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Three-dimensional steady states and traveling wave solutions of the Navier–Stokes equations are

computed in plane Couette and Poiseuille flows with both free-slip and no-slip boundary conditions.

They are calculated using Newton’s method by continuation of solutions that bifurcate from a

two-dimensional streaky flow then by smooth transformation ~homotopy! from Couette to Poiseuille

flow and from free-slip to no-slip boundary conditions. The structural and statistical connections

between these solutions and turbulent flows are illustrated. Parametric studies are performed and the

parameters leading to the lowest onset Reynolds numbers are determined. In all cases, the lowest

onset Reynolds number corresponds to spanwise periods of about 100 wall units. In particular, the

rigid-free plane Poiseuille flow traveling wave arises at Ret544.2 for Lx
1

5273.7 and Lz
1

5105.5, in excellent agreement with observations of the streak spacing. A simple one-dimensional

map is proposed to illustrate the possible nature of the ‘‘hard’’ transition to shear turbulence and

connections with the unstable exact coherent structures. © 2003 American Institute of Physics.
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I. INTRODUCTION

A fundamental change in our understanding of the nature

of shear turbulence started in the 1950s. Then the view of

turbulence as the random interaction of ‘‘eddies’’ began to be

replaced by one of organized motions interacting with the

mean flow. Theodorsen1,2 proposed the qualitative, mecha-

nistic picture of a wall-bound horsheshoe vortex as the fun-

damental structure in turbulent shear flows. His was a physi-

cally complete structure motivated by considerations of

optimum streamwise enstrophy production. Malkus3 pro-

posed a quantitative, nonmechanistic theory based on a prin-

ciple of maximum energy dissipation rate, and marginal sta-

bility constraints, that led to the derivation of upper bounds

and to Busse’s picture of the optimum momentum transport-

ing solenoidal field.4 That optimum field is more intricate but

nonetheless similar to Townsend’s qualitative ‘‘attached

eddy’’ interpretation of two-point velocity correlation

measurements.5,6 The upper bound fields and attached eddies

are streamwise-invariant and better described as a combina-

tion of streamwise rolls and streaks. That combination will

be called the ‘‘streaky flow’’ in Sec. IV. Townsend also in-

troduced the qualitative concepts of ‘‘active’’ and ‘‘inactive’’

motions to describe turbulent shear flows.6

The experiments of Kline et al.7 first revealed the struc-

ture of near-wall turbulence and pointed to the importance of

low-velocity streamwise streaks whose lift-up, oscillation

and ‘‘bursting’’ were seen as the main turbulence producing

mechanism. It was found that the streaks have a characteris-

tic spacing of about 100 wall units ~defined in Sec. VI!.7,8

Those experiments sparked numerous experimental and

computational studies, most of which are reviewed in the

monograph edited by Panton.9 Another line of work based on

the proper orthogonal decomposition is reviewed in the book

by Holmes, Lumley, and Berkooz.10 Among all those contri-

butions, the sketches of self-replicating horseshoe vortices in

Acarlar and Smith11 and the, then unrelated, mean flow-first

harmonic theory of Benney12 were the two key references

that led to the present work.13,14 Benney’s ‘‘mean flow’’ con-

sists of weak streamwise rolls and a spanwise varying

streamwise velocity, similar to Townsend’s attached eddies.

It is now well accepted that the predominant vortex

structure in the near-wall region consists not of horseshoe

vortices but of staggered, quasi-streamwise vortices as in

Stretch’s sketch15 reproduced in Fig. 1. That picture is

Stretch’s synthesis of his pattern eduction studies of the Kim,

Moin, and Moser data.16 A similar study and result can be

found in Ref. 17. Horseshoe vortices and packets of such

vortices are also observed in turbulent flows.18 Whether such

structures are the varicose versions of the sinusoidal struc-

tures studied here or result from a dynamic self-organization

of the staggered vortices is a matter for later study.

This paper reports on traveling wave solutions of the

Navier–Stokes equations in plane Couette and Poiseuille

flows with either given velocity ~no-slip! or velocity deriva-

tive ~slip! at the wall. Brief reports on this work have ap-

peared in Refs. 19 and 20. The traveling waves travel at a

constant velocity and are therefore steady in the proper Gal-

ilean frame. The propagation velocity is analogous to an ei-

genvalue and cannot be deduced a priori, except by symme-

try in plane Couette flow. These solutions were obtained

numerically using spectrally accurate finite approximations

of the fields ~Sec. II!, based on Fourier expansion and

Chebyshev integration ~Sec. III!, and Newton’s method, not

time integration. This is because the traveling waves are

typically unstable from onset and therefore not directly ac-a!Electronic mail: waleffe@math.wisc.edu
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cessible to experiments and time-marching simulations. The

traveling waves are remarkably similar to Stretch’s picture of

the typical coherent structure ~Fig. 1!. The latter is essen-

tially an optimized ensemble average of significant regions

of turbulent flow fields, localized in space and time, that

filters out a spectrum of spatio-temporal fluctuations and

does not satisfy the governing equations. In contrast, the

traveling waves are solutions of the Navier–Stokes equations

that propagate at constant speed without changing shape and

are devoid of any other fluctuations. It is therefore appropri-

ate to refer to the traveling wave solutions as ‘‘exact coherent

structures.’’ Furthermore, these exact coherent structures and

their inherent instabilities are good candidates for precise

definitions of ‘‘active’’ and ‘‘inactive’’ motions, respectively,

that differ from Townsend’s definitions. Townsend’s active

motions correspond to the momentum transporting stream-

wise rolls and streaks while his inactive motions would cor-

respond to the streak instability. In fact, the streamwise on-

dulation, seen in Fig. 1 and traceable to the streak instability,

is an essential element of the complete self-sustaining three-

dimensional ~3-D! coherent structure.

The solutions were calculated using various continuation

and homotopy procedures. The first step in this approach

~Sec. IV! is based on a weakly nonlinear formulation of a

fundamental self-sustaining process in shear flows.21–23 It

consists in tracking the 3-D solutions that bifurcate from a

self-consistent two-dimensional ~2-D! flow made of stream-

wise rolls and streaks. The streamwise invariance of that

base flow implies that it cannot be self-sustained,24 however,

the streaks support an instability of inflectional type that

feeds back on the rolls and leads to self-sustained, 3-D states.

The full Navier–Stokes continuation in Sec. IV establishes a

precise and explicit link between the 2-D streamwise invari-

ant streaky flow ~‘‘attached eddies’’! and a 3-D self-sustained

structure that consists of wavy streaks and staggered vorti-

ces, entirely similar to the observations.

Bifurcation from 2-D streaky flow can be used to com-

pute 3-D self-sustained states in all plane shear flows but

requires educated guessing of the streamwise rolls. Once the

3-D states have been found in one flow, it is simpler to ex-

tend them to other flows by homotopy. This consists in

smoothly deforming ~‘‘morphing’’! the base flow into the

desired flow while tracking the self-sustained solutions with

Newton’s method. Two types of homotopies are presented in

Sec. V. One transforms free-slip into no-slip boundary con-

ditions ~12!, the other transforms Couette flow into Poiseuille

flow ~27!. These transformations are not only very effective

at extending solutions to other boundary conditions and base

states but also demonstrate the close connection ~the homo-

topy or ‘‘same shape’’! between the various states. The ho-

motopy between free-slip and no-slip demonstrates that no-

slip is not required for these exact coherent structures. The

homotopies to no-slip plane Couette flow connects this broad

family of exact coherent structures with the steady state so-

lutions first computed in that flow by Nagata25 and studied

by Clever and Busse.26,27

The exact coherent structures discussed here thus belong

to a six-parameter (a , g , Re, lb , l t , m , defined below!
family of three-dimensional vector fields that solve the

Navier–Stokes equations. The solutions come in pairs, an

upper branch and a lower branch, at a given Reynolds num-

ber. This is clearly a rich family and the 3-D illustrations in

this paper are typically limited to the lowest-Re bifurcation

point where the solutions first appear and where upper

branch and lower branch coincide. A complete illustration of

these solutions would require too many figures. The stream-

wise and spanwise length scales that lead to the lowest onset

Reynolds for these exact coherent structures are presented in

Sec. VI. The optimum spanwise length scales are all in the

neighborhood of 100 wall units. In particular, the optimum

spanwise length scale for the no-slip plane Poiseuille solu-

tion is 105.51. This is the solution that is most relevant to

the higher Reynolds number observations.

A few mean velocity and rms velocity fluctuation pro-

files of the exact coherent structures are presented in Sec. VII

together with bifurcation diagrams for various parameters.

Those results compare favorably with the statistics of turbu-

lent flows suggesting that the exact coherent structures do

indeed capture essential structural and statistical features of

turbulent motions. But the exact coherent structures are

steady in the appropriate Galilean frame and therefore have

none of the disorder characteristic of turbulent flows. All

these exact coherent structures also appear at Reynolds num-

bers that are significantly lower, typically a factor of 2 lower,

than the smallest Reynolds numbers where turbulence is ob-

served, and they are unstable from onset. How then, could

these unstable exact coherent structures be of any relevance

to the observations? The traveling waves in plane shear flows

are not simply attractors for broad classes of initial condi-

tions as in Fisher’s equation, for instance, where the slowest

wave is an attractor ~see, e.g., Ref. 28!. The traveling waves

are most likely not solitons either as in the Korteweg–de

Vries equation where broad classes of initial conditions

evolve into a superposition of solitary traveling waves that

preserve their shape through nonlinear interactions. The

shear flow situation is more complex, but there is clear and

increasing evidence that turbulent flows spend a lot of time

‘‘near’’ these exact coherent structures and therefore that

FIG. 1. Sketch of the coherent structure educed from DNS data ~Stretch—

Ref. 15!.
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much of the structure and statistics of turbulence can be un-

derstood from these traveling waves. Readers who are well-

versed in nonlinear dynamics and chaos know the impor-

tance of unstable solutions. This paper ends with a one-

dimensional ~1-D!, discrete dynamical system that may be

helpful as a simple concrete illustration of the nature of the

‘‘hard’’ transition to turbulence in shear flows and the rel-

evance of unstable solutions.

II. MATHEMATICAL FORMULATION

The governing equations are the Navier–Stokes equa-

tions for incompressible flow,

]v

]t
1v•“v52“p1

1

Re
¹2v1F, “•v50, ~1!

where v is the Eulerian fluid velocity, p the ‘‘pressure’’ ~di-

vided by the mass density!, Re the Reynolds number. A Car-

tesian system of reference is employed with x streamwise, y

shearwise ~i.e., wall-normal! and z spanwise. The corre-

sponding velocity components are u, v , w, respectively. The

flow is bounded by two infinite planes located at y561 and

is maintained by a body force F and/or the boundary condi-

tions at y561, where x̂ is the unit vector in the x direction.

The physical boundary conditions correspond to no-slip at

the walls. These are Dirichlet boundary conditions where

velocity is imposed on the boundary. In this paper, all three

canonical types of boundary conditions, Dirichlet, Neumann,

and Fourier–Robin @also called ‘‘of the third kind,’’ see Eq.

~12! below# are employed for the slip-to-no-slip homotopy.

Periodicity is enforced in the streamwise and spanwise direc-

tions with periods Lx52p/a and Lz52p/g , respectively.

Plane Couette and Poiseuille flows are considered. Plane

Couette flow is maintained by the boundary conditions at y

561 with no body force and has the laminar base solution

v5y x̂[UL
(C) . Plane Poiseuille flow is maintained by an ex-

ternal uniform pressure gradient F52Re21x̂, and the

boundary conditions at y561. The Poiseuille laminar base

flow is chosen here as v5(y2y2/211/6) x̂[UL
(P) ~Fig. 2!.

This Poiseuille flow has zero average and its antisymmetric

part is identical to the plane Couette base flow. This unusual

Poiseuille normalization is chosen for the Couette-to-

Poiseuille homotopy. Therefore y511 is here a plane of

reflection symmetry for plane Poiseuille flow with the

boundary conditions ]u/]y5v5]w/]y50. The y51 plane

corresponds to the centerline of a full plane Poiseuille flow

while y521 corresponds to the bottom wall.

The plane Couette flow Reynolds number implied by

these normalizations is based on the half laminar wall-

velocity difference and the half channel height. In free-slip

~Neumann!, this is equivalent to a Reynolds number based

on the mean wall shear rate dŪ/dy561 at y561. In no-

slip ~Dirichlet!, the laminar and total velocities at the wall

are identical and the Reynolds number is therefore based on

the half-wall velocity difference. For plane Poiseuille flow,

the Reynolds number is based on half the distance between

the wall and the centerline and half the difference between

the laminar centerline velocity and the wall velocity. If , is

half the distance between the wall and the centerline ~i.e.,

one-quarter of the channel height!, dP/dx the imposed ~ki-

nematic! pressure gradient, and n is the kinematic viscosity

then Re5udP/dxu,3/n2. Note that, in effect, the Reynolds

numbers are based on the shear rate at the wall S

[udŪ/dy uwall , except for no-slip plane Couette flow. The

friction velocity ut[(nS)1/2 and the ‘‘wall unit’’ n/ut is thus

well-defined a priori and directly related to the outer units

through the Reynolds number. In no-slip plane Poiseuille

flow, for instance, the nondimensional kinematic viscosity is

1/Re, the nondimensional friction velocity is ut5(2/Re)1/2,

and wall-units are simply (2 Re)1/2 times the non-

dimensional units. The friction Reynolds number in this case

is Ret[2,ut /n5(8 Re)1/2. Further details of the transfor-

mations to wall units are provided in Sec. VI.

The pressure gradient is eliminated by using the ‘‘roll-

streak’’ projections of the momentum equations using the

operators

P
v
[2 ŷ•“Ã„“Ã~• !… ~2!

and

Ph[ ŷ•“Ã~• !. ~3!

These projections lead to an equation for P
v
v5¹2

v , the La-

placian of the y velocity ~where the continuity equation

“•v50 has been used! and another equation for Phv5h ,

the y vorticity. The u and w velocity components can be

reconstructed using the definition of the y vorticity, h
5]u/]z2]w/]x and solenoidality “•v5]u/]x1]v/]y

1]w/]z50. The two equations for v and h must be supple-

mented by equations for the x and z averaged velocities,

Ū(y ,t) and W̄(y ,t). These are obtained by averaging the

Navier–Stokes equations over x and z.

This ‘‘roll-streak,’’ or v –h , representation is closely

linked to the ‘‘poloidal–toroidal’’ representation of the sole-

noidal velocity field:

v5“Ã~“Ãf ŷ!1“Ãc ŷ1Ū x̂1W̄ ẑ, ~4!

where f5f(x ,y ,z ,t) and c5c(x ,y ,z ,t) are three-

dimensional, time-dependent scalar fields while Ū5Ū(y ,t)

and W̄5W̄(y ,t) are ~1-D!, time-dependent scalar fields ~see,

e.g., Refs. 25 and 26!. Indeed, v52(]x
2
1]z

2)f and h

FIG. 2. Laminar base flows: Plane Couette U(y)5y and plane Poiseuille

U(y)5y2y2/211/6.
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52(]x
2
1]z

2)c. The roll ~or poloidal! mode (v ,f) has no

y-vorticity, while the streak ~or toroidal! mode (h ,c) has no

y velocity.

In summary, the governing equations ~1! are reduced to

S ]

]t
2

1

Re
¹2D¹2

v1P
v
"~v"“v!50, ~5!

S ]

]t
2

1

Re
¹2Dh1Ph"~v"“v!50, ~6!

S ]

]t
2

1

Re

]2

]y2D Ū1 x̂"~v"“v!¯
2 x̂"F
¯

50, ~7!

where the overbar denotes an average over x and z. The

W̄(y ,t) mean flow is identically zero by symmetry.

The full velocity field is decomposed into the laminar

base flow plus a perturbation v5ULx̂1u. In the following,

u5(u ,v ,w) represents the perturbation from laminar flow

unless otherwise noted. This paper is primarily concerned

with traveling wave solutions of the form u(x ,y ,z ,t)5u(x

2Ct ,y ,z ,0). Looking for such solutions is equivalent to

looking for a three-dimensional vector field u(x ,y ,z) that

satisfies the above-mentioned equations with ] t replaced by

2C]x . This leads to the nonlinear eigenvalue problem

S C
]

]x
1

1

Re
¹2D¹2

v2P
v
"~v"“v!50, ~8!

S C
]

]x
1

1

Re
¹2Dh2Ph"~v"“v!50, ~9!

1

Re

d2ū

dy2
2 x̂•~v"“v!¯

50, ~10!

where the wave velocity C is the eigenvalue. A unique solu-

tion is found by fixing the phase of the solution. Here we set

I^h exp~2iax !&50, ~11!

where I denotes imaginary part and ^•& a domain average.

The boundary conditions for the perturbation from lami-

nar flow, u, are homogeneous. General slip boundary condi-

tions of the form

lu2k]nu5v5lw2k]nw50, ~12!

are employed at y561, where n is the direction normal to

the wall into the fluid, 0<l<1 and k512l . In terms of v

and h this translates into

v5l t]yv1k t]y
2
v5l th1k t]yh50,

~13!
v5lb]yv2kb]y

2
v5lbh2kb]yh50

at y511 and y521, respectively. Homotopy from free-

slip to no-slip perturbations is performed by tracking solu-

tions from l50 to l51. For Poiseuille flow, l t50 always,

as y51 is the channel centerline. The Rayleigh–Bénard no-

menclature ‘‘free–free,’’ ‘‘rigid–free,’’ and ‘‘rigid–rigid’’ is

used to denote the boundary conditions at the bottom and top

walls, respectively, with ‘‘free’’ indicating free-slip perturba-

tions ~Neumann boundary conditions! and ‘‘rigid’’ indicating

no-slip perturbations ~Dirichlet!.

III. NUMERICAL FORMULATION

The primary variables ū(y), v(x ,y ,z), and w(x ,y ,z) are

expanded in Fourier modes in the x and z directions and

Chebyshev-based modes in the y direction,

v5 (
l52LT

LT

(
m50

MT

(
n52NT

NT

A lmne ilaxe ingzfm~y !, ~14!

h5 (
l52LT

LT

(
m50

MT

(
n52NT

NT

B lmne ilaxe ingzcm~y !, ~15!

ū5 (
m50

MT

ûmcm~y !. ~16!

The y-expansion functions fm(y) and cm(y) are inte-

grals of Chebyshev polynomials that satisfy the boundary

conditions. The basic idea is to set D4fm(y)5Tm(y) and

D2cm(y)5Tm(y) where D[d/dy and Tm(y)

5cos(m arccos y) is the Chebyshev polynomial of degree m.

This approach leads to numerical operators that are well

conditioned.29 After four y-integrations,

fm~y !5I4Tm~y !1c01c1y1c2y2
1c3y3, ~17!

where I5* dy denotes indefinite y-integration. The con-

stants c i are determined from the boundary conditions fm

5lDfm6kD2fm50 at y561 ~13!. This leads to well-

defined fm(y) for 0<l<1.

To illustrate the validity and accuracy of this approach,

consider the calculation of the least negative eigenvalue of

the streamwise rolls problem,

~D2
2g2!2

v̂5s~D2
2g2!v̂ , ~18!

with v̂(61)5D v̂(21)5D2
v̂(1)50 ~rigid–free!. This is

the linearized v-equation ~5! for x-independent perturbations

of the form v(y ,z ,t)5est
v̂(y)cos gz. It is a test case that is

quite appropriate for this work. The fm expansion v̂

5(
0

MT amfm(y) is compared to a conventional Chebyshev

expansion v̂5(
0

MT14
bmTm(y), where the extra four polyno-

mials in the latter case are used to impose the boundary

conditions ~Chebyshev-tau formulation!. Equation ~18! is

projected onto the M T11 Chebyshev polynomials Tm(y),

m50, . . . ,M T , with the Chebyshev weight, by Gauss inte-

gration with at least Np5M T15 Gauss points y j5cos(2j

21)p/(2Np), j51, . . . ,Np . Two Chebyshev-tau formula-

tions are used. One formulation enforces the boundary con-

ditions by eliminating bMT11 , . . . ,bMT14 from the eigen-

value problem. The second formulation eliminates

b0 , . . . ,b3 and has smaller roundoff errors. The boundary

conditions are automatically enforced by the fm expansion.

For g51.3, the least negative eigenvalue is found to be s1

525.990 343 885 706 669 ~using the fm expansion with

M T542, somewhat arbitrarily!. Figure 3 is a log–log plot of

the s1 error as a function of the resolution M T . The fm

formulation is stable and saturates at round-off level (10215)

while the Chebyshev-tau errors are plagued by roundoff er-

rors of O(M T
8), as expected for ~18!. The eigenvalue of larg-

est magnitude turns out to be positive for all three formula-
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tions. That eigenvalue is spurious since it can be shown that

the eigenvalues s in ~18! are real and negative.

The definition of cm(y) is more delicate as the D2 op-

erator with slip boundary conditions Dcm(61)50 is singu-

lar. To accommodate slip boundary conditions, we

define D2cm(y)5Tm(y)2T̄m for mÞ0, where T̄m

5*
21
1 Tm(y)dy /2, yielding

cm~y !5I2Tm~y !2T̄my2/21c01c1y . ~19!

The constants c0 and c1 are chosen to satisfy the boundary

conditions lcm6kDcm50 at y561 ~13!. The constant c0

is arbitrary in the free–free case (l t5lb50). In that case,

we define c05limlb→0 c0(l t50,lb) so the functions will be

well adapted to the free-slip to no-slip homotopy. It turns out

that c0 is independent of lb when l t50. The zero mode is

defined by D2c05l t1lb . Two integrations and the bound-

ary conditions yield

c0~y !5~l t1lb!
y2

2
1~l t2lb!y1

l t1lb

2
22. ~20!

For the full Navier–Stokes case, Eqs. ~5!–~7!, the non-

linear term is calculated by spectral convolution in the x and

z directions but by collocation in the y direction using at least

M T15 Gauss points. The equations are projected onto the

appropriate Chebyshev modes with the Chebyshev weight

function. These projections are made by Gauss integration

using at least M T15 Gauss points. All Fourier–Chebyshev

modes with

l2

~LT11 !2
1

m2

~M T11 !2
1

n2

~NT11 !2
>1 ~21!

are truncated. This resolution approximately corresponds to a

direct numerical simulation with resolution (2LT11)

3(MT15)3(2NT11) after de-aliasing in x and z. De-aliasing

in y was tested but made no difference on the scale of the

plots shown here. There is no aliasing in x and z.

The traveling wave nonlinear eigenvalue problem is

solved using Newton iterations and various continuation and

homotopy procedures, as discussed in later sections. The lin-

ear algebraic equations for A lmn , B lmn and ûm ~14!–~16! are

solved with LAPACK routines. The code was thoroughly

tested and all free-slip results obtained with a different triply-

Fourier code19 were reproduced with the present code. The

linear instability of 2-D streaky flow22,23 was also reproduced

as well as eigenmodes of the Orr–Sommerfeld and Squire

operators. The size of the numerical problem is reduced by

imposing the sinusoidal streak symmetry ~24!. Several reso-

lutions have been used to verify numerical convergence.19,20

Most of the Poiseuille results presented here use

@LT ,M T ,NT#5@11,23,11# corresponding to 7391 degrees of

freedom. The optimum parameter results were checked with

resolution @LT ,M T ,NT#5@13,25,13# for which there are

10 977 degrees of freedom. Many of the Couette results en-

force the additional symmetry ~26! and @LT ,M T ,NT# up to

@15,27,15# ~7697 modes! has been used.

IV. BIFURCATION FROM STREAKY FLOW

A. Self-sustaining process

The physical mechanisms responsible for the coherent

structures consist of a three-dimensional, nonlinear self-

sustaining process. The process has been described and stud-

ied in several earlier references.21–23,30,31 The weakly nonlin-

ear description of the process is that streamwise rolls

@0,V(y ,z),W(y ,z)# create a spanwise modulated shear flow

@U(y ,z),0,0# that is inflectionally unstable to a three-

dimensional perturbation exp(iax)u(y ,z). Here, U(y ,z) rep-

resents the total x-averaged streamwise velocity. The Rey-

nolds stresses associated with that 3D perturbation extract

energy from the spanwise fluctuation of the streamwise ve-

locity U(y ,z)2Ū(y), the streaks, but feed energy into the

rolls and the mean shear Ū(y). This is along the lines of

Benney’s mean-flow first-harmonic theory,12 but here, vis-

cous dissipation plays an important equilibrating role.

For x-independent flows, the streamwise rolls

@0,V(y ,z),W(y ,z)# decouple from the streamwise velocity,

therefore they have no energy source and decay due to vis-

cous dissipation.22,24 However, they redistribute the mean

shear and can create substantial streaks. Indeed, rolls of

O(Re21) sustain O(1) streaks. Quadratic nonlinear self-

interaction of an O(Re21) x-dependent streak instability

eigenmode is in turn sufficient to balance the viscous dissi-

pation of the O(Re21) rolls. These scalings are for the lower

branch of self-sustained states ~see the following and Ref.

23, Sec. III D!.

B. Two-dimensional streaky flow

Our method to construct exact coherent states in shear

flows is to track solutions from a neutrally stable 2-D streaky

FIG. 3. Approximation error us̃12s1u/us1u where s1 is the least negative

eigenvalue of ~18!. The fm expansion error ~solid! saturates near 10215. The

Chebyshev-tau errors are O(M T
8) for M T.10 ~dash: b0 , . . . ,b3 eliminated;

dash-dot: bMT11 , . . . ,bMT14 eliminated!.
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flow @U(y ,z),V(y ,z),W(y ,z)# , with externally maintained

rolls of O(Re21), to a self-sustained fully 3-D flow.19 This is

most easily done in plane Couette flow with free-slip bound-

ary conditions where appropriate streamwise rolls have the

simple form V(y ,z)5Re21 Fr cos by cos gz, with b5p/2

and W(y ,z) from continuity. Such rolls are an exact nonlin-

ear solution and can be maintained by the weak O(Re22)

external body force,

F5

Fr

Re2

b2
1g2

g S 0

g cos by cos gz

b sin by sin gz
D . ~22!

The streamwise velocity U(y ,z) results from a balance be-

tween viscous damping and redistribution by the rolls of the

shear supplied at the walls as governed by the advection-

diffusion equation

V
]U

]y
1W

]U

]z
5

1

Re
¹2U . ~23!

Note that V5O(Re21) implies that U(y ,z) is Reynolds

number independent and the streaks are indeed O(1). A

more precise estimate of the necessary rolls is obtained by

balancing the advection of the laminar shear dUL /dy51

with the viscous damping of O(1) streaks V'(b2

1g2)/Re, yielding Fr'b2
1g2. We expect that the opti-

mum rolls have approximately unit aspect ratio and choose

g51.5. Smaller g would produce weaker spanwise shear

and therefore less vigorous sustenance of the 3-D streak

eigenmode, while larger g leads to stronger dissipation of the

rolls and the streaks. For g51.5 and b5p/2, Fr'4.7. For

the Reynolds number, it must be low enough that rolls oc-

cupy the full channel but not so low that viscosity wipes out

all perturbations from laminar. A trial value of Re5150 was

selected. The resulting two-dimensional three-component

~2D-3C! flow U(y ,z)5@U(y ,z),V(y ,z),W(y ,z)# is depicted

in Fig. 4, which shows contours of U(y ,z) overlayed with

contours of streamwise vorticity vx5]W/]y2]V/]z for

Fr55 and Re5150. The weak rolls indeed lead to a major

redistribution of streamwise velocity. The mean velocity pro-

file ~not shown! has an S shape typical of turbulent Couette

flow with a total mean shear at y50 of dŪ/dy50.093 and a

wall velocity at y51 of Ū50.434, both down from their

laminar value of 1.

C. Instability of streaky flow

The streaky flow @U(y ,z),V(y ,z),W(y ,z)# is unstable

to x-dependent perturbations as a result of the strong span-

wise inflections in U(y ,z). Three modes of instability with

distinct symmetries ~fundamental sinusoidal, fundamental

varicose and subharmonic ‘‘sinucose’’! are possible.22,23 Pre-

vious work22,23 indicates that the fundamental sinusoidal

mode is the most unstable ~see also Ref. 32!. That mode

corresponds to the shift-reflection symmetry

S u

v

w
D ~x ,y ,z !5S u

v

2w
D S x1

Lx

2
,y ,2z D . ~24!

The Navier–Stokes equations linearized about the streaky

flow U(y ,z) admit separable solutions of the form

este iaxu(y ,z). Figure 5 shows the growth rate, max R(s),

as a function of the streamwise wave number a for streaky

flows corresponding to Fr55,6,8,12 at Re5150. At this Rey-

nolds number, the most unstable streaky flow corresponds to

Fr'8. For larger values of Fr , the rolls transport momen-

tum faster than it can be supplied at the walls, the streamwise

velocity U(y ,z) therefore weakens and with it the streak

instability. For lower values of Fr the rolls are not strong

enough compared to streak dissipation, the streaks are weak

and the mean shear is strong, resulting also in a collapse of

the streak instability. The minimum Fr sustaining a streaky

flow instability is approximately Fr55 at Re5150. The

growth rate of the instability for the pure streaky flow ~no

rolls! when Fr58 is shown as a dashed line in Fig. 5. That

curve indicates that the rolls reduce the growth rate for that

streaky flow when a.0.375, suggesting that the streak in-

stability feeds energy back into the rolls for those a’s. Re-

moving the mean shear leads to a tripling of the maximum

growth rate and a doubling of the band of unstable wave

numbers ~Fig. 4 in Ref. 31! indicating that the mean shear

has a strong stabilizing effect and that the instability origi-

nates in the spanwise inflections of U(y ,z). For more mar-

FIG. 4. Streaky flow U(y ,z) for F r55, g51.5. Shaded contours of U(y ,z)

at multiples of 0.1(max U2min U)50.1703 with contours of vx at multiples

of 0.2 max vx50.0208. Positive vx contours solid, negative dashed.

FIG. 5. Instability of streaky flow @U(y ,z),V(y ,z),W(y ,z)# with g51.5 for

Fr55, 6, 8, and 12. Dashed line is instability of @U(y ,z),0,0# for Fr

58.
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ginal values of Fr , e.g., Fr55, the rolls have a strong effect

on the structure of the eigenmodes and removing them

changes the character of the instability.

D. Continuation from streaky flow

Our goal is to calculate nontrivial 3-D self-sustained

states at Fr50 so we select a weak forcing that still sustains

unstable streaks. The streaky flow corresponding to Fr55 is

neutrally stable at a'0.49 ~Fig. 5!, hence a 3-D steady so-

lution bifurcates from the 2-D streaky flow at Fr'5, Re

5150, a50.49. That branch of 3-D solutions is tracked by

letting Fr evolve as a state variable with a suitable measure

of the 3-D state, Ax , as the control parameter. Here

Ax5R^h exp~2iax !& ~25!

is the y average of the real part of the l51, n50, h-mode

~15!. This choice is made because of the predominant role of

that mode in the streak instability.22 This Ax definition pro-

vides the supplementary equation needed to determine the

free variable Fr . The Ax used here is a/A2 times that used

in Ref. 19. In summary, we look for a solution of the non-

linear system of equations ~8!–~11! with the extra roll forc-

ing term Re22 Fr(b2
1g2)2cos by cos gz on the right-hand

side of ~8! together with the additional equation ~25!. That

solution is calculated by continuation in the control param-

eter Ax starting from the neutrally stable streaky flow solu-

tion at Ax50.

The Fr –Ax bifurcation curve is shown in Fig. 6 and the

bifurcating solution is illustrated in Fig. 7. The dashed lines

in Fig. 6 are the fits Fr5c01c2(Re Ax)2 near the bifurcation

points at Ax50. The Re factor is included because an Ax of

O(Re21) is expected for self-sustenance ~Sec. IV A!. The

coefficient c2 is strictly negative, verifying that the quadratic

nonlinear self-interaction of the neutral streaky flow eigen-

mode has positive feedback on the rolls. These results can be

obtained from a weakly nonlinear analysis of streaky flow as

sketched in Refs. 22 and 23. The Fr needed to maintain the

rolls decreases as Ax increases leading to two self-sustained

solutions, a lower branch at Re Ax50.7716 @Fig. 7~c!# and an

upper branch at Re Ax51.1181 @Fig. 7~d!#. The solid line in

Fig. 6 is the fully nonlinear steady state, very well-resolved

at LT59, M T521, NT59. Figure 6 also shows the solutions

for a50.40, 0.64, 0.72, and 0.76 that bifurcate from Ax

50 near Fr54.76, 6, 7, and 8, respectively. There does not

seem to be any bifurcation below the value Fr'4.7 esti-

mated in Sec. IV B. First-order nonlinear feedback on the

rolls therefore is a general characteristic of unstable streaky

flows. However, comparing Figs. 5 and 6 shows that bifur-

cation from the most unstable streaky flow does not lead to

self-sustained steady states. The curves eventually turn back

down and reintercept the Ax50 axis near Fr513 for a
50.76, Fr516 for a50.64 and 18.4 for a50.49, for ex-

ample.

Figure 7 shows the isosurfaces of vx

560.80 max vx(x,y,z), corresponding to the innermost vor-

ticity contours in Fig. 4, overlayed with the streamwise ve-

locity isosurface corresponding to u5min u(x,y50,z). Four

Ax values are shown, Re Ax50.06, 0.15, 0.7716, and

1.1181. The latter two correspond, respectively, to the lower

branch and upper branch of self-sustained solutions with Fr

50. As Ax is increased, the weak streamwise rolls are first

affected. The vx isosurfaces pinch off to form staggered vor-

tices whose x-oriented axes are pointing up and away from

the low-speed streak ~in this plane Couette flow there is an

equally strong high-speed streak centered at z5p/g that is

not shown!. As Ax is increased further, the streak develops a

strong undulation in the x direction and the top tips of the

vorticity isosurfaces move back toward the streak. The struc-

ture of these self-sustained free–free plane Couette flow so-

lutions is very similar that of the coherent structures ob-

served in the near-wall region of no-slip turbulent flows.15,17

The plane Couette 3-D solutions travel at the average flow

velocity and have the additional shift-rotation symmetry22,23

S u

v

w
D ~x ,y ,z !5S 2u

2v

w
D S Lx

2
2x ,2y ,

Lz

2
1z D . ~26!

This symmetry results from the p rotation about the span-

wise axis symmetry of plane Couette flow together with the

x-phase choice imposed by I^h exp2iax&50 and the z-phase

choice imposed by ~24!. The symmetries ~24! and ~26! imply

a reflection symmetry about the point (0,0,Lz/4): u(x ,y ,z)

52u(2x ,2y ,Lz/22z). The symmetry ~26! was imposed

in a triply Fourier code19 and is also imposed for most of the

Couette results show here.

E. Continuation of self-sustained states

The self-sustained solutions can be continued to different

values of the parameters a , g , and Re. The Re continuations

have been performed typically with a logarithmic arclength

continuation procedure in Re–Ax space that uses the

supplementary equations Re5R0(11e cos u) and Ax

[R^h exp(2iax)&5A0(11e sin u) to determine Re and u for

FIG. 6. Bifurcations from streaky flow in free-free plane Couette flow for

g51.5, Re5150, and a50.4, 0.49, 0.64, 0.72, 0.76 originate at Ax50 near

Fr54.76, 5, 6, 7, and 8, respectively. Dashed lines: F r5526.03(Re Ax)2

and Fr55.9822.68(Re Ax)2. Open circles on a50.49 curve correspond to

Fig. 7.
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given A0 , R0, and e!1. The a and g continuations have

been performed at fixed Re or Ax . When Fr50, as will be

the case for all results hereafter, the three-dimensional solu-

tions arise through a saddle-node bifurcation at

Re5Resn(a ,g), the nose of the curves in Fig. 8. The solu-

tions cease to exist for Re below Resn . A search for the

lowest Reynolds number where these solutions first appear

has been made by minimizing Re over a , g , and Ax . The

optimum parameters for free–free Couette are a50.3236,

g50.7389, for which the self-sustained solutions first appear

at Re599.9795. The bump in the Re–Ax curve shown in Fig.

8 for a50.5, g51.5, corresponds to a splitting of the vor-

tices. For Reynolds numbers near Resn5141.5951, the vx

vorticity maximum of 0.3661 occurs at x50, y50, gz

FIG. 7. ~Color! Bifurcation from 2-D streaky flow at Re5150, a50.49, g51.5, ~a! Re Ax50.06, ~b! Re Ax50.15, ~c! Re Ax50.7716, ~d! Re Ax

51.1181. Isosurface of u5min u(x,y50,z) ~green!, vx520.8 max vx ~blue!, vx50.8 max vx ~red!.
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5p/2 for a50.5, g51.5. The maximum stays at that loca-

tion as Re is increased at fixed a , g , up until the bump in the

Re–Ax curve where it splits into two equal maxima whose

locations are symmetric about the point x50, y50, gz

5p/2 and Reynolds number dependent. This indicates the

splitting of the vortices into two pairs, one pair associated

with the upper wall streaks and one with the lower wall. For

the optimum parameters a50.3236 and g50.7389, the vor-

ticity maximum is split from the onset of the three-

dimensional solutions at Resn599.9795. Bumps in the

Re–Ax curves typically correspond to such splitting of the

vortices or a harmonic modulation of the streaks.

V. HOMOTOPY OF COHERENT STATES

The continuation from 2-D streaky flow can be used to

compute self-sustained 3-D solutions in no-slip plane Cou-

ette and plane Poiseuille flow. This was performed success-

fully for free–free plane Poiseuille flow ~Waleffe 1998, un-

published! but required some fiddling to determine the

appropriate streamwise rolls. Two Fourier modes in y were

needed instead of the single mode in free–free Couette ~22!.
The reason for this is that the appropriate streamwise rolls in

plane Poiseuille flow turn out to be more concentrated away

from the wall than in plane Couette flow. Continuation from

2-D streaky flow in no-slip plane Couette was initiated in

Refs. 22 and 23.

A more robust and elegant approach is to let Navier,

Stokes, and Newton select the appropriate streamwise rolls.

This is done by homotopy from plane Couette to plane Poi-

seuille flow and from free-slip to no-slip. The Couette to

Poiseuille homotopy consists of tracking the 3-D traveling

wave solutions for the laminar flow

UL~y !5y1mS 1

6
2

y2

2
D ~27!

from m50 to m51. The free-slip to no-slip homotopy con-

sists of tracking the traveling waves from l50 to l51 in

the general slip boundary conditions ~13!. There is a l for

each boundary, l t for y511 and lb for y521. All three

homotopies are easily achieved. Steps of 0.1 in m and/or l
have been chosen arbitrarily. The free–free Couette solutions

have been mapped into free–free Poiseuille traveling waves.

The rigid–free traveling waves have been computed success-

fully by homotopy from both free–free Poiseuille as well as

from free–free Couette. The rigid–rigid Couette solution

was obtained by homotopy from a rigid–free Poiseuille so-

lution only, because of a technical choice in the definition of

the cm(y) functions ~19!. These homotopies are devices to

obtain the various solutions using Newton’s method but they

also provide explicit demonstrations that all these three-

dimensional Navier–Stokes solutions can be smoothly de-

formed into one another.

The traveling wave solutions for the four basic flows,

free–free and rigid–rigid plane Couette and free–free and

rigid–free plane Poiseuille, are compared and illustrated in

Figs. 9–11, for the parameters a50.5, g51.5 at their re-

spective critical Reynolds number Resn where the upper

branch and lower branch solutions coalesce. The comparison

is restricted to those parameters to limit the number of fig-

ures but it must be emphasized that the structure of the so-

lutions varies with the parameters. The various solutions are

clearly very similar to one another. They all correspond to a

wavy low-speed streak flanked by staggered quasi-

streamwise vortices. The Couette solutions are fixed points

in this frame of reference and have the additional symmetry

~26!. The free–free Couette Resn5141.6 and the rigid–rigid

Couette Resn5163.4. The Poiseuille solutions are traveling

waves with C2Ū(21)50.7413, Ū(1)2Ū(21)50.8802,

for the free–free solution at Resn5156.4 and C2Ū(21)

51.0380, Ū(1)2Ū(21)51.1392, for the rigid–free solu-

tion at Resn5251.5. The main difference between free-slip

and no-slip boundary conditions can be characterized as an

‘‘extra’’ small layer near the wall in the no-slip case. That

‘‘viscous sublayer’’ is about 5 wall units. The similarities

between no-slip and free-slip solutions are further illustrated

in a crude way in Figs. 12 and 13 where the mean velocity

FIG. 8. Bifurcation diagrams for free–free plane Couette flow. Top: Ax @Eq.

~25!# vs Reynolds number Re. Bottom: Wall shear rate S normalized by its

laminar value for the same wall-velocity difference @S52/(Ū(1)

2Ū(21)) in our units# vs Re. Curves labeled ~a! a50.3236, g50.7389

yielding the lowest Resn599.9795 ~solid: @LT ,M T ,NT#5@15,27,15# , dot:

@13,25,13#!. Label ~b!: a50.5, g51.5 with Resn5141.5951,

(@LT ,M T ,NT#5@13,25,13# and @11,23,11# overlap!.
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profiles are shown together with a no-slip profile that has

been stretched to remove the viscous sublayer. The plane

Couette no-slip mean profile is shown stretched uniformly in

y about the channel centerline at y50 ~Fig. 12!. The stretch-

ing y→1.5237y is selected to match the free-slip velocities

at the walls Ū(61)50.4598. The plane Poiseuille no-slip

mean profile is shown stretched uniformly about the full

channel centerline at y51. The stretching y→111.0721(y

21) is selected to match the free-slip velocity difference

Ū(1)2Ū(21)50.8802. A more refined comparison be-

tween the two types of boundary conditions would seek the

no-slip solutions for horizontal dimensions such that the as-

pect ratios of the no-slip inner layers match that of the full

free-slip solutions ~e.g., a'0.75, g'2.25 for rigid–rigid

Couette!. As noted in Refs. 19 and 20, the Poiseuille mean

profiles have two inflection points. The wave velocity C is

almost identical to the mean velocity at the inflection point

that corresponds to a local minimum of mean shear rate.

FIG. 9. Contours of streamwise velocity u at y50 for ECS at a50.5, g51.5, and Resn5141.6 ~free–free Couette!, Resn5156.4 ~free–free Poiseuille!,

Resn5163.4 ~rigid–rigid Couette!, Resn5251.5 ~rigid–free Poiseuille!.

FIG. 10. Contours of streamwise vorticity vx at ax53p/2 for the same solutions as in Fig. 9. Equispaced levels at 0.1 max@vx(x,y,z)#, except rigid–rigid

Couette, where spacing is 0.1 max@vx(x,y50,z)# ~solid: positive, dash: negative!. Thick lines are level curves u5min@u(x,y50,z)# and max@u(x,y50,z)# .
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VI. OPTIMUM PARAMETERS

The exact coherent structure solutions depend on three

parameters: the horizontal wave numbers a and g and the

Reynolds number Re, or, equivalently, the three length scales

Lx , Lz , and 2h , nondimensionalized using wall units n/ut ,

for instance, where ut is the friction velocity defined by ut
2

5nudŪ/dy uwall . The wave numbers a and g that lead to the

lowest onset Reynolds number Resn for the traveling wave

solutions have been determined by minimizing the Reynolds

number of the solutions over a , g , and Ax . The optimum

wave numbers and corresponding minimum Resn for ‘‘free–

FIG. 11. Same as Fig. 10 but at ax52p .

FIG. 12. Mean profiles for plane Couette flow. Laminar flow ~dash-dot! and

3-D steady states for a50.5, g51.5. No-slip solution at Resn5163.4, free-

slip at Resn5141.6. Dash: no-slip solution with y→1.5237y to match free-

slip wall velocities 60.4598.

FIG. 13. Mean profiles for plane Poiseuille flow. Laminar flow ~dash-dot!

and 3-D traveling waves for a50.5, g51.5. Vertical dotted lines indicate

wave velocity C. No-slip solution at Resn5251.5, C51.038. Free-slip at

Resn5156.4, C50.7413. Dash: no-slip solution with y→111.0721(y

21) to match free-slip wall velocities U2Uw50.8802.
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free’’ plane Couette where Re[(ut,/n)2 have already been

mentioned ~Fig. 8!. They are a50.3236 and g50.7389

yielding a minimum Resn599.98. In wall units, these param-

eters correspond to 2,
1[2,ut /n52ARe520, Lx

1

[ARe Lx /,5194, and Lz
1

585.

For rigid–rigid Couette where Re has the usual defini-

tion Re[U,/n , where U is the half wall velocity difference

and , is the half-channel height, the optimum parameters are

a50.577, g51.150, Resn5127.705. ~28!

That solution has wall shear rate S[udŪ/dy uwall51.809,

hence ut /U5(1.809/Re)1/2 so a length measured in wall

units is (1.809 Re)1/2 times the length in units of , and

2,
1[

2,ut

n
530, Lx

1[166, Lz
1

583. ~29!

Clever and Busse27 performed a parametric study of three-

dimensional steady states in rigid–rigid Couette but they did

not quote the optimum parameters ~28!.
For rigid–free Poiseuille, where the Reynolds number is

defined such that ut,/n5(2 Re)1/2 with , the half distance

between the wall and the centerline, the optimum parameters

are

a50.5074, g51.3165, Resn5244.36, ~30!

or in wall units which are simply (2 Re)1/2 times the outer

nondimensional units

Lx
1

5273.73, Lz
1

5105.51, 2,
1

544.21. ~31!

The optimization algorithm did not converge properly for the

case of free–free Poiseuille flow. Approximate optimum pa-

rameters for free–free Poiseuille traveling waves where

ut,/n5(2 Re)1/2 are a50.38, g50.77, Resn5106, or Lx
1

5241, Lz
1

5119, 2,
1

529. The cause of these numerical

problems may be that the length scales and amplitudes of the

traveling wave solution increase as the Reynolds number de-

creases, hence the optimal solutions are more nonlinear and

require finer resolutions in spite of the lower Reynolds num-

bers.

The most interesting results are those for rigid–free Poi-

seuille flow as those solutions may be relevant to the coher-

ent structures observed near a ~single! wall at higher Rey-

nolds numbers. Indeed the optimum parameters ~31! closely

correspond to the observed scalings of the near-wall struc-

tures. The dependence of Resn
1 on Lx

1 and Lz
1 for the rigid–

free plane Poiseuille traveling waves is illustrated in Fig. 14.

These results suggest that there are no traveling wave solu-

tions below Lz
1'80 or below Lx

1'200. There exist travel-

ing wave solutions for all larger Lx and Lz although the

curves shown in Fig. 14 cannot be smoothly continued to

arbitrarily large horizontal scales. The Resn curve could not

be smoothly continued beyond Lx
1'520 ~i.e., below a

50.295) for g51.3, for instance. The solution branches

eventually develop a modulation as the length scales are in-

creased and Resn drops abruptly. This is undoubtedly linked

to the fact that multiple copies of smaller scale traveling

waves can fit in the domain if the latter is large enough

~dashed lines in Fig. 14!. The crossover between one- and

two-period solutions occurs at Lx
1'437 for g51.3 and at

Lz
1'167 for domains with the aspect ratio Lx52.6Lz . Dis-

tinct traveling waves therefore arise at the same Reynolds

number for those length scales. The optimum no-slip states

are illustrated in Figs. 15 and 16.

VII. STATISTICS OF NO-SLIP ECS

Figure 17 shows the normalized wall shear rate of the

Poiseuille traveling wave at two wave number pairs (a ,g) as

a function of the Reynolds number Rem which is based on

the bulk mean velocity and the full channel height. The 3-D

traveling waves first arise at Rem'860, which is signifi-

cantly lower than the Rem where turbulence is first observed.

The Kim, Moin, and Moser16 turbulent flow was computed at

Rem'5600 while Toh and Itano,33,34 recently computed an

asymmetric traveling wave at Rem54000. The mean veloc-

ity profile and rms velocities normalized by ut are shown in

Fig. 18 for the traveling wave with a50.5 and g51.3 on the

upper branch at Re5473 (Rem51303), the turning point at

FIG. 14. Top: Resn
1

52,ut /n as a function of Lx
1 for g51.3 and g52.6a

for rigid–free plane Poiseuille flow traveling waves. Dash: 2-period solution

for g51.3. Bottom: Resn
1 as a function of L z

1 for a50.5 and g52.6a .

Dash: 2-period solution for g52.6a . Solid: (LT ,M T ,NT)5(13,25,13); dot:

~11,23,11!.
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Re5244.41 (Rem5867) and the lower branch at Re5454

(Rem51390). The traveling wave rms velocities compare

well with the rms velocities computed by Kim, Moin, and

Moser ~their Fig. 6! at the much higher Rem'5600 (Ret

'180, Re5Ret
2/8'4050). The main qualitative difference

is that v rms is forced to go to zero at the channel centerline in

the present traveling waves. This is probably directly con-

nected, through a ‘‘splatting effect,’’ with the increase in w rms

near the centerline. Quantitatively, the levels of u rms are very

close to their turbulent counterpart but the levels of v rms and

w rms are lower. Hence, the traveling wave is more efficient at

redistributing the streamwise velocity, i.e., at transporting

momentum.

The normalized wall shear rate for the plane Couette

steady states is shown in Fig. 19 as a function of the Rey-

nolds number for several wave numbers a and g . The upper

branch of the (a ,g)5(0.5,1.5) solution shows a sharp turn-

ing point just before Re5400. The solution branch turns

back to lower Reynolds numbers then returns toward higher

Reynolds numbers. Structural changes in the solution are

subtle but one can detect the splitting of the streaks into two

distinct, incomplete, streaks that are shifted by half a period

in both horizontal directions ~not shown in this paper!. This

suggests that solutions with wave numbers that are 1.5 or 2

times as large are favored at those Reynolds number for that

horizontal aspect ratio. Indeed, solutions with (a ,g)

5(0.75,2.25) and (1,3) exist and have higher wall shear

rates at those Reynolds numbers ~compare curves c, d, and e

in Fig. 19!. The complexity of the bifurcation diagram in the

range 310<Re<400 is intriguing as this is precisely the

range where turbulence is known to occur in plane Couette

flow.21,35–37 For instance, in the ~small! periodic box with

(a ,g)5(0.5,1.5), there exist at least four distinct type of

3-D steady states in 308,Re,400 and six distinct types in

329,Re,400. These lower bounds are very close to the

Ru'312 and Rc'323 identified in much larger experimental

domains.37

The mean velocity and rms velocity fluctuations of the

plane Couette flow steady states are shown in Fig. 20. One

significant difference with the Poiseuille flow traveling wave

is that the lower branch mean velocity is closer to the lami-

nar profile than the turning point profile. The lower branch

shows very strong almost x-independent streaks at Re5400

together with weak spanwise and wall-normal velocity fluc-

tuations. This is in agreement with the scalings mentioned in

Sec. IV A. The mean velocity and rms velocities of the upper

branch solution at Re5400 are very similar, qualitatively

and quantitatively, with the turbulent Couette flow computed

by Kawahara and Kida.38 The normalized wall shear rate S in

Fig. 19 is equal to the normalized energy input rate I used by

Kawahara and Kida. Their turbulent flow has S5I'3 and

this is precisely the level of S seen for the upper branch

steady solutions at Re5400 ~Fig. 19!.
Kawahara and Kida managed to isolate an unstable time-

periodic solution in plane Couette flow that had been sug-

gested by the work of Hamilton et al.14,21 Hamilton et al.

FIG. 15. ~Color! Top, side, and back views of rigid–free plane Poiseuille flow traveling wave at its lowest friction Reynolds number (2,
1

544.21, Lx
1

5273.73, Lz
1

5105.51). Green: Isosurface of streamwise velocity u5min@u(x,y50,z)# ~top and back views!. Left column: Isosurfaces of streamwise vorticity

at 60.6 max(vx) ~red positive, blue negative!. Right column: Red isosurfaces of Q50.40Qmax , where ¹2p52Q5W i jW i j2S i jS i j is twice the second

invariant of the velocity gradient tensor. ~Box shifted by Lx/16.)
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sought to isolate the self-sustaining process ~Sec. IV A! by

‘‘quenching’’ of a turbulent flow.39,40 That trial-and-error pro-

cedure lead them to settle on the parameters (a ,g)

'(1.14,1.67), used by Kawahara and Kida. The present

study, and the earlier work of Clever and Busse,27 indicates

that the 3-D steady states favor g/a'2. This can be ap-

proximately understood in terms of the streak instability part

of the self-sustaining process which consists essentially of a

larger scale inflectional instability ~e.g., Fig. 5 and Figs. 5

and 6 in Ref. 23!. The streak instability also suggests, cor-

rectly, that at fixed g and Re, the spatial period-one solutions

will disappear as a is increased. Further study is needed but

this occurs apparently near g/a'1.5. We have confirmed

that there are indeed no spatial period-one solutions at Re

5400 for (a ,g)5(1.14,1.67) (g/a51.46), however there

are solutions with (a ,g)5(0.84,1.67), (1.14,2.28) and

(1.14,3.34) for which the upper branch S5I values at Re

5400 are again in the neighborhood of 3. Further detailed

comparisons with the work of Kawahara and Kida will ap-

pear elsewhere.

VIII. MODEL 1-D MAP

The above-presented results demonstrate the remarkable

qualitative and quantitative similarities between these 3-D

traveling waves and structural as well as statistical features

of turbulent shear flows. The major difference, of course, is

that the traveling waves are steady in the proper Galilean

frame and perfectly ordered while turbulent solutions are un-

steady and disordered. An important characteristic of the

traveling waves in this respect is that the traveling waves are

FIG. 17. Bifurcation diagrams for rigid–free Poiseuille. Wall shear rate, S,

normalized by its laminar value vs bulk Reynolds number Rem5UH/n with

y5^U2Uwall& and where U5^U2Uwall& is the bulk mean velocity and H

54, is the full channel height. Rem54 U Re and S54/(3U) in our units.

Near optimum (a ,g)5(0.507,1.31) ~thick curve! and (a ,g)5(0.5,1.5),

@LT ,M T ,NT#5@13,25,13# .

FIG. 16. ~Color! Top, side, and back views of rigid–rigid plane Couette flow steady state at its lowest Reynolds number (a50.5772, g51.1506, Re

5127.7). Green: Isosurface of streamwise velocity u5min@u(x,y50,z)# ~top and back views!. Yellow: u5max@u(x,y50,z)# ~back view only!. Left column:

Isosurfaces of streamwise vorticity at 60.4 max vx ~red positive, blue negative!. Right column: Red isosurfaces are Q50.85Qmax , where ¹2p52Q

5W i jW i j2S i jS i j is twice the second invariant of the velocity gradient tensor. ~Box shifted by Lx/4.)
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generally unstable from onset, except for a small range of

stability of the plane Couette flow steady states reported in

Ref. 27. A complete stability analysis of all the solutions

presented here has not been performed, but selected stability

results, and the lack of direct experimental or numerical ob-

servation of these solutions, suggests that these solutions are

indeed typically unstable. This instability from onset is un-

usual and led to early skepticism about the relevance of such

solutions,41 when the connections with observed coherent

structures had not been revealed. However, others ~e.g., Refs.

42, 34, 20, 38! see this instability of the exact coherent struc-

tures as a feature, not a bug. Indeed, turbulence is often

described as a ‘‘cascade of instabilities.’’ Whatever the exact

nature, and validity, of that cascade of instabilities concept, it

is related certainly not to the stable laminar state but much

more likely to the instabilities of the exact coherent states.

A simple 1-D map xn115 f m(xn) illustrates these fea-

tures of the onset of shear turbulence and the possible con-

nections between turbulence and the unstable exact coherent

states. The map is defined by ~Fig. 21!

f m~x !5H m
x

12x
if 0<x< 1

2

f m~12x ! if 1
2,x<1.

~32!

The parameter 0<m<1 is directly related to the Reynolds

number, e.g. m5Re/(Re1Rec) for some critical Reynolds

number Rec , with m50 corresponding to Re50 and m51

to Re5` .

The map is such that x50 is the laminar fixed point,

stable for all 0<m,1 and neutrally stable in the limit m
51 (Re→`), because f 8(0)5m .

The map ~32! bears some algebraic resemblance to the

famous logistic map43 f (x)5mx(12x) that shows the pe-

riod doubling route to chaos ~see, e.g., Ref. 44!, but the

present map has a cusp at x51/2, where f (1/2)5m is the

maximum value of f (x). This cusp is necessary to yield a

bifurcation to new nontrivial fixed points that are unstable

from onset, as is the case for the map ~32! where new un-

stable fixed points exist for m.1/2. The new fixed points are

an upper branch xu and a lower branch x, ,

FIG. 18. Mean Ū(y) and rms velocities ~normalized by ut) for rigid–free

Poiseuille traveling wave at (a ,g)5(0.5,1.3). Solid: Upper branch at Re

5473. Dash: Turning point at Resn5241.41. Dot: Lower branch at Re

5454. Bottom figure in wall units.

FIG. 19. Bifurcation diagrams for rigid–rigid Couette. Wall shear rate, S,

normalized by its laminar value. ~a! (a ,g)5(0.5772,1.1506),

@LT ,M T ,NT#5@15,27,15# and @13,25,13# overlap. ~b! (a ,g)5(0.75,1.5),

@13,25,13# and @11,13,11# overlap. ~c! (a ,g)5(0.5,1.5), @15,27,15# and

@13,25,13# ~dot!. ~d! (a ,g)5(0.75,2.25), @13,27,13# . ~e! (a ,g)5(1,3),

@13,27,13# .
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xu5

Am2
14m2m

2
, x,512m . ~33!

Unstable periodic orbits of all periods also exist when m
.1/2. The period-2 solution oscillates between x1 and x2

5 f m(x1) with x1,1/2,x2 and

x15

A~m11 !2
142~m11 !

2
. ~34!

More significantly, two period-3 solutions exist for m.1/2.

This implies the existence of periodic orbits of all periods by

Sarkovskii’s theorem.45 The period-3 solutions consist of an

‘‘outer’’ solution ~dash in Fig. 21! that oscillates between x1 ,

x25 f m(x1), x35 f m(x2) with x1,x2,1/2,x3 and

x15

AA2
14m2A

2m
, A5m2

1m11 ~35!

and an ‘‘inner’’ period-3 solution ~dash-dot in Fig. 21! oscil-

lating between x1 , x25 f m(x1), x35 f m(x2) with x1,1/2

,x2,x3 and

x15

AB2
14m~m11 !2B

2~m11 !
, B5m2

12m21. ~36!

Finally, there is a homoclinic orbit connecting the lower

branch fixed point x, to itself when m.1/2. That orbit, de-

picted by a dotted line in Fig. 21, consists of x051/2 with

x15 f m(x0)5m and x25 f m(x1)512m5x, and the pre-

iterates of x0,

xn215

1

11m/xn

, n<0. ~37!

There are infinitely many other distinct homoclinic orbits.

It is clear ~Fig. 21! that for all initial conditions in the

interval @12m ,m# , xn stays within that interval for all n, yet

there are no stable fixed points or periodic orbits there.

Hence, when m crosses 1/2, i.e., Re becomes larger than the

critical value Rec , there is a sudden transition to a truly

chaotic regime for almost all initial conditions in that inter-

val. The dynamics for almost all initial conditions in the

open interval ]12m ,m@ when m.1/2 consists of an aperi-

odic oscillation about the upper branch xu with excursions

toward the largest value x5m followed by collapse toward

the lower branch x, then a climb back toward xu , and so on.

Therefore, one may expect that the upper branch xu provides

a good first approximation for the average xn .

The 1-D map ~32! thus illustrates how the onset of un-

stable periodic solution may be directly related to a transition

to ‘‘turbulence’’ and why the upper branch solutions may

offer a good first approximation to the mean properties of the

turbulence. That simple map has not been directly connected

to the Navier–Stokes dynamics but one should note the re-

semblance with the ‘‘Lorenz map’’46 ~see, e.g., Ref. 44!
which was deduced from a continuous differential system.

FIG. 20. Mean Ū(y) and rms velocities for rigid–rigid plane Couette steady

states with (a ,g)5(0.5772,1.1506). Solid: Upper branch at Re5400.

Dash: Turning point at Resn5127.7. Dot: Lower branch at Re5400 @v , w

are much smaller and omitted, max(v)50.0075, max(w)50.02].

FIG. 21. The map ~32! for m50.8 with the unstable fixed points x, and xu

~open circles!, period-3 solutions ~dash and dash-dot! and the homoclinic

orbit xn215(11m/xn)21,x051/2,m ,12m5x, ~dot!.
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Note that in the discrete map, the fixed points x, and xu may

correspond to fixed points or traveling waves as in this paper

or to fundamental periodic solutions of the Navier–Stokes

equations as in Ref. 38.

The simple map ~32! has the particularity that the maxi-

mum value f (1/2)5m is the pre-iterate of the lower branch

x, as shown in Fig. 21. This is the feature leading to the

existence of homoclinic orbits. This map therefore is just on

the border between two types of maps. This map and slightly

broader maps lead to strange attractors, but slightly spikier

maps for which the pre-iterate of x, is less than m will lead

to a strange repellor ~see the discussions of the logistic map

with m.4 in Ref. 45 or 44, exercise 11.4.6!. For the spikier

maps, almost all initial conditions will eventually end up

converging to the laminar point x50. A concrete example is

the two-parameter family of maps defined by

f ~x !5H mx

122ex11e
if 0<x< 1

2,

f ~12x ! if 1
2,x<1,

~38!

where 21,e and 0<m,1. These maps have the same

overall shape and properties as the map ~32!, in particular,

f (1/2)5m and f 8(0)5m if 21,e . The additional param-

eter e controls the spikiness. The maps are spikier than ~32!
if 0,e . When e521, ~38! becomes the tent map.44,45 If

21,e<0 and m.1/2, all initial conditions in @x,,12x,#
are trapped in that interval yet there are no stable periodic

points there. If e.0 and m.1/2, a strange repellor exists.

Almost all initial conditions, except for a Cantor set,45 will

eventually end up at the laminar fixed point x50. An imper-

ceptible change in the shape of the map, from a small nega-

tive e to a small positive e , can lead to drastic differences for

the long time behavior of the dynamical system. This pro-

vides another concrete illustration that may be useful also for

shear flows where there is some limited evidence for strange

repellors, from low-order truncations of the Navier–Stokes

equations.42 It may be that small periodic domains lead to

strange repellors but slightly larger domains lead to strange

attractors. Finally, one can imagine a more complex scenario,

e.g., e53/42m , where the map broadens with increasing m ,

and the transition to a strange attractor occurs at m53/4,

well beyond the onset of unstable fixed points and periodic

orbits at m51/2.

IX. CONCLUDING REMARKS

Three-dimensional traveling wave solutions of the

Navier–Stokes equations have been calculated for plane

Couette and Poiseuille flows with both free-slip and no-slip

boundary conditions. These well-resolved solutions capture

essential structural and statistical features of turbulent shear

flows and are therefore called exact coherent structures.

These exact coherent structures are typically unstable from

their onset at a Reynolds number that is about twice lower

than those where turbulence is first observed. It is believed

that the inherent instabilities of the exact coherent structure

are directly related to the disorder characteristic of turbulent

shear flows. The exact coherent structures and their associ-

ated instabilities are thus good candidates for precise defini-

tions of Townsend’s notions of active and inactive motions.

The initial step to calculate these exact coherent struc-

tures is to track three-dimensional solutions that bifurcate

from a 2-D streaky flow. This step demonstrates the validity

of a previously studied self-sustaining process and estab-

lishes a direct link between self-sustained 3-D coherent

structures and Townsend’s attached eddies. The next steps

consist of homotopy transformations that demonstrate the

close relationships between the various solutions.

The traveling waves come in pairs above their onset

Reynolds number. Our simplistic view is that the lower

branch and its stable manifold form the separatrix between

the basin of attraction of the laminar state and the turbulent

domain in phase space. This is similar to the view of Toh and

Itano,33,34 who propose that motion along the unstable mani-

fold of the lower branch corresponds to bursting. Toh and

Itano do not distinguish between upper branch and lower

branch solutions however. This may be because their shoot-

ing approach, similar to our method of bifurcation from 2-D

streaky flow, may be limited to capturing the lower branch

solution as suggested in Ref. 20. We propose further that the

turbulent state is essentially an aperiodic oscillation about

the upper branch solution. Therefore the upper branch pro-

vides a good first approximation to the turbulence statistics.

It is unclear then whether ‘‘bursting’’ would correspond to

excursions along the unstable manifold of the lower or the

upper branch. This picture of the nature of shear turbulence

has been illustrated by a simple 1-D map. Jimenez and

Simens47 also compute a single traveling wave solution in a

plane Poiseuille flow where vorticity fluctuations are wiped

out beyond a pre-set distance from the wall. It is unclear

whether that solution corresponds to an upper or lower

branch.

Schmiegel, Eckhardt, and Mersmann42,48 have suggested

that the number of unstable steady states in Couette-like flow

grows with the Reynolds number and that shear turbulence

may consist of a chaotic repellor that forms around hetero-

clinic connections between those steady states. Our own re-

lated studies of ‘‘low’’-order models ~Sahay and Waleffe,

2000, unpublished! extending our earlier work23 show simi-

lar results, however we believe that most of those steady

states are spurious solutions that do not converge to solutions

of the Navier–Stokes equations. The number of those steady

states seems to grow with both the Reynolds number and the

resolution, therefore this is an intriguing numerical issue.

Nonetheless, the idea of the onset of a multitude of unstable

states is likely to be relevant, with most unstable states cor-

responding not to steady states but to periodic orbits, and the

strange repellor idea may also be applicable in some range of

parameters. There is solid evidence for unstable periodic so-

lutions in plane Couette flow38 in addition to the steady states

presented here and in earlier references.25,27 There is an ob-

vious structural and statistical connection between those so-

lutions but the phase space connections have not been eluci-

dated yet. It appears that periodic solutions may replace the

steady states in domains where the streamwise period is less

than about 1.6 times the spanwise period ~at low Reynolds

numbers of course!. Clever and Busse27 had already reported
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existence of a time periodic solution in plane Couette flow,

but this appears to be a different solution than that found by

Kawahara and Kida. Further work needs to be done to elu-

cidate the connections between these various solutions and

turbulent flow.
In any case, one may hope that the knowledge of all

these solutions will lead to a full understanding of the onset

and nature of turbulence, at least in plane Couette flow.

There are intriguing connections between critical Reynolds

number values found here for steady states in plane Couette

flow and physical experiments in much larger domains.37 In

fact, we believe that most of the characteristics of turbulence

can be captured in relatively small periodic domains and that

other features such as spots and ‘‘barber pole’’ structure49 are

‘‘secondary’’ spatio-temporal complexities. Finally, it is most

likely that the steady states and traveling wave solutions dis-

cussed here can be extended to traveling waves in pipe flow

and to self-similar solutions in mixing layers.

The data presented in this paper are available from the

author by request. The data will eventually be posted at

http://www.math.wisc.edu/;waleffe/ECS/.
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