,
12], the real perturbation cannot maintain complete regularity of our eigenvalue
paths. Indeed, bifurcations on some of the eigenvalue paths are inevitable. In
§3, we shall establish the regularity of our eigenvalue paths to an extent nec-
essary and analyze the bifurcation behavior. It turns out that the necessary
regularity can be obtained by the perturbation of only four entries of the initial
matrix, regardless of the size of the matrix A .

It is desirable to choose D as close to A as possible, so that the eigenvalue
paths are close to straight lines and thus easy to follow. So, we employ the
strategy of "divide and conquer." The initial matrix D = id¡j) is formed by
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SOLVING NONSYMMETRIC EIGENVALUE PROBLEMS 485

making one of the subdiagonal entries ap+XtP of A zero, namely,

(au,       (i,j)£(p + I,p),
u     10, (i,j) = iP+\,p),

and the eigenvalues of D are obtained by solving the eigenvalues of the reduced
submatrices of D. We conquer the matrix A by following the eigenvalue paths
of our homotopy in (1.2). The algorithm of following the eigenvalue path will
be described in detail in §4.

The numerical results of our algorithm on upper Hessenberg matrices with
randomly generated entries are presented in §5. The results seem very encourag-
ing. The well-developed QR algorithm for nonsymmetric eigenvalue problems
implemented in EISPACK [16], the subroutine HQR, is widely considered to
be the most efficient algorithm available. Compared with HQR, our algorithm
is strongly competitive in terms of both accuracy and speed on the examples we
have tried.

Scientific and engineering research is becoming increasingly dependent upon
the development and implementation of efficient parallel algorithms on mod-
ern high-performance computers. The search for methods of solving eigenvalue
problems on advanced computers has produced several algorithms, such as Di-
vide and Conquer [4, 6] and Bisection/Multisections [8, 9, 15], for symmetric
tridiagonal matrices. Good parallel algorithms for nonsymmetric eigenvalue
problems, however, are still in demand. The most important feature of our
algorithm is its natural parallelism, in the sense that each eigenvalue path is
traced independently of the others. In this respect, it stands in contrast to the
highly serial QR algorithm. The parallel implementation using n processors
should increase the efficiency of our algorithm by a full power of n , making
it an excellent candidate for advanced computer architectures. Reports on this
important aspect will be given in a separate paper.

Concurrent and independent research on parallel computation for nonsym-
metric eigenvalue problems has been carried out by Dongarra and Sidani [5].
Their approach also involves the strategy of "divide and conquer." In contrast
to our algorithm, their method must compute the eigenvalues and associated
eigenvectors at the same time.

2.  HYMAN'S METHOD

For Ait) = iatjit)) = (1 - t)D + tA and x = (xi, ... , x„)T , the system of
equations iAit) - A7)x = 0 can be written as

(aii(O-A)x, + ax2it)x2 + ■ ■ ■ + aXnit)x„ = 0
a2Xit)xx + ia22it) -X)x2 + ■ ■ ■ + a2nit)x„ = 0

ak,k-\{t)xk-\ + iakkit) - k)xk + ■ ■ ■ + aknit)x„ =0

a„, n-1 (t)xn-1 + (ann it) - A)x„ = 0.

Given a value of A, and setting xn = 1 in the last equation, we can solve the
last n - 1 equations recursively for x„_i, ... , x2, xx . These values are then
used to evaluate the left-hand side of the first equation,
(2.2) FiX, t) = (a,,(0 - A)x, + a,2(0*2 + • • • + aXnit)x„ .
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486 T. Y. LI AND ZHONGGANG ZENG

Obviously, FiX, t) = 0 precisely if A is an eigenvalue of Ait). The matrix
Ait) - XI has the form

(axx(t)-X      ax2(t) ax 3(r)       . aXnit)    \
a2\it)      a22it)-X      023(0      . ct2n(t)

an(t)      a33(t)-X. a3n(t)

0 ;
\ a»,«-i(r)   ann(t)-Xj

For j — 1,2, ... , n we multiply the j'th column by xj as found above and
add this to the last column, thereby obtaining the matrix

(axx(t)-X      ax2(t) ax3(t)      .    fli,„-i(r)   F(X,t)\
a2x(t)      a22(t)-X      a23(t)      .    a2¡n-X(t)        0

a32(t)      a33(t)-X   .    û3,ii-i(0        0

0
V <Vn-l(0 0       /

We then have
n-1

77(A, t) = det[A(t) -XI] = (-l)"~xF(X, t)Y[aj+lj(t).
7=1

To compute Hx , we need to compute |j . Differentiating (2.1) with respect
to A, taking into account that the x}■■, j = 1,...,«-1, are functions of (A, t),
and x„ = 1, yields

(an(t)-X)^-xx+ax2it)^ + .-. + aXnit)^=0

an(t)d-^- + (a22(t)-X)d-^-x2 + ---ra2n(t)d-^ = 0

(2.3)
ak,k-x(t)d-^ + (akk(t)~X)^-xk + --- + akn(t)d-^=0

an,n.x(t)?^ + (ann(t)-X)^-xn = 0.

With dx„/dX = 0, we solve (2.3) successively for dxn-X/dX, ... ,dxx/dX,
using the previously computed values of xx, ... , x„ . The value of the left-
hand side of the first equation in (2.3) is then |j . We proceed similarly for
77,.

The method described above, basically Gaussian elimination without piv-
oting, is due to Hyman [7, 18]. The backward stability of this method was
established by Wilkinson in [18]. It was proved that there is little correlation
between the accuracy of the method and the magnitude of the subdiagonal en-
tries of A{t), although it may seem that some subdiagonal entries with small
magnitude would endanger the accuracy of the procedure.
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3. Regularity and bifurcation
The boundedness as well as the smoothness of the eigenvalue paths are the

essential properties needed for the homotopy method. In our case, the eigen-
value paths are always bounded in C x [0, 1] because of the continuity of the
eigenvalue with respect to the entries of the matrix. The smoothness of the
homotopy paths can usually be achieved by random perturbation of certain
parameters. To maintain our homotopy real for important practical considera-
tions, we restrict the perturbation to real perturbation. In contrast to complex
perturbations used in [2, 3, 11, 12], real perturbations cannot guarantee the
smoothness of our eigenvalue paths, and bifurcations, which do not occur when
complex perturbations are used, are inevitable. In [13], regularity and bifurca-
tion results were obtained by using real perturbations on all the upper triangular
entries. In our case, we will show that perturbation of as few as four entries in
the initial matrix is sufficient to achieve the smoothness of the eigenvalue paths
to the extent necessary, along with the simplicity of the bifurcation behavior.

For the initial matrix D = (d¡j) in upper Hessenberg form, with one of
the subdiagonal entries dp+XtP = 0 and dj+ij ^ 0 for j ^ p, we shall take
dXp, dXt„-X, dXn, and dp+x^„ as the only parameters subject to perturbation.
We write

<^i,p+i     •••    di,„_i      di„   \

¿*p,p+l                tip ,n—\ apn
dp+l,p+l     "•• Qp+l,n

dp+2,p+i

dn,n-\ dnn   I

dii>\

, p—i    tipp /
dp+i,„\

O-n.n — 1        (*nn    /

Proposition 3.1. For the homotopy  H(X, t)  = det[A(t) - A7]   with  A(t)  =
(I - t)D + tA there exists a subset Q in R4 with full measure, i.e., R4\£? has

(dxx

d2x

•ip

D d„ n-\   d.*p,p-\ pp
0

where

V

D,

0
_  (Dx     *\

\0     D2)

Dy =

(dxx     •••

d2\    "••

V0        d,
(dp+XyP+x    ■■

dp+2,p+\

V   o
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iV
*- t

Paths in C x [0, 1] Paths restricted in R x [0, 1]

Figure 1. Smoothness of real eigenvalue paths

zero Lebesgue measure, such that if (dXp , dp+x,„ , dx „_], dXn) is in Q, then
(i) the initial matrix D has no multiple eigenvalues ;

(ii) for (X,t)£ 77"'(0) with complex X, Hx¿0 holds;
(iii) // 77 is considered a map from R x [0, 1 ) —► R, then zero is a regular

value of 77, i.e., for every (X, t) £ H~x(0) with real X, (Hk, Ht) is of
rank 1.

From (iii) above, by the Implicit Function Theorem, there exists a real eigen-
value path passing through any (X, t) £ 77_1(0) with real A. By a standard
continuation argument, if 77 is considered a map from R x [0, 1 ) -> R, then
77~'(0) consists of real one-dimensional manifolds, and no bifurcation occurs
in R x [0, 1 ), as shown in Figure 1.

In C x [0, 1), from (ii), the Implicit Function Theorem also guarantees the
regularity of the local eigenvalue path at (A, t) £ H~x(0) with complex A.
Therefore, in C x [0, 1), bifurcation can only occur at a real point (A0, t°) £
77~'(0) at which 77¿ must vanish, i.e., Xo is a multiple eigenvalue of A(t°).
Otherwise, ^77 = (77¿, 77,) at (A0, t°), considered a real 2x3 matrix, has
the form

a   0
0   a

with a = Hx 7+ 0, which is of rank 2 (full rank).
In summary, at a bifurcation point (Xo, t°), since A0 must be real and a

regular point in R x (0, 1 ), there is a real eigenvalue path passing through it.
But no other real eigenvalue path can pass through (A0, f°), since bifurcation
does not occur in R x [0, 1 ). Hence, other bifurcation branches must consist
of complex eigenvalue paths.

It is easy to see that the number of bifurcation branches at a bifurcation
point (A0, i°) equals the multiplicity of Xo as an eigenvalue of A(t°), because
of the continuity of eigenvalues with respect to t and the fixed number of
eigenvalues of A(t), counting multiplicities. We will show in Proposition 3.6
that generically the multiplicity of Xo is no more than two. Therefore, there are
only two bifurcation branches at (Xo, t°), consisting of one complex eigenvalue
path and one real eigenvalue path, as shown in Figure 2.
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r = 0

Figure 2. Bifurcation behavior

Notice that i (= fs) must vanish at (A0, t°), since Hx = 0, 77, ̂  0, and
HxX+Hti = 0. When arc length is used as the parameter of the path (X(s), t(s)),
the tangent vector  (j)  of the branch of the real eigenvalue path at (Xo, /°)
is  (^').   Since A0 is real, if (A, t) £ H~x(0) is on the complex eigenvalue
path passing through (A0, t°), then so is its conjugate (X, t). Accordingly, at
(A°,r°),

s     dX     ,.     X — XX = -r- = hm —— ,as    aï—o  As

which is purely imaginary: the tangent vector (j) of the complex eigenvalue
path at (A0, t°) must be (*') (also see Figure 2).

We now proceed to prove Proposition 3.1.

Definition. Let f(z) = a0 + axz-\-\-a„z" and g(z) = b0 + bxz-\-Ybmzm
be polynomials of degree  n  and  m, respectively.   The determinant of the
(n + m) x (n + m) matrix

/a0    ax     a2 an

b2
ax     a2

V

\

bjbo     bx     b2    ■■■    ■
is called the resultant of / and g.   The resultant of a polynomial and its
derivative is called the discriminant of the polynomial.

The following two lemmas can be found in [17].

Lemma 3.2. Two polynomials have a common nonconstant factor if and only if
their resultant is zero.

Lemma 3.3. A polynomial has a multiple root if and only if its discriminant is
zero.

The next lemma yields a criterion for an n x n irreducible upper Hessenberg
matrix to have no multiple eigenvalues.
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Lemma 3.4. For m real numbers ax, ... , am, there exists a subset Q c R
consisting of at most m - 1 elements such that the polynomial

f(z) = amzm + --- + axz + a0

has no multiple zeros if üq £ Co ■
Proof. The polynomial f(z) has a multiple zero zn if and only if /(zo) =
f'(zo) = 0. Its derivative f'(z) is a polynomial of degree m - 1 which
is independent of ao. Let zx, ... , zm-X be the zeros of f'(z). For
each j = I, ... , m - I,  z,  is a multiple zero of / if and only if ao =
-iamz]l + ... + axZj).   D

Corollary 3.5. Given an my. m irreducible upper Hessenberg matrix B = (b,j),
there is an open subset ßcR which contains all R except for at most m - 1
real numbers such that B has no multiple eigenvalue if bXm £ Q.
Proof. Let f(X) = det[B -XI]. A straightforward verification shows that the
constant term of f(X) can be written as KbXm+c, where K = Y\™=2bjj-X ̂  0
and the other terms of f(X) and c are independent of bXm .   O

Proof of Proposition 3.1. (i) Both Dx and D2 are irreducible upper Hessenberg
matrices. By Corollary 3.5, there exist open subsets Qx, Q2 c R with full
measures such that neither Dx nor D2 has multiple eigenvalues if their entries
d\,p £ ßi and dp+x<„ £ Q2. In addition, we want to show that there exists
an open subset Qx c R2 with full measure such that if (dx,p, dp+Xtn) £ Qx,
then Dx and D2 have no common eigenvalues. Let dp+Xy„ = a £ Q2, and
let Ai(a), ... , Xn-P(a) be the eigenvalues of D2 considered as functions of a.
Each Xj(a) is a continuous function of a . If Xj(a), j 6 {1,..., n — p}, is
also an eigenvalue of Dx, then dx tP must make dti[Dx -X¡(a)I] = 0, and it is
clear that only one such value of dXtP £ C exists for each Xj(a) (see the proof
of Corollary 3.5). That is, there are n - p values sx(a), ... , s„-p(a) (possibly
repeated) in C for dx tP to be such that Dx and D2 have common eigenvalues.
These Sj 's are continuous functions of X¡ (again, see the proof of Corollary
3.5). Thus, they are continuous functions of a. Let E be the closure of the
set {(rfi.p, dp+Í3„)\dp+i,„ £Q2, dx,p £ {sx(dp+x¡n), ... , s„-p(dp+x,n)}} nR2,
which is obviously a subset of R2 with measure zero. Let Q = R2\E. If
(dXiP, dp+x,„) £ Q, then Dx and D2 have no common eigenvalues. Let Qx =
(öi x Ô2) n ß. For every (dx>p, dp+x,n) £ Qx, the matrix D has no multiple
eigenvalues. Qx is clearly an open set with full measure.

(ii) Split 77, A, and x into their real and imaginary parts:

A = £ + ni,
(3.1) x = y + z/,

77(£ + ni, t) = F(Ç + ni, t) + G({ + ni, t)i.

Considering C as R2 and dx,n-X and dXn as variables, we may rewrite equa-
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tion (3.1) as

H(Ç + ni, t,dit„-i,di„)

= C(t)

F(Ç + ni, t,dx,n-X,dXn)~
GiÇ + ni, t,dXtn-X,dXn)_

+ itai,n-i +il-t)di,„-i)yM-i + ita\,„ +il-t)dUn)y„
+ (íai,„_i + (l -t)di,n-i)z„-i + itait„ + il -t)dx,n)z„

where C(t) = tY["j=2ajj-i and

an,n-iit)(yn-\ + zn-\i) + (ann(t) -{ - t]i)(yn + z„i) = 0

with yn = 1 and z„ = 0. Here, a„,n-X(t) = ta„,n-X + (1 -t)d„,n-X ^ 0. Thus,

(ann(t)-d) _ n
yn-\ =

and
^77 =

a„,„-i(t)

Ft    -Gs    F,    Fd

7-n-\ =
an,n-\(t)

[G¿     Fç     Gt   Gdin
Fi    -Gç    Ft     Fd

'i

Fdin
Gdln

C(t)(l-t)
C(')(l-')ri 0
a„.n-\(t)

Since n ^ 0, we have rank[ü?77] = 2. From Sard's Theorem (see, e.g., [1, §2]),

»B-m.w-(% 'g £)

there exists a subset Q2 c R2 with full measure such that if idx ,„_i, dXn) £ Q2
then

Ft
Gç     Fç     Gt

is of full rank for all (A, t) £ 77"'(0) n [(C\R) x (0, 1)].
(iii) Let U = R x (0, 1) and  V = R.   Consider dXn  to be a variable of

77: U x V -* R, and write

77(A, t, ¿,„) = C(f)[(fln(0 - A/)*i + fli2(0*2 + • • • + (i«i« + (1 - 0¿m)*»].

With x„ = 1 , we have ^77 = [77A, 77,, C(i)0 - t)], which is of full rank.
By Sard's Theorem, there exists a subset Q3 in R with full measure such
that if dXn £ Q3 then a? 77 = (77^, 77,) is of rank (real dimension) 1 for all
(A,i)6#_1(0)n[Rx(0, 1)].

To satisfy (i), (ii), and (iii) simultaneously, we let

Q = (Q, x R2) n (R2 x Q2) n (R3 x Q3).    D

Proposition 3.6. There exists an open set ßo £ R2 with full measure such that
if (i/i,„-i, dXn) £ Qo, then for each t £ (0, 1), any eigenvalue X of Ait) has
multiplicity less than or equal to 2.
Proof. Consider 77 = detL4(/) - A7] to be a polynomial in A with parameters
t,dXn-X, and dXn. Let f(t,dx>n-X,dXn) and g(t,dXz„-X) be the discrimi-
nants of 77 and 77A , respectively, where g is independent of dXn . Obviously,
both / and g are not identically zero. Consider / and g to be polynomials
in t with parameters dXy„-i and dXn , and let kidx >H_i, dXn) be the resultant
of / and g. Evidently, if Ait) has a triple eigenvalue at some to for fixed
parameters d* n_x and dXn , then k(dx* _x, dXn) must be zero. It is easy to
see that kidXi„-X, dXn) is not identically zero. Indeed, for fixed dx „-X , there
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are only finitely many zeros tx, ... , t¡ of g , and for this dXt„-X and each t¡,
7 = 1,...,/, there are only finitely many dXn which make / zero. Therefore,
we can easily choose dXt„-X and dXn such that / and g have no common
zeros in t.

The zeros of k(dx t„-X, dXn) form a one-dimensional algebraic set in R2. We
may choose ßo = R2\fc-1(0), which is open and dense with full measure.   D

4. Following the eigenvalue paths
In the previous section, we showed that, theoretically, the desired regularity

and simple bifurcation of the eigenvalue paths can be obtained with probability
one by choosing four entries a = (dXp , dp+Xy„ , dx ;„_i, dXn) of the initial ma-
trix D = (d¡j) at random. In practice, in order to apply the strategy of "divide
and conquer," we let

i41v dij=au   if (/,;) ¿ip+l,p),
dp+i,p= 0     if (i,j) = (p + I, p),

for a certain p « n/2. We intend to perturb the parameters in a when we
encounter singularities, which, however, never occurred in our extensive numer-
ical experiments. Apparently, the roundoff errors in solving for the eigenvalues
of the matrix D usually provide sufficient perturbations.

4.1. Following the real eigenvalue paths. Curve jumping is the most serious
difficulty in following eigenvalue paths. Namely, when an eigenvalue path Yx
is followed, we may inadvertently jump to an eigenvalue path T2 which passes
close to Ti. Usually, this phenomenon only occurs in following real eigen-
value paths. When a complex eigenvalue path is followed, the path lies in
C x [0, 1 ], which has one more dimension, and there is more room for maneu-
vering. Hence, when we trace a real eigenvalue path, special attention must be
paid to prevent curve jumping. In the following, we first give several special
features of our homotopy which are particularly useful in virtually eliminating
the possibility of curve jumping occurring.

For the choice of the initial matrix D in (4.1),
Ait) = il -t)D + tA

/axx    .       aXn\

a2x   a22. :

a32    '■• :

Clpp

tdp+\,p

0
\ tln,n-\      O-nn'

Notice that / only occurs in the ip + 1, p) entry. From simple observations,
the homotopy 77(A, t) = det[^4(i) - A7] can be written as

(4.2) HiX,t) = fxiX) + tf2iX),
where fx and f2 are polynomials in A of degrees n and n - 2, respectively.
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correction

X = X
"*i>r f^-—"— ^i' M/(Uí*)^-^"(Mi)

earlier prediction   /

'(Vo)

Figure 3. Newton iteration with fixed A = Xx

The representation of 77 in (4.2) leads to the following very useful properties:
(i) Given any Xq £ R, if f2(Xo) ^ 0, there exists a unique to £ R such

that 77(Ao, to) = 0. Since f2 has at most n - 2 real zeros, any nonconstant
component X(s) of any real eigenvalue path (X(s), t(s)) must be monotone.
Consequently, if

• • • *C Aj._t *C Ár <*! A-,% <C • * •

are real eigenvalues of D, the eigenvalue path (X(s), t(s)) emanating from
(A°,0) will stay in (X°r, A°+1)x(0, 1) if X(s) is monotonically increasing, and in
(A°_i, A°) x (0, 1) if X(s) is monotonically decreasing. Based on this property,
when a real eigenvalue path is followed, we may keep the eigenvalue path to
stay within proper boundaries to prevent jumping.

(ii) Since H(X, t) is linear in /, for any t* £ (0, 1) and any Xx £ R with
h(h) ¥" 0> the one-step Newton iteration gives

(4 1\ t  - /*     H^x ' **)

for which 77(Ai, tx) = 0. (See Figure 3.)
Another important property of real eigenpaths is the following degree-

preserving property.

Proposition 4.1. Let

P = {(X(s),t(s))£Rx[0, l]:s£ [S0, Si]}

be a segment of an eigenpath which contains no bifurcation point. Then

deg[A(s), t(s)] = sign[77A(A(5), t(s))] = const

for s£[So,Sx].
Proof. The function 77^ is continuous and is equal to zero only at bifurcation
points.   D

From this proposition, and property (i) above, when tracing a real eigen-
path, we may check its degree and keep the eigenvalue path within the proper
boundary to prevent jumping.

To follow a real eigenvalue path T = (X(s), t(s)), let (Xo, to) be a point on
T. We first calculate the tangent vector (A, i) at (Xo, to) ■ When arc length is
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used as the parameter of the eigenvalue path, the tangent vector can be obtained
by solving the following system:

77^ + 77,^ = 0,
A2 + i2 = i.

As described in §2, both 77¿ and 77, can be evaluated efficiently by Hyman's
method. The sign of i is always chosen to be positive.

With the tangent vector (A, i) at hand, we make the prediction (Xo, t°) =
(Ao, h)+S(X, i) with a step size ô > 0. This prediction will be the initial point
of the correction iteration. The correction can be carried out in two ways:

1. If t° ^ 1 and \X\ is not too small, say \X\ > 10-4 , then the slope dX/dt is
not close to zero. That is, locally the eigenvalue path is not close to horizontal.
Hence, the horizontal line X = X\ should intersect the eigenvalue path. In this
case, we may perform the correction on the horizontal line A = X\. Namely,
we use what we described in formula (4.3):

Xx = A|,
o     H(X\,t\)

1      '     Htik\,t\Y
The advantage of this iteration is that only one step of Newton's iteration is
necessary to obtain tx from t\ for fixed Xo for which 77(Ai, tx) = 0.

2. If \X\ « 0, the horizontal correction formula in method 1 is not applicable,
since the horizontal line A = Xo may not intersect the eigenvalue path which is
nearly horizontal. In this case, however, the vertical line t = i° will intersect
the eigenvalue path. Thus, we can correct Xo for fixed t = t° by using the
formula

HjXm, t°x)X7,+X=XT-     v ' '   ■' ,        m = 0,1,
H. (im     ,(h '

We end the iteration if \HiXm, t°)/HxiXm , t°)\ < e, where e is a preset error
tolerance, and let (Ai, fi) = (A^"+l, i?).

After obtaining (Ai, tx), we must check
(a) if (Ai, ii) is in the proper region described in property (i);
(b) if sigiTOAo, to)] = sign[i/A(A, ,tx)].

In (a), if (Ai, ii) is out of the region, path jumping occurs. We thus discard
(Ai, tx), repeat the prediction with half the step size, and correct again. For (b),
if the sign of 77¿ changes at (Ai, tx), then either path jumping or bifurcation
occurs. In this case, we shall try the bifurcation treatment first (see §4.3). If
there is no bifurcation between (Ao, in) and (A(, tx), then we conclude that
curve jumping has taken place. We cut the step size in half and repeat the
prediction and correction at (Ao, to).

If (Ai, ii) passes both tests (a) and (b), i.e., iXx, tx) lies in the proper region
and no sign change for 77¿ occurs at (Ai, ii), we accept (Ai, tx) as a new point
on the eigenvalue path T.

4.2. Following a complex eigenvalue path. Complex eigenvalue paths appear
in pairs. If (A(s), i(s)) is a complex eigenvalue path, so is its conjugate (A(s),
i(s)). We need to follow only one of them, say, the one with positive imaginary
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part in X(s). Let (Ao, io) be a point on T = (X(s), t(s)) with Im(A(i)) > 0.
The tangent vector (À, i) at the point (Ao, io) is the solution of the following
system of equations:

HxX + Hti = 0,
Xx + t2 = 1       (i > 0).

After finding the tangent vector (A, t), we make the prediction

(Xx,t°x) = (X0,to) + ô(X,i)

with step size Ô > 0. Since 77(A, i) = 0 is a system of two real equations
in three variables (counting real and imaginary parts of A), in order to apply
Newton's method for the correction, we add one more equation. This equation
is in the form of a plane

(4.4) Re[û(X-Xx)] + v(t-t°x) = 0,

where («,d)gCxR. There are three options for the choice of the plane in
(4.4):

(i) When i « 1, we choose (u, v) = (0, 1). With this choice, the correction
is executed for fixed t = t°. The Newton iteration has the simple form

Áx     -Ax     /W,r?)

and the cost is as low as 4«2 + 0(n) floating-point operations per step.
(ii) If i « 0, we choose (w, v) = (A, i). The correction in this case is in the

plane perpendicular to the tangent vector.
(iii) When bifurcation is suspected, i.e., Im(A°) > 0, we choose iu,v) =

(i, 0) because (/, 0) is the tangent vector at the bifurcation point. This case
will be discussed in more detail when we treat bifurcation in the next subsection.

We then perform Newton's iteration on the equation 77(A, t) = 0 augmented
by (4.4) with proper (u,v), starting from the initial point (Xo, t°). If the
iteration does not converge, we cut the step size in half and repeat the prediction-
correction step again at (Ao, io). If Newton's iteration converges, let (Ai, it)
be the limit point. If Im(Ai) > 0, then there is no bifurcation between (Ao, io)
and (Ai, tx), and we thus accept (Xx, tx) as a new point on T. If Im(Ai) < 0,
then there is bifurcation between (Ao, io) and (Xx, tx). We then follow the
bifurcation treatment described in the following subsection.

4.3. Bifurcation. Bifurcation cannot be avoided in our homotopy. Therefore,
we must develop an efficient algorithm to identify the bifurcation point and
continuously follow the bifurcation branches. In [13], a method is introduced
to detect and pass the bifurcation point for a real homotopy. However, the
simplicity of our homotopy and associated eigenvalue paths makes room for a
much more efficient method.

4.3.1. Real-to-complex bifurcation. As we mentioned before, if (Ao, io) and
(X\, tx) are two consecutive points obtained on a real eigenvalue path T =
(X(s), t(s)), and the sign of 77¿ at (Xx, tx) differs from the sign of 77¿ at
(Aq, io), then a bifurcation point (A0, i°) exists between these two points, at
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Figure 4. Space lifting in bifurcation situation

which Hx must vanish. We first use linear interpolation to approximate A0 ;
that is, we let

Aq -Ai
A = Ao - Hx(Xo, to) '■

Then, we fix Â and solve for i by

(4.5) t = t0

Hx(Xq, to) - HX(XX, tx)

H(X,to)
77,(A,i0)

The point (Â, t) will be taken as an approximation of the bifurcation point
(A0, i°). With the "lifting" technique described below, the accuracy of the
approximation (Â, t) becomes much less important.

From (A, t), we make a prediction of the complex bifurcation branch by
lifting (Â, i) into the complex space C x [0, 1]. That is, we add 10 1 ° |Â | / to
Â and take (Â+ 10~10|Â|z, t) as our prediction. Then the correction is carried
out on the plane Im(A) = 10~10|Â| (option (iii) of the plane in (4.4)) (see Figure
4). This procedure is very efficient. The real-to-complex space transition can
be completed without computing the tangent vector at (X, t).
Remark. Curve jumping can also cause a sign change of 77¿ at (Xx, tx), since
two real eigenvalue paths next to each other have different degrees, i.e., +1
and -1 , among them. This situation can easily be detected. If i in (4.5) is
outside the interval [0, 1 ], or the correction after "lifting" does not converge,
then there is no bifurcation between (Ao, io) and (Ai, ii). Evidently, (Ai, tx)
is on the wrong eigenvalue path and must be discarded. We then cut the step
size and repeat the prediction-correction step at (Ao, io) •
4.3.2. Complex-to-real bifurcation. Let (Ao, io) and (Xx, tx) be two consecutive
points obtained on a complex eigenvalue path. If Im(A0) > 0 and Im(Ai) <
0, then a bifurcation point (A0, i°) with Im(A°) = 0 exists. We proceed by
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basically reversing the steps in real-to-complex bifurcation.   To approximate
(A0, i°), we let <J„ be the solution of

(4.6) Im(Ao + <5À)=10-,0|A0|,

where (Á, i) is the tangent vector at (Ao, io) • Making a new prediction at
(A0, io) with tangent vector (A, i) at (Ao, io) and step size ¿», and carrying
out the correction on the plane Im(A) = 10_10|Ao| (i.e., option (iii) of the plane
in (4.4)), yields an approximation (Â, i) of the bifurcation point (A0, i°). We
then project (Â, i) from C x [0, 1] into R x [0, 1] by taking (Re(Âo), î) as
a prediction of the real bifurcation branch. The correction is made on the line
A = Re(A) to obtain a point (A, i) on a real bifurcation branch. From our
bifurcation analysis, there are two real bifurcation branches with tangent vector
(1,0) and (-1,0), respectively. We thus perform prediction-correction with
each tangent vector separately to trace both eigenvalue paths.

4.4. Step size control, (i) Initial step size. When following an eigenvalue path
of

77(A, i) = det([( 1 - t)D + tA] - XI) = 0
at an initial point (Ao, 0), where Ao is an eigenvalue of D, our first attempt
is to choose the initial step size ô = 1 . The point (Ao, 1 ) will then be taken
as a prediction point, which is followed by Newton's correction at i = 1. This
procedure, 0-order prediction with step size 1 followed by Newton's correction,
is the same as applying Newton's iteration directly for solving the equation

det(^ - A7) = 0

by using Ao as a starting point. The choice of the initial matrix D in (2) makes
the eigenvalues of D very close to the eigenvalues of A . Hence, Newton's iter-
ation on det(A-XI) = 0 with starting point Ao has great potential to converge.
Indeed, our numerical results indicate that the vast majority (usually more than
90%) of the eigenvalues of A can be obtained in this way. If Newton's correc-
tion fails to converge, then we choose the step size in a standard way described
below. In some sense, our homotopy continuation algorithm here mainly plays a
backup role of directly applying Newton's iteration for solving det(,4 - A7) = 0,
starting from the eigenvalue of D.

When the above procedure with ô = 1 fails, we evaluate the tangent vector
(Áo, io) at (Ao, 0). If io is close to 1, then |Ao| « 0, since |A0|2+io = 1 . So, the
eigenvalue path is close to a straight line at (A0, 0) and can tolerate large step
size; we take ô = l//0 in this case. When i0 <C 1, we let ô = max{0.01, |i|5}.

(ii) Cutting the step size. From a given point (Ao, io) £ H~x(0) on an eigen-
value path, we make a prediction (X°,t°) = (Xo, to) + ô(X, i) with step size
ô . In the correction process, if the iteration does not show a "tendency to con-
verge," we will repeat the prediction at (Ao, io) with step size a/2 . As criterion
for judging the "tendency to converge" we use

\x\+x -x\\<\\x\-x\-x\.
(iii) Increasing the step size. When the prediction-correction step at (Ao, io)

is successful, we obtain a new point (Ai, ii) on the eigenvalue path. If the angle
between the tangent vectors at these two points is small (say, less than  15°),
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then it appears that the eigenvalue path is quite flat and we double the step size
in our first prediction attempt at (Xx, tx). Otherwise, the last successful step
size in achieving (Xx, tx) is used for the prediction at (Ai, tx).

(iv) Adjusting the step size. If the prediction (A0, t0) + ô(X, i) gives to + âi >
1, then we let ô = (1 - ío)/í, making the prediction reach the plane i = 1.

5. Numerical results
The eigenvalues of the initial matrix

Dx     *
0     D2

consist of the eigenvalues of the submatrices Dx and D2, both irreducible up-
per Hessenberg matrices. The strategy of "divide and conquer" can certainly
be repeated in finding the eigenvalues of Dx and D2, etc. However, our expe-
rience shows that the QR algorithm implemented in EISPACK [16], the HQR
subroutine, is normally faster than our algorithm for n < 25. Therefore, we
stop the "divide" procedure when the sizes of the submatrices are less than 25.
We determine the eigenvalues of the submatrices by the QR algorithm and then
start the "conquer" procedure consecutively.

We first tested our algorithm on n x n upper Hessenberg matrices A =
(a¡j) with entries -1 < a,; < 1 generated by a random number generator.
The computations were done on a SPARC Station 1 in double precision. In
comparing with HQR on a common basis of accuracy, we require the computed
eigenvalues Xx, ... , X„ to satisfy

Í5.F 1   "
- Jl&J - aJJÎ

7=1
< 10 -16

the same trace-accuracy HQR achieves.
For fixed matrix size n , we executed our algorithm on more than 20 differ-

ent matrices that are consecutive in a preset random number sequence. The
results are shown in Table 1. The efficiency of our algorithm is closely related
to the amount of bifurcations one encounters in following the eigenvalue paths.
Thus, for fixed n , the CPU time of each individual case varies in a relatively
wide range. Nevertheless, the average CPU time is still quite encouraging. For
comparison, the results for HQR on the same matrices are also listed in Table
1. While the potential of our method lies in its natural parallelism in the sense
that each eigenvalue path can be followed independently, it is remarkable that
our algorithm is strongly competitive on these examples even on serial comput-
ers. The parallel implementation of our algorithm using n processors should
increase the efficiency by a full power of n, making it an excellent candidate
for advanced computer architectures. In contrast, the QR iteration is inherently
highly serial.

In addition to testing the trace-accuracy given in (5.1), we also tested the
difference between the corresponding eigenvalues evaluated by both methods.
Let Â, and À,, / = 1,...,«, be eigenvalues obtained by using HQR and our
homotopy method, respectively. Put Â, and À,, i = 1, ... , n, in "ascending"

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SOLVING NONSYMMETRIC EIGENVALUE PROBLEMS 499

Table 1. Time comparison between HQR and H-D
(H-D = Homotopy-Determinant method)

Matrix
order

time (seconds)
minimum maximum average

Average time ratio

HQR/H-D
20 HQR 0.34 0.49 0.3973

H-D 0.21 1.51 0.5609 0.708
25 HQR 0.63 0.87 0.7388

H-D 0.38 1.58 0.7144 1.034
50 HQR 4.58 5.68 5.11

H-D 2.01 7.72 3.96 1.29
100 HQR 34.05 39.02 36.41

H-D 11.99 40.72 22.90 1.59
200 HQR 254.52 281.57 266.30

H-D 72.28 340.24 142.01 2.26
300 HQR 643.18 660.50 651.84

H-D 208.26 579.51 320.88 2.03
400 HQR 1536.61 1563.24 1549.40

H-D 510.07 1779.93 689.47 2.25

order
Ai -! Â2 -<-û„,
Xx -< X2 -< • • • -<. Xn ,

where a < b means either (i)  Re(«) < Re(Z>)  or (ii) Re(a)
Im(a) < lm(b). Then we found that the estimate

maxi<;<„|A;-A;|
ÑU < 1.0 x 10 -10

Reib) but

held on all of our testing examples. Apparently, both methods have about the
same accuracy on random matrices.

As we discussed in the last section, 0-order prediction with step size one at
an initial point (Ao, 0), where Ao is an eigenvalue of the initial matrix D,
followed by Newton's correction at i = 1, or equivalently, applying Newton's
iteration directly to det(^l - A7) = 0 with starting point Ao , has great potential
to converge. If it converges, the corresponding eigenvalue of A is obtained with
one step in following the eigenvalue path. We shall call such an eigenvalue path
an "easy path." We show in Table 2 (see next page) the percentage of the "easy
paths" we found in each category. It can be seen that the overwhelming majority
of the eigenvalue paths are "easy paths." Bifurcations are inevitable when real
homotopies are used. We also show in Table 2 the bifurcation frequency, that is,
the average number of bifurcation points encountered in following all eigenvalue
paths for each matrix. It appears that the choice of the special form of the
initial matrix D and using the strategy of "divide and conquer" minimize the
occurrence of the bifurcation points. In all our computations, curve jumping
was never a problem before the final results were reached, and was effectively
prevented by adjusting the step size.

Usually, eigenvalues of random matrices are well-conditioned. To test the
accuracy of our algorithm on ill-conditioned eigenvalues, we constructed testing
matrices with some ill-conditioned eigenvalues in the following way.
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Table 2. Rates of "easy" paths and bifurcations

Matrix order
n
25
50

100
200
300
400

Percentage
of

"easy" paths
87.1%
92.3%
93.4%
95.7%
98.1%
96.0%

Bifurcation frequency
(total bifurcation points on

all paths per matrix)
0.92
1.27
2.08
2.78
0.92
.56

Let A be a matrix in the block form
J   0    0

I 0    J    0
0    0   A

where J is a 5x5 Jordan block with multiple eigenvalue 0 and A is a 90 x 90
matrix of the following form:

x

A =

x
x

0 0
0 0
0 0
0 0

0   0
V o  o

X X

X X

0 0
0 0

*
*
*

X

X

*

*

*

*

X

X

* \

0   0
0   0

X

X

X

x/

where the diagonal blocks consist of 2x2 matrices ( * * ) with known and
evenly distributed eigenvalues, and the *'s above the diagonal blocks are ran-
domly generated numbers. Thus, the matrix A is a 100 x 100 matrix with a
10-fold ill-conditioned eigenvalue 0 and 90 well-conditioned simple eigenvalues.
Now we use a randomly chosen orthogonal dense matrix U to make UJAU
a dense matrix. Then a standard algorithm is applied to reduce it to upper
Hessenberg form. Let the resulting upper Hessenberg matrix be B on which
we perform both HQR and the homotopy method. The results for the ten
ill-conditioned eigenvalues are listed in Table 3.

For the 90 known well-conditioned eigenvalues

Ai -< A2 -< • ■ ■ -< A90

of A, let
Xx -< X2 -< ■ ■ ■ -< A90   and   Ai -< X2 -< • ■ • -< A90

be eigenvalues obtained by HQR and the homotopy method, respectively. The
respective accuracies are shown in Table 4. These results clearly show that our
method achieves about the same accuracy as HQR .
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Table 3. Results for ill-conditioned eigenvalues

exact
eigenvalue

corresponding HQR
results

corresponding homotopy
results

0 -0.000880 -0.000903
0 -0.000730 ±i 0.000530 -0.000694 ±i 0.000506

-0.000272 ±/0.000837 -0.000276 ±i 0.000852
0.000278 ±i 0.000859 0.000273 ±i 0.000841
0.000712 ±i 0.000517 0.000727 ±i 0.000529
0.000803 0.000817

Table 4. Results for well-conditioned eigenvalues

maxi<,-<9o|A;- - A;|

maxx<j<90\Xj -Aj\

maxi</<90 |A_,- — Xj\

9.5300 x 10"
7.6840 x 10-h

1.8460 x 10-"
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