HOMOTOPY GROUPS OF COMPACT LIE GROUPS
E;, E; AND E;

HIDEYUKI KACHI

§1. Introduction

Let G be a simple, connected, compact and simply-connected Lie group.
If k¥ is the field with characteristic zero, then the algebra of cohomology
H*(G ; k) is the exterior algebra generated by the elements 2z, :--,z, of

the odd dimension #n, -« +,#n,; the integer [ is the rank of G and == zz} n;
is the dimension of G. Let X be the direct product of spheres of dimérzl;ilon
#y » - +,n;, then there exists a continuous map f:G—> X which induces
isomorphisms of HYX;k to HYG;k) for all i (cf. [8]). From this we
deduce by Serre’s C-theory [8] that fy :m(G)—>n(X) are C-isomorphisms
for all i, where C is the class of finite abelian groups. Therefore the rank
of n(G) is equal to the number of such 7 that #, is equal to ¢, and
particularly if ¢ is even, then =,(G) is finite. It is a classical fact that
7,(G) = 0 and n(G) = Z.
According to Bott-Samelson [6] ;

ﬂi(Eﬁ) =0 fOI' 4 < 1 < 8 ’ ﬂg(Es) = Z,
r(E) =0 for 4<i <10, . (Eq) = Z,
m(Ey) =0 for 4<i <14, ms(Ey) =2

where E;, E; and E; are compact exceptional Lie groups.

In this paper, using the killing method we compute the 2-components
of homotopy group =;(G), where G = E, E; and FE,. The resuls are stated
as follows;

i la<j<14| 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
ni(Es 1 2) 0 Z |\ Z |z Z| 0o oz | olz+z
j 24 2% | 26 | 27 | 28
tf(Es:2) Zi+Z | Z | O | Z | 0
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j 4<j<10l 11 | 12 | 13 14’15 16117 18 19
y)(Ey 2 2) 0 Z |\ z |z | 0|z | 2| 2| 2 |z2+z

j 20 | 21 221 23 24 25 )
B2z, | 2, 24|zz+22+22122+22+z2 Z, + Z,

j 4<75<8] 9 10 11 12 13 14 ' 15 16 17

J
7, (Es : 2) 0 z ol z Z4|0 o |z | o lz+z

i 18 19 20 21 22

ﬂj(Ee' . 2) le + Zz 0 Zg 0 0

All spaces that we concider in this paper are those which have the
homotopy groups of finite type. Let G be such a space, then =,(G) is
isomorphic to the direct sum of a free part F and the p-components of
7(G) for every prime p. We denote by (G :p) the direct sum of a
certain subgroup F’ of F and the p-component of 7,(G), where the index
[F; F'] is prime to p.

Given an exact sequence for such A,B and C
+ o —>(A)—> ny(B) —> 7, (C) —> - - -,
then we can form the following exact one in our case
e —>mAip)—>n(B:ip)—rC:ip)—> - - -

The author is indebted to Professor H. Toda for his advice during the
preparation of the paper.

§2. The cohomology of the 3-connective fibre spaces of E;,E, and
E;.

H. Cartan and J.P. Serre introduced a method to calculate the
homotopy group in [7). Let K(z,n) be an Eilenberg-Mac-Lane space of
type (m,#n).

THEOREM 2.1. Let X be an arcwise connected topological space, then there
exists a sequence of (n — 1)-connected spaces (X,n) (n =1,2,++ -, and (X,1) = X)
and continuous maps f, : (X,n + 1) —> (X, n) such that:
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(L) the triple (X,n + 1), fa, (X,n)) is a fibre space with a fibre K(n,(X),n —1).
(II) there exists a fibre space X! over the base space K(m,(X),n), where X/ and
(X,n) are of the same homotopy type, such that the fibre is (X,n + 1).

Hence fio fyo -+« o fu, defines the isomorphism of m(X,n) to =(X) for
i = n.

Lemma 2.2. Let X be a 2-connected topological space. Assume that X
satisfies the following conditions,

(1) my(X) is isomorphic fo an infinite cyclic group,
2) HYX;Z,)=AQA® - QA QB

where x5 is a generator of HYX ; Z,) =< Zyy Ay = Zy[23)/(25)%, Ay = Z,[Sq#Sg?* « - -
Sz, )/(Sq¥Sq¥ ™ « « « Sg?x,)?" (s; 2 1) 1< i<y, and Sg*'Sqg* + -+ Sg*x, =0,
then

H*((Xa 4) 5 Zz) = Zz[w] ® A(do, Qs = * 9ar) ® B’

where the deg.a; = (217! 4 1)(25 — 1) + 2%, deg.w = 22", d(ap ays * - +, a,) indicates
a submodule having a,, -+ -,a, as a simple system of generators and B is
wsomorphic to B by (fio feo fo)* i HYX ; Z,) —> H*(X, 4) ; Z,).

Proof. From the above theorem, there exists a fibre space ((X,4),
Jio fo0 f3, X) with a fibre K(Z,2). Since K(Z,2) is the infinite dimensional
complex projective space, its mod 2 cohomology structure is H*(Z,2; Z,)
=~ Z,[u], where u is a generator of H*Z,2; Z2,). Let {E}¥*} be the mod 2
spectral sequence associated to the above fibration ((X,4),X, K(Z,2)), then

F=ARA4Q - QA ®BR Z,[ul

Clearly we have d;1®u) = 2, ®1. Hence if »n is even, d,(1®u™) =0,
if n is odd, 4;1Qu™) =2,Qu"?, and dy(zP'Qu™ =0 for all =»n>0.
Thus we obtain

T=4a)R0ARAQ -+ A, ®BR Z[u"]

where @, = ()% ' ® u.

Let r be the transgression, <(u?) = S¢*x;, since the transgression
commutes the Steenrod operation. Thus Jd;(1®u?) = S¢*»,®1. Since d,
s derivative, d;1®u®*)=0 if n is even, d;(1Q u?") = Sg?x, ® u** " if n
is odd, and d((S¢%x;)* -1 ®@u®*) =0 for all » > 1. Thus
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EFF=4(0y,a) QA4 QAQ + ®A, ® BQ Z,[u']

where 4, = (Sg?2,)%—1 & u?.

Carrying on similarly, we have
Eg::l+2 =A(dpdyy**,d,)QBX® Zz[uzvd]

where @; = (Sg¥Sg¥" - + + Sg?x)*~1 @u%,i =0,1,:-+,7, and s;>1. Clearly
d,=0 for all t >2"* + 2. Thus we obtain

EX¥ = Alay,ay, *+ *» *ya,) Q BR Z,Ju?*"].

Since EX* is the graded algebra associated to H*((X,4);Z,), assume
that a;,w, B’ correspond to &, #¥"!, B respectively. We have the lemma.

Particularly, we can assume that B is mapped isomorphically onto B’
by the homomorphism (f,e foo f3)* ; H¥X ; Z,)—> H*(X,4) ; Z,). Thus
the relation of B are arranged in B'.

The mod 2 cohomology algebra of the exceptional Lie groups have been

determined by S. Araki [2] and S. Araki-Y. Shikata [3]. These algebra
are as follow.

2. 1) H*(Fy ; Zy) = Zylasl/(25) @ A(Sq*®s, %15, SG°%15),
(2. 2) HX(E 5 Zy) = Zo[2s)/(25) @ A(SgPxs, Sq*Sq*xs, 215, SE*Sq'SG %4, Sq*%15),
(2. 3) HX(E; 5 Zy) = Zy[%s, Sq°%3, Sq'S*xs]/ (23, (Sg*2s)*, (Sq*Sq*s)*)
& A(%,5, Sq*Sq*Sq* w3, Sq¥ 215, S ST 2 15)s
2.4 HX(Ey 5 Zy) = Zu[%3, SG*% 4 Sq*SqP 23, w151/(25°, (Sq?2)°, (Sq*Sq*xs)*, 15)
X A(SFESE S 2, S¢tx 15 S¢S 215, SES S 45)

where z; denotes a generator of degree i.

(2. 5) In the inclusion F,c E;C E; C E,, every subgroup is totally non-
homologous to zero mod 2 in any bigger group containing it, where each
exceptional group denotes simply-connected one. (See, S. Araki and Y.
Shikata [3], Theorem 3).

If Sg¥S¢8Sq*SqPx; =0 in E, then this is a primitive element. By (2. 4),
there is no primitive element of degree 33. Thus S¢S¢*S¢'S¢?x; =0 in
E,. Similarly we have S¢%S¢*S¢'S¢*x;=0 in E; E; and S¢'S¢?z; =0 in
Fy.

CorOLLARY 2.3, Let G be the 3-connective fibre space over G : where
G=F,E, E;, Ey, then
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HXF, 3 Zy) = Z[ys] ® (Y Y115 Y155 Ysa)s
HYE 3 22) = Zu ] ® Ao, Yuss Usss Yur» Yo Vs
HXE; 3 Z2) = Z[Ysal @ AU 115 Yisr Y19 Y239 Yoo Yo Y35)s
H*(Es 3 Z2) = Zo[ Y15 Ysel (U5) @ A(Yass Yars Yoos Ysss Yss» Yans Yur)s
where y, denotes a generator of degree i. By the naturality of the homomorphism
p* = (f1fofs)*, we have
Sy = Yy in Eg, E Ey and F,,
Sq*yss = ¥y in E, E,,
S@*Yer = Yo  in E,.

Lemma 2. 4.  We have the following relations,

(1) Sq'Ys = Yo SEYs = Yu in Fu
(ii) SPYs = Y11y SPYs = Y1r in Esa
(iii) Sy = Yis in E7-

Proof. (i) From Theorem 2.1, there exists a fibration (F,, K(Z,3),F),
where F, denotes the space which has same homotopy type as F,. We

consider the spectral sequence {E¥} over Z, associated with the above
fibration. Then

Et* = HNZ,3 ; Z,) Q HX(F, ; Z,).
It is known that
HXZ,3 ; Z,) = Zi[v, Sq?v, Sq*SgPv, » - +]

where v is a fundamental class of H¥Z,3: Z,). From the mod 2 cohomology
algebra of F,,Sq'v®1,(S¢%)?*®1 and v+*®1 must be d,-images for some 7.
If p>x0 and 0<¢g<8, or g0 and 0<p=<3, then E?? =0 for all 7.
Since E2*® has only one element 1®y; for <9, S¢'S¢»®@1 is not a
d,-image for r<8. Thus ¢ be the transgression, we have <(y,) = S¢'Sg*.
Since E{°® has only one generator 1®y, and (S¢g*)?®1 is not a d,-image
for r <10, we have that z(y,) = (S¢%v)2..  Consider

d,:EFr*—>FEi*® for p+qg=11 and r =q+ 1.

From Corollary 2.3, we have EZ?=0 for ¢%89. But E}°=0. E°
has one generator v ®y, and dy(v Ry, =vS¢'Se?r @10, for dy(1 & ys)
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= S¢'S¢®» ®1. Thus E?;*' has only one generator 1®y,, and »'®1 is
not a d,-image for » < 11. Therefore we have that (y,)=v'. Using
Adem’s relation, from Sq¢'Sq‘Sq*v = S¢°Sq®v = (Sq™)?, S¢*(S¢*)? = S¢*S¢*Sqv
= Sq¢°Sq’v = v!, we obtain Sq¢'y, = y,, and S¢*y, = ¥,,-

(ii) From Theorem 2.1, there exists a fibration (E;, K(Z,3),E;) where E;
denotes the space which has the same homotopy type as E;. Let = be
the transgression associated with this fibration. Let {E?'%} be the mod 2
spectral sequence associated with this fibration. Then

Ey = H*(Z,3 ; Z,) @ HXE; ; Z,).

By the same argument as in F,, we have that «(y,) = (S¢?)? and <(y,) = v'.
Concider

d,; E?9—> El®° for p+g=17 and r =g+ 1.

From Corollary 2.3, we have E??=0 for ¢=%9,1,15 and 17 (g< 22).
But E#'5 =0, $,° has one generator (vSq*) ®y, and d,,((vS¢®) ® ¥,)
=S¢ ®1x0, for d,1Rvy,) = (Segw)*®1. EH*" has one generator
Ry, and du0*®uYy) =v*®1x%0 for d,(1R®y,) =v*®1.  Thus, since
E%'"  has one generator y;; and (S¢'Sg%)?®1 1is not a d,-image for
r <16, di(l® ¥y = (S¢'Se)* ®1, ie. =(y,) = (S¢'S¢):..  Using Adem’s
relation,  Sqg¥(Sq%)? = S¢®Sq¢’Sq?v = S¢*SqPv = v* and  S¢¥(Sq*)? = S¢*S¢ESqPv
= S¢*Sq¢*Sq®v = (Sq'Sg*v)®.  From the commutativity of the Steenrod operation
and the transgression, we obtain S¢*y, = y,; and S¢*y, = ¥ys.

(iii) Consider the fibration (E;, K(Z,3),E,) of theorem 2.1 (II), where E,
has the same homotopy type as E;. Let {EP?} be the mod 2 spectral
sequence associated with this fibration. Then

E¥ = HYZ,3 ; Z,) @ H*(E; ; Z,).

From the mod 2 cohomology algebra of E;, v*®1 and (S¢»)*®1 must be
the d,-images for some 7. Since H*(E; ; Z,) = 0 for degree < 10, we have
E??%=0 for p=x0 and 0<¢<10. Thus we have that <(y,) = v', where <

is the transgression. Consider
d, ; E?*—>E?° for p+q=19 and r=q+ 1.

From HYE,;Z,)=0 for i=11,15 and i<19, it follow that EZ?=0 for
(p,q) % (4,11) and (2,15). On the other hand H¥Z,3;Z,) =0 for i=2,4
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and i <4. Thus E2?=0 for (p,q) = (4,11) and (2,15). From this we
obtain z(y,,) = (Sg%)!. By Adem’s relation Sg¢** = S¢*S¢°Sq®v = Sq'°Sq*'Sq*v
+ S¢SESEv = SgSPSq® + S¢S Sqlv = (SqPv)i. Thus we obtain S¢ty,,

= Y1g+

LemmAa 2.5.  Let a topological space X be 2-connected and the homology of
finite type. Assume that H¥(X ; Z,) has the additive basis ay, + -+ -, a, for dim.<<N.
Then there exist a finite cell complex K=,Ue Ue,U-++Ue, where dim.e;
= degree a, = n, and a continuous map f ; K—> X such that f induces isomorphism
of HYX ; Z,) onto HXK ; Z,) for dim.< N.

Particularly if wn-1(K™=Y) is finite, then we can assume that the class of
attaching map of e; belong to the 2-components.  Here . denotes a vertex and K™
the n-skelton of K.

Proof. We prove this by induction on dimension N.  Suppose that
there exist a finite cell complex K, = K"-! and a continuous map f,; K,
—> X satisfying lemma 2.5 for dim.<<N. Here we may assume that
fo; Ky—> X is the injection by the mapping-cylinder argument. Suppose
that H¥(X ; Z;) has generator a,, * * *,a,.

From the cohomology exact sequence for pair (X, K,) and the assump-
tion of the induction, we have

HY(X,K,;Z,)=0 for i <N,
HY(X, K, ; Z,) =HY(X ; Z,).

By the duality, we obtain
H(X,K,;Z,) =0 for i<N

and

Hy(X, K, ; Z,) has the generators ds., ** *,a,.

By Serre’s C-theory [8], we have that =nn(X,K)® Z,—> Hy(X, Ky)
® Z, 1is an isomorphism. Let f,:(E¥,S¥)—>(X,K) (i =1,2,+++,7r—5)
be the generators of ny(X,K,) such that they correspond to d,.; by the
above isomorphism and construct a cell complex K which is obtained from
the disjoint union of C(SY'y ...y S¥}Y) and K, by identifying
S¥-ty « ..y S with its image under a map (f;|SY ™)V ¢+ -V (f5=|SP 5
SY¥-ty ...y S¥!—>K, where CY is a cone over the space Y and S¥!
is a (N —1)-sphere. Using the map f; the inclusion map f,; K,—> X has
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an extension over K and we denote this extension by g¢g:K—> X, Then
¢ : K—> X induce an isomorphism Hy(K,K,;Z,) onto Hy(X,K,;Z,) and
from the duality between homology and cohomology, it follows that g¢*:
HY(X, K, ; Z,)— HY(K, K, ;Z,) is an isomorphism onto.

Applying the five lemma to the diagram

HY" K, ; Z,)—> HY(X, Ky ; Z;) — HY(X ; Z;) —> H¥(K, ; Z,) = 0

L e

HY"YK,; Z,)— H¥(K, K, ; Z,)—> H¥(K ; Z,) —> HY(K, ; Z,) = 0,
we obtain that
gt H¥(X ; Z,)—> H¥(K ; Z,)
is an isomorphism.

Particularly if ny_,(K,) is finite, then there exists an odd integer g such
that ¢{f;|S¥'} belongs to the 2-component of ny_,(K;). Displacing f; by
qf, it is sufficient for the last statement that we construct a cell complex
K from K,. Consequently the lemma is proved.

Let a be an element of =,.;-,(S") and consider a cell complex
K, = S" U ¢""* which is uniquely determined by « up to homotopy type.

THEOREM 2. 6. Let wn>i and i=2 (4 or 8 respectively), then Sq*:
HYK, ; Z,)—> H" Ky 3 Z,) ts an isomorphism onto if and only if a=7,,
(v, or a, respectively) mod 2m,,.,(S™). (For the proof see H. Tada; [11]
Proposition 8. 1)

From Lemma 2.5 and Corollary 2.3, there exist a cell complex
M=S*Ue Ue'Ue® and a continuous map f:M-—>F, such that f
induces an C,-isomorphisms #,(M) onto =(F,) for i< 14, where C, is the
classes of finite abelian group whose 2-primary components are zero. Since
Sq'ys =y, in F,, we may assume that ¢ is attached to S* by a map of
degree two. Then we have

(2- 6) 71'13(58 Léj e 2) = 0,
7,4(S? LZJ 12 =m,(St:2) =2, generated by u3,
we denote by »2 a generator of 7 (S? sz ¢° :2) identifying with that of
7,(S? : 2) by the inclusion S*c S* gJ é.

Consider the following exact sequence
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(St 12— m(St 12— m(SP U e :2) —>m(S: 2) —>m(S* 1 2)
for i <15, From r,(S%) =7,,(S%) =n,(S) =0 and =,,(S? = {2} =2, (2.86)
is obtained.

Consider the exact sequence

i Jx
74 (S*0 2 2) —> 7w, (S* U € 1 2) —> 7, (SP l2J e U et :2)—>m,(S:2)
2

—> (S U e :2)
2

where i is the inclusion SPU e c SPUe Ue?, and j:S*U e U el —> S
2 2 2
is the projection. From (2. 6), we have the following exact sequence

I

(2. 7) 0—>m, (St U e : 2)t—>7r14(S8 UeUet: 2)—J:+7r“(S“ :2)—>0.
2 2

Then there exists a coextension (in the sense of [11]) ,, of v,y and 7.9 = vy,
Assume that 8p,=0, then —iowi=i0w2=8p, Let f:StySsH
—> S8 Ueu ¢!t be a map such that f|S" and f|S" representative of
82, Pvyy, then fog:SH—> 58 Lg e’ U e" is homotopic to zero. Consider a
mapping cone C,; of f, then there exists a coextension G : Sts—>C, of g.
Let K be a mapping cone of G, then we have a complex

K=5"Ues UelUe?U ey ef

and Sq'us = uy,, Squ,, = uy, where ug #,, and uy, are cohomology classes
mod 2 which are represented by S% ¢2 and e respectively. Thus it is
verified that S¢'Sq'us =0 in K. By use of Adem’s relation

Sq*Sq'us = Sq°SqPus + Sq*Sq’us.

Since there is no cell of dimension 10 or 14 in K, the right side of the
above equation vanishes in K, but this is a contradiction. Thus we have
proved that 89, =0. Therefore, from the exact sequence (2. 7), we obtain

m(SPU e Uell:2) = {iwit+ =2, + Z;.
In the complex M= 8% U e® U ¢! U e%, let ¢® be attached to S* Yetuet
2

by a map & :S"4—>S® y e’ U e, then we have the sequence

by
7 (SM : 2) —> my (S? LzJ e Ue:2)—>m(M:2)—>m,(S¥:2)=0
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is exact. By Lemma 5.5 of [10], =, (F,) =Z,. Thus m,(M:2)=Z, and
Pty = bDyy + a(igwi) where ¢ =0 or 1,
for an odd integer 5. Thus
Jehsty =vy mod 2m,(SY).

By theorem 2.6, we have the following important lemma.

LEMMA 2.7. Sq'y, =¥ in F,.

Considering the natural inclusions F, c E; c E;, we have
COROLLARY 2.8. Sq¢‘yy, =1v; in E; and E,.

§ 3. Homotopy group of some cell complexes.
Let X be an m-connected CW-complex and let « be an element of
Taei(X) (n>m). Consider a CW-complex K, =X Y e,

Lemma 3.1. Let i be an injection X—> K, and let p : K,—> S™ be a
mapping which shrinks X to a point. Then the following sequence is exact for
i<m4+n—1
Bo1) e S oy 1y (X)o7 (K) > Ty (S™T) o> 1y (X)) > e o e

Here 6 is a composition  E'op, :mi(K,)—>m(S*), and E :mj_4(S™1)
—>m;(S") s the suspension homomorphism. If a is of order a power of 2, then
the above sequence is exact for the 2-primary components.

Proof. See Blakers-Massey [4].
We introduce necessary results on the homotopy group of spheres.
According to [11], the results are listed in the following table;

(1) n>k+1
(3. 2)

k= ol 1| 21| 3] 4 5\6 7 8

Th(S™ 1 2) zZ Z, Z, Zy 0 0 Z, Zyg Z,+ Z,

Generator ta | T | M2 v vy On Dnsy &0
k= 9 10 | 11 ‘ 12 . 13
Tast(S*:2) | Zo+ Zo+ Zy z |z oo

Generator Vi Mnenirs Pa N } &n ‘
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n =29, 10, 11, 13, 14.

119

(3. 3)

k= 8 9 10 11
eo(S° 1 2) ZyVZ,+ 2, Z,+ 2, +Z,+ 2, Zs - Z, Zs+ Z,
Generator 57165 Ty €9 32 gy vy Hoy Nee1o agv16s Nallo oy Dovyr
Tre10(ST0 2 2) Z+Z,+Z,+ Z, Z,+ Z, Zg
Generator A1), v205 10y D1061a Gro¥irs Vol Cio
11 (S 2 2) Z,+ Z, Z,
Generator O11V18s Tu1 e &n

Tee13(S™ 1 2)

Generator

Terga(S™ 1 2)

Generator
k= 12 13 14

T10(S? 1 2) 0 Z, Zis+ Z4
Generator aovis a3y Ko
Tee10( ST 1 2) Z, Z, Zy+ Z,
Generator A(vy) o1ovia 6% K1g
T (S 1 2) Zy Zy+ Z, Zig+ 2,
Generator 4 0054, 011958 o1 k1
Ter13(S 1 2) Z, Z, Zig+ Z,
Generator Eo Eon,; 6%y, K13
Tpea(SH 1 2) A Zs+ Z,
Generator A eyg) o345 K14

We shall use the following relations;

(3. 4)

O © [l"_” = 7715 C0pi1 = 1715 + En

by Lemma 6. 4 of [11],

for n > 10
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<3' 5) [ 773+7 = 77721 O 0Ontz2 = VS + ”n O Eps1 for n > 10
by Lemma 6. 3 of [11],

(3. 6) GnoVniy =0 for n>12
VaObu; =0  for n>11,
20 0v; = vpoa; by (7. 20) of [11],
€207 =Ta0en, =0 for n>9 by (7.10) and (7. 20) of 111],

(3. 7) G © Tnar =0 for n>11 by (10. 8) of [11],
640 Enay =0 for n>6 by Lemma 10. 7 of [11],
(3. 8) VpOEnsy =Vaovuny =0  for 7 by (7. 17) of [11],

n
VO Nnss =Tpovey =0 for w26 by (5.9) of [11),
(3. 9) vpotyy =0 for =7 by Theorem 7.6 of [11],
(3. 10) A(egy) 0049 = 201500, by (7. 21) of {11l
Consider a generator ¢, of 7,,,(S" :2) = Z;; for n > 9 and a cell complex
K, =S"Ue"s Let i :S*— K_ be the injection.

an

Prorosition 3. 2.  We have the following tables of the homotopy groups
ni(Ke, 1 2) for n =29, 10, 11, 14 and 15, and generator of their 2-primary components.

3. 11)

j ’jss 9 0 | 1| 12 } 13 | 14 ’ 15 ' 16
(K, : 2) o | z Z | z | zZzz ol ol z | o
Generator Txto 1479 12 Vg ‘ P !

j 17 18 19 20 ‘ 21 | 22
Ka:?) | Z4ZLAZ | LA LA L | Z | Zi+Z | 0 | 0
Generator I;S/zw, 480s ExPy | Ta7sC10s Ex¥iy Tulls| L4alo ?i*é‘g,i*ﬁgu”

3. 12)

j j=o| 10 | 11 | 12 | 1B | 14|15 16 | 17
wKn:2) | 0 | Z | 2z | z |z | o ol z | o
Generator fwtio | Gatho | D130 | favio iwvio
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j 18 19 20 21 2 | 23
w(K,, 1 2) Z+2Z, | Z+Z,+ 2, Z, | Zy Z 0
Generator | 167y, inero ixd(car), inTlroeass infyo ixliots | Abny | ind(vgs)

. 13)

j j=9| 11 12 13 14 | 15 | 16 17 ] 18
7K, @2 0 Z Z |z | z | o ‘ o | z [ 0
Generator r Twtin | Ll | G0 | fsvn ' i’

j 19 20 21 22 | 23 | 24 25
WK | LtZ | ZtZ | % | Ze | Z | Z | Z
Generator z',.gel‘,,lf()‘\z-:8 Tallins ExMi€1e] Tl tas 5:: 10" | 60 M5y | gk

. 14)

j j=13| 14 | 15 | 16 | 17 | 18 | 19 | 20 | 2
(K., 1 2) 0 z z, Z, Ze | o] o | z | o
Generator Istu | I | 140%0 | favi f RILY

j 22 23 24 2% | % 27
(Ko, t 2) Z+ 2z, Z,+ Z, Z, Zy | 0O z
Generator 123/:21, Pwera | Exllias 15014815 | Galialls ;: ) i5d(t2g)

. 15)

j 15 16 17 18 | 19 | 20 | 21 | 22
(Ko, : 2) 0 z Z, A Ze | 0 | o Z | 0
Generator Tatis | x5 | G455 | fabis i’

j 23 24 25 26 27 28
(K, © 2) Z+ 7, Z,+ Z, Z, Zss 0 0
Generator ﬁz, Tx€15 | Twtliss Exl15€16 1471516 ;;
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Here we denote by B an element of m(Ko, :2) such that 3§ = g€ n (S™*7 : 2)
i.e. we may consider that § is a coextension of B.

Proof. Consider the exact sequence
Ony iy ]
T (SPHT L 2) > (S 1 2) —> (K, ¢ 2) —> 7y (S71 2)
Ong
>y (S" 12— e

of (3.1) for j<2r+5. From #;(S"*7:2)=0 for j<n+6 and from the
exactness of the above sequence, it follows that

Iy :71‘_,'(5" . 2) ~——)71'.,'(I{a,. . 2)

are isomorphisms onto for j<»n+6, and » =9, 10, 11, 14, 15.
It follows from (3. 1) that the sequence

Ony iy [
Tne2(S"T7 1 2) —> T r(S™ 1 2) —> T (Ko, 2 2) —> 1,.(S™7 1 2) = 0
is exact for > 9. From =n,,,(S":2) = {s,} = Z;;, we have that
(3' 16) Ope - ”n+7(S"+7 . 2) _—)nn+7(sn : 2)

is an epimorphism. Thus we obtain z,,;(Ks, :2) =0 for » =9,10,11,14 and
15.

Consider the exact sequence

dn iy [}
Rnsa(S" T 12— 7, 4(S™ 1 2) —> 75 (Ko, 1 2) —> Z = {16044, —> 0
of (3.1) for n>9. From (3. 2),(3.3) and (3. 4 we have that
(3. 17) Opr - TpeglS™7 1 2) — >, .4(S™ 1 2)

are monomorphisms for # >9.  Thus it follows from the exactness of the
above sequence that the table is true for =, 4(Ks, :2), # =09, 10, 11, 14, 15,
From (3. 17) and the exact sequence (3. 1), it follows that the sequence

Taeo( ST 1 2) > oS 2 2) > Tpre( Koy 3 2) —>0
is exact for > 9. From (3.5), (3.2) and (3. 3), we have that
(3. 18) Oy 2 oS 1 2) —>7,,4(S™ 1 2)

is monomorphisms for # >9. Thus we obtain that
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7T,,,+9(Kd,, . 2) = 7z:1'.4-9(5"’ : 2)/{”1& ° 77n+7} .

From (3. 18) and the exact sequence (3. 1), it follows that the sequence

Iny i,
Tas1o(S™7 1 2) —> 7 ,41o(S™ 1 2) —> 7, 010(Koy 1 2) —> 0
is exact for > 9. From (3.2), (3.3) and (3. 6), it follows that

(3. 19) Ogu & a(S1 1 2) —> m(SY 1 2) is a monomorphism,
Gue 2 Tap1olS™7 1 2) —> 7,,10(S™ ¢ 2) 1is trivial for » = 14, 15,
the kernel of a4, : mo(SY 1 2) —> myy (S0 1 2) 15

generated by {4v,;}, and
the kernel of 54 : 7,,(S8 : 2) > m,, (SY 1 2) is

generated by {2v}.
Thus it follows that the table is true for m,. (K. :2) = =29, 10, 11, 14 and
15.

In the stable rangs, we have the exact sequence

Te i
07411 (S™ 1 2) > 011 (Ko, 2 2) = 7,410(S™7 1 2) —> 0

of (3.1) for n > 13. Moreover we have the following relation in the stable
secondary compositions

te<a, 4v, 2¢ > mod 2G, from Lemma 9.1 of [11],
D<o, v, 8> from Proposition 1. 2 of [11],

and < g,v,8: > is a coset of the subgroup oo G, + 8G,; =8G,,. Thus
{=<oa,v,8 > mod 2 G,

where G, is the n-th stable homotopy group of the sphere and ¢ is a
generator of the 2-components of G,,.
From Proposition 1. 8 of [11], we obtain

£ =1e<<0,v,8¢ > mod 2 G,

= —8p

where @ € n(Ks, :2) is a coextension of a € 7, (S"*7 :2). Thus, from this
and from the exactness of the above sequence it follows that

(3. 20) Taet(Ka, 2 2) = {0} = Z

for n>13
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From (3.1), (3.19) and from m,.,(S™7:2) =0 for n >0, it follows the
next four exact sequences and the commutative diagram

0> mp0(S® 1 2) —> 13o( K 2 2) —>0

=,

i, a
0—> 7, (S 1 2) —> 7y (Kogo : 2) —> {4y} —>0

T T &

0 —> 7y (SH 2 2) > 710y (Kirgy & 2) —> {2045} —> 0

lEn—u lEn‘u lEn-u
i ]

0—>my0a(S™: 2)’:‘)ﬂn+n(K-r,. 12)—>{vgert —>0

for n>13, where E :my(SY:2)—>m,(S1:2) and E" U :m,(SU:2)
—> T (S™ 1 2)  are isomorphisms. From (3.20) and the above diagram,
we obtain that

Too( Koy 2 2) = {ixl} +{isbsovii} = Zs + Z,,
7oy (Kony ¢ 2) = {‘Lﬂ} = Zis
Toa(Koyy 1 2) = {ﬁ;ixs}z Zy,

Tne11( Koy 1 2) = {Ppsr) = Zsy for n > 13.

It is easily seen the results of 7,.,(Ks, :2) and 7,,3(Ks, : 2) from the
exact sequence of (3. 1), the table (3. 2),(3. 3) and the relation (3. 6).
Consider the exact sequence

i*

FFL i 7] g%
7os( S 1 2) o 75 (SM 2 2) > 7ryg Koy & 2) —> 7y (S8 2 2) > 720, (SH 2 2)
of (3.1). From (3. 2), (3.3) it follows that
(3. 21) oy - (ST 1 2) —> m(SM : 2) for j =24, 25

are monomorphisms. Thus from the exactness of the above sequence we
have

Tos(Koass 1 2) = mag(S™ 1 2){o}y} = {ku} = Z,
From (3. 1) and (3. 2), we have the exact sequence
gy iy
736(S1 1 2) > 7yg(SH 2 2) — > 7pg(Kirgy 2 2) —> O

From (3.7) and (3. 2), we have that
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5. 22) Ty 2 oe(SM 2 2) —> mp4( Koy © 2)

an isomorphism onto.

Next consider a generator v,y of m,(S*:2) of order 8 and an element
=d(ey) +7 of m,,(S":2) of order infinite order, where 7 is an element
Nao © &1 + B3, of m,,(S1? : 2) with the order at most 2 (¢, =0 or 1). Let a
ell complex K= S'" U C(S"® Y S¥) be obtained by attaching C(S'*V §) to
1 by v,V g:S?Y S¥*—>S%  Then we have the following lemma.

Lemma 3.3.  We have the following table of homotopy group =;(K:2) for
<21

j ;<9 10 11 12 13 14 15 16
(K :2) 0 z Z, Z | o z Z, Z,
Generator Tatio | 4010 | 4750 87:3 ;7\1; ;7%;
J 17 18 19 20 21
(K 1 2) Zw+ Z, Zy+ Z, Zy+ Z, Zy + Z, Z1ss
Generator T %0105 2:,:, TaV10s Ex€10 | TaT10811s Lo |ExT10V17s Eafliolinn] 013 D V1o

lere i : S —> K is an injection and we denote by a an element of ny(K :2) suck

hat @ is a coextension of a € m;_(S® Y S : 2).

Proof. By (3.1), we have an exact sequence

(v1a V), iy
3. 23) e (SBY S1 1 2) (S 1 2) — > (K 1 2)

7] (V10 VB)a
—m (SBY S 2 ——— 7 (SN 2)—> e e

or j<2I. We can identify =SV S¥:2) ((v, V 8« respectively) with
S(SB 1 2) D my(S™ ¢ 2) (v + Bi respectively) for j <21 and we shall use the

otation @ = vy¢+ + Bae ,
From the tables (3. 2), (3.3), the relations (3. 6), (3.8) and the exact

equence (3. 23), it is easy to see the results of =;(K:2) for j=17, 21

Consider the exact sequence

70(S5 1 2) @ 7ya(SH 1 2) o> 7y(SY 2 2) —> g (K 1 2)

@ e
—> 7 (SY 1 2) B mye(St : 2) —> me(SY 1 2)
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of (3. 23), where 7,,(S'? : 2) Pms(S1?: 2) =7 (SV¥:2) ={v, .} = Z; and =,,(SB :2)
Dmr{S®:2)=0 by (3.2). We have that the homomorphism « :7,(S¥ :2)
D m(SY 1 2) —> (ST 1 2) is an epimorphism and its kernal is generated by
{2v;;}. Thus we obtain the following sequence

i 8
(3. 24) 0—> {61 —> (K :2)—> {2} —>0.
By Adams [1],

{105 20150 42161 =0 mod 4r;,(S* : 2)
and we have, by Proposition 1.8 of [11], 4 2’;;3 = — {4{vi0r 2v190 4216}
€4 iy,(S?:2). Thus 4(2:/13 + iya) =0 for some a € m;;,(S?:2). We may
replace 2v;; + i by 2:3 Thus, from (3. 24), follows that

T (K 2 2) = {ivo10} + {2} = Zis + Zie

From (3. 23), we have the exact sequence

751 (St 1 2) D 7y, (S 2 2) —G—>7r21(S‘° 1 2) ——i—*—>7r21(K: 2)
L (ST 1 2) @ S 1 2) — > myy(SH : 2).
By (3. 6), (3.10) and the diagram (3. 2), (3. 3), we have
a{oy;} = v100 015 = 20300 vy = Ae5y) © V35 = (N5}

Thus we obtain that
(3. 25) the kernel of e :m,(S™ 1 2) @ 7,y (S1? 1 2) —> mpy (S 2 2)

is generated by {6,; P 7,0} = Zys.
By (3. 8),(3. 10) and the diagram (3. 2),

a{P,s} = vy 0 by =0,
(3. 26) afen} = vp0 63 =0,
a{n}e} = B0l = d(ez) 0 13y + any4 0 &4y 0 BE + brieoni,
= 20109 15 ° 75 + daviy 0 €44

=0.

Thus, from (3. 25), (3. 26) and the from above sequence, it follows that the
sequence
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0—>{§1°}j+n21(K: 2) ~a——>{a13®7719}——>0
is exact. By (9. 3) of [11],
&0 € {v1py 2013, 8¢5y  mod 8w,y (SY :2)
and by Proposition 1.3 of [11]

14810 € 14{vi0s 2015, 8eao)
=—38 27713

I~
= —16 0'13@7719.
Thus we obtain that
N
oy(K 2 2) = {015 D 710} = Zi2se
§4. Homotopy groups of exceptional Lie groups E; E; and E,.

(I) Homortory GRroups rny(E;:2) for j<28.
From Corollary 2.3, Lemma 2.5, there exist a cell complex Kz
=S U e® Ue” Ue® and a continuous map f: Kg ——> E,, from which the

915

following isomorphism f,, induced by a map f, is obtained;

(4. 1) Feimi(SB U e Ue Ue?:2) ~n(E,:2 for j<28.

015

Let ¢¥ be attached to Ks; = S U e® by a map g¢:S%—> Ks, and e® be

a15

attached to S¥ U e® Ue¥ by a map h:S®—>S¥ U e® Ue¥, then, from

a15 715

Corollary 2.3 and Theorem 2.6, it follows that the next diagrams are

commutative
g h
SZG —> Ka“; S28 —_ SIS U e23 U e27
. N .. N e
4.2 (i) . l” (ii) NN l"
523 827

where p,p’ are the maps which shrink S§',S" U ¢*® are respectively to a
718

point. From (4. 1),

By :2) =m(SB U e Ue¥:2) for j<27.

I18

Consider the exact sequence
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A % @
T6(S% 1 2) —> Mos( Ko 2 2) —> (S U €2 U €% 1 2) —> my(S% 1 2)
915

of (3.1), where i’:Ksy—>S" U e* U e¥ is the inclusion map. From (i)
a6

of (4. 2) and the table (3. 15), we have that
(4. 8) O 76(S% 1 2) —> mye( Koy 2 2)

is an epimorphism. Thus, from the exactness of the abdve sequence, we
obtain

(4. 4) me( S U €2 U e 1 2) =0,

g1s

It follows from (3. 1), (3. 15) and (4. 3) that the sequence

i ]
0 = myr(Koys & 2) —>157(S™ U €2 U €% 1 2) —> my(S% : 2)

718

Ix
—> Tpe( K15 2 2) —> 0
is exact. Thus we obtain

(4. 5) (ST U e U e¥ 1 2) = Z,

I15

Next consider the diagram;

TS U €2 :2) =0

o158
lii
i

hy ¥ 8
(S 1 2) —> mpe(S™ U €2 U €771 2) —>my(S' U €2 U €% U €% 1 2) —> 7, (S% 1 2)=0

o 5 o

mos(S™ 12) TW(SZ“ :2)

I
7r(SH U € 1 2) = 0
915

where {7 is a inclusion map. From (3. 1) the row ahd column sequences
are exact, and from (i) of (4. 2) and from the definition of 4, it follows
that the diagram is commutative. By (3.15), 9:myu(SUe®Ue¥:2)
—>7yy(S%* :2) is an isomorphism, and E :my,(S% :2)—>my(S¥ :12) is an
isomorphism. Thus, from the commutativity of the above diagram, it
follows that

By mos(S% 1 2) —> (ST U e U €7 1 2)
916
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is epimorphic. Thus, from the exactness of the column sequence, we
obtain
(4.6) Toa(SY U €3 U € U €2 1 2) =0,
I15
From (4. 1), (3.15) and (4. 4) (4.9), it follows the next table of the

homotopy groups of exceptional Lie group E,.

Prorosition 4. 1.

j 1,2! 3 4<j<14| 15 | 16 | 17 [ 18 | 19 | 20 |
7 (Ey : 2) o | z | 0 [ z |zl z|z|o]|o |
j 21 | 22 23 } 24 2% | 26 | 27 \ 28 \
i (Ey 1 2) zZ |l o! ztz | Z+z | 4| 0|z o J

(I1) Homotory GroOUPS n;(E;:2) for 7 < 25.

From Lemma 2.5, there exist a cell complex Kg, = S" U e U e U e
Ue¥Ue” and a continuous map k: Kg,—>E, such that Fk, :m(Ks)
—>n(E;) are C,-isomorphism onto for j<28. By Corollary 2. 8 and
Lemma 2. 4, e% is attached to S" by a representative of y;; &€ (S : 2).

Consider the diagram

Sll U elS U elQ__,)Sl5 U elg
Y11 B
Lo
4 MY
E, C E,
where p is a map which shrinks S to a point and E, c E; is the natural
inclusion. Since #,(E,) =0 for i < 14, k|S"'~0 in E,. Thus there exists a
map k:S®Ue*—>E, such that the above diagram is homotopy
commutative. A generator zs € HS(E, : Z,) corresponds to a generator
%5 € H'%(Ey 3 Z,) by the natural inclusion £, c E,. Thus, from the
commutativity of the above diagram, ,, € HS(E, ; Z,) corresponds to a
generator of H¥(S% (¢ ; Z,) by k*. Let f: St5—» £, be a representative
of a generator {f} of mn(E,) =2, then k1St i homotopic to 2{f} for
some odd integer x. Let ¢! be attached to S by 8:S8%—>815 for a
cell complex S U e of the above diagram.

Since £ is extended over ¢'°, we have

0= (k|S¥).8=2(fuf) In 2-component,
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By (4. 1), fy:n;(S®)—>n,(E,) are C,-isomorphism onto for j < 21. Thus it
follows B=0. From this we have that S" U e is a subcomplex of Kz,
and ¢ is attached to S by a.

Lemma 4. 2. We may regard the inclusion j : Koy = S U ¥ C Kg, as the

I11

fibre map. Let F be the fibre, then HX(F ; Z;,) has additive basis {1, ay4y @osy o6}
Sor degree << 29, where a; denote a generator of degree i.

Proof. From lemma 2.5, H*KE, ; Z,) = 4(®115 %15 %1ey Lagy Xp7) for degree
<30 and S¢'zy; = %15 SP5 = %ay Sy = Xy Sy = x,.  Let {E¥} be
the mod 2 spectral sequence associated with the above fibering, then we
have

E3* = HYKg, ; Z,) @ HYF ; Z,)
and

EX* = M(®,y,, 2,5) for degree<< 30.

Clearly Kz, and F are 10-and 13-connected respectively. We have the
following cohomology exact sequence - .- —> H¥KE ; Zz);>H*(K,,11 5 Za)

— H*(F; ZZ)—T>H*(KE7 3 Zy)—> ++ - for degree < 24. It follows that
HX(F ; Zy) = {l,a,, a5, for degree<<24 where z(ay)= 2,5 and (@) = 2,
ie, d(1®ay) =281 and dyul®ay) =2,,®1. For 24<¢<29, any
non-zero element of Ef'? must be cancelled by d, with some element of
E7 @', By the dimensional reason, the only posibilities of such ¢ are
q =24, 25, 26 corresponding to 2z, @ay, #,2,; @1 and 2, ®1 respectively.
Thus HYF ;Z,) =0 for ¢=27,28,29. Since dz,Ra,)=2,2;R1=%0,
2, Qay 18 not a dy-image, hence H*(F ; Z,) =0. We have also H%(F ; Z,)
=0 since #%;2;01=0 in E2¥° By the dimensional reason, we see that
2,; Q120 In EZT° hence there exists an element a, such that dy,(1& ay)
=2,,®1 and a,; generates H¥(F ; Z,) =~ Z,.

From the proef of this lemma, we have that ay, a,, s are transgressive
elements. Since Sgfx;; = X535, Sq'®e; = %y, it follows, from the commutativity
of the Steenrod operation and the transgression, that

(4. 7) S@*ay = @z, Sqty = Gy

By Lemma 2.5 and Theorem 2.6, there exists a cell complex Ky
=S"4ye?Ue* and a countinuous map from K, to F which induces
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isomorphisms from 7Ky :2) onto m(F :2) for j<26. Let f:Kp—> Koy

= S" U ¢* be the mapping from a fibre to the total space identifying F
a1

with K for dimension < 26. Then f|S™ is a representative of ;.

Consider the exact sequence
(4. 8) B 1 2) D Ky 1 2) (K, £ )
(K 2) Ly Ky 2 2) > - e -
associated with the above fibering for j <26 and the following homotopy

commutative diagram

LIS

4. 9) i ' if

SH —— Koy

From (3. 1), (3. 14) and from the fact that ¢* is attached to K., by a
coextension of v,, we have the next table ;

(4. 10)
j j<13 | 14 l 15 16 17 | 18] 19 2
2Kyt 2) 0 z Z, } Z, Z 0o | o Z
Generator Txlis Tsl14 ' 1402, R R
h 21 2 23 24 25 %
nj(KF . 2) 0 Z + Zg Zg + 22 Zz 0 Z
N . . . . N
Generator 162415 Ex81y Txlliss L5745 Talliallys 64¢y5

LemMa 4. 3.  For the homomorphism fy :ni(Ky 1 2)—>n{Koy, 1 2), we have
the following table;

(4. 11)
. . - . A . . . i
o = Tatrs | UxT1s | UaW1a | 2xPua Tavis (Uxl6ear | Txey | Txltia |EsW1a€1s| EaW1altlas |
. . . I~
Fet = | i4v1s 0 i 0 Tu¥?y | 11610 | 4 2vp 0 0 0 0

Progf. Trom (4.9), (3. 8), (3. 9), it follows that the table is true excepting

~
for a = 7,166y, i
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The relation i,9;;0 ¢, = il in 7m(Koy, ¢ 2) imply the formula

Faliavis) = 147y © €45

Consider the following commutative diagram

~ .
where 16¢,, is a

have

ProrosiTiON

f*16‘21

Y1

Sll

K

sH —
l,- e
Toom
S22 —> S“,,,Lf e2? —> Kiy,
]
S22
ldu
Sld

coextension of 16¢,,

~
= 1491 0 16¢y

and p,, is an extension of ;.

We

= — iy {vyys 014 16¢5} by Proposition 1.8 of {11],
by (9. 3) of [11],

= - i*§11

= —4 2’:‘21.

4. 4.

the following table;

The homotopy groups mi(E;:2) for j <25 are listed in

7 L2 3 4<7<10 11 12 13 14 15
7 (E; 1 2) 0 z 0 Lz |z ’ Z | o | z
j 6 | 17 | 18 19 l 2 | 21 | 22 23
ﬂj(E7 . 2) Zg Zg Z4 A + Zz Zg ZZ Z4 A -+ Zz + Zg
j 24 25
7T]'(E7 . 2) Zz + ZZ + Zz Zz + Zz
Proof. The results of z;(E;:2) for j <22 follow immediately from the

tables (4. 10), (3. 13), (4. 11) and from the exactness of the sequence of (4. 8).
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{11y €15 200} D E¥{vy,y €100 20455 C E'ryo(S7) = 0.
Thus we have
(4. 12) {11y €100 26,3 =0 mod 2m,,(S™).
Similarly we have
(4. 13) {vi1y P 200,0=0  mod 2m,,(S™).

V115 M4 © 159 20557 D {11 0 Nugs €155 2000F = {0y €155 2253 =0 by PYOPOSition
1. 2 of [11]. Thus we have

(4. 14) {Uu, 7714 O €15y 2[23} = 0 mOd 271'24(811 . 2).
Similarly,
(4. 15) {Vu, 7714 o Hlsg 2!24} =0 mOd 27725(5“ . 2)-

Consider the commutative diagram
(4. 16)

f* j‘ a f'
ni(Kp:2) —> 7)(Koyy :2) —> n(Kgz :2) —> 7 (Kp:2) — (Ko 1 2)

(S P -

* * Vils
TASH 1) > m(SU12) — my(SM U €1 2) —> myy(SH12) —> my, (ST 2)

where i,j are inclusions.

From Proposition 1.8 of [11] and the above secondary composition,
. . . I~ ~
coextension &y, fyyy 714065 and 7o 5 of ey, 2y M08 and 14 © Hq5

respectively are elements of order 2. Thus from the commutativity and
the exactness of the above diagram. (4.16), the results of =;(Kg :2) for
j = 23,24, 25, are obtained.

(III) Homortopry GrOUPS m;(Es:2) for j <22
By Corollary 2. 3,

H*(EG 5 Zo) = Z[Ysa) D AYss Y115 Yiss Yi2s Your Ysa)

and

S¢Ys = Yus SEYs = Y1y ST 11 = Yiss SGY15 = Ysse

From Lemma 2.5, there exists a cell complex Kz and a continuous
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map ! : Ki,—> E, such that I, :x,(Kzg)—>n;(E;) are C,-isomorphism onto
for j<24,1e, KE;=S*U et UeBUe”Ue™U e®U e
By Corollary 2. 8, e'! is attached to S* by 7,

LemMA 4.5. Koy=S8'U € s a subcomplex of Kz,  Exchanging an

9
inclusion map Koy—> K&, by a fibre map, we denote by F the fibre of this
Sfibering.  Then H*(F ; Z;) has the additive basis {1, Gypy @1y Grp Gop} for degree < 25
such that Sq'ay, = ay, Sqay = ay, where a; denotes agenerator of degree i.

Proof. From Lemma 2.5, H*(KE, ; Zy) = 4(2y, %115 B155 T3, To3) for degree
< 32 and quxg = Xi1y Sq4x11 = Lys5y Sq8x15 = Xg3y quxg = X170
By use of Adem’s relation we have relations

Sqtxy = S¢*SqPx, = Sq'Sq'xy + Sq'Sq'xy,
Sq*x,5 = S¢®Sq'wy, = Sg¥Sq xy + Sgtay.

Since there is no cell of dimension 10 and 13, S¢*z,, =0 in K&;. Since
there is no cell of dimension 12 and Sgfz,, =0, S¢?%;; =0 in Kg&. Then
e is inessential to ', that is, up to homotopy type S°Ue!'Uel” is a
subcomplex. Since m(S* U e'1,S%) = m(S) =0, we have that S*U e is a
subcomplex. Then, by Theorem 2.6, we may consider that S*U e!" = Ko,
is a subcomplex of Kg,.

Let {E¥} be the mod 2 spectral sequence associated with a fibering
{Kay, i, KEG} with the fibre F, then

EY* = H¥KE, ; Z,) Q H¥(F ; Z,)
and

EX = A (24, 17) for degree < 25.

By concerning the cohomology exact sequence associated with this
fibering, we have H*F ;Z,)={l,aa. for degree< 18 with generator
@0 @14 Such that d,(1®a,) =2,®1 and 41 R ) = 2,; Q1. For the total
degree<< 27, E¥ is the sum of 'E¥ =H*Kg,;Z,)R{l,a4a, and
q}};s 1® HYF ; Z,). From 'E¥* we compute 'E¥* giving d, trivially except
d,(b@ay) =bx,; ®1 and d,0Qa,) =bx;;R1, b€ H¥Kgs ; Z,). Then we
have for the total degree<<30, ’'EX* = d(xg, 17, %o3) @ 1 + {21, @ ay1py %15 X ayely
where we use the fact %, = 2}, =0. Compare this with E**, we conclude

that 2,,®1, 2,,®ea, must be cancelled by some elements ay,ay,, i€,
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do(1® ay) = 2,; @1 and d;;(1 R ay) = 2,, ®a,. Moreover, no other non-zero
elements exists in H*F;Z,) for degree< 25. Thus H(F ; Z,)
= {1, @05 Q14 Aoy @ro} for degree < 25.

From the above proof, a,,a;, and a, are transgressive element. Since
Sq'x;, = 2,5 and Sg*x,; = ¥,;, using the commutativity of Steenrod operation
and transgression we have S¢'a, = @, and Sgay; = ay,.

By Lemma 2.5, there exists a cell complex Kp=S"U e U e* U e*
and a continuous map which induce C,-isomorphisms from =#(Ky) to =,(F)
for j<24. We identify the fiber to the total space, then we have a
commutative diagram

sv s K,
(4. 17) lm lf

i

SY —> Ko,
where ¢ is inclusion map, and the exact sequence

(4. 18) s —(Kp 1 2)—> wy( Koyt 2)—> 7(KE, : 2)
—)”j—-l(KF : 2)’—)7fj_1(Kag 12— e e,

Consider the cell complex Kr=S"Ue"Ue®Ue®2 Since Sq¢'a,
= ay, e'* is attached to S by a representative of v,,.

From 7,(S™ U €, S") = m,(S*) =0, we may assume that Ky=SWU
C(S# Y S¥) U €2, -

Let « : S —— S Uy C(S¥ VY S*) be the attaching map of e** and ¢* be
attached to S* by g:S5¥— S  Consider the exact sequence

(v10VB)e

[i]
T (ST 1 2) —> 7y (S U e U e 1 2) —> my, (ST Y S1 1 2) > 50(S™0 1 2).

From the definition of 3, we have the commutative diagram

(ST U €M U €20 5 2) > mp(SF Y S : 2)
BN A

Ty (SH Y 8201 2) = 7y, (S™ 1 2) + 7, (S0 1 2)
where p is a map which shrinks S to a point. Since Sglay, = ay, Dua
=g+ %7 for =1 or 0. From the exactness of the above sequence,
0= (v V Bsoda =vyo0,;+ x(Bon,). Thus we have x(8o7,) =v00;; %0
and z = 1.
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Put g =a(d(cy)) + b0yp0 ¢y + cvi, + dry, for some integers a,b,c¢,d, then
we have

Y199 013 = B0
= a(d(ear)) 0 N1s + 7350 615 + Cc¥3g 0 gy + dyg 0 11y

= @y ° O3 +0 -+ 0 + d”lo 0 My by (3- 6) and (3. 10).
Thus by (3.3) a=1 and d =0. Therefore

B = d(es) + by 0 €y; + ¥y where b,¢ =0 or 1.
da = ay3+ Ny

(4. 19)

From (4. 19), Lemma 3. 3 and from the exact sequence

s (S 2)—‘)7:1-(8‘0 Uetu et :2)—rm(Kp:2)—>m(SH 1 2) ..

of (3. 1), we have the next table;

(4. 20)
j j<9l 10 | 11 ] 12 13 ( 14 { 15 | 16 17
(K 2) o |z |zalz]o f z | z ] Z, | Zu+ 27,
. . . o~ i ~ J - Ar/u-h_
Generator Tatio | TxT0 | 5720 ‘8:13 M3 ! 7%, ’ 140105 2vq3
j 18 19 f 20 ' 21
2, (Kp 2 2) Z,+ Z, Z, + Z, Z, + Z, j 0
Generator fa¥i0s GxE1 147108115 Lxlio T4010¥17y Laloln ‘ I

LemMma 4. 6.

the following table;

For the homomorphism fy :7j(Ky :2)—>ap(Ks, @ 2), we have

(4. 21)
[ . o . . .
a = Tatyp L4710 (/50 ’ Ths 1501y 2vys LxV1o ] (U
. - 2 . . . P - . 3 -
Jra = 1579 1479 414y, . iyv} 1x85 1 24wy Lx&y LxVy \ 1x"5€19
a = 14710 © €11 Lyl ‘ LxO1oV17 2xT10f1
S = 0 %/ I (ST 41,8,

Proof.

We shall use the next relations
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7 =4, for n>z5

Npobp =3 for 6

N30 019 = Vg + &

P20e, =0 for n>
n

9
48, =ntop,., for n=5

by (5. 5) of [11],

by Lemma 6. 3 of {11},
by Lemma 6. 4 of [11],
by (7. 10), (7. 20) of [11],
by Lemma 6. 7 of [11].

From (4. 17), (4. 22), it follows that the table is true except for « =7,; and

~
2”13.

7~
From the definition of 7, and (4. 17), we have the commutative

diagram

Ty

— S
AR

Sl5 ..2) Slo U e14 > SQ U el7

Sl4

a9

where p is the mapping which shrinks S to a point and 7, is a extension

of 7., Thus we have

Sodia = 14050 iy = 15{ay v10s Ta} D i0f

Consider the commutative diagram

SIO

by Lemma 5.5 of [11].

e
— SQ

e vl

v
Sl7 __i; Slo U eH _— Ss U el?

V1o

zh\ l”
Sll
l Y11
Sll

then we have

~ o~
Sa2vys = 14750 20y3 € 1,{Ngs v10s 2013}

[ i*Sg

dg

by Proposition 1. 7 of [11],
by (6. 1) of [11].
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PrOPOSITION 4. 7.  The homotopy groups = (Es:2) for j <22 are listed in
the following table;

j 1,2 3 ]4<5<8| 9 '10 11 | 12 | 13 rl_z;—
77z,~(E6:2)i() z 0 zlolzl]z|o]o
L 15 | 16| 17 [ 18 19’20121'22

nE:2) | Z | 0| Z4Z | Ze+Z | 0 | Z | 0 | 0

Proof. The results of n;(E;:2) for j=18,20, follow immediately from
the table the (3. 11), (4. 20), (4. 21) and from the exact sequence (4. 18).

By (3.9) and Proposition 1.2 of [11], ¢ &€ <7, 8¢, 26> =<7, 20, 8¢ >
+<2¢,7,8> and <2q,7,8>=<g,29,8 >=0. Then, by concerning
the suspension homomorphism, we obtain

{779’ 20105 8!17} S Hge
By Lemma 9.1 of [11], we have

{7y Mo © €115 2215} 2 oo

Consider the commutative diagram

I Je 4 S
ms(Kp 1 2) — m3(Koy 1 2) —> m(Kgg 0 2) —> m(Kp 2 2) —> m7(Ksy ¢ 2)

RS N (O

m1a(ST 1 2) —> (S0 1 2) —> (S U el 1 2) —> my(S1 1 2) —> m(S? 1 2)

where j is a inclusion map S*—> S° U ¢!l
73

By Proposition 1. 8 of [11], we have

. . ~~
Jatts € Ju{gs 26100 8eyr} = — 8 20440

From the above commutative diagram and from the tables (3. 11), (4. 20),
(4. 21), we obtain

nls(KE“" . 2) ~ le + Zg-

We have the following commutative diagram
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S Su
Mool Kp 2 2) —> mpo( Koy 1 2) —> 7y(KEs 1 2) —> myo(Kp 2 2) —> my( Koy : 2)

i fe s 1 -

Ne* J 2 *

Zao(S1 1 2) —> mpy(SP 1 2) o> mpg(ST U €111 2) —> (101 2) —> my(SY : 2)

and from Proposition 1.7 of [11]

. . S~
J48s € Ju{Dss M9 0 €11y 2e00} = — 20190 £450

From the exact sequence (4. 18) and from the table (3. 8), (4. 10), (4. 21), we
obtain

oo KBy 2 2) = Zs
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