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HOMOTOPY LIE ALGEBRAS
AND FUNDAMENTAL GROUPS

VIA DEFORMATION THEORY

by M. MARKL and §. PAPADIMA

Introduction and statement of main results.

The aim of our work is a parallel study of the two natural graded Lie
algebra objects associated to topological spaces S in traditional homotopy

theory : gr*7Ti6' (the graded Lie algebra obtained from the lower central

series of the fundamental group of a connected S', with bracket induced

by the group commutator) and TT^S (the-connected-graded homotopy

Lie algebra of a 1-connected *?, with Lie bracket given by the Samelson

product); in the second case it turns out, as suggested by the analysis of

the first case, that more accessible, and still valuable information may be

gained on the bigraded homotopy Lie algebra gr*7r^Q5', associated to the

lower central series of TT^S. The main problem one immediately faces here

is related to the big difficulties raised by the concrete computation of these

invariants, even in rational form. For example, the complete knowledge

of the relevant homological information would not be of much help :

one knows that 7P(Sp(5)/S77(5); Q) ^ H"({S6 x S25)^10 x S21)'^)

as algebras [30], while the rational homotopy Lie algebras have a quite

contrasting behavior, the first one being finite dimensional ([30], [14]), hence

nilpotent and the second one being infinite dimensional and not even

solvable ([15]); similarly the nilmanifold N^/N^ (N^ being the group

Key words : Homotopy groups — Rigidity — Links.
A.M.S. Classification : 55Q05 - 57M25.
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of upper triangular unipotent 3 x 3 matrices with entries in K) and the
connected sum (S1 x S^^S^- x S2) have the same rational multiplication

table in low dimensions (i.e. the same fi : H1 A H1 -^ H2) and still their

fundamental groups are strongly different, the first one being two-stage

nilpotent and the other one being free on two generators (see [13]).

By contrast to these examples we are going to look at some fixed

graded-commutative unital Q-algebra A*, supposed to be connected (A° ^
Q) and finite dimensional in each degree, and use the deformation-theoretic

methods of rational homotopy theory, which provide various convenient

algebraic parametrizations of the spaces S with H " (S; Q) ^ A* as algebras
(see e.g. [17], [23], [24], and many others), in order to exhibit conditions on

A* guaranteeing that the (bi)graded Lie algebra invariants of 6' described
above are constant within A*.

Various such so called intrinsic properties of A* have been considered

in the literature. For example 6' is called formal if its rational homotopy

type is entirely determined by its rational cohomology algebra and a basic

result of the theory says that any (1-connected) algebra (i.e. A1 = 0) is

realized by exactly one formal homotopy type [28]; S is called spherically

generated if the image of its rational Hurewicz morphism coincides with the

primitives of its rational homology coalgebra and a formal space is always

spherically generated [17; 8.13]. Accordingly A* is said to be intrinsically

formal (spherically generated) if any S with ^*(6';Q) ^ A* is formal

(spherically generated). Various sufficient conditions for intrinsic formality

(spherical generation) are known (see e.g. [10],[32],[24]), via deformation
theory.

Let us say that A* is graded (respectively 1-graded) intrinsically

formal if the bigraded (resp. graded) Lie algebra g^Tv^S (g) Q (resp.
gr*^!^ (g) Q) is constant within A*.

Our first goal is to produce examples (both general and concrete

classes of them) of natural sufficient conditions for the above mentioned

intrinsic properties (and at the same time weaker that those already

known for the other two mentioned intrinsic properties, which are generally

very restrictive). Secondly we will give explicit computations of homotopy

Lie algebras, in the presence of these conditions, and also give bounds

for the size of homotopy Lie algebras, some of them quite generally

(Propositions 3.3, 3.4 and 5.1). A unitary frame will be provided by what
we call "a deformation method for the fundamental group".
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Our hypotheses on A* are related to the Hopf algebra Ext^*(Q,Q),

where the first degree is the resolution degree and the second is the total

degree, as usual, more precisely to its indecomposables <2Ext^*(Q, Q)

and to its primitives PExt^'^Q, Q). The explicit description of rational

homotopy Lie algebras involves : if A* is 1-connected, there is the (minimal)

Quillen model of the formal space SA associated to A*, to be denoted by CA •,

which is a bigraded differential Lie algebra ([27],[31; IIL3.(1)], see also the

next section), and thus H^CA becomes a bigraded Lie algebra (for an even

more precise computation, see Theorem B(i) below); to a connected A* one

may associate the dual of the cup product pairing, [i '. A1 A A1 —^ A2, to be

denoted by 9 : Y -^ X A X, and then the graded Lie algebra L^, defined

as the quotient of the free Lie algebra on X, L*X, graded by the bracket

length, by the ideal generated by 9Y - under the obvious identification

L^X ̂  X /\X (see also Lemma 1.8(i) for a further construction, related to

the explicit computation of the rational nilpotent completion of TT^SA)-

Before stating our first results, let us make one more definition : the

cup-genus of A*, to be denoted by cg(A), is defined to be the maximal

dimension of the graded vector subspaces N C A4', having the property

that N ' N == 0 and A^D(A+ -A^) = 0; the same definition obviously applies

to a vector valued 2-form, [JL: A1 f\A1 -^ A2, where cg(u) equals the maximal
dimension of the vector subspaces N C A1 for which f^(N A N) = 0. In

the classical case of the cohomology of a closed oriented surface, the two

definitions coincide, their common value being just the genus of the surface,

hence the terminology.

THEOREM A. — Let A* be a 1-connected graded algebra.

(i) IfQExt^'^Q.Q) = 0 and if A* is intrinsically spherically generated

then A* is graded intrinsically formal and the constant value of the bigraded

homotopy Lie algebra equals H^CA-

(ii) Suppose A* is graded intrinsically formal. If eg (A) > 1 then, for

any 1-connected S with H * ( S ; Q) ^ A*, the graded rational homotopy Lie

algebra TT^S (g) Q contains a free graded Lie algebra on two generators.

THEOREM A\ — Let A* be a connected graded algebra, with associ-

ated vector-valued 2-form p,.

(i) JfPExt^Q^Q) = 0 then A* is 1-graded intrinsically formal and

the constant value of the rational graded Lie algebra associated to the

fundamental group equals L\.
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(ii) Suppose A* is 1-graded intrinsically formal. If cg(/^) > 1 then, for

any connected S with H * ( S ' , Q) ^ A* and w^A ^1(6'; Z) finitely generated,

71-16' contains a free group on two generators.

We must point out that the condition of intrinsic spherical gen-

eration is necessary in Theorem A(i), see 2.3. As for the vanishing of

QExt^ '*(Q,Q), this condition, while not really necessary (see again 2.3),

seems to be a most natural one, as it follows for example from the proof

given in Section 2. On the other hand, it is both a familiar condition,

being first considered in [25] in connection with the cohomology of the

Steenrod algebra and then intensively studied, see [22] for the connection

with the cohomology of local rings, and there are many other interesting

examples (see the next theorems, and also [26], as explained in 2.3). Theo-

rem A(ii) should be related to the (yet unsolved) Felix-Avramov conjecture

[12], claiming that, for a space S of finite rational Lusternik-Schnirelmann

category, TT^^S'^Q contains a free graded Lie algebra on two generators as

soon as it is infinite dimensional. Similarly, the vanishing of TExt^' (Q, Q)

in A'(i) above is not necessary (see 2.3) but again most natural (see the

proof), and there are also many examples, as we shall see below. Theo-

rem A'(ii) should be compared to similar results from [6],[7]; the meth-

ods are however entirely different and the hypotheses are rather comple-

mentary (see the remarks made after the proof of A'(ii) given in 3.2, and

Proposition 3.3). Our Theorems A and A' emerged from our belief that the

main results of [18], namely that the cohomology algebras H*{\/S1', Q) and

H * ( ( y S 1 ) x S1'^) are 1-graded intrinsically formal - in our terminology

(which were proved there "by hand"), ask for a proper generalization in a

deformation theoretic framework.

Moving to our more concrete classes of examples of (finitely gener-

ated) graded algebras A*, we shall focus here our attention to two par-

allel types, namely : 2-skeletal algebras defined by the requirement that

A>2 = 0 (which are plainly uniquely described by a vector-valued 2-form,

IJL: A1 A A1 -^ A2, for example the cohomology algebras of connected 2-

complexes), and on the other hand 2-stage (1-connected) algebras, defined

by the condition (A"^)3 = 0 (which correspond, by [11; Corollary 4.10],

to formal spaces with rational Lusternik-Schnirelmann category ^ 2, an

intensively studied case). The resemblance is quite clear; to be more pre-

cise, there is a one-to-one onto correspondence between 2-skeletal algebras

with ji = onto and 2-stage algebras generated in dimension 3, given by

just tripling degrees. Given a 2-skeletal algebra A*, we first associate to it

by duality, as above, the map 9, then construct a bigraded connected Lie
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algebra as follows : E^ = LX/ideal(9V), where the upper degree comes

from bracket length and the lower degree is obtained by assigning to X the

(lower) degree 2; at the same time we may pick bases { a - i , . . . , Xm} for X

and { ? / i , . . . ,yn} for Y and consider the sequence of elements Qyj € J ^ X

(T*X = ©1PX, J P X = X^P is the tensor algebra). Similarly, a 2-stage

A* gives rise to a Quillen model of the form CA = (L(X, © Y^), 9), where

9X, = 0 and <9|y,:Y* ̂  (IL^X^-i (see §1 and §4); we may thus define,

exactly as before, a bigraded Lie algebra E^ and elements Qyj e T2^

(note that in the correspondence given by tripling degrees these objects
are the same).

In the results below we shall make use of Anick's notion of strongly

free set of elements in a connected graded associative algebra [1; page 127]

and of Halperin and Lemaire's natural specialization to inert sequences of

elements of a connected graded Lie algebra [15; Definition 3.1].

THEOREM B. — Let A* be a 2-stage algebra.

(i) The following conditions are equivalent :

-QExt^*(Q,Q)=0

- gl dim E^ < 2

- {^j}i<j^^ ls strongly free in ~TX

Any of them implies that H^CA ̂  E^ (as bigraded algebras).

(ii) Assume QExt^^Q.Q) = 0. If QA* is concentrated in odd degrees

or in an interval of degrees of the form [1,31—2}, then A* is also intrinsically

spherically generated.

THEOREM B\ — Let A* be a 2-skeletal algebra.

(i) The following are equivalent :

-PExt^(Q,Q)=0

-PExt^Q.Q^O

- gl dim E^ < 2 and p. is onto

~ {^2/j}i<j<n ls strongly free in I X (automatically /-A -must be onto).

(ii) Any of the above implies the equality of formal power series

00

^[(l-z^^^ = 1-mz+nz2, where m=dimX.
p=i
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The main source of examples for B(i) and B'(i) is provided by Anick's

combinatorial criterion [1; Theorem 3.2] for strong freeness in tensor

algebras (see 4.3, 6.1).

However, we should point out that we are not bound by our method

to restrict ourselves, neither to 2-skeletal algebras (see e.g. the discussion

around the Kohno example in 4.7, 4.8), nor to the rational coefficients.

Our general approach to the computation of the integral associated

graded Lie algebra gr*^!^ (S = connected, of finite type) assumes H^S to

be a free abelian group. We shall naturally associate to 5" a Z-Lie algebra

with grading, denoted by L^g = L*(H^S) modulo the ideal generated by

Im<9, where 9 is the Z-dual of the cup product ti'.H^S A H^S —^ H^S

(Z-coefficients throughout, this time!). Plainly L^g depends only on the

cohomology algebra H * ( S ; J . ) - in low dimensions - and L"g (g) Q ^ L\,

with A* ==^*(5';Q).

THEOREM C. — If H " ( S ; Q) is 1-graded intrinsically formal and L*g

is torsion free (as a graded abelian group), then gr*7Ti6' ^ L*g, as graded

Lie algebras.

In practice, one is led to verify that PExt^/^.o^Q.Q) = 0 and

L^ = torsion free, and it often happens to be possible to work these

conditions together, by examining L^g <^ Z/pZ (for all primes p), see §6.

We end by illustrating with a simple example, namely the case when

the cohomology of S^ in low dimensions, looks like that of a classical link

complement (both Q and Z coefficients), in §6. Under certain combinatorial

assumptions (formulated in terms of linking numbers, i.e. of |Ji:HlS A

H^^S —^ H2S) we shall use our method to deduce the rigidity of gr*7ri6'

(see 6.2).

For 5' = classical link complement, we are just reobtaining a result

due to Anick ([3], see also [21]). The methods are however entirely different:

Anick-Labute first rely on explicit group presentations for TT-^S and second

(and even more important) on the verification of a certain independence

criterion, formulated in [20]. Here is the common point of the two methods :

this criterion just expresses an inertia (or, equivalently, strong freeness)

condition. The two methods should be regarded as complementary. There

are a few examples (of link complements) in [20] where Labute's criterion

works, even in a nonrigid situation. There are also many examples (such as
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closed oriented generic 3-manifolds) where the method in our Theorem C

applies, while the approach of Labute fails, see [5].

Finally, we ought to mention that in general given a connected algebra

A* with associated graded Lie algebra L\, the vanishing ofPExt^'^Q, Q)

provides one with a very convenient framework for "the deformation theory

of the fundamental group". In particular, one has the following (stronger)

rigidity result : if moreover H2^1^^; L\) = 0 (where the first degree of the

above Lie algebra cohomology is the resolution degree and the other comes

from the grading of L\ as usual) then the rational nilpotent completion

of 71-15' is constant within A* (for instance Kojima's [18] rigidity result

for A* ^ H" (y S1', Q,) immediately follows, since in this case L\ is free).

Results along these lines, related to the precise description of the variation

of 7Ti5"'(g)"Q, may be found in [5].

Here is the plan of our paper :

1. Algebraic models and deformation theory

2. Rigidity results (proofs of A(i) and A'(i))

3. Bounds for homotopy Lie algebras (proofs of A(ii) and A'(ii))

4. Rigid examples and inert sequences (proofs of B and B7)

5. An integral variant

6. An example (link-algebras and link-groups)

A preliminary version of our results was announced by the second

author in a lecture given at the Conference OATE 2, September 1989,

Craiova, Romania.

We would like to express our thanks to the referee for careful reading

the manuscript and many important remarks.

1. Algebraic models and deformation theory.

In this first section we will purely algebraically reformulate theo-

rems A and A' and prove a deformation-theoretic result which will be the

key step in the proofs of A(i) and A'(i) to be given in the next section.

We shall deal with bigraded Lie algebras (bglie) L^, L = Q) L^,

n ^ 0 and p > 0; ignoring upper degrees, we are thus considering just

an usual graded Lie algebra (glie) L^, with the standard sign conventions
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related to the skew-commutativity and the Jacobi identity [31; 0.4.(1)];

the upper degrees are only required to be compatible with the bracket, i.e.

[L^, L9] C Lp+q ; we shall also frequently have the occasion to meet bigraded

Lie algebras whose lower degrees are concentrated in dimension zero; by

just ignoring them, we shall speak of a Lie algebra with grading (griie)

L* (no extra signs!). We shall also consider the lower central series of a

(graded) Lie algebra L, the descending chain of (graded) ideals inductively

defined by L^ = L and L^+^ = [L,L^], and the associated (bi)graded

Lie algebra gr*L = (^) gr^L, gr^L = L^/L^^ ; the topological examples
p^i

we have in mind are the homotopy Lie algebra TT^S of a 1-connected space

S, and its associated graded, gr* 71-̂ 6'. Similarly one may consider the lower

central series of a group TT, denoted by TT^, p ^ 1, and the associated Lie

algebra with grading gr*7r == (^gr^Tr, gr^ = TT^/TT^^, see e.g. [29; II.2],
p>i

for example the homotopy griie algebra of a connected space 6', gr*7Ti5'.

We are going to exploit the duality between Lie algebras and

(quadratic free) differential graded commutative algebras (dga's)-see [31;

Proposition I.I.(5)] (in particular we shall follow the notation of [31] and

constantly denote vector space duals by #). We thus recall that there is a
(categorial) equivalence between bigraded Lie algebras, which are of finite

type with respect to the lower degree, and free dga's of the form (AZ^, D).

where Z = Q) Z"', n > 0 and p > 0, dim Z1^ < oo for all n and the differen-

tial D is quadratic and bihomogeneous, i.e. DZ^ C (A2^)^^. The equiva-

lence is described by L i—> C*(L) = (AZ, D) [31; I.I], where Zp = #L^

and D: Z —>• Z A Z is dual to the Lie bracket.

Let (AY*, D) be a free dga, which is of finite type and with quadratic

differential, and let L^ be the dual glie. By a nilpotent nitration on (AV, D)

we shall mean an ascending filtration on V*, {Fp}p^o, with FQ = 0 and

DFp C A2-^-!, any p > 1, which will be called exhaustive if V = [jFp.

The canonical filtration {FpV}p>o is defined by F^V = 0 and, inductively,

FpV = (D\y)~1 A2 Fp-\V\ for p > 1. By construction, it is nilpotent.

1.1. LEMMA. — For any p ^ 0, FpV coincides, by duality, with the

space orthogonal to L^"^, L^^ .

Proof. — This lemma is both elementary and perhaps well known.

For the readers convenience we are going to sketch a proof.
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For p = 0, this is obvious. For v € V and /, g € L recall the basic

duality equation [31; page 26] :

(1.2) (v^[f^}}=-(-l)de^•{DvJ^g}.

This equation immediately gives our claim also for p = 1. The induction

step will be based on the equation N1- A N1- ^ (M A N ) ^ , where M is a

(graded) vector space and N C M a (graded) subspace, which follows from

elementary multilinear algebra.

Suppose then Fp^V ^ L^. By definition, v e FpV if and only if

Dv e A^p-iV. Invoking the above equation (with M = L and N = L^),

we have A^p-iV ^ ^2L^1' ^ (L A L^)"1. But Dv € (L A L^)^ means,

by (1.2), exactly v € [L.L^^ ^ L^4"1^, which completes the proof. D

We are now going to briefly review the algebraic models of rational

homotopy Lie algebras. Any connected space S has a so-called (Sullivan)

minimal model M.s : it is a free dga (AZ*, c(), which is both nilpotent, i.e. Z

is increasingly filtered by subspaces {Fp}p^o, with FQ = 0 and dFp C AFp_i

for p > 0, and minimal, that is d\z = d^ + d^ + ..., where each di takes

values in A^Z, where i = monomial length; when S is 1-connected with

finite Betti numbers, Z* is of finite type. In this latter case there is also

the Quillen model of 6', C,s ; this is a free dgLie (LWx,^), which is also

minimal^ i.e. QW C [LW.LTV]. The first basic result reads

THEOREM ([27], [28], [31]). — 71-̂ 05 (g)Q ^ V~\l\Z\d^) ^ H^CS as

graded Lie algebras.

For a general connected 6' one may also consider the 1 -minimal

model, namely the sub dga M.\ C M. given by M.\ = (AV,d) (where

we put Z1 = V); this will be a 1-minimal algebra, i.e. a free nilpotent

dga generated in degree one. For such algebras, one may still define the

canonical filtration exactly as above : this will be an exhaustive nilpotent

filtration on (AV,d), T = {FpV}p>Q. If moreover the first Betti number of

S is finite, then it easily follows that dim FpV < oo, for any p, and we may

safely dualize. We thus define the associated Lie algebra with grading of a

1-minimal algebra (AV,d), to be denoted by gr*(AV,d), by

(1.3) gr*(AY,d) =\m^g^C^\/\FpV,d).

P

THEOREM ([28],[9]). — gr*7Ti5' (g) Q ̂  gr*(AY, d) as Lie algebras with

grading.
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Given a 1-minimal (AV, d) and assuming dimJ^AV,^) < oo in

order to smoothly dualize, we may also start with an arbitrary exhaustive

nilpotent filtration F ' = {FpV}p>o. It readily follows by induction that

Fp C Fp, for any p, hence we have a natural griie map

gr^AV.d) ^ limgr^'^AFp.d) -^ lim gr^^AF;, d) ^ gr^AV.d).

P P

1.4. PROPOSITION. — For any exhaustive nilpotent filtration F1 the

above map gr5-(AV, d) —^ gr5-,(AV, d) is an isomorphism.

Proof. — For a fixed n and an arbitrary exhaustive nilpotent fil-

tration {J^p}-, we have to evaluate the vector space lim gr^* (AFp.d).

P
By Lemma 1.1 this is naturally isomorphic to lim #(F^Fp/F^_iFp) ^

P
^(lim F^FU lim Fn-iFp). It plainly suffices to show that the natural map

P P
lim FnFp -^ FnV is isomorphic (to be more precise epic). For n = 1 this

P
is obvious (recall that V = lim Fp) and the induction goes well on, by the

P
very definition of the canonical filtration. D

We move to the algebraic models of formal spaces. Given a connected

algebra of finite type A*, it is constructed in [17; pages 242-243], the

bigraded model, BA = (AZ^,D); it is a minimal dga, which also carries

a second (lower) graduation, with respect to which D is homogeneous of

(lower) degree —1 (it is a minimal bdga). It is uniquely characterized by the

existence of a bdga map BA —^ (A*,0) (where A* is concentrated in lower

degree zero, and is endowed with trivial differential) inducing a cohomology

isomorphism; forgetting the lower degrees, it represents the minimal model

of the formal space SA- If A* is 1-connected, there is also a formal Quillen

model (see [31; III.4.(5)]) CA = (D-W^c^), which corresponds to A* by

duality : W = ^^A, and the quadratic Lie differential o^ is essentially

dual to the multiplication; this dg Lie model also carries a second (upper)

grading, given by bracket length, and 9^ is homogeneous of upper degree

4-1. We have a well-known [31] equality of bglie

(1.5) C^^Z^D^^H:CA.

Given a bglie L^ (of finite type with respect to the lower degree) its

dual quadratic bdga, (AZ^,D) also carries a third grading, coming from
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monomial length; the induced grading on cohomology will be denoted by

H:{/\Z^D)=^H:{/\Z^D).
p^i

1.6. LEMMA. — Consider C*(L^:) = (/\Z^D). The following are

equivalent :

(i) Z/P) ^L^P, anyp

(ii) F p Z ^ Z ^ p , anyp

(iii) L* is generated by L1

(iv) ^(AZ.D) =0

(v) gr*L, ̂  L:

(vi) L* ^limgr*(L/L^).

P

Proof. — By Lemma 1.1, FpZ ^ Z^p is equivalent to ̂ p+l) ^ L^^.

Since L* is strictly positively graded, we have in general an inclusion

L^ C L^, for any p\ an easy homogeneity argument shows that the

equality is in fact equivalent to L1 —» L / [ L , L} being onto, hence, by duality,

to the fact that the canonical projection Ker(D|^) —^ ZQ is monic; this last

condition precisely says that 1H^(/\Z^^D) = 0. In general, gr*L is always

generated by gr1^; conversely, assuming L* is generated by L1, it easily

follows from (i) that gr*L ^ L*. Finally, by an obvious stability argument,

one always knows that lim gr^L/L^) ^ gr*L. D

P

A convenient set-up for the description of formal 1-minimal models is

provided by considering Lie algebras with grading, L*, which are required

to be generated by L1, dimL1 < oo. Given such L*, consider the inverse

system . . . -^ L/L^^ -» L/L^ -» ' - ' of central extensions of finite-

dimensional grhe algebras (considered as bglie concentrated in lower degree

zero). Set

(1.7) (AV,,d) = hmC*(L*/L^*).

P

It is a 1-minimal dga, by the well-known duality between central extensions

of Lie algebras and elementary extensions of dga's [13], which is also a

bdga. It carries a natural (nilpotent exhaustive) filtration T given by

Fp = y<p, for which one has by construction and the preceding lemma

gr^-(Ay, d) ̂  L*. Starting with an algebra A* (connected and of finite type

as usual), first construct a gr Lie algebra L\ as in the introduction, namely



916 M. MARKL & §. PAPADIMA

L\ = L^/ideally), where 9:Y -^ X /\ X ^ #(/^:A1 A A1 -> A2) (also

noticing that L\ depends only on /^:A1 A A1 -^ Im/^ C A2), and then

associate to L\ the 1-bigraded model (Al^,d) as in (1.7). The next lemma

seems to be folklore, but we chose to include a proof, being unable to find a

reference (not to speak of the fact that the construction (1.7) will be again

useful later on, see the proof of Proposition 6.3).

1.8. LEMMA. — Let A*, L\ and (AK,d) be as above. Then :

(i) (AK, d) is the 1-bigraded model of the formal space SA

(ii) gr*^i^A^Q^^.

Proof. — Given the general theory, Proposition 1.4 and the above

remarks, (ii) will follow at once from (i).

As far as (i) is concerned, we start by constructing a bdga map

/:(AY,,d) -^ (A*,0). We set f\y^ = 0, notice that VQ ^ #L\ ^

#X ^ A1, and put f\vo = ^d; due to the homogeneity property of
d with respect to lower degrees, checking that / commutes with the

differentials is reduced to showing that fdV\ = 0, i.e. the composition

Vi —>• VQ A VQ —> A1 A A1 -^ A2 equals zero. Taking duals, this amounts

to seeing that L\ <—— L\ A L\ = X A X <— Y equals zero, which

is obvious by the construction of L^. By the uniqueness of 1-minimal

models we must only verify that H1 f is an isomorphism and H2 f is

monic [28]. But we know that ^(Al^.d) ^ lim 1H(C:'(L^/L^>)) and,

P

by Lemma 1.6, 1H(C^L\/L{^}) ^ ^(^(L^/L^*)) ^ Vo, which

takes care of the condition on H 1 / . On the other hand ^(AV^d) ^

H^{/\V^d) C ^(AK.d), and ImHgf ^ Im/z, while ImH^f = 0, by

the construction of /. We may thus use a dimension argument : H2/ is

monic is equivalent to dim H2 {^\V, d) = dimlm JJL. We may notice again

that ^(AV, d) ̂  kH(/\V, d), and this in turn equals -^(LA; Q) - classical

Lie algebra cohomology with trivial coefficients via the Koszul resolution,

see e.g. [31] - for any k. We are thus led to compute dimJ^^A; Q); and

we may use for this purpose the description of the second homology group

of a Lie algebra of the form f/r, where f is a free Lie algebra and r an

ideal, given in [16; page 238, Exercise 3.2] : ^(f/i^Q) ^ [f,f] H r/[f,r].

We infer that H^^LA'.O,} ^ I / [ L X , I ] , where I is the ideal generated by

9Y. The dimension of the last object plainly equals dimlm 9, and finally

dimlm 9 = dimlm ^, by duality. D
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Next we are going to conveniently rephrase the conditions on the Hopf
algebra Ext^*(Q,Q) stated in the introduction.

1.9. LEMMA. — Let A* be a connected algebra, with bigraded model

BA = (AZ^.D) and Quillen model CA (m the 1-connected case).

(i) QExt^*(Q,Q) = 0 if and only if H^CA is generated (as a Lie
algebra) by H^C.A-

(ii) PExt^Q, Q) = 0 if and only if Z,2 = 0.

Proof. — (i) The condition QExt^'^Q, Q) = 0 simply means that

the Yoneda Ext-algebra of A is generated (as an algebra) by Ext^(Q,Q).

Consider then the formal space SA and its formal Quillen dgrlie model C\,

graded by the bracket length. In [2; Theorem 2], is established a graded

isomorphism ̂  Ext^* ^ ̂  H^CA (where U = universal enveloping
i>_Q i^O

algebra functor), which is also compatible with the algebra structures, up

to sign. Since H^CA ̂  UH^CA as algebras and QUH^CA ̂  QH^CA ̂
H " C A / [ H * C A , H * C A \ as graded vector spaces [27], our assertion follows.

(ii) It is proven in [17; Corollary 7.17], that one has Z^ ^ #
PExt^'^Q, Q) for any n. D

We describe now the algebraic parametrization of rational homotopy

types with fixed cohomology algebra A* in terms of deformation theory,

following [17] and [23] (see also [24]). In the dga setting of [17], one starts

with the bigraded model BA = (AZ^, D); it is convenient to set D = D1.

Then any space S with JT(5';Q) ^ A* has a free dga model of the

form (AZ^.D1 +p), where the algebraic parameter, the perturbation p,

may be written p = p2 + p3 + . . . , each p^ being homogeneous of lower

degree — z ; the trouble comes from the fact that this (nilpotent) model

may fail to be minimal (this is geometrically related to the collapsing of

the Eilenberg-Moore spectral sequence of 5', see the next section). If A* is

1-connected, there is the alternative dglie setting of [23], where one starts

with the Quillen formal model CA = (L*^,9); here we set 9 = 91. One

may represent any S within A* by a (minimal) dglie model of the form

(LW^, O1 +p), where, again, p = p2 +p3 +. . . , each p1 being homogeneous of

upper degree i. Finally, here comes our basic deformation-theoretic result.

1.10. PROPOSITION. — Consider a bigraded Lie algebra L^ (of finite

type with respect to lower degrees) and its quadratic bdga dual, (AZ^, D).

Suppose that L* is generated by L1. Then for any quadratic dga of the form
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(AZ*, d), where d = D1 +p2 +p3 +. . . , D1 = P and each p1 is homogeneous

of degree —i with respect to lower degrees, we have an isomorphism of

bigraded Lie algebras :

g^C^\/\Z\d)^g^C'~\/\Z\D).

Proof. — Set C*~ (AZ*,d) = (L^ [ , ]p). By just dualizing the

decomposition of the perturbed differential, d = D + p, one infers that the

perturbed Lie bracket [ , ]p has the following property : for any x € L772,

2/ € I/1, [x,y]p = [x,y] modulo L>m+n (and of course [x,y] € L771-^).

By Lemma 1.6 one may precisely describe the lower central series of the

original graded Lie algebra (L^, [ , ]), in terms of the upper graduation.

Our assertion will immediately follow, as soon as we prove that the lower

central series of the perturbed Lie algebra is the same, or equivalently

(by Lemma 1.1) the canonical nitration of (AZ,d), denoted by P J : =

{PFnZ}n^o coincides with the canonical filtration of (AZ.D), which is,

again by 1.6, T = {F^Z = Z<n}n>o. By (lower) degree inspection,

dZn C A2^^, tor any n, and this induct ively implies that F^Z C PFnZ^ for

any n. The remaining inclusion will also be proven by induction, trivially

starting with n = 0. Assume then z e PFnZ and write z = ZQ + . . . + z-m-,
where zi C Zi and Zm 7^ 0. By the definition of the canonical filtration

and by the induction hypothesis, we know that dz 6 /^Z^n-i '•> writing

d = D + p and examining the top component of dz with respect to lower

degree, we infer that Dzm ^ A2^^-!, hence Zm e FnZ = Z<n, therefore

m < n and z € Z^n = F^Z^ as desired. D

2. Rigidity results.

This section contains the (almost simultaneous) proofs of Theo-

rems A(i) and A'(i), and the first examples.

2.1. Proof of Theorem A(i). — Represent any S with ^*(5; Q) ^ A*

by the free dga model (AZ*,D +p), as explained before. We claim that it

will be enough to show that the Eilenberg-Moore spectral sequence of 6'

collapses at the £2 term. Indeed, we know from [17; Theorem 7.20], that

this is equivalent to the minimality of (AZ, D + p), and also equivalent to

dim7T/c5'(g)Q = dimTr/c^A^Q, for any k. Once we may assume this, we know

that C*7r^6'0Q ^ (AZ*, D^ +^2) where the subscript 2 indicates that we
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have taken the quadratic parts. We may now use the previous proposition,

by taking L^ = H^CA^ with dual (AZ^, D^\ see (1.5); our hypothesis on

QExtA guarantees that L* is generated by L1 (Lemma 1.9(i)). We deduce a

bglie isomorphism gv*7r^fl.S^)Q, ̂  gr*L^, the second bglie being isomorphic

to L^ again due to the above-mentioned hypothesis (see Lemma 1.6(v)).

In order to establish the EMss collapse property, we are going to

use the numerical criterion in terms of ranks of homotopy groups and

the dglie approach. Represent then S by a Quillen minimal model of the

form (LW^,(9 + p), as described before. The hypothesis that A* is also

intrinsically spherically generated comes now into play and allows us to

suppose moreover (see [24; Proposition 1.8]) that p\p = 0, where the

primitive subspace P equals Ker(9\w)' Filtering LW by bracket length,

we obtain a well-known [27] spectral sequence of graded Lie algebras,

converging to H^(LW, <9+p) ^ 7r^5(g)Q and starting with E^ ^ (LW^9)

and E^ ^ H^CA ^ TT^SA ̂  Q. On the other hand we invoke again our

assumption on QExtA, recalling that H^CA is generated as a Lie algebra

by H1CA ^ T^i which consists only of permanent cycles, by the spherical

generation property, hence E2 ^ E°° and dim 71-^5'(g)Q = diniTi-fef^A^Q,

as claimed. Our proof is complete. D

2.2. Proof of Theorem A ' ( i ) . — This is similar but simpler. Use again

the perturbed free dga model (AZ*,.D + p) of S and set Z\ = V^. Since

Z2 = 0 (Lemma 1.9(ii)) (AV, D +p) is a subgda of (AZ, D +p), for trivial

degree reasons; it is equally trivial to see that the above dga inclusion

induces an isomorphism at the H1 level and is monic at the H2 level,

hence [28] (AY, D-\-p) represents the 1-minimal model of S (the nilpotence

condition is easily checked along the lower degree filtration of V^). Set then

Fn =Y<n. By Proposition 1.4, gr*7^l5^Q^llmgr*C* - l(Ay<n^+^).
n

We may apply Proposition 1.10 to the finitely generated quadratic

bdga (AV<n, D). The requirement that the dual Lie algebra L* be generated

by L1 is now automatically satisfied. Indeed we may check the equivalent

condition given by Lemma 1.6(iv) by noticing that obviously

^4(Ay^,D) ̂ (Al^.P) C H^(/\Z^D) -^(AZ:,D)

and that the cohomology of the bigraded model (AZ^.D) is concentrated

by definition in lower degree zero. We infer that gr*C* (AV<n,.D +p) ^

gr*C* (Ay<^,P), which is independent of p, for any n. Finally, for the

formal space SA corresponding to p ==• 0, Lemma 1.8(ii) tells us that

gr*7TiSA ^ Q ̂  L\^ which was the last assertion to be proved. D
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2.3. Remarks and examples. — First we ought to notice that intrinsic

spherical generation is a necessary condition for graded intrinsic formality

(in the 1-connected case), indeed, if ^*(6';Q) ^ A*, the isomorphism

gr*7r^5 0 Q ^ gr*7r^^A 0 Q evidently implies that dimpi-^ (g) Q =

dimTTfc^A 0 Q, for any A;, hence E^ ^ E^ in the EMss, and this in

turn forces 6' to be spherically generated, as shown in [17; 8.13]. On

the other hand the assumption on the Yoneda Ext-algebra of A* made

in A(i), albeit very natural, is not strictly necessary, as shows the following

very simple example, namely A" = H*P'2C. This is an intrinsically formal

(hence graded intrinsically formal) example - this is very easy, see e.g. [28].

A short direct computation gives that H^CA is a 2-dimensional abelian

Lie algebra with basis a e H[ and b € H^ therefore (Lemma 1 9(i))
QExt^*(Q;Q)^0.

As a first natural series of examples where QExt^^Q; Q) = 0 we

may quote A* = H^MG, where MG is the universal Thorn space associated

to an arbitrary orthogonal representation of the compact connected Lie

group G, see [26]. In the other direction, any homogeneously generated

algebra A* is intrinsically spherically generated ([24; 2.4, see also 4.4]).

We also have to notice that the hypotheses of A(i) are independent.

We have just seen that H^C is intrinsically spherically generated and still

the condition on QExtA is violated. Let us now define an algebra A* by

describing its Quillen formal model, as in [31] : CA = (L(a:i, ̂  ̂ 3, x, y ) , 9),

where dega-i = dega^ = dega-s = 2, deg.r = 7 and degy = 5, and the
only nontrivial action of 9 is on y , namely 9y = [x^,x^\. Anticipating

a little (see 4.1 and 4.3), we know that QExt^'^Q, Q) = 0. Defining

a perturbation p by the requirement that the only nontrivial action be

px = [a;i, [^2,3:3]], we get a space S with 7:T(5;Q) ^ A*, whose minimal

Quillen model is (L, <9+p) [23]. Finally, due to the fact that, in L(x^ ^2^3),

px ^ ideally), a simple computation with the algebraic rational Hurewicz

homomorphism as in [31; III.3.(5)] shows that the primitive element of

f^(5';Q) corresponding to x is not spherical, hence A* is not intrinsically
spherically generated.

The first nontrivial examples of 1-graded intrinsically formal algebras

are those of [18], namely A^ = ^*((V^-i5'1) x 6'1), for m > 2; these fit

into our theory and satisfy the condition PExt^Q, Q) = 0 (see 4.3).

Finally consider A* = the cohomology algebra of the 2-skeleton of

the m-torus, m > 2. Concerning the bigraded model BA of [17], it may be

easily seen that the 1-bigraded model is {/\Z^D = 0), with dimZ^ = m,
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Z^ = 0 and dimZf = m{m — l)(m — 2)/6. Using deformation theory

exactly as in the proof of A'(i), it immediately follows that even 7ri"(g)"Q

is constant within A*, hence A* is 1-graded intrinsically formal, though

'PExt^'^Q, Q) 7^ 0. However it seems that this is the right kind of condition

for having a reasonable "deformation theory" for the fundamental group.

3. Bounds for homotopy Lie algebras.

Here we give the proofs of A(ii) and A'(ii) and also exhibit two quite

general types of bounds for homotopy Lie algebras directly related to the

main ideas of the paper.

3.1. Proof of Theorem A(ii). — Assuming If^S; Q) ^ A*, we know

that gr*7T^5' (g) Q ^ ^H^CA-) by the graded intrinsic formality of A*.

We claim that from cg(A) > n it follows that there exists a bghe onto map

j. gr*^£A —> L^, where L^ is a free graded Lie algebra on n homogeneous

generators of strictly positive degrees, which is bigraded by using the

bracket length as upper degree. Postponing for the moment the proof of

the claim, we finish by observing that a bghe onto map /: gr* 71-̂ 5' (g) Q -^
L*(;r,^) gives rise to a bglie monic section s:L*(x,y) -^ gr^n^S 0 Q,

which, by freeness of L(x,y) and by lifting in upper degree one, finally

provides a glie map h:L(x,y) -^ TT^S (g) Q. Since the free Lie algebra is

generated in upper degree one, we know that gr*L ^ L* and thus gr*/i = 5,

therefore h is also monic.

Coming back to our claim, we recall that we have an n-dimensional

graded vector subspace N C A'^, with N ' N = 0 and N C A^ -» QA

monic. We therefore have a graded algebra map Q • 1 Q N c-^ A*, where

the multiplication in the first algebra is defined by (g (D n) • (q' ® n') =

qq' €) {qn' -\- q'n}. This gives rise by duality to a bdglie map g: CA -^

^Q.i©N = (L*V>,,<9 = 0), where K = ^-1-/V* [31]. We may take then
f = gr*7^^, and it will be plainly enough to show that H^g is onto;

since g is bihomogeneous and L is generated by L1, this is equivalent to

Hlg being onto or, by duality, to Q{j) being monic, which is precisely the

injectivity condition for N C A^ -^ QA. D

3.2. Proof of Theorem A ' ( i i ) . — Here we know that gr*7Ti6' (g) Q ^

gr*7Ti6'A ^> Q ^ L\ (see 1.8.(ii)). We now claim that cg(^) = maximal

n for which there is a griie onto map f''L\ —> L^. Temporarily taking
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this for granted, we are going to complete the proof, in a way similar with

the preceding one, by first taking a griie section of /, s:L*{x,y) -> L\ ̂

gr*7Ti6' (g) Q. Due to the finite generation property of H^ (5; Z) we may also

suppose (possibly after replacing x and y by suitable nonzero multiples)

that sx and sy lift to gr^i^, hence to 71-16'. We have thus obtained a group

homomorphism from the free group on two generators, h: Fs = F ( x , y ) -^
71-16', with the property that gr*/i(g)Q = s (gr*F(;r,^/) ^ L^(x,y), [29; IV.6,

Theorem 1]). Consequently gv*h is monic. A rather standard argument

shows then h to be monic, by working with the nilpotent quotients : for any

n consider the induced map hn: F2/F^n) -^ 71-16/71-1 S^. An easy inductive
argument based on the commutative diagram

{0} ——— gr^ ——— F^/F^ ——— F2/F^ ——— {1}

S^h | h^+i | ^
•^ 4- 4-

{0} ——— gr^S ——— 7ri5/7ri^"+1) ——— T^S/T^S^ ——— {1}

with exact rows shows that hn is monic for each n, therefore Ker h C

HF^I}.

The truth of the claim may be easily seen, by observing first that the
graded Lie maps /: L*X/ideal(<9y) —^ L*V are in a bijective correspon-

dence, by duality, with the linear maps g ' . N —> A1 with the property that

^ ° (g A g) = 0, and next that / is onto if and only if g is monic. D

Remarks. — Chen's method of iterated integrals ([6],[7]) allows one

to obtain results which are of a similar nature with the above A'(ii), but

it requires the presence of conditions imposed at the level of differential

forms, and not just at the level of the de Rham cohomology; for example

our condition cg(^) > 1 is replaced by : there exist closed 1-forms 0:1

and 0:2 on the manifold M, representing independent cohomology classes,

and such that uj\ A ̂  = 0 as a form. From this point of view the two

approaches are to be considered as complementary : the manifolds N^/Nj_

and (61 x S'2)^,?1 x S2) mentioned in the introduction have the same

cohomology algebra and cg(/2) = 2, but in the case of the first (nil)manifold

it is impossible to find representatives with 0:1 A uj^ = 0 (this would imply

by [7] that its fundamental - nilpotent - group contains an F2!), while in

the other case this is easily done geometrically (by taking the two closed

1-forms dual to two disjointly embedded 2-spheres, one in each term of the

connected sum), but A'(ii) cannot be used since Z^ ^ 0.
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The next result is also complementary to Chen's [6], but this time

concerning its conclusion. For an integral version see Proposition 5.1.

3.3. PROPOSITION. — Let A* be given, with vector-valued 2-form ji

and associated griie algebra L\. If S is any connected space whose co-

homology algebra has ^ as associated vector-valued two-form then there

exists a griie epimorphism L\ -^ gr*7Ti6' (S) Q.

Proof. — Take the 1-minimal model of S, (AV,d), consider the

canonical filtration {FnV} and set Ln ^ C*~1 {/\FnV,d)\ we know that

gr*7Ti5(g)Q ^ lim gr*L^. Fixing the 1-minimal dga (AF^V, d), we obviously
n

have, by naturality, Fm(FnV) C FmV, for any m; a straightforward

induction, which only uses the definition of the canonical filtration, shows

that we have in fact Fm(FnV) ^ FmV, for m <, n; the general equality
^Lgpp ^ F p / F p - ^ following from Lemma 1.1 and the preceding remark show

that the inverse limit lim gr^Z/y^ stabilizes for n > p, for any p. For p = 1, L\

is just the abelian Lie algebra on #F^V ^ ^^AV, d) ̂  ^H^S ^ #A1 ^

X. By stability we have a tower of griie maps Qn- B-*X —> gr*L^, given by

9n\x == id (whence they are all onto). In order to check that they all factor

through L\ giving thus rise to a tower fn'' L^ —> gr*Ln (consisting of epic
griie maps), hence to a griie epimorphism /: L\ —> lim gr*L^ ^ gr*7ri5'0Q

n

as desired, it would suffice to check that g^9Y = 0 in gr2^, again by
Q r i

stability, i.e. that the composition Y —^ X /\X ̂  gr1^ Agr lL2 —^ gr^a

equals zero. By duality, this is equivalent to seeing that F ^ / F \ —» F\ /\F\ ^

A1 A A1 —f A2 equals zero. Denoting by V the decomposable elements

of a graded algebra, plainly dF^ = 0 in PT^AV.d) ^ VH2S ^ PA2,

the last equality coming from our assumption on the vector-valued 2-form

associated to H * S . The proof is now complete. D

The following interesting numerical test for 1-graded intrinsic formal-

ity may be immediately deduced.

COROLLARY. — A* is 1-graded intrinsically formal if and only if

rk gr^TTiS' is constant within A* (and equal to dimL^), for any p.

Our last result in this direction is somewhat surprising, since the other

known qualitative numerical results indicate (see [10; Chapitre 7]) that

the numerical invariants of the formal space SA would represent an upper

bound for the corresponding numerical invariants of S if H * ( S ' , Q) ^ A*.
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3.4. PROPOSITION. — Let S be a 1-connected space of finite type, with

rational cohomology algebra A*. If the Eilenberg-Moore spectral sequence

of S collapses at the E^ term, then we have inequalities Tk^Tr^S)^ ^

dim(JJ^A)n , for any n, m.

Proof. — Represent S by a (minimal!) model of the form (AZ*, D-\-p),

as in 2.1, and note that TT^S (g) Q ^ C*~\/\Zi',D^ +^2), and H^CA ^

C^\AZ^D'2). We thus have a bigraded vector space L^ = #Z^{

and two graded Lie brackets, [ , }p and [ , ] ; the second is actually

bihomogeneous and the conditions on the perturbation p translate, as in

the proof of 1.10, to the fact that, for any x G L771, y e L71, [x, y]p = [x, y]

modulo L>m+n. We may also suppose that dimL < oo. This can be seen

as follows : for any fixed lower degree n, as in our statement, the vector

space L^ remains unchanged (for any q) after taking the quotient of L by
the graded Lie ideal L>^.

Having established this framework, let us denote by {F^^X) re-

spectively by {F^^X), the lower central series corresponding to [ , ]p,

respectively to [ , ]. We have to show that dim (F^) > dim F^, for any

m, n. Consider then the (decreasing and finite) filtration on F^ defined by

G^F^ = vector subspace spanned by [2:1, [ . . . , [xm-i,Xm}p .. .]p]p, where
Xi G L^\ and J^r, > k (and similarly for G^^F^). In the bihomogeneous
case we evidently have GkFrn ̂  F^ n L^.

For fixed m and k, define /: GkF^/Gk^lF^ -^ ^kprn^k^-ipm ̂

/(Sp) = S, where Sp is a sum of terms of the form [a;i,[... ,[xm-i,Xm}p- • }p}p

in GkF^ (modulo G^F^) and S is the sum (in G^/G^F^ which

is obtained by replacing the above monomials by [rci, [ . . . , [xm-i, Xm] . . • ] ] •

The map / obviously being onto (if well-defined!) and compatible with

lower degrees, the desired inequalities will follow (both nitrations being
finite).

It remains to be shown that Sp = 0 in GkFrn implies S = 0 in
^kprn^k^ipm^ gy expanding the brackets in Ep and replacing them by

unperturbed brackets we find out that Ep = S-^, with z C L>k; if Sp = 0,

then ^ = z e F r n ^ } L > k ^ G^F71^ and we are done. D

4. Rigid examples and inert sequences.

We prove Theorems B and B' and we indicate a source of examples,

based on Anick's [1; page 133], notion of combinatorial freeness.
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4.1. Proof of Theorem B(i). — By duality (see [31; III.4.(5) and

I.I.(7)]) the condition (A+)3 = 0 may be rephrased as follows : CA =

(L(X, C r*),(9), where X, C V* = ^-^A*, <9X, = 0 and <9|y, is

monic and takes values in (IL^X)^. The fact that the ideal generated

by 9Y in LX is inert (in the sense of [15; Definition 3.1]) is equivalent

to the fact that the sequence Q y ^ , . . . , oyn is inert in LX (which means

by definition that the sequence is strongly free - in the sense of [1;

page 127] - when viewed in TX), and this is also equivalent to H^CA

being generated as a Lie algebra by H^CA (i.e. QExt^'^Q, Q) = 0,

see Lemma 1.9(i)), and further equivalent to the fact that the natural

projection LX, -^ E^ = L X^/ ideal (9Y^) induces a monomorphism on

Tor^'^Q.Q) and an isomorphism on Tor^g^Q, Q); all these are to be

found in [15; Proposition 3.2], Theoreme 1.1. It is also proven there that

if they are fulfilled then H^CA ̂  E^. In our case Tor^^Q.Q) = 0, due

to the freeness of LX, and thus the above conditions on Tors and Tor>s

simply reduce to gl dim^ <, 2. This remark completes our proof. D

4.2. Proof of Theorem B ' ( i ) . — Consider the bigraded model of A*,

BA = (AZ^, D). As remarked in the proof of Lemma 1.9(ii) 'PExt^Q, Q) =

0 if and only if Z2 = 0 and PExl^ = 0 if and only if Z^2 = 0. By the

general uniqueness results for A:-stage minimal models (i.e. minimal alge-

bras generated in degree < k together with modelling dga maps inducing a

cohomology isomorphism up to degree k and a cohomology monomorphism

in degree A-+1) Z2 = 0 is equivalent to the fact that the (b)dga 1-modelling

canonical map of [17], /: (AZ^, D) -^ (A*,0) is isomorphic in cohomology

in degrees 1 and 2 and monomorphic in degree 3; similarly Z^2 = 0 is

equivalent to H * f being an isomorphism.

Since / is a 1-modelling map, H1 f is isomorphic and H2/ is a

monomorphism onto the decomposables PA2; on the other hand A3 = 0,

the algebra A* being 2-skeletal. These remarks show that Z2 = 0 is

equivalent to the surjectivity of ^ plus ^(AZ^.D) = 0. As we have

already noticed in the proof of Lemma 1.8, Hk{/\Z],,D) ^ ^(L^Q),

for any k. Now use an innocuous but very useful trick (which will enable

us to use freely the results obtained in [1] and [15] for connected graded

algebras) : we replace the grhe algebra L\ by the connected glie algebra E^

constructed in the introduction. We have changed nothing except doubling

upper degrees and then transforming them into lower degrees; consequently

H^^Z^D) ^ #Tor^(Q,Q), any A;; since the Tor^0 test of [15] is

enough to be checked only for k = 2 and 3 (Proposition 3.2 of [15]),
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we conclude that PExt^Q.Q) = 0 is equivalent to ^ being onto and

gidim^ < 2 (which implies ^^(AZ1,^) = 0, therefore H * f is an

isomorphism and PExt^'^Q, Q) == 0) and also equivalent to 9 being monic

and the sequence 9y^ , . . . , 9yn being inert in LX (or strongly free in TX),

as before. Noting that the strong freeness of a sequence implies the linear

independence of its elements, the surjectivity of ^ follows, and our proof is

complete. D

We point out that we have a characterization of the vanishing prop-

erty for PExt^'^Q.Q) valid for general algebras A* (as usual, connected

and of finite type), similar to the one given in Theorem B'(i). We choose

not to give it here, because we are not going to use it here.

4.3. Combinatorial conditions for strong freeness. — We shall describe

now, following Anick [I], a very useful combinatorial test for the strong

freeness of sequences of elements in graded tensor algebras over an arbitrary

field. Let then I X be the (connected graded) tensor algebra on a positively

graded vector space X, dimX = m. Pick an ordered homogeneous basis

of X, say { a * i , . . . ^Xm}i and then extend this order to a total order

on the monomials u = x^ (g) . . . (g) x^ of TX, having the properties :

degu < degv ===^ u < v and u < v ==^ zut < zvt, for any z and

t (we shall explicitely use, on the monomials of the same degree, the

lexicographic order from the right). Given any nonzero element y C IX,

write y = c\u\ + ... + CrUr^ where Cz are constants and ui are monomials,

and define the highest term of y , to be denoted by y , by y = ui, where u^ =

the largest Uj for which cj -^ 0. For a given monomial u = x^ ( g ) . . . (g) a;^,

define its origin by o(u) = zi and its end by e(u) = ir. To simplify matters

(having in mind our applications via B(i) and B'(i)) we shall only consider

sequences ^ / i , . . . , yn of tensor degree two, i.e. yi € J ' 2 X , for any i. Anick's

result reads then :

THEOREM (see [1; theorems 3.2 and 3.1]). — The sequence y \ ^ . . . , yn

is strongly free in J X if the monomial sequence of its highest terms

? / i , . . . , yn, is combinatorially free, i.e.

(^r) the monomials y\ , . . . , yn are distinct, and

(^) the sets of indices {0(^1), . . . ,o(^)} and {e(^ i ) , . . . ,e(^)} are

disjoint.

As a first example, both simple and instructive, we shall again follow

Anick and take {x[ , . . . , x^} U { a / / , . . . , x^} as basis for X (concentrated in

lower degree 2) - in this order - and consider the sequence of Lie elements
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{yij = [x^x^] e L2X C J2X}, z = l , . . . , r and j = ! , . . . , . < ? . Then any

subsequence is strongly free, being combinat or tally free (since ̂  = x ' ^ x " ,

and the combinatorial conditions, ('*-) and (-*"Ar), are obviously satisfied).

For A* = ^*((V^-i51) x 51), dimY = m - 1, 9y, = [x^x^

z = = l , . . . , m — 1, and the 1-graded intrinsic formality of A follows, via
Theorem B'(i).

4.4. Proof of Theorem B(ii). — A general sufficient condition for the

intrinsic spherical generation of a 1-connected algebra A*, with Quillen

model CA = (L*H^,<9), may be found in [24; 1.9. and 1.10]; it only

requires the vanishing of Hom-i^^A^^^A), where Hom_i( , )

denotes linear maps which are homogeneous of lower degree -1. Recall

next that we know, by assumption, that H*CA is generated by ^CA

(cf. Lemma 1.9(i)). On the other hand H^CA ̂  Ker(<9|ivJ ^ #QA*+1. A

simple degree argument (based on our hypotheses on the degrees of QA*)

shows that Hom_i(^/:A, H^CA) = 0 and finishes the proof. D

Note that the same argument gives the intrinsic spherical generation

property, for a general 1-connected algebra A*, subject only to the condition

that the degrees of QA* be concentrated in an interval of the form [Z, 31—2};

on the other hand, the condition deg(QA*) = odd does not imply alone, in

general, the intrinsic spherical generation, even for 2-stage algebras A*.

Here is a slightly more general version of B'(ii) :

4.5. LEMMA. — Let A* be any algebra (connected and of finite type),

with associated griie L\. JfPExt^^Q.Q) = 0 then we have an equality
of formal power series

00no-^T^-A*^),p=i
where A*(^) is the Hilbert series ofA*,^ dimA71 • z " .

n>0

Proof. — As indicated in the proof of B'(i), the assumption PExt^1

(Q?Q) = 0 simply means that the bigraded model BA coincides with the

1-bigraded model, (AZ^, D). By a general formula of [17; Proposition 3.10],
00

we know that A*(-^) = ̂ (l-^1)^"1^. On the other hand, Lemma 1.8
n=0

tells us that Z\ ̂  #L7)^1 (see (1.7)), which completes the proof. D
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Remarks. — The above formula is in fact quite effective : one may

uniquely express dim L^, for any p, with the aid of the Mobius function and

of certain universal polynomials in the coefficients of A* (z)^ if dim A* < oo,
see [4].

4.6. PROPOSITION. — Given an arbitrary algebra A* (connected and

of finite type), the condition T^Ext^^Q^Q) = 0 is equivalent to the fact

that A* is generated (as a graded algebra) by A1, plus the equality of

Hilbert series : Tor^^Q.Q)^) = A*0).

Proof. — Recall the 1-modelling (b)dga map /: (AZ^ D) -^ (A*,0),

where (AZ^, D) -^ (A*,0) is constructed out of L\ as explained in (1.7),

see Lemma 1.8. The vanishing condition on T^Ext^'^Q.Q) is then

equivalent to the fact that H * f is an isomorphism. But we know that

H^^Z^D) ̂  H^ (AZ^P)e^(AZ^D), where H^ ^ A^/ideal^Zi1),

and H^f(H^) = 0, by construction. Recalling from the proof of 1.8 that

(K ^ Z\!) Z^ ^ A1 and DZ\ ̂  Ker ^ H^f being the canonical map, it

follows, if H^f is an isomorphism, that then A* is generated by A1, and

we have an equality between the Hilbert series of A* and of i^*(AZ1, D).

On the other hand we already have remarked (again in the proof of

Lemma 1.8) that this last Hilbert series equals ^*(LA; Q)(^), hence also
Tor^ A(<Q,^ Q)(^), which completes half of our proof, the other implication

being immediate, with a dimension argument. D

4.7. Example [19]. — Denote by Pn the n-th pure braid group and

consider A^ = ^*(Pn; Q). Then PExt^^Q, Q) = 0, for any n. This may

be seen as follows : it is known that A^ is generated by A^, for any n;

the Hilbert series A^(z) equals (1 + z)(l + 2 ^ ) . . . (1 + nz) (hence A^ is

not 2-skeletal for n > 2). The main result of [19] also gives the equality

Tor^- (Q, q)(z) = A^), for any n.

4.8. Remarks. — Our method of the computation of gr*7Ti is based

on the rigidity assumption T^Ext^Q.Q) = 0 (Theorem A'(i)). If A* is 2-

skeletal, this is equivalent (B'(i)) to the inertia of 9Y in LX (or the strong

freeness of 9Y in JX). In general, this inertia is a much stronger hypothesis

than the vanishing of T^Ext*51. This may be seen as follows : if 9Y is inert in

LX then the (b)dga 1-modelling map /: (AZ^.D) -^ (A*,0), constructed

out of L\ in Lemma 1.8(i), is actually a 2-model (since H3(/\Z1,D) = 0,

by inertia), therefore 'PExt^Q.Q) = 0 (see 4.2). On the other hand,

consider A^ = 7:f*(P^;Q), as in the previous example; here we know

that PExt^^Q.Q) = 0, but in general 9Y is not inert in LX, since
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Tor3 ^(Q.Q) ^ 0, for n > 2. Far more interesting 1-graded intrinsically

formal examples (which may be handled by our method but fall out of the

range of inertia required by the method of Labute-Anick [20], [3]) see [5].

5. An integral variant.

This section is devoted to the proof of Theorem C, which will fol-

low from the following elementary result (the integral version of Proposi-
tion 3.3) :

5.1. PROPOSITION. — For any connected space S of finite type, with

H-i(S; Z) free, there is a natural griie map map L^g —^ gr*7Ti6' ("where Lg is

naturally associated to S, as explained in the introduction).

Proof. — By the Hurewicz theorem, there is a natural griie epimor-

phism L*(^i5') -^ gr*7Ti5\ given by the identification H-^S ^ gr^i^. We

only have to show that it factors through the ideal generated by the defin-

ing relations of L"g. We are thus going to prove this (by using naturality

and systematically avoiding group presentations).
_ Q r -j

To see that the composition H^S -^ H^S A H^S ^ gr1^ A gr^ —4

gr2^ equals zero (where TT = TT^S), we may first replace 5' by TT, and then,

again by naturality, we are left with checking it for TT/TT^. We may thus

suppose that TT is two-step nilpotent and (recalling that H^S was supposed

to be free) it fits into a central extension of the form

(E) 0 ̂  A ̂  TT ̂  Z^ ̂  1

inducing a diagram
H2P

H^ —> H^

9 | ^ [ Q

A2J^ .
H^f\H^ ——> H^ Mi^

c^M! ~ [ t 0 9 -1

gr2^ = H,A

where t is the homology transgression in the integral Serre spectral sequence

of (E). Since t o H^p = 0, as well-known, everything will follow from the

commutativity of the bottom square. In order to compute t o Q~1 we may

once more involve the naturality, thus supposing k = 2, that is K^TT, 1) is the



930 M. MARKL & S. PAPADIMA

total space of an orientable K(A^ l)-fibration over the 2-torus T. We claim

that the transgression of [T], the fundamental class of T, is represented

by the commutator xyx~ly~l^ where x,y e TT are elements projected by p

onto the standard generators of 71-1 T - and this will plainly finish the proof.

Here is a simple geometric argument for establishing the claim : represent

[T] <E H^ (T, Point) as k^[S], where S = T\{open 2-disk} and k collapses OS

to a point; lift k to I: (S, 9S) -^ (K(TT, 1), K(A, 1)) and set x = l^u, y = Uv,

where u and v are the free generators of TX\S corresponding, via A;+, to the

standard generators of TTiT. Hence t[T] = 9l^[S] = l^[9S] is represented by

xyx~ly~l^ as claimed. D

5.2. Proof of Theorem C. — Given that L*g is torsion free, in

particular J^i(5';Z) is free, the preceding proposition applies and gives a

grhe epimorphism /: L^g -^ gr*7Ti5'(g)Q, where A* = H * ( S ; Q). According to

the Corollary of Proposition 3.3, the 1-graded intrinsic formality of A* may

be used, via a dimension argument, to infer that / 0 Q is also monic. The

torsion-freeness of L"g is now invoked to see the injectivity of the natural

map L^ —> L"g 0 Q = L^, and this finally gives that / is monic, hence a

grhe isomorphism. D

6. An example.

Consider an m x m symmetric matrix with zero on the diagonal,

with entries in R (R == Q, Z or Z/pZ, p a prime), i = (lzj)[zj)^ixi^

where card(J) == 772. We shall associate to £ a so-called link-algebra (with

coefficients in R). It is a 2-skeletal connected ^-algebra given by : A1 =

free J?-module generated by e^, i e J; A2 = A1 A A1 modulo the relations

ei/\ej+ej/\ek = ̂ Ae/c, z . j f , k G I . The multiplication table, /2: A^A1 -^ A2

is given by /z(e^ A ej) = class of l^ei A ej in A2, for any z , j € I . Of course,

here we have in mind the cohomology algebra with -R-coefficients of the

complement of a classical linking of m circles d, i 6 7, where ̂  == lk(Q, Cj)

are the linking numbers.

We further associate to a given link-algebra over R a griie algebra over

R, denoted by L\ and defined by : L^ = L*(a^|z G I ) modulo the relations

TI = ^ > k j [ x z ^ X j } , i e I . It is clear that, for R = Q or Z, if the above ^
j'eJ

coincides with the multiplication table in low dimensions of some space S,
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then L^ is nothing else but L^g (g) R (note however that the relations are

not independent, since plainly V^^z = 0).
iei

Finally, construct out of £ a combinatorial object, namely a finite

unoriented graph F, with vertices ^, i C J, and arrows {vz.Vj} given by
the condition ̂  7^ 0.

We shall next recall the following basic combinatorial result :

6.1. PROPOSITION [3]. — For field coefficients (R = Q, 1/pl) the

connectedness of T implies the existence of a total ordering, x\ < . . . <

Xm, with respect to which the sequence of highest terms r i , . . . , r^_ i is

combinatorially free in T(a;i , . . . . Xm\ hence r i , . . . , r^-i is strongly free
(as recalled in 4.3).

For integral coefficients (R = J.), the connectedness of all (obvious)

mod p reductions Tp (p = prime) implies the torsion freeness of the

associated integral griie Lj_.

Remarks. — Anick derives the integral result from the statement for

R = field, by taking mod p reductions, inferring that r i , . . . , Vm-i (mod p)

is strongly free in J j _ / p j _ ( x ^ , . . . ,Xm), hence concluding that the Hilbert

series of Lj_ (g)Z/pZ depends only on m (as a consequence of a general result

on Hilbert series of quotients of connected graded algebras modulo strongly

free sequences of relations, asserting that the Hilbert series depends only

on the sequence of degrees of the relations, see [1]), therefore U^_ must be
torsion free.

The same connectedness hypothesis for all mod p reductions Fp of

r simultaneously gives (via the obvious resulting connectedness of Fn)

the strong freeness of r i , . . . . Tm-i in TQ^I, . . . , Xm), hence the 1-graded

intrinsic formality of A* = H * ( S ; Q), as soon as /^A = /^Q, as explained in
the remarks made in 4.8.

6.2. COROLLARY. — If ^H^S-.q) AT^^Q) ^ H2(S•,q) equals

some 0,-link-algebra multiplication OQ and FQ is connected then gr*7Ti5'(g)

Q ^ LQ, as Lie algebras with grading.

If fi'.H^S^l) A H\S;1) -^ H2^',!) equals some I-link-algebra

multiplication ^, the abelian group H^{S;T) is free and all mod p

reductions Fp are connected, then the griie gr* 71-16' is torsion free (as a

graded abelian group) and equals the integral griie L^.
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Proof. — For the rational statement, the above proposition guarantees

the strong freeness of 9Y in T(X) (in our standard general notation, cf. the

introduction). This in turn implies that A* = H " ( S ; Q) is 1-graded intrin-

sically formal (see 4.8), therefore gr*7ri5'(g)Q ^ L\ (cf. e.g. Lemma 1.8(ii)).

On the other hand L\ ̂  LQ, as we have already noticed.
~6

The integral statement follows from Theorem C. Note first that under

our assumptions L"g ^ Lj, which is known to be torsion free, by the above

proposition. As we have just remarked, the same connectedness hypotheses

guarantee the fact that H^(S'^Q,) is 1-graded intrinsically formal. The

method of Theorem C gives then all the desired conclusions. D

As pointed out in 2.3, the vanishing of PExt^' (Q, Q) is not a

necessary condition for the 1-graded intrinsic formality of A*, even in the 2-

skeletal case. It is interesting to see, thus concluding our example, that this

condition is really necessary, for link-algebras over Q. We shall derive this

from the following general implication of the 1-graded intrinsic formality

property.

6.3. PROPOSITION. — Let A* be a 2-skeletal algebra, with associated

2-form ̂ : A1 AA1 —> A2 and Lie algebra with grading L\. If A* is 1-graded

intrinsically formal and JJL is not onto, then L^ = 0.

COROLLARY. — For a 0,-link-algebra A*, the following are equivalent :

(i) A* is 1-graded intrinsically formal.

(ii) ^Ext^(Q,Q)=0.

(iii) The associated graph F is connected.

Proof of the Corollary. — Let us note first that the condition L^3 = 0

in Proposition 6.3 is, in general, a very restrictive one; it implies, for

instance, that the 1-bigraded model of A* (see Lemma 1.8(i)) is of the

form (AZ^,D), therefore (by using deformation theory as in the proof

of A'(i)) 7Ti"(g)"Q is rigid, not just its associated graded. We shall see just

how restrictive it is, in the case of link-algebras.

We have already noticed the implications (iii) ==^ (ii) =^> (i),

while proving the first half of Corollary 6.2. Assuming A* to be 1-graded

intrinsically formal, we know from the previous proposition that either ^

is onto (and we are done, since it is elementary to see that this condition is

equivalent to the connectedness ofF, compare with [21]) or L\ = 0, i.e. the

linear map /: X (g) Y —^ L^X given by f{x ̂  y ) = [x, 9y\ is onto. Counting
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dimensions, this gives the inequalities (m3 - m)/3 < m - dim{9Y) =

m • dim(Im^) <, m(m - 1), hence m = 1 and A2 = 0, a contradiction.

D

Proof of the Proposition. — Assuming that ^ is not onto, one has

a decomposition Y = Y ' C C, where 9\y is monic, 9C = 0 and C ^ 0,

say C has { ^ i , . . . , 2;c} as basis. We must see that L\ = 0. Pick then an

arbitrary element p C L^X; we have to prove that p e I = the ideal

generated by 9Y = Q Y ' . Suppose on the contrary that p ^ I and consider

then the (larger) perturbed ideal Ip = ideal generated by 9Y and p and

the natural griie surjection /, /: L\ = U X / I -^ L*X/7p =: L;. Perform

then on L^ the construction described in (1.7) to obtain a 1-minimal (b)dga

(AK, d), with the property that gr*(AV, d) = L^ (see also Proposition 1.4).

If we are able to exhibit a dga M with the property that H*M ^ A*

and having (AY, d) as 1-minimal model, then the property of A* of being

1-graded intrinsically formal may be eventually exploited, giving a griie

isomorphism between L^ and L\; by a dimension argument / must be an

isomorphism and consequently p € J, a contradiction.

Construct M by starting with (AY, d) (g) ( A ( ^ 2 , . . . , Zc), 0), where

degZi = 2 and the second differential is trivial. Consider then ^^((AY, d)(g)

(A(^ , . . . , 2^), 0) and add new generators, U^ = Q) U^, so as to kill H^3;
k>2

look next at -/^(AV^A^^A^i) and kill it by adding new generators U^,

iterate and obtain M. as the inductive limit of this process. By construction

H^M. will be a 2-skeletal algebra. It is equally easy to see that when killing

H^M as above one does not change H^M, hence (AY, d) is indeed the 1-

minimal model of M and H^M ̂  ^^((Ay.^^A^ . . . ,^c),0) ^ Q - l ©

^(AV, cDe^AY, d)©spanQ{^,.. . . ̂ }. Recalling the construction (1.7),

Lemma 1.6(iv) tells that H\^V^d) ^ H^(^V^d) ^ VQ ^ #L^ ^ #X ̂

A1. Likewise ^(A^.d) ^ ^(AK.d) © ̂ (A^.d), where ^(A^d) ^

YO A Yo/^i and the multiplication ^(AV.d) A H\/\V,d) -^ ^(AY,d)

is by construction the dual of the inclusion K ^ L^ A L1, where J^ =

Ker(L^ AL^ ^-^ L^). Because / is an isomorphism in degrees 1 and 2, we

may safely replace L^2 by L^2 and thus identify #{K ^ L1 A L1) with

#(9:Y' ̂  Xf\X) ̂  ^.A1/\A1 -^Im ^. In order to show that H^M ̂  A*

and thus finish our proof, we only have to see that dim^(AY^, d) = 1, or

equivalently that dim-H^AV, d) = 1 + dimV.

This will be accomplished by remarking that in general one has

Hk{/\V, d) = ̂ (Lp; Q) = #Hk(Lp', Q), for any k, and the same reasoning
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as in 1.8 indicates that dim H^ (Lp; Q) = dim7p/[LX, Jp], and our assump-

tion p ^ I helps to conclude that this last dimension equals dim Y ' -(- 1, as
claimed. D
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