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HOMOTOPYIDEMPOTENTS ON FINITE-
DIMENSIONAL COMPLEXES SPLIT1

HAROLD M. HASTINGS2 AND ALEX HELLER

Abstract. We prove that (unpointed) homotopy idempotents on finite-dimensional

complexes split, and describe some geometric consequences.

1. Introduction. A homotopy idempotent on a space A" is a map /: X -* X such that
0 U V

/ =y. It is said to split if there are maps W -> A" -> W with vu = 1 w, and uv a«/. It

is well known (see E. M. Brown [2], D. A. Edwards and R. Geoghegan [8], P. Freyd

[10]) that pointed homotopy idempotents on pointed connected CW complexes split.

Questions about splitting unpointed homotopy idempotents have arisen in several

areas. In homotopy theory (Freyd and Heller [11], Heller [13]) this question is closely

linked with Brown's representation theorem for half-exact functors. This question is

also closely related with the study of FANR's (fundamental absolute neighborhood

retracts). A compact metric space C is a FANR if it is a shape (fundamental) retract

of a (compact) ANR (absolute neighborhood retract) A, that is, if there is a map 7:

C -» A and a shape map r. A -» C with rj shape equivalent to lc. By J. West [16], A

is homotopy equivalent to a finite complex X. Then, cf. [8], the composite mapping

jr induces a homotopy idempotent on X. In pro-homotopy (D. A. Edwards and

Hastings [9]), the question of splitting homotopy idempotents is a special case of the

more general question of whether weak pro-homotopy equivalences are strong

pro-homotopy equivalences. Similar questions arise in shape theory (J. Dydak and

Hastings [6], Dydak and J. Segal [7], Edwards and R. Geoghegan [8]: Is every shape

equivalence a strong shape equivalence?) and proper homotopy theory (T. A.

Chapman [3], Chapman and L. Siebenmann [4, Appendix II], and Edwards and

Geoghegan [8]: Is every weak proper homotopy equivalence a proper homotopy

equivalence?).

Recently, Dydak and P. Mine [5], and Freyd and Heller [11] independently found

an unpointed homotopy idempotent on an infinite-dimensional complex which does

not split. See §2. This answered the pro-homotopy question in the negative.

However, the shape and proper homotopy questions remained open, because they

involve implicit finiteness restrictions.

We shall prove the following.
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620 H. M. HASTING AND ALEX HELLER

Theorem 1. (Unpointed) homotopy idempotents on finite-dimensional complexes

split.

Corollary. Every FANR is a pointed FANR.

We need consider, without loss of generality, pointed, connected CW complexes.

All maps, with such obvious exceptions as deck-transformations of covering spaces,

preserve basepoints. We shall consider both pointed (~) and unpointed (^)

homotopies.

We thank J. Dydak and R. Geoghegan for helpful conversations.

2. Proof of Theorem 1. We begin by recalling an earlier result [5, 11]. Let/: X -» X

be a homotopy idempotent, and let //: /2 — / be a homotopy. Let F be the group

with presentation

(x0,xx,...\x¡Xjxrx =xJ+x,alli<j).

Then F admits an endomorphism <j> with c^x, = x,+, for all i. Under the homotopy

77, the basepoint of X traces out an element £0 in mxX. Then there is a unique

homomorphism <ï>: F -» w, A" such that $x0 = £0 and <P<i> = (ir,/)<ï>.

Theorem 2 [5, 11]. The homotopy idempotent /: A" -^ X fails to split if and only //O

is injective. In particular, the Eilenberg-Mac Lane space K(F,l) has an unsplit

homotopy idempotent, the induced map K(<f>, I).

If a homotopy idempotent / splits, then / has an image. (Of course, images do not

exist, in general in homotopy theory.) Here is a candidate for homotopy "image" of

/. Let Y be the homotopy of the diagram colimit of the diagram

(2.1) xLxLxL---.

For an explicit construction, let Y be the Milnor telescope [13], of (2.1), that is,

(2.2) Y = Tdix^X^X~* ■■■] = MfUxMfUxMfUx---.

Let ik: X -» Y include X as the base of the klh mapping cylinder in Y. Then

(a) ik+xf-ik'

(b) gik+x~ ik, and

(2.3) ,'\ I        f.        /.
v     '                                   (c)    irmY=cóümivmX^nmX-> ■

(d)   H,Y = colimí H^X^H^X1^ ■■■).

Thus for all q, HqY'= Uklm(Hqik). By (2.3)(b), all of the images lm(Hqik) are

isomorphic. Thus unless HqY = 0, all lm(Hqik) ¥= 0.

Similarly form

(2.4) f=Tû[X-*X-*X-*'

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOMOTOPY IDEMPOTENTS 621

Then, up to homotopy, Y is the universal cover of Y (compare mjf and tt^Y) and

analogues of (2.3) hold for Y. We consider the left action of fundamental groups on

universal covering spaces and their homology. Then for any element £ of irx X, the

following equivariance conditions hold:

(2.5) #*((«,/>«)/; îkè^(("JkWk,    fc = o,i,....

We may now proceed to the proof of the theorem. Let /: X -» A* be a homotopy

idempotent on a finite-dimensional complex. Assume that / does not split. First

observe that by taking a suitable covering space we may assume that w, X = F,

$ = lF, and <J> = irxf. We may then compute, the homotopy "image" of/in (2.2)

and (2.4):

*¿i££Z£¿.lW-'=^,alW<y)    and
(2.6)

(■nxik)xj = Xj_k,       y = 0,1.

For the deck-transformations on the universal coverings, (2.6) yields the formula

lkXj — Xj_klk.

The homotopy /2 -/lifts to a homotopy f2 « x0/. Thus for all k>0,fk+x~

xQfk and, composing with ik+x, i0 =* x_k_lf1. Thus all x„ /< -2, operate in the

same way on the subgroup lm(Hqix) C HqY. For each integer n > 0, let F„ be the

subgroup of G generated by the n elements

(2.7) X_3X_2, X_6X_5,...,X_3nX_3„+i.

It is shown in [11, cf. also 6, 7] that Tn is free abelian on these n generators; we have

just seen that it operates trivially on lm(Hqix).

Because X is finite-dimensional, there is a largest degree r such that HrY # 0.

Also, for each n, let Yn be the covering space of Y with fundamental group Tn, and

compute H*Yn by the spectral sequence of the covering Y -» Yn; cf. [14] for a

detailed description. In this spectral sequence E2q = Hp(T„, HqY). Thus Ejq ¥= 0 if

p > n or q > r. Accordingly

(2.8) El = Enr = #¿(27, //ry) = (HrY)T\

where (HrY)T» denotes the subgroup fixed under Tn. The last equality may be

obtained directly (cf. [14]) or using Poincaré duality in local coefficients (following a

suggestion of the referee):

(2.9) Hn(K(T„, 1), HrY) s H°(K(T„, 1), H,Y).

Thus

(2.10) //n+ryn = (7^ry)r" = Im(i7/,)^0,       «=1,2,....

Hence the dimension of Y, and hence also of X, is infinite, a contradiction. This

completes the proof.    D

3. A geometric application. We sketch a proof of the following, as an example of

the use of Theorem 1 in geometric topology.

Theorem 3. Every (compact) FANR is a pointed FANR.
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622 H. M. HASTING AND ALEX HELLER

Proof. Let C be a (compact) FANR. Following [8], as explained in our Introduc-

tion, C is a shape retract a finite complex X via shape maps/: C -> X and r: X -» C.

These yield a homotopy idempotent /: X -» X. By [8], / splits in weak pro-homotopy

through the inverse sequence

(3.1) xLxLxL-,

which defines the shape of C. Also, C has the shape of a complex if and only if /

splits in the homotopy category of complexes. (In this case, / splits through the

homotopy limit, holim, of (3.1); see A. K. Bousfield and D. M. Kan [1], also [8], [9].)

We provide a splitting in the unpointed case; Edwards and Geoghegan [8] had only

been able to consider pointed shape and pointed FANR's. Our Theorem 1 extends

the Edwards-Geoghegan argument to unpointed shape, thus C has the shape of a

complex Y. Hence C has the strong shape of Y, and the pointed shape of Y [9, §5].

The conclusion now follows from [8].    D
■
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