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HOMOTOPY INVARIANTS OF NONORIENTABLE 4-MANIFOLDS

MYUNG HO KIM, SADAYOSHI KOJIMA, AND FRANK RAYMOND

Abstract. We define a Z4-quadratic function on n2 for nonorientable 4-
manifolds and show that it is a homotopy invariant. We then use it to dis-
tinguish homotopy types of certain manifolds that arose from an analysis of
toral action on nonorientable 4-manifolds.

1. Introduction

The oriented homotopy type or even the topological type of a closed simply-
connected smooth 4-manifold is determined by the intersection pairing on H2
[8, 1]. If the fundamental group is nontrivial, there are three immediate homo-
topy invariants supported on the 3-skeleton: nx, n2 as a Z[^i]-module, and
the first k-invariant. There is also an immediate global homotopy invariant,
the equivariant intersection pairing on n2 with respect to the action of nx .
Surprisingly, no other invariants have garnered much attention so far. However
it has been shown that these are actually enough to determine the homotopy
types of orientable closed 4-manifolds (or just Poincaré complexes) with special
finite fundamental groups [6, 2].

We will show here by examples that this fails for nonorientable smooth 4-
manifolds at a very primitive stage by using two invariants: the Z2 -intersection
pairing on H2, and a Z4-quadratic function q on n2 0 Z2 . Our invariants
are not entirely new, but the independence of the first one to the above four
invariants and a geometric proof of the homotopy invariance of the second one
are new.

Our quadratic function can be derived from Wall's self-intersection p [7].
However we use another definition which is more convenient for showing its ho-
motopy invariance. We work this out in the next section. Then we discuss three
nonorientable 4-manifolds doubly covered by S2 x S2, and use our invariants to
distinguish their homotopy types in the last section. In fact, the quadratic func-
tion was devised to distinguish these manifolds, which arose from an analysis by
Myung Ho Kim of 2-dimensional toral actions on nonorientable 4-manifolds.

After completing this paper, Ian Hambleton pointed out to us that our invari-
ant q , the Z4-quadratic function on %2®Z2, can be evaluated as the difference
between a self-intersection number and the Browder-Liversay invariant in the
orientable double cover. The unobvious but key connection can be found in
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Lemma 4.6 of [10]. Hambleton and Milgram gave a homotopy theoretic defini-
tion of the Browder-Liversay invariant in [11]. Hence the homotopy invariance
of q would already follow from [10, 11]. Our geometric proof of the homotopy
invariance of the (/-invariant seems to have intrinsic interest.

Ian Hambleton also kindly pointed out to us a mistake in our earlier version.
We wish to express our thanks for Professor Hambleton for his interest and
helpful comments. We also thank the referee for his suggestions.

2. A Z4-QUADRATIC FUNCTION

Let M be a closed smooth 4-manifold with a base point. The invariant we
shall define does make sense for all smooth manifolds but contains something
new only if M is nonorientable. Thus, to avoid unnecessary complications, we
assume M is nonorientable throughout this section. Choose elements x and
y of n2(M) and represent them by transversely immersed 2-spheres Sx and
Sy which also mutually intersect transversely. We denote by x • y the num-
ber of mutual intersections of Sx and Sy modulo 2. The value is the usual
Z2-intersection number of those cycles, however since our domain is n2, the
bilinear form is not quite the same as the homology intersection. For exam-
ple, it may be singular. Another description of • is the Z2-reduction of the
argumented equivariant intersection on n2 .

Let M be the orientable double cover of M with a base point which comes
down to that of M. Then, fixing an orientation of M, we define a function q
with values in Z4 for x £ n2(M) by

q(x) = x(HSx)) + 2#se\fSx   modulo 4.

Here u(Sx) is the normal bundle of Sx (we regard Sx as a sphere by ignoring
its self-intersection). Since we specified a homotopy class x and fixed the base
point on M, Sx has a unique lift Sx in M. In particular, their normal
bundles are canonically isomorphic with each other. We will identify Sx with
Sx through this lifting when we are concerned with the normal bundle. £ ( ) is
the Euler class evaluated with respect to the orientation of M. More precisely,
X(u(Sx)) is the Euler number evaluated with the local orientation induced from
one on v(Sx), or equivalently the number to be identified with x(v(Sx)). The
Euler class makes sense as an integer, self Sx is the set of self-intersections of
Sx and # stands for its cardinality.

Lemma 1.  q is a well-defined Z^-quadratic function with respect to •, namely,
(1) q(nx) — n2q(x)   (in particular, q(-x) = q(x)), and
(2) q(x + y)-q(x)-q(y) = 2x-y   (4).

When we choose the other orientation of M, q becomes -q.
Proof. By Whitney [9] (cf. Matsumoto [5]), homotopic spheres in this dimen-
sion are connected by a finite sequence of regular homotopies and homotopies of
creating or killing small Whitney singularities. The regular homotopy obviously
does not change the value of q . When we create or kill a Whitney singularity,
we add or subtract one self-intersection and thereby change its Euler class by
±2 according to the sign of intersection. Hence this operation does not change
q either. Properties (1) and (2) are quite easy to verify.   D
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Remark. If M is orientable, q still makes sense by orienting M ; then q is
the homology self-intersection number of the cycle represented by Sx modulo
4 and hence there is nothing new.

Theorem 2. The equivalence class of q (q ~ -q) is a homotopy invariant. More
precisely, if f : M —> N is a homotopy equivalence, then

Qm(x) = qN(f*(x))   for all x £ n2(M)
with respect to relevant orientations of the orientable double covers M and Ñ.

The proof of Theorem 2 occupies the rest of this section. First of all, take the
lift / : M —> N of / which preserves the base points, and then orient M and
N so that / is of degree one. Choose a transversely immersed oriented 2-sphere
5 in M representing x. By property (1) of Lemma 1, q(x) is independent of
the orientation of 5, but, nevertheless, we shall use an orientation to simplify
our computations.

Homotop / so that the restriction of / to S is an immersion with trans-
verse image and so that / extends to a bundle map: u(S) —> u(f(S)). This
is attained by first perturbing /so that it becomes an immersion on S with
transverse image. Then since / is a degree one homotopy equivalence, the
cycles S and f(S) must have the same homological intersection number,
which is equal modulo 2 to the Euler class of the normal bundle. In partic-
ular, x(u(S)) - X(v(f(S))) (2). Thus, by homotoping / by creating or killing
small Whitney singularities, we can attain the identity x(v(S)) = x(v(f(S))).
It is then obvious how to homotop / to a bundle map on u(S).

We adopt the following convention for orienting f(S). Since S is oriented,
u(S) is compatibly oriented by the orientation of M. Then since / extends
to a bundle map, u(f(S)) admits an induced orientation. The orientation of
f(S) is to be the one that is compatible with the orientation of N. We denote
f(S) with this orientation by S'.

The orientation of 5" might be different from the orientation induced from
one on S by /. The reason why we take this convention is to make the sign
of the degree of / near S clear. The degree of f\s is 1 or -1 according
to whether the orientation of S' agrees with the orientation induced by / on
f(S) or not.

Homotop f further fixing a neighborhood of S so that / is transverse
regular to S'. This means, in part, that at the self-intersection points of 5",
/ is a diffeomorphism near each of their preimages. For we may perturb /
near the preimage of the self-intersection points and then perturb / near the
preimage of S' - {neighborhoods of self-intersections} . Note that now there
are no "manifold points" in the preimage of self-intersections by / since / is
a diffeomorphism around them.

The inverse image f~x(S') then consists of transversely immersed connected
surfaces Cj, j = 0, 1, ... , n , including S, with mutually transverse inter-
sections. Since each Cj behaves much like a connected component, we call it
a component of the inverse image. Namely f~x(S') - [Jj Cj, where each Cj
is a component in our sense. We assume that S — Co .

Lemma 3. Each Cj lifts to M. Moreover, each Cj is an orientable surface with
transverse self-intersections.
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Proof. Since S' is a 2-sphere with self-intersections, it lifts to Ñ. In particular,
the preimage of S' in N has two components in our sense. Think of the
preimage of Cj in M. Since it is mapped to the preimage of S' by /, it must
contain at least two and hence exactly two components. This means that Cj is
liftable.

By transverse regularity, v(C¡) is a pullback of u(S') by f\q , and it is ori-
entable since i/(5') is orientable. As C, and hence v(Cj) lifts to an orientable
manifold M, Cj itself must be an orientable surface.   D

The component Cj has a unique lift which maps to 5' by /. For our
convenience, we denote it by Cj. As we have been doing for 5, we shall
identify Cj and Cj when we are concerned with the normal bundle.

Orient C¡ by the following procedure. Since 5' was oriented, v(S') has a
compatible orientation with one on yV. Since / is transverse regular to 5',
v(Cj) gets an induced orientation. We then orient Cj to be compatible with
the orientation of M. This is opposite to our previous procedure of orienting
5' from the orientation of 5, but we do recover the correct orientation for
Co = 5. From now on we use the notation Cj to represent an oriented surface.

Since each Cj is now oriented, the degree of f\o¡, which we denote by d¡,
is defined as an integer satisfying /»([C,]) = dj[S'], where the notation [*]
denotes the integral homology class. For instance, do = ±1. We should also
note here that [Cj] = djd0[S] since / is homotopy equivalence.

We have two identities by the convention:

X(v(C])) = djX(v(S1))    and    ¿>, = 1.
j

The Euler class for v(Cj) in the first identity is evaluated with respect to our
orientation convention. The second identity is the result of the fact that / is
of degree one in our orientation and verified by choosing a generic point on 5'
and checking how we count the degree of / by dj 's.

We distinguish self-intersections according to their liftability to M. Suppose
C is a transversely immersed surface in M which has a specified lift C in M.
We let Rc be the set of self-intersections of C which lift to be self-intersections
of C, and let Qc be those which do not. Obviously self C is a disjoint union
of Rc and Qc ■ The difference between these two is that Rc contributes to
the homological self-intersection number of C but Qc does not.

Lemma 4. f(Qc) is contained in Qs, and f(Rc) is contained in Rs'.
Proof. Let com '■ nx(M) —> Z2 be the corresponding homomorphism to the first
Stiefel-Whitney class. Then to each self-intersection point of C, we assign the
value of toM for a smooth path on C which starts from the point in question
and comes back to the same point from the other branch. This is a well-defined
function since C lifts, and the liftability of the point as a self-intersection point
to M is classified by its value.

Since / is homotopy equivalent, it sends the orientable subgroup in nx(M)
to that of nx(N) and hence com = ojn ° f ■ Therefore the liftability of self-
intersection points in C corresponds by means of f to the liftability of self-
intersection points in 5'.   D
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Lemma 5.
(#RCj=0(2) if   dj = 0(4),

#RCj - #RS, = 0 (2) if   dj = 1 (4),
#RCj=x(HS'))(2) if   dj = 2(4),

K#Rc.-#Rs,=x(HS"))(2)   if   ¿, = 3(4).
Proof. Recall the identity /,[C/] = dj[S'] and hence f[Cj] = dj[S']. Since /
is a degree one homotopy equivalence, the homological self-intersection number
of corresponding elements must be the same. We thus get

[Cj] ■ [Cj] = d) [5'] • [5'].
The left-hand side is equal to x(v(Cj)) + 2Y¿ self C,-, where the summation here
involves the sign of self-intersections. On the other hand, the right hand side
is equal to dj (x(v(S')) + 2 £ self 5'). Notice here that we have the identities:
£self Cj = #RCj (2), £ self5' = #RS> (2), and *(i/(Q)) = djX(v(S')). Thus,
by substituting these identities into the first one, we have

dj(dj - 1)X(HS')) = 2(#RCj - dj #RS.)    (4).
The congruences in the statement of the lemma are consequences of this con-
gruence as dj varies modulo 4.   □

Lemma 6.  #Qs, = 'Zj#QCj (2).
Proof. Let A¡ be the difference set f\c~x(Qs<) - Qc¡ and let Bj be the set
f\c ~x(Rs')-Rc, corresponding to liftable intersections. In other words, A¡ is
the set of points in Cj which intersect with another component of f~l(S') and
which map to unliftable self-interactions of 5', and Bj is the corresponding
set mapping to liftable self-intersections. The obvious identity obtained from
Lemma 4 and transverse regularity of / to self 5' yields

*f-\Qs<) = Y,*Qci + \Y,Ai-
j J

The left-hand side is equal modulo 2 to (deg/)#Qs- = #Qs' (2).  Thus it is
enough to show that the last term of the identity is even.

We first count the number of mutual intersections,

i 5>^-+ #/?/) = E#c'nC;
j i<j

m^Tdidom-djMS]    (2)
i<j

= ^didj(x(HS))+ 2#sdfS)   (2)
'<j

= Y,didjX(HS))   (2).
KJ

Another obvious identity obtained from Lemma 4 and transverse regularity of
/ on self 5' is

#ri(RS.) = Y,#RcJ+\Yl*BJ-
J j
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The left-hand side is equal modulo 2 to (deg/)#/?$/ = Y,jd¡#Rs' (2). Hence
we have

\Y.#BJ^Y.dJ*Rs'-Y.#Rc1 (2)2

"£(dj#Rs,-#RCj)    (2)

=     E  +  E   +  E   +  E      (dj*Rs--*Rc,)   (2)
V¿,=0(4)     d,=l(4)     ¿,=2(4)     ¿,=3(4)/

= E ¿W)) (2)
dj=2,$

ee   £  ¿oX(K5))   (2),
dj=2,3

by Lemma 5. The term we are interested in now becomes

5£#4S(E<W/+  E  rfo]^(5))   (2).
J \K/ <i/s2,3     /

We conclude the lemma by showing that the coefficient of #(i/(5)) is even.
Let Dk be the number of dj's whose residue modulo 4 is k . Since the sum of
the dj 's is equal to 1, we obtain

0 • Dq + 1 • A + 2 • D2 + 3 • D3 = 1    (4).
Then we can easily obtain

i(A+£>3)(A+£>3-i) = (£>2 + />3)   (2).

The left-hand side is the first summation in the coefficient, while the right-hand
side is the last one.   D

Proof of Theorem 2. Since qN(f*(x)) = QN(-f*{x)) by Lemma 1, we are allowed
to use our oriented 2-sphere 5' to compute qN(f*(x)) ■ The difference of their
value is

1m(x) - Qn(Mx)) = x(HS)) - X(HS')) + 2(#RS - #RS.) + 2(#QS - #&,).
By Lemma 5, the first four terms cancel each other modulo 4. We will show
that the last two terms also cancel by deriving a contradiction from the opposite
supposition.

Hence assume that #QS ^ #Q$> (2). We first claim that there is a component
C of f~x(S') so that #Qc ^ #QdS (2), where d is the degree of f\c times
do, and c75 is a cycle representing d[S] = [C] obtained by taking d "parallel"
cross-sections of v(S) with mutual transverse intersections.

The self-intersections of dS either are produced due to nontriviality of the
Euler class of u(S) or inherit the self-intersections of 5. The second one
forms a lattice in a small neighborhood of each self-intersection of 5. Since
dS is contained in u(S), it has a unique lift dS contained in i/(5). The
self-intersections due to nontrivial Euler class all are liftable to dS. The lattice
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intersections around Rs are also all liftable. But those around Qs are certainly
not, and each point in Qs produces d2 unliftable self-intersections. Thus we
get a nice numerical property #Qds = d2#Qs .

We take all congruences modulo 2 in the verification of our claim. Suppose
#Qs> = 1. Then #QS = 0 by the supposition. Hence there must be another
component C with #Qc = 1 by Lemma 6. Then, since #Qds = d2#Qs = 0 is
not equal to #Qc , we are done.

Suppose #Qs' = 0. Then #QS = 1 by the supposition. In this case, by
Lemma 6, the number of Cj 's with #Qc¡ = 1 must be even. If one such Cj
has even degree, let it be C. Then #Qds — d2#Qs = 0 which is not equal to
#Qc and we are done. When all of the Cj's with #Qq = 1 have odd degree,
since there is an even number of such Cj's, there must be another component
C, with #QCi = 0 and odd degree because the total degree is 1, which is odd.
Thus let that component be C. Then #Q¿s = d2#Q$ = 1 which is not equal
to #Qc and we have now established the claim.

We finish the proof of invariance by getting a contradiction. Recall that C is
homologous to dS. Surger C and dS respectively in M by removing a small
neighborhood of each liftable intersection in Rc and R^s and then sewing back
an annulus with the compatible orientation. Denote the resultant immersed
surfaces by C* and dS*. The surgery does not change their homology class,
and they are still homologous to each other. Since we surgered around the
liftable self-intersections, the resultants lift to M also. Choose their unique
lifts C* and dS* corresponding to C and dS. These are homologous since
/ is a homotopy equivalence and f*([C*]) = f*([dS*]). Also since we surgered
on all the liftable self-intersections, they turn out to be embedded surfaces. Thus
they are L-equivalent, that is, there is a proper orientable submanifold V in
Mx[0, 1] so that VnMx{0} = C* and VC\M x {1} = -dS*. Then perturb
V slightly without moving a neighborhood of the boundary; we may assume
that V has a transverse image in M x [0, 1 ]. Hence its self-intersectional
singularity forms a 1-dimensional proper submanifold in M x [0, 1]. Each
nonclosed component of the singularity has two end points at the boundary,
which are the members of the unliftable self-intersections Qc U QaS . But this
set was claimed and shown to have an odd number of elements. This is a
contradiction.   G

Remark. Our quadratic function can be derived from Wall's self-intersection p
[7]. It is defined in our case on n2 of the associated Stiefel bundle over M with
values in X = Z[nx] modulo some ambiguity. This homotopy group is identified
with the set of regular homotopy classes of a 2-sphere in M. The ambiguity will
disappear if we reduce its image to Z2[Zj] by the homomorphism: nx(M) —>
Z2 associated to the first Stiefel-Whitney class and the Z2 reduction of the
coefficients. Furthermore, if we compose the collapsing map of the constant
factor: Z2[Z2] = Z2 © Z2 —► Z2 : a + bg -» b, to the reduction, then p comes
down to the map from n2(M). Let us denote this map by p* : n2(M) —► Z2.
Then since p*(x) = #QSx (2), we have the identity

q(x) = X(u(Sx)) + 2#RSx + 2p*(x) = [Sx] • [Sx] + 2p*(x).
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3. Examples

The invariants are practical tools to detect the homotopy type of manifolds.
Hence it would be instructive to compute them from concrete examples. We
present here three nonorientable manifolds with the same 3-skeleton and see
how the invariants work. The computation shows the nontriviality of the Z2-
intersection pairing and ^-function, and their independence to the other invari-
ants, and unfortunately leaves a few unanswered questions.

Start with a Z)2-bundle over 52 with Euler class 2«. Denote it by E„.
The boundary of En is a circle bundle over 52. It admits a free involution
to rotating each fiber half, and another free involution xx rotating each fiber
half and simultaneously rotating the base half along some axis. On En , we
identify the orbits of x¡ on the boundary of E„ with points. We shall denote
this quotient space by N„j = En/Xj, j = 0, 1.

Split the base 52 into two disks D+ and Z>_ along the equator perpendicular
to the axis of rotation. Over D+ and Z>_ the fibration E„ is split into E+ and
E~ . Both involutions leave each component invariant and we get the decompo-
sition N„j = E^/tj U E~ ¡Xj , where these two parts are diffeomorphic to each
other. From this decomposition it can be seen that yV„0 is diffeomorphic to
S2xRP2 = Noo and that NnX is diffeomorphic to either 7V0i or Nxx according
to whether n is even or odd. For example, with xq,E+/xo and E~/xq are two
copies of D2 x RP2 glued together by a diffeomorphism fn along 51 x RP2.
The diffeomorphism, which is isotopic to the identity, extends to a diffeomor-
phism from yVoo = D+x RP1 Uld /)_ x RP2 to yV„0 = D+ x RP2 u/n D_ x RP2.
On the other hand, En/xx = E+/xx Dgn E~¡xx is the union of two nontrivial
2-disk bundles over RP2. The glueing mapping gn is defined over the equator
on the twisted 52-bundle over 51 . This time g„ , because of xx , is isotopic to
gn+2 and we get a diffeomorphism of yVnl to yVoi if n is even and to Nxx if
n is odd.

Let us review the invariants of A^o = 52 x RP2. It has nx = Z2 and n2 =
Z © Z generated by each factor, say x and y . Then the action of nx is given
by (x, y) —> (x, -y). Since nx twists the second factor of n2, H3(7ix ; n2) =
Z2. The first /c-invariant is supported by an embedded RP2, and hence is
nontrivial.

If we let e be a 2-disk in En bounded by the invariant circle on dE„ ,
e U dEn/xx forms a 3-skeleton of yV„i . It is homeomorphic to e U dEn/xo ,
which is a 3-skeleton of yVoo . Hence each Nn x has a common 3-skeleton with
yVoo up to homotopy. In particular, they share nx, n2 as a A-module and the
unique nontrivial first /c-invariant in H3(?ri ; n2) = Z2 with yVoo. Since xx is
isotopic to the identity, both yV0i and yVi 1 are doubly covered by the double of
En , which is diffeomorphic to 52 x 52. On the other hand, every orientation
reversing involution induces the automorphism of n2(S2 x S2) described by
(x, y) -> (x, -y) up to base change. Hence this fact forces yV0i and yVi 1 to
have the same equivariant intersection paring on n2 with yVoo .

Homotopy invariants. yVoo has the hyperbolic Z2-intersection pairing and the
others have the standard one, while yV0i has a trivial <?-function and the others
have a nontrivial one. In particular, they are not mutually homotopy equivalent
to each other.
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Computation. The Z2-intersection pairing of yV0o is obvious. To compute it for
the others, recall the decomposition NnX - E+/xx U E~/xx . Each factor, as we
have observed, is a disk bundle over RP2, and its boundary is a nonorientable
bundle. The exact sequence for this pair shows that its spine, RP2, is a self
dual Poincaré dual class in E*/xx. Using this fact and the Mayer-Vietoris exact
sequence, we can verify that H2(yV„i ; Z2) for all n is isomorphic to Z2 © Z2
and has the standard (odd) form.

To compute ^-functions for yV0o and yVu , look at Ex/xj (j = 0, 1) and find
an embedded 52 with Euler class 2 as the zero section of Ex. In particular,
their ^-functions are nontrivial. To compute it for yV0i, recall that the q-
function is Z4-quadratic. Thus we only need to know values of two primitive
independent elements of ^2(^01) — Z © Z. An element to compute easily is
the zero section of Eq whose value is zero. The other element to compute
easily is the sphere lying on d(Eç/xx). Since this is an embedded sphere with
trivial normal bundle, its value is also zero. It is then obvious by looking at
the universal cover that these two form a primitive pair of ^(yVoi), and the
^-function of yVoi is trivial.   D

Remark. Hambleton and Kreck suggested the connection between ^-invariants
and Z2-intersection pairings in [2]. However our examples show that they are
rather independent, at least in the nonorientable case.

Finally, we review these examples from homotopy theoretic viewpoints. Take
a 3-skeleton of yV00 = 52 x RP2 sitting as K = S2 x RP1 u * x RP2. N00 is
then a union of K and a single 4-cell eA. The universal cover AT of AT is
homeomorphic to S2xSxUelie', where e and e' are 2-cells attached to *xSx
canonically. The covering transformation acts on K by the (identity) x (half-
rotation) on the 52 x 51 part and by the antipodal map on e U e' = S2 . On
the other hand, K has the homotopy type S2 V S2 \/ S3, where the first two
52 correspond to S2 x * and e\J e' respectively. Hence n3(K) = n3(K) is
isomorphic to Z4 . The generators can be described by gx and g2 , the Hopf
maps to the first two spheres, #3, the Whitehead product to 52 V 52 , and g^ ,
the standard degree one map to the 53 factor.

Lemma 7. The action of the covering transformation T on n3(K) = n3(K) is
given by T(gj) = gj for j =1,2, T(g3) = -g3 and T(g4) = g3 + g4.
Sketch of proof. The action for gx and g3 should be obvious. The action
for g2 is identical because the reflection map on the base sphere of the Hopf
fibration is covered by an orientation preserving map of 53.

We roughly sketch how to get the last claim. Let us decompose 53 into two
solid tori U and V. Thicken two 2-cells in K by producing D1 so that exD2
attaches to 52 x 51 in a tubular neighborhood of * x 51 . The complement W
of its attaching part in S2 x Sx is also a solid torus. Then the map g$ is the
map sending U to the complement W and V to e U D2, while T(g4) maps
U to the same W but V to e' U D2. Then it is not hard to find a homotopy
of the map T(g^) - g4 to the Whitehead product #3 which maps U to S2 x*
and V to e U e'.   O

By attaching a 4-cell to K by a glueing map y £ n3(K) = Z4, we obtain a
4-complex Ky = K Uy e4 .  Since the N„j 's have a common 3-skeleton, they
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all are so obtained. But not all y's produces a manifold or even a Poincaré
complex. Also, different y 's might produce homotopy equivalent complexes.

Poincaré complexes. If y = g4, g4 + gx, g4 + g2, or g4 + gx + g2, then Ky
is a Poincaré complex doubly covered by a homotopy 52 x 52. They are not
mutually homotopy equivalent.

Computation. Suppose that Ky is a Poincaré complex. Then since H3(Ky) is
trivial, the Hurewicz image of y must generate H3(ÂT) as a Z[7ii]-module. In
our case, the only g4 factor in n3(K) survives in the image. Also we must have
a nonsingular symmetric bilinear form on n2(K) = n2(Ky), which corresponds
to the intersection form on YL2(Ky). In our case, the direct summand of n3(K)
generated by gx, g2, g3 is identified with the set of symmetric bilinear forms on
n2(K) (cf. [3]), and (l-T)y represents the form on n2(K). If both properties
are satisfied, then Ky is a Poincaré complex.

It is then quite easy by Lemma 7 to compute which y produces a Poincaré
complex. To rule out obvious homotopic examples, observe that Ky is ho-
motopy equivalent to K-y and KTM . Hence one significant family of Ky 's
having the form -g3 on n2(Ky) is obtained by the sum of g4 with arbitrary
linear combinations of gx and g2 . Since we chose -#3 for the intersection
form, each Ky is doubly covered by a homotopy S2 x S2.

On the other hand, suppose that there is a homotopy equivalence f : Ky, -+
Ky so that / is the identity on a 2-skeleton K^ . Since there certainly exists
a continuous extension of f\Km from Ky , the obstruction class defined by
/|jf(3) in H4(Äy ; 7ii(Ky)) must vanish. By Poincaré duality with Wall's twisted
coefficients (see Wall [7, p. 25]), we have the isomorphisms

H4(A> ; n3(Ky)) =■ H0(A> ; n3(Ky)) St n3(Ky) ®KZ,

and the obstruction element is represented by y'. Thus consider an epimor-
phism n-i(K) —*■ 7ti(Ky)®AZ. It descends to 7T3(AT)®AZ -» 7r3(.K,,)®AZ, where
the domain is isomorphic to Z2 © Z2 © Z generated by gx, g2, and #4 in each
summand. Hence, letting {y, y'} be any pair in {g4, g4 + g\, g* + g2, g* + g\ +
g2} , we can verify that the Ky 's are homotopically distinct from each other, at
least fixing K^ .

Then it can be shown without too much difficulty that yV0o, Nox, Nxx actually
correspond to the elements y - g4, g4 + gx, g4 + gx + g2 , respectively. Also,
Hambleton and Milgram showed in [11, §3] that the Poincaré complex defined
by y — g4 + g2 (J + *li in their notation) is not homotopy equivalent to a
topological manifold. Hence they are actually homotopically distinct.   D

We would like to finish this paper by asking the following

Question. Does the set of six invariants appearing here determine the homotopy
type of a nonorientable 4-dimensional Poincaré complex with 711 =Z21
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