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HOMOTOPY GROUPS OF K-CONTACT TORIC MANIFOLDS

EUGENE LERMAN

Abstract. Contact toric manifolds of Reeb type are a subclass of contact
toric manifolds which have the property that they are classified by the images
of the associated moment maps. We compute their first and second homotopy
group terms of the images of the moment map. We also explain why they are
K-contact.

1. Introduction

In this paper the first and second homotopy groups of certain toric symplectic
cones or, equivalently, of certain contact toric manifolds are computed. The main
result of the paper is Theorem 1.1 (the terms used in the statement are explained
below).

Theorem 1.1. Let G be a torus with Lie algebra g and integral lattice ZG =
ker{exp : g → G}. Let (B, ξ = kerα) be a contact toric G-manifold of Reeb type
with moment cone C ⊂ g∗, which is a strictly convex rational polyhedral cone. Let L
denote the sublattice of ZG generated by the normal vectors to the facets of C. The
fundamental group of B is the finite abelian group ZG/L. The second homotopy
group of B is a free abelian group of rank N − dimG, where N is the number of
facets of the cone C.

Let us recall the necessary definitions (see [L] for more details; see also [LS]).
A manifold B with a contact structure ξ = kerα (α is a contact form) is a toric
G-manifold if there exists an effective action of a torus G on B preserving ξ with
dimB + 1 = 2 dimG. By averaging over the group, if necessary, one can always
assume that the torus G preserves a contact form α defining ξ.

Given an action of a Lie group G on a manifold B preserving a contact form
α, the corresponding α-moment map Ψα : B → g∗ (g∗ denotes the vector space
dual of the Lie algebra g of G) is defined by

〈Ψα(b), X〉 = αb(XB(b))

for all b ∈ B, and all X ∈ g. As usual 〈·, ·〉 denotes the canonical pairing between g∗

and g, and XB denotes the vector field on B induced by X . If f ∈ C∞(B)G is an
invariant function, then α′ = efα is another contact form defining the same contact
distribution ξ as α. Clearly Ψefα = efΨα, so the moment map is an invariant of
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the contact form and not of the contact distribution. On the other hand the subset
C(Ψ) = C(Ψα) of g∗ for an α-moment map Ψα : B → g∗ defined by

C(Ψ) = {tΨα(b) | t ≥ 0, b ∈ B}
depends only on the action of G on B and on the contact distribution ξ but not
on the contact form α per se. We will refer to C(Ψ) as the moment cone of the
action.

Since a moment map Ψα : B → g∗ completely encodes the action of G on (B,α)
we regard a contact toric G-manifold as a triple (B, ξ = kerα,Ψα : B → g∗).
Note that the symplectization (M,ω) := (B × R, d(etα)) (t ∈ R) is a non-
compact symplectic toric manifold with moment map Φ(b, t) = etΨα(b). Re-
mark that Φ(M) ∪ {0} = C(Ψ). Conversely, if a symplectic toric G-manifold
(M,ω,Φ : M → g∗) is a symplectic cone, i.e., if there is a free proper action {ρt}
of R on M commuting with the action of G such that ρ∗tω = etω, then M/R is
naturally a contact toric manifold.

A contact manifold (B, ξ = kerα) with an action of a torus G preserving α
is of Reeb type if there is X ∈ g such that the function 〈Ψα, X〉 = ι(XB)α is
strictly positive. By a result of Boyer and Galicki [BG] (see also Theorem 4.3 in
[LS]), the moment cone of a contact toric G manifold of Reeb type is a strictly
convex rational polyhedral cone. “Strictly convex” means that the moment cone
contains no linear subspaces of positive dimension, i.e., it is a cone on a polytope.
“Rational polyhedral” means that there exist vectors µ1, . . . , µN in the integral
lattice ZG := ker(exp : g→ G) of the torus G such that

C(Ψ) = {η ∈ g∗ | 〈η, µj〉 ≥ 0, j = 1, . . . , N}.
There are several reasons for wanting to compute the homotopy groups of contact

toric manifolds of Reeb type.
1. All contact manifolds of Reeb type are K-contact (see Proposition 3.1 below),

hence the title of the paper. In fact contact toric manifolds of Reeb type are
Sasakian, as proved by Boyer and Galicki (Theorem 5.3 in [BG]). Methods recently
developed by Boyer, Galicki, Mann and others use Sasakian structures to obtain
explicit positive Einstein metrics.

Conversely, as was pointed out by the referee, any contact toric manifold with
an invariant K-contact structure is of Reeb type (Proposition 3.2 below).

2. A classification of contact toric manifolds [L] shows that they naturally fall
into two classes: Reeb type and the rest. The manifolds of Reeb type are classified
by their moment map images, i.e., strictly convex rational polyhedral cones. This is
the class of contact toric manifolds most analogous to the symplectic toric manifolds
classified by Delzant [D].

The rest of contact toric manifolds either are not classified by their moment cones
or the corresponding moment cones are not strictly convex. On the other hand,
topologically they are easy to understand: they are either S2 × S1, or products
Tk × Sk+2l−1 (k > 1, l ≥ 0) or principal T3 bundles over S2. Note that for the
latter the moment cones are all of g∗ and, in particular, give us no information as
to which principal T3 bundle we are dealing with. Thus, for contact toric manifolds
that are not of Reeb type there is no natural analogue of Theorem 1.1. On the
other hand, such a theorem is unnecessary.

3. One motivation for studying the topology of contact toric manifolds is their
apparent difference from (topological) toric manifolds. Recall that in 1991 Davis
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and Januszkiewiecz defined (topological) toric manifolds as manifolds with torus
action locally modeled on the standard action of Tn on Cn and having a simple
polytope as the orbit space [DJ]. Such a manifold is determined by a polytope
and a characteristic function, a function that assigns a 1-parameter subgroup of
the torus to every facet of the polytope. They proved a beautiful formula for the
integral cohomology ring of a toric manifold; it is the Stanley-Reisner ring of the
polytope modulo an ideal determined by the characteristic function (for smooth
projective toric varieties the formula is known as the Danilov-Jurkiewicz theorem).
In particular the cohomology ring is generated by elements of degree two, odd
dimensional cohomology vanishes and there is no torsion. They also proved that
such manifolds are simply connected. In contrast, the odd dimension cohomology
of a contact toric manifold need not vanish (cf. RP 3), there is torsion and the
fundamental group need not be trivial.

4. Another motivation comes from the study of completely integrable geodesic
flows. According to Toth and Zelditch [TZ], a geodesic flow on a manifold Q is
toric integrable if there exists a homogeneous completely integrable action of a
torus on the punctured cotangent bundle T ∗Q r Q which preserves the geodesic
flow. Naturally in this case the co-sphere bundle S(T ∗Q) is a contact toric mani-
fold. It would be interesting to find a topological obstruction to the existence of a
toric integrable geodesic flow on a compact manifold Q, and for that one needs to
understand the topology of contact toric manifolds.

We now outline the proof of Theorem 1.1.
1) Since a contact manifold B is homotopy equivalent to its symplectization

M = B × R, we compute the homotopy groups of the symplectization.
2) The symplectization M of B is the symplectic quotient at 0 of CN r {0} by

a compact abelian group T with π0(T ) = ZG/L and dimT = N − dimG. That is
to say, M = (Φ−1

T (0) r {0})/T , where ΦT : CN → t∗ denotes the T -moment map
for the linear action of T on CN .

3) The set Φ−1
T (0) r {0} has the homotopy type of CN r (V1 ∪ V2 ∪ . . . ∪ Vr),

where each Vj ⊂ CN is a linear subspace of complex codimension at least 2. Hence
π0(Φ−1

T (0)r {0}) = π1(Φ−1
T (0)r {0}) = π2(Φ−1

T (0)r {0}) = ∗.
4) Since the group T acts freely on Φ−1

T (0) r {0}, we see from the long exact
sequence of homotopy groups for the fibration T → (Φ−1

T (0)r {0})→M that

π1(M) = π0(T ) and π2(M) = π1(T ).

The details of the argument are the subject of the next section. In the last section
we explain the connection between torus actions of Reeb type and being K-contact.

A note on notation. Throughout the paper the Lie algebra of a Lie group denoted
by a capital Roman letter will be denoted by the same small letter in the fraktur
font: thus g denotes the Lie algebra of a Lie group G, etc. The natural pairing
between g and its vector space dual g∗ is denoted by 〈·, ·〉. If A : V →W is a linear
map, we denote the corresponding map on the dual spaces by A∗, A∗ : W ∗ → V ∗.

When a Lie group G acts on a manifold M we denote the action by an element
g ∈ G on a point x ∈ M by g · x, G · x denotes the G-orbit of x, and so on. The
vector field induced on M by an element X of the Lie algebra g of G is denoted by
XM . Thus XM (m) = d

dt

∣∣
t=0

(exp tX) ·m.
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For us a torus is a compact connected abelian group. If G is a torus, we denote
its weight lattice by Z∗G; it is a subgroup of g∗. The dual lattice of Z∗G is the integral
lattice ZG. Recall that ZG = ker(exp : g→ G). Thus G = g/ZG.

2. Proof of the main result, Theorem 1.1

It was proved in [L] that the moment cone C(Ψ) of a (compact connected) contact
toric G-manifold (B, ξ = kerα,Ψα : B → g∗) of Reeb type is a good cone. This
means the following. Let {Fi} denote the set of facets (codimension one faces) of
C(Ψ). Since C(Ψ) is rational, each facet is of the form

Fi = {η ∈ C(Ψ) | 〈η, µi〉 = 0}
for some primitive vector µi in the integral lattice ZG of G. Then

(1) every codimension `, 0 < ` < dimG, face F of C(Ψ) can be written uniquely
as

F = Fi1 ∩ . . . ∩ Fi`
where Fij ’s are the facets containing F , and

(2) the Z-module generated by the normals to the facets Fi1 , . . . , Fi` is a direct
summand of ZG of rank `.

We have a uniqueness result [L]: if (B, ξ = kerα,Ψα) and (B′, ξ′ = kerα′,Ψα′)
are two (compact connected) contact toric manifolds of Reeb type and the moment
cones are equal, then the contact toric manifolds are equivariantly contactomorphic.

There is also a corresponding existence result. Given a good polyhedral cone
C ⊂ g∗ (where g∗ is the dual of the Lie algebra of a torus G), there exists a compact
connected contact toric G-manifold (BC , ξC = kerαC ,ΨαC ) with the moment cone
C(ΨαC ) equal to C (Theorem 2.18(4) of [L]). Moreover (BC , ξC = kerαC ,ΨαC ) can
be constructed as a contact quotient of the standard odd dimensional sphere. In fact
it is more convenient to construct the symplectization (MC , ωC ,ΦC : MC → g∗)
of (BC , αC ,ΨαC : BC → g∗). Then for any contact toric G-manifold (B′, ξ′ =
kerα′,Ψα′) with C(Ψα′) = C, we have

π1(MC) = π1(B′), π2(MC) = π2(B′)

and so on. Note that the moment map image ΦC(MC) is C r {0}.
Recall from [L] the construction of the symplectic toric manifold (MC , ωC ,ΦC :

MC → g∗). As above let µ1, . . . , µN ∈ ZG denote the primitive inward normals
to the facets of the good strictly convex cone C. Since C is strictly convex and
has nonempty interior, spanR{µi} = g. Hence the abelian group ZG/L, where
L = spanZ{µi}, is finite. Consider the Z-linear map

(2.1) $ : ZN → ZG, $(a1, . . . , aN ) =
∑

aiµi.

Its cokernel is ZG/L. It extends to a surjective R-linear map

(2.2) $̃ : RN → g, $̃(a1, . . . , aN) =
∑

aiµi,

which drops down to a surjective Lie group homomorphism

$̄ : TN = RN/ZN → g/ZG = G,

$̄([a1, . . . , aN ]) = exp($̃(a1, . . . , aN )) = exp(
∑

aiµi).

Here [a1, . . . , aN ] denotes the class of (a1, . . . , aN ) ∈ RN in TN and exp : g → G
denotes the exponential map. Let T = ker $̄; it is a closed but not necessarily
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connected subgroup of TN . The standard linear action of TN on CN preserving
the standard symplectic form

√
−1
∑
dzj ∧ dz̄j gives rise to a linear symplectic

action of T ⊂ TN . Denote the corresponding homogeneous moment map by ΦT ;
ΦT : CN → t∗. The moment map Φ : CN → (RN )∗ for the standard action of TN
on CN is given by the formula

(2.3) Φ(z1, . . . , zN) =
∑
|zj |2e∗j ,

where e∗1, . . . , e
∗
N is the standard basis of (RN )∗. Hence, if ι : t → RN denotes the

inclusion of the Lie algebra t of T , we have ΦT = ι∗ ◦ Φ. We recall from [L]:

Lemma 2.1. We use the notation above. The set Φ−1
T (0)r{0} is a manifold. The

group T acts freely on this manifold. The symplectic manifold

M := (Φ−1
T (0)r {0})/T

is the desired G = TN/T symplectic manifold, that is, it is a symplectic cone and
the image of the G-moment map is C r {0}. In particular Φ(Φ−1

T (0)) = $̃∗(C),
where $̃∗ : g∗ → (RN )∗ is dual to $̃ (cf. (2.2)).

Our proof of Theorem 1.1 is based on two lemmas. The first one describes the
group π0(T ) of connected components of T :

Lemma 2.2. Let T ⊂ TN be as above. Then π0(T ) = ZG/L, where, as above, L
is the sublattice of the integral lattice ZG spanned by the primitive normals to the
facets of the cone C.

The second lemma shows that the manifold Φ−1
T (0)r{0} has the homotopy type

of CN r (V1 ∪ . . . ∪ Vr), where Vj ⊂ CN are complex linear subspaces of complex
codimension at least 2. In fact the subspaces Vj being deleted are determined by
the combinatorics of the polyhedral cone C. To make this precise we need a few
definitions.

For a subset I ⊂ {1, . . . , N} define the corresponding coordinate subspace VI by

VI := {z ∈ CN | j ∈ I ⇒ zj = 0} =
⋂
j∈I
{zj = 0}.

For each j ∈ {1, . . . , N} the jth facet Fj of the cone C satisfies

Fj = C ∩ {η ∈ g∗ | 〈η, µj〉 = 0}.
Now consider the set

U :=

I ⊂ {1, . . . , N} | ⋂
j∈I

Fj = {0}

 ,

the collection of subsets I of {1, . . . , N} such that the facets indexed by the elements
of I intersect only at the vertex.

Lemma 2.3. The manifold Φ−1
T (0)r {0} has the same homotopy type as

(2.4) CN r
⋃
I∈U

VI .

Let us assume the lemmas for a moment and prove the main theorem, Theo-
rem 1.1.
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Proof of Theorem 1.1. As was remarked previously, it is enough to prove that the
symplectic toric manifold MC = M = (Φ−1

T (0) r {0})/T has the properties that
π1(M) = ZG/L and that π2(MC) = Zd, where d = N − dimG and N , as before,
denotes the number of the facets of the cone C. Since T acts freely on Z :=
Φ−1
T (0)r {0}, we have a long exact sequence of homotopy groups

(2.5)
· · · → π2(Z)→ π2(M)→ π1(T )→ π1(Z)→ π1(M)→ π0(T )→ π0(Z)→ π0(M).

Since every facet Fj of C is not {0}, the set U contains no singletons. Since
dimC VI = N − |I|, it follows that for any I ∈ U , codimC VI = |I| ≥ 2. Hence by
Lemma 2.3 Z is connected and the homotopy groups π2(Z), π1(Z) are trivial. It
follows from (2.5) that

π2(M) = π1(T ) and π1(M) = π0(T ).

By Lemma 2.2 π0(T ) = ZG/L. Clearly π1(T ) = Zd, d = dimT = dimTN −
dimG. �

Proof of Lemma 2.2. This is a simple application of the Snake lemma. Consider
the commuting diagram

0 −−−−→ ZN −−−−→ RN exp−−−−→ TN −−−−→ 1y$ y$̃ y$̄
0 −−−−→ ZG −−−−→ g

exp−−−−→ G −−−−→ 1
By the Snake lemma we have a long exact sequence

ker$ → ker $̃ → ker $̄ → coker$ → coker $̃ → coker $̄.

By construction $̃ is onto, hence coker $̃ = 0. On the other hand coker$ =
ZG/L. By definition ker $̄ = T , ker $̃ = t and the map ker $̃ → ker $̄ is simply
the exponential map exp : t → T . Since coker(exp : t → T ) is π0(T ), we get
π0(T ) ' ZG/L. �

Proof of Lemma 2.3. We keep the notation of the discussion above. The proof is
an elementary application of the correspondence between symplectic quotients and
Geometric Invariant Theory (GIT) quotients as developed by Mumford, Guillemin,
Sternberg, Kirwan, Neeman, Sjamaar and others. The key point is that the GIT
quotient CN//TC and the symplectic quotient Φ−1

T (0)/T are isomorphic as stratified
spaces. It will be most convenient for us to quote [S], where Kirwan’s results on
the isomorphism between symplectic and GIT quotients were suitably refined.

(1) By Lemma 2.1 the group T acts freely on the manifold Z = Φ−1
T (0)r {0}.

(2) By Example 2.3 of [S], ΦT is admissible in the sense of [S], p. 109, and the
set of analytically semistable points (CN )ss for the action of T on CN is all of CN .

(3) By Proposition 1.6 of [S] for any point z ∈ CN the stabilizer in the com-
plexified group is the complexification of the stabilizer:

(TC)z = (Tz)C.

Hence by (1), (TC)z is trivial for all z ∈ Z.
(4) By Proposition 2.4(ii) of [S] the orbit TC · z is closed in (CN )ss = CN if and

only if T C · z ∩ Φ−1
T (0) 6= ∅. Thus

(2.6) {z ∈ CN | TC · z is closed} = {0} ∪ TC · Z.
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(5) Since the actions of (TN )C and TC commute, the union (2.6) of closed TC

orbits is (TN )C invariant. Hence, since {0} is fixed by (TN )C, the set

S := TC · Z
is (TN )C invariant.

(6) Proposition 2.4(iii) of [S] implies that (TC · Z)/TC = Z/T . Combining this
with (3) we see that S is a TC/T -bundle over Z. Since TC/T is diffeomorphic to
the Lie algebra t of T , the manifolds S and Z are homotopy equivalent.

(7) For any subset I of {1, . . . , N} define
◦
V I = {z ∈ VI | zj 6= 0 for j 6∈ I},

the “interior” of the coordinate subspace VI . The set
◦
V I is a single (TN )C orbit.

It satisfies
◦
V I = VI r

⋃
I′⊃I,I′ 6=I

VI′ .

We claim that

(2.7)
◦
V I ⊂ S ⇔

⋂
j∈I

Fj is a nonzero face of C.

Proof of (2.7). Note that since S is (TN )C invariant and
◦
V I is a (TN )C orbit,

◦
V I ⊂ S ⇔

◦
V I ∩ S 6= ∅. Also, since z ∈ S ⇔ TC · z ∩ Z 6= ∅ and since S is (TN )C

invariant, we have
z ∈ S ⇔ (TN )C · z ∩ Z 6= ∅.

As before let µj ∈ ZG denote the (primitive inward pointing) normal to the facet Fj
of C. Suppose FI :=

⋂
j∈I Fj is a nonzero face of C. Pick a point η in the relative

interior of FI . Then 〈η, µk〉 > 0 for all k 6∈ I. Let zηj =
√
〈η, µj〉; zη := (zη1 , . . . , z

η
N)

satisfies
〈Φ(zη), ej〉 = |zηj |2 = 〈η, µj〉 = 〈η, $̃(ej)〉 = 〈$̃∗(η), ej〉

for all j, where, as before, e1, . . . , eN is the standard basis of RN , Φ : CN →
(RN )∗ is the moment map for the standard action of TN on CN (see (2.3)) and
$̃ : RN → g is the surjective map defined earlier by (2.2). Hence Φ(zη) = $̃∗(η),
so zη ∈ Φ−1($̃∗(eta)). Since η 6= 0 we have

∅ 6= TC · zη ∩ (Φ−1($̃∗(C)) r {0}) = TC · zη ∩ Z,

where we used the fact that Φ−1($̃∗(C)) = Z ∪ {0}. Also zη ∈
◦
V I since |zηj |2 =

〈η, µj〉 for all j and 〈η, µj〉 > 0 for j 6∈ I. This proves that if the intersections⋂
j∈I Fj is a nonzero face of C, then

◦
V I ∩ Z 6= ∅. Hence

◦
V I ∩ S 6= ∅ and therefore

◦
V I ⊂ S.

Conversely, suppose
◦
V I ⊂ S. Then

◦
V I ∩ Z 6= ∅. For any z ∈

◦
V I ∩ Z we have:

Φ(z) ∈ $̃∗(C), |zj |2 6= 0 for j 6∈ I, and |zj|2 = 0 for j ∈ I. Therefore Φ(z) = $̃∗(η)
for some η ∈ C and 〈η, µj〉 6= 0 for all j 6∈ I, 〈η, µj〉 = 0 for all j ∈ I. Hence

η ∈

⋂
j 6∈I
{η ∈ g∗ | 〈η, µj〉 > 0}

 ∩
⋂
j∈I
{η ∈ g∗ | 〈η, µj〉 = 0}

 .

Thus FI =
⋂
j∈I Fj is a nonzero face of C. This proves (2.7). �
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(8) If
⋂
j∈I Fj = {0}, then for any I ′ ⊃ I,

⋂
j∈I′ Fj = {0} as well. Since

VI =
⋃
I′⊇I

◦
V I′ , (2.7) implies that

S = CN r
⋃
I∈U

VI .

By (6) Z = Φ−1
T (0) r {0} is homotopy equivalent to S = CN r

⋃
I∈U VI and the

result follows. �

3. Reeb type and K-contact

In this section we prove a version of Proposition 2.1 of Yamazaki [Y] that relates
torus actions and K-contactness. Recall that the Reeb vector field Rα of a contact
form α on a manifold B is the vector field uniquely defined by the equations

ι(Rα)dα = 0, ι(Rα)α = 1.

The Reeb vector field defines a splitting of the tangent bundle of B,

(3.1) TB = ξ ⊕ RRα,
where ξ = kerα is the contact distribution. Since (ξ, dα|ξ) is a symplectic vector
bundle, there exists a complex structure J on ξ compatible with dα|ξ so that gξ =
dα|ξ(·, J ·) is a metric on ξ. Using (3.1) we may extend gξ by zero to all of TB.
Then g = gξ⊕α⊗α is a Riemannian metric on B in which ξ and Rα are orthogonal
and the length of the Reeb vector field is 1. The metric g is said to be adapted to
the contact form α. If additionally the Reeb vector field is Killing with respect to
an adapted metric g, i.e., if the Lie derivative LRαg is zero, then the pair (α, g) is
called a K-contact structure on B. If given a contact distribution ξ on a manifold
B there exists a K-contact structure with kerα = ξ, we will say that (B, ξ) admits
a K-contact structure.

Note that if a Lie group G acts on B preserving a contact form α, then it
preserves the Reeb vector field Rα, the contact distribution ξ = kerα and the
symplectic structure dα|ξ. Therefore if G is compact we may choose the complex
structure J (and hence the adapted metric g) to be G-invariant.

Proposition 3.1. A compact contact manifold (B, ξ = kerα) admits the structure
of a K-contact manifold if and only if there exists an action of a torus G on B
preserving α and a vector X ∈ g such that the function ι(XB)α = 〈Ψα, X〉 is strictly
positive, i.e., the G action is of Reeb type. Here as before XB denotes the vector
field on B induced by X ∈ g and Ψα denotes the α-moment map.

Proof. Suppose the action of a torus G on (B, ξ = kerα) is of Reeb type, i.e.,
suppose there is a vector X ∈ g such that 〈Ψα, X〉 is strictly positive (note that
this is a condition on the co-oriented contact distribution ξ and not just on the
contact form α). We then can multiply α by a positive G-invariant function f so
that 〈Ψfα, X〉 = 1 ( take f = 1/〈Ψα, X〉). Therefore it is no loss of generality
to assume that α(XB) = 〈Ψα, X〉 = 1. Since the G action preserves α, we have
0 = LXBα = dι(XB)α + ι(XB)dα = d1 + ι(XB)dα. Therefore XB is the Reeb
vector field of α. Now choose a G-invariant metric g adapted to α. Then, since α
is G-invariant, LXBg = 0, and so (α, g) is a K-contact structure on (B, ξ).

Conversely suppose (α, g) is a K-contact structure on B. Since B is compact, the
group of isometries of (B, g) is a compact Lie group H . Take the closure inside H
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of the flow of the Reeb vector field Rα. The closure is a compact connected abelian
group G, i.e., a torus. Since the flow of Rα preserves the contact form α, the action
of G preserves α as well. By construction Rα = XB for some vector X in the Lie
algebra of G. Since Rα is a Reeb vector field we have 1 = ι(Rα)α = 〈Ψα, X〉, where
Ψα : B → g∗ is the moment map for the action of G on (B,α). Hence the action
of G on (B, ξ = kerα) is of Reeb type. �

We end the paper with an observation of the referee.

Proposition 3.2. Any (compact connected) contact toric manifold with an invari-
ant K-contact structure is of Reeb type.

Proof. Suppose an effective action of a torus G on a manifold B is completely
integrable (i.e., dimB + 1 = 2 dimG) and preserves a K-contact structure (α, g).
Let Ψα : B → g∗ denote the associated moment map. Then the group G is a
maximal torus in the Lie group of isometries of (B, g). The Reeb vector field Rα
of α is G-invariant, hence the torus action it generates commutes with G. But G
is a maximal torus, hence Rα is induced by a vector X in the Lie algebra g of G.
It follows from the definitions that

〈Ψα, X〉 = α(Rα) = 1 > 0,

hence (B, kerα) is of Reeb type. �
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