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Abstract

We define a new method for global optimization, the Homotopy Optimiza-
tion Method (HOM). This method differs from previous homotopy and continu-
ation methods in that its aim is to find a minimizer for each of a set of values
of the homotopy parameter, rather than to follow a path of minimizers. We
define a second method, called HOPE, by allowing HOM to follow an ensemble of
points obtained by perturbation of previous ones. We relate this new method
to standard methods such as simulated annealing and show under what circum-
stances it is superior. We present results of extensive numerical experiments
demonstrating performance of HOM and HOPE.
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Homotopy Optimization
Methods for Global

Optimization

1 Introduction

We are interested in solving the minimization problem

Given f : X ⊆ R
n → R ,

find x∗ ∈ X such that f(x∗) = min
x∈X

f(x) . (1)

We assume that such a global minimizer x∗ exists.

The class of methods that we develop in this work is related to homotopy methods
(also referred to as continuation, deformation, or embedding methods), which have
been effectively used for solving systems of nonlinear equations [3] and nonlinear
optimization problems [45, 47]. These methods trace a path from the solution of an
easy problem to the solution of the given problem by use of a homotopy—a continuous
transformation from the easy problem to the given one.

We define the Homotopy Optimization Method (HOM), a homotopy method de-
signed to solve optimization problems by use of a homotopy but not necessarily by
path-tracing. We also introduce the method of Homotopy Optimization with Per-
turbations and Ensembles (HOPE). This method is related to previous methods for
global optimization (see, for example, [11, 17, 19, 20, 29, 31, 32, 33, 42].) In par-
ticular, stochastic search methods perform a random search of the function domain
either by independent sampling or stochastic perturbations of current iterates. The
Improving Hit-and-Run (IHR) method [49], for example, moves to a stochastic per-
turbation of the current iterate if the resulting function value is lower. Simulated
annealing (SA) methods (e.g., basin hopping [44], or fast annealing [21]) exploit the
analogy defined in [23] between simulating the annealing process of a collection of
atoms [27] and solving optimization problems. In each iteration of SA, a candidate
point is generated, the point is tested based on an acceptance criterion dependent on
a nonnegative parameter T (representing temperature in the annealing process), and
the parameter T is updated according to a cooling schedule. An important feature
common to point generation methods is the ability to generate candidate points far
from the current iterate, even when T is close to zero [44]. SA methods converge to a
global minimizer with probability one (i.e., almost surely) [26, 43]. However, conver-
gence results found in the literature often assume extremely slow cooling schedules
or place requirements on the move class (i.e., candidate generation process) that are
prohibitive for practical implementation. SA is sometimes associated with evolution-
ary algorithms, a class that also includes genetic algorithms, genetic programming,
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evolutionary programming, and evolutionary strategies [4]. These methods start with
an ensemble, or population, of points and use mutation and selection procedures to
move closer to a global minimizer. Smoothing methods [1, 2, 36] are typically used for
finding global minimizers of continuously differentiable functions. In general, these
methods start by finding a global minimizer of a less complicated approximation of
the original function and then deforming the function into the original function in
a series of steps, where a minimizer of the deformed function at one step is found
starting from the minimizer found at the previous step. Global homotopy optimiza-
tion methods have been developed that find all local minimizers (or stationary points)
of a function [10, 41]; however, due to the amount of computation required in these
methods, they are typically only applicable to problems with a small number of local
minimizers.

In this paper, we discuss our two new methods and their properties. After in-
troducing HOM and HOPE in Section 2.1 and 2.2, analysis of the methods is given in
Section 3, numerical results are presented in Section 4, and conclusions are found in
Section 5.

2 Our methods

We begin with HOM, an extension of a local optimization method, and then show how
to generalize it to HOPE.

2.1 Homotopy Optimization Method

We define HOM by choosing

• a function, f 0 : R
n → R, for which a local minimizer, denoted by x0, exists and

is either known or trivial to compute.

• a continuous homotopy function, h : R
n+1 → R, a function of the original

variables, x ∈ R
n, plus a homotopy variable, λ ∈ R, such that

h(x, λ) =

{
f 0(x), if λ = 0 and
f 1(x), if λ = 1 ,

(2)

where f 1(x) = f(x).

• an integer m ≥ 1 and a sequence of positive values ∆(k), k = 0, . . . , m− 1, that
sum to one.

Figure 1 presents the details of HOM.
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1. Input: x(0) = x0, a local minimizer of f 0; m ≥ 1;
∆(k) > 0 (k = 0, . . . , m − 1) summing to 1.

2. Initialize: λ(0) = 0;
3. for k = 1, . . . , m
4. λ(k) = λ(k−1) + ∆(k−1)

5. Use a local minimization method, starting with x(k−1), to compute
an (approximate) solution x(k) to minx∈X h(x, λ(k)).

6. end
7. Output: x1 = x(m)

Figure 1. Definition of HOM.

Each point in the sequence produced in Step 5 is a local minimizer of h with
respect to x. Specifically, the last point in the sequence, (x1, 1) = (x(m), λ(m)) is a
local minimizer of h(x, 1) = f 1(x).

HOM differs from a standard continuation method for solving nonlinear equations
only in Step 5; a continuation method would solve a nonlinear system of equations
instead of minimizing a function, and the intent would be to choose the steplength
∆(k−1) small enough so that a path of zeros could be traced. A small steplength also
ensures that only a few iterations of the method in Step 5 are necessary. See [3] for
more details on such methods, and LOCA [35], HOMPACK [46, 48], AUTO [12, 13, 14],
and CONTENT/MATCONT [9, 25] for high quality implementations. Handling difficulties
associated with paths ending, bifurcating, and turning back on themselves can make
these methods quite complicated. We allow HOM to jump past such troubles to another
path if necessary and avoid these difficulties.

In the end, though, HOM is only guaranteed to find a local minimizer of f 1.

2.2 HOPE

HOPE is an extension of HOM that increases the likelihood of finding the global mini-
mizer of f 1. Whereas HOM generates a sequence of points converging to a single local
minimizer of f 1, HOPE generates a sequence of ensembles of points where each member
of the kth ensemble is a local minimizer of the homotopy function for λ = λ(k). This
sequence converges to an ensemble of local minimizers of f(x) as λ → 1.

In Step 5 of HOM, the next local minimizer in the sequence, x(k), is found using
a local minimization method starting at the previous point in the sequence, x(k−1).
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In HOPE, the next ensemble of local minimizers is found using local minimization
starting at the points in the previous ensemble in the sequence along with one or
more perturbations of each of those points. A perturbation of x is denoted by ξ(x),
where ξ : X → X is a function that stochastically perturbs one or more of the
variables in x. In the end, HOPE produces an ensemble of local minimizers of f 1, from
which we choose the one with the lowest function value as the best approximation to
the true solution.

The number of points produced at each value of λ grows exponentially, so con-
straints on computational resources generally requires limiting the size of the ensem-
ble, thus limiting the number of paths of local minimizers to be followed in the next
and subsequent steps in the method. Pruning duplicate points from ensembles also
helps in efficiently using computational resources.

Before presenting the details of HOPE, we first introduce some notation. Let c(k−1)

be the number of points in the ensemble at the beginning of iteration k, with c(0) = 1
(i.e., a single starting point is used). The jth point in the ensemble at the start of

iteration k is denoted by x
(k−1)
j . We use a secondary index to keep track of pertur-

bations of points in the ensemble. Thus, at the end of iteration k, x
(k)
j,0 is the point

found by minimization starting at x
(k−1)
j , and x

(k)
j,i is the point found by minimization

starting at the ith perturbation of x
(k−1)
j . HOPE also requires two more input values

than HOM: cmax, the maximum number of points in an ensemble, and ĉ, the number
of perturbations generated for each point in the ensemble.

HOPE is presented in Figure 2, where the overall structure of HOM is retained.
(Note that Steps 7–9 should be skipped if ĉ = 0.) The differences between HOPE

and HOM occur in Steps 5–11. Minimizing from a single starting point is replaced by
minimizing from each of an ensemble of points and their perturbations, followed by
the determination of the ensemble to be used in the next iteration. HOPE thus requires
more work than HOM at each value of λ, making several calls to a local minimization
method.

In Step 11 of HOPE, the ensemble of local minimizers to be used in the next iteration
is determined. With no limit on the size of the ensemble and no pruning of duplicate
points, the number of points in the ensemble at the end of iteration k would be
(ĉ + 1)k. If the number of distinct local minimizers found at the current iteration is
no more than the maximum ensemble size cmax, then all are used in the next iteration;
otherwise we must choose the “best” subset. What constitutes best may differ with
the specific problem or application area to which HOPE is applied and may depend on
the iteration number (k), the values of the algorithm parameters (m, cmax, and ĉ),
or the choice of local minimization method. An obvious measure of what constitutes
the best conformations—the one used in our numerical experiments—is homotopy
function value: conformations with the lowest function values are considered the best.
However, there may be other suitable (or perhaps even better) measures depending
on the choices for f 0 and h; for example, when the minimizers of f 0 and f 1 are related
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1. Input: x
(0)
1 = x0, a local minimizer of f 0; m ≥ 1; cmax ≥ 1; ĉ ≥ 0;

∆(k) > 0 (k = 0, . . . , m − 1) summing to 1.
2. Initialize: λ(0) = 0; c(0) = 1
3. for k = 1, . . . , m
4. λ(k) = λ(k−1) + ∆(k−1)

5. for j = 1, . . . , c(k−1)

6. Use a local method, starting with x
(k−1)
j , to compute

an (approximate) solution x
(k)
j,i to minx∈X h(x, λ(k)).

7. for i = 1, . . . , ĉ

8. Use a local method, starting with ξ(x
(k−1)
j ), to

compute an (approximate) solution x
(k)
j,i

to minx∈X h(x, λ(k)).
9. end
10. end

11. Order the distinct points among x
(k)
j,i (j = 1, . . . , c(k−1), i = 0, . . . , ĉ)

from “best” to worst as x
(k)
1 , x

(k)
2 , . . . , and discard any

beyond cmax. Let c(k) ≤ cmax be the number retained.
12. end
13. Output: x1, the point with lowest function value among

the points x
(m)
j , j = 1, . . . , c(m)

Figure 2. Definition of HOPE.

geometrically or when the homotopy function has been designed to deform f 0 into f 1

in a particular manner.

Note that different parameter choices for m and ĉ reduce HOPE to HOM (ĉ = 0),
to the local minimization method used in Step 6 (ĉ = 0, m = 1), or to a stochastic
search method (ĉ > 0, m = 1). We thus view HOPE as a framework for generalizing a
local method for use in solving global optimization problems.

3 Analysis of HOPE and HOM

We begin the analysis by showing that with proper choices for the homotopy function,
perturbation function, and algorithm parameters, HOPE is equivalent to other methods
for which convergence results exist. We then derive results giving insight on homotopy
choices.
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3.1 Analysis by analogy with other methods

In this section we present several theoretical results regarding the performance of HOM
and HOPE in relation to other methods for solving optimization methods.

HOM as a probability-one homotopy method

The first result involves HOM applied to a convex function and follows from the analysis
of probability-one homotopy methods [45]. In that work, if f 1 ∈ C3(X ) is convex on
X = R

n, it was shown that for almost every point x0, an equilibrium curve of ∇xh,
with

h(x, λ) = (1 − λ)
1

2
(x − x0)T (x − x0) + λf 1(x) , (3)

exists, contains both x0 and x∗, has finite length, and contains only minimizers of
h. Thus, HOM applied to solving this problem using a globally convergent local mini-
mization method (e.g., Newton’s method with a trust region) will produce a sequence
of minimizers of h, converging to the unique minimizer (x∗, 1), starting from almost
any point x0. Note that these results hold for any m ≥ 1. Thus HOM converges to the
global minimizer of f 1 with probability one.

HOPE as a stochastic search method

HOPE is an Improving Hit-and-Run (IHR) method when cmax = 1, m = 1, the pertur-
bation function is the Hit-and-Run (HR) algorithm [7, 39], homotopy function value
is used as the measure to constitute the best ensemble points, and the number of
iterations of the local minimization method used in HOPE is set to 0. Thus, following
the analysis in [49], we conclude that HOPE converges in that case with probability
one as ĉ → ∞. For m > 1, the result holds as well. Moreover, for one class of func-
tions (Lipschitz, elliptical), the number of points required to guarantee convergence
is linear in the dimension of the problem [49].

We note that using similar assumptions, HOPE can be shown to be a Pure Random
Search (PRS) method as well. The convergence of HOPE under those conditions can
be shown, but the complexity results of PRS show that the number of points required
for this convergence is exponential in the dimension of the problem. However, these
results verify that convergence with probability one can be guaranteed for HOPE using
perturbation functions other than HR.
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HOPE as a simulated annealing method

We next discuss the conditions for which HOPE is an SA method. Theoretical con-
vergence proofs exist for many variants of SA methods, and results of numerical ex-
periments show that SA is an effective method for solving problems for which several
standard minimization methods fail [26].

Define the perturbation function as

ξT (λ)(x) =

{
δx with probability PT (λ)(x, δx)

x with probability 1 − PT (λ)(x, δx)
(4)

where δx is a point sampled from a distribution in which every point in the domain has
a positive probability of being sampled; PT is the Metropolis acceptance criterion often
used in SA methods; and T (λ) is a continuous function of λ defining the temperature
such that T (0) = T 0 and T (1) = 0 (e.g., T (λ) = T 0(1 − λ)).

Combining the perturbation function, ξT (λ), with the identity homotopy function
h(x, λ) = f 1(x), HOPE becomes an SA method. Thus, convergence results that apply
to SA methods can be applied to HOPE as well. In [8] it was shown that by placing an
upper bound on the rate of temperature decrease and allowing generation of points in
the entire domain (or feasible region), an SA method converges to a global minimizer
almost surely as m → ∞. Here m is the number of iterations (steps in T ) taken.

3.2 Insight on homotopy choice

In this section we give analysis to explain how the definition of the homotopy function
and choice of algorithm parameters determines the performance of HOPE.

Influence of basins of attraction

Our aim is to show that when f 1 is well-behaved, then HOPE converges, and we can
provide a bound on the number of steps in λ required for HOPE to converge with some
given probability. We assume in this section that ĉ = 1 and cmax = 1 and that ξ
generates points uniformly on a bounded domain X .

We define the basin of attraction B(λ) of a local minimizer of h(x, λ) to be the set
of points x such that the local minimization method, started at x, will converge to the
minimizer. (Note that this definition depends on the choice of the local minimization
method.) Assume that x∗ is the unique global minimizer of f 1, and that it is an
isolated minimizer. Then the Implicit Function Theorem guarantees that in some
neighborhood of (x∗, 1), there exists a unique curve of isolated minimizers that passes
through (x∗, 1). Furthermore, since the global minimizer of f 1 is unique, then there
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is some value, λ∗, such that for all λ ∈ [λ∗, 1], these isolated minimizers are global
minimizers of h(x, λ). Let B∗(λ) be the basin of attraction for the global minimizer
at λ. Assume V (B∗(λ)) > 0, where V (·) denotes the volume, normalized so that
V (X ) = 1.

In Figure 3, we show an example homotopy function in one dimension where
X = [xl, xu]. The solid curves are curves of local minimizers of h and the dashed
curves are the boundaries of the basins of attraction of the minimizers of h. The
shaded region represents B∗, the basin of attraction of the global minimizers of h for
all λ ∈ [λ∗, 1], and the solid curve in that region is the curve of global minimizers.

Figure 3. Depiction of the point λ∗ for a homotopy function
in one dimension. The solid lines represent the curves of local
minimizers of h and the dashed lines represent the boundaries
of the basins of attraction associated with those curves. The
shaded region is B∗.

Theorem 3.1 Assume that HOPE generates uniformly distributed ξ and that ĉ = 1
and cmax = 1. Let k be the smallest integer so that λ(k) ≥ λ∗, and assume that that
the steps ∆(j) are small enough so that if (x(j), λ(j)) ∈ B∗ (

λ(j)
)

then (x(j+1), λ(j+1)) ∈
B∗ (

λ(j+1)
)

for k − 1 ≤ j < m. Then either x(k−1) ∈ B∗ (
λ(k)

)
and HOPE converges

to the global minimizer of f 1, or the probability that HOPE converges to the global
minimizer of f 1(x), i.e., the probability that at least one point generated by HOPE for
λ ∈ [λ∗, 1] is in B∗, is given by

pm = 1 − (1 − Vk)(1 − Vk+1) . . . (1 − Vm) ,

with Vk = V (B∗(λ(k))).

Proof. Let pj be the probability of being in the basin of attraction for the global
minimizer when λ = λ(j). The desired result follows, by an induction argument, from
the relation

pj = pj−1 + (1 − pj−1)Vj = (1 − Vj)pj−1 + Vj .

14



Note that if V ∗ is a known lower bound on the volumes Vk, then we have a
computable lower bound 1 − (1 − V ∗)m−k+1 on the probability of success.

This theorem gives insight into desirable properties for homotopy functions in
HOPE. First, we want the basin of attraction for the global minimizer x∗ to contain
global minimizers for as large an interval of λ as possible, so that the desired point
will not be pruned. Second, we want the average volume Vj to be larger than Vm for
j ≥ k; otherwise, simulated annealing or stochastic search would do as well.

Influence of m and the perturbation function

We assign to the basin of attraction of each local minimizer a state S� in a Markov
chain, and order so that S1 corresponds to the global minimizer. Our stochastic
perturbation sets up a branching random walk [5]. Assume that the steplengths ∆(k)

are small enough so that a point in basin � at step j is still in basin � at step j + 1
for 0 ≤ j < m.

Let the (i, �) element of the transition matrix P (λ) be defined by

Pi,�(λ) = Pr [ ξλ(x) ∈ S� : x ∈ Si ] , (5)

and let ei be the ith unit vector. Consider the HOPE algorithm started at the local
minimizer of h(x, 0) in Si. After � iterations, we potentially have (ĉ + 1)� points in
our ensemble, each with a different probability of being in each state. For example,
counting duplicates, after 1 step we have two points, with probabilities eT

i e1 and
eT

i P (λ(1))e1. After two steps, the probabilities for these two points are unchanged but
we have two new points with probabilities eT

i P (λ(2))e1 and eT
i P (λ(1))P (λ(2))e1. In the

next step we add points with associated probabilities eT
i P (λ(3))e1, eT

i P (λ(1))P (λ(3))e1,
eT

i P (λ(2))P (λ(3))e1, and eT
i P (λ(1))P (λ(2))P (λ(3))e1. The pattern is now clear. For

equal steplengths ∆(k) = 1/m, for example, the goal is to choose the smallest m so
that the expected number of points is at least 1. Thus, a good method will have
m large enough that sufficient points are generated, with the perturbation function
chosen so that transitions into the state corresponding to the global minimizer are
likely.

Certain special cases in which the matrix P (λ) has simple structure have been
analyzed in [15].

4 Numerical results

We apply HOPE and HOM to several standard test problems found in the unconstrained
optimization literature and to one new problem. We compare our methods to a
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quasi-Newton method for local minimization, and to a stochastic search method for
global minimization. We highlight some advantages of using HOPE and HOM over other
methods and show that HOPE is an effective method for solving general unconstrained
minimization problems. Results showing HOPE outperforming simulated annealing on
simple protein structure prediction problems can be found in [15, 16].

In our experiments, local minimization in HOPE and HOM was performed by a quasi-
Newton method with cubic line search and BFGS update, which we denote QNewton.
Note that QNewton requires only first derivative information.

Experiments using QNewton by itself provide a benchmark to which we compare the
results using HOPE and HOM. QNewton terminates when the change in function values
between iterates drops below TolFun, the maximum change in any of the variables
in x between iterates drops below TolX, the number of iterates reaches MaxIter,
or the number of function evaluations reaches MaxFunEval. The values used in our
experiments are TolFun = 10−6, TolX = 10−12, MaxIter = 400, and MaxFunEval =
800. When QNewton is used for minimization in HOPE and HOM, MaxIter is reduced,
as specified below, since multiple calls to QNewton are made.

We used equal steplengths ∆(k) = 1/m and the convex homotopy

h(x, λ) = (1 − λ)f 0(x) + λf 1(x). (6)

Note that when m = 1, HOPE is just a stochastic search method, and we include this
in our experiments.

Two types of perturbations were used in testing HOPE. The first, denoted by ξhr,
uses the HR method with a uniform distribution of perturbation lengths between 0
and a fixed maximum perturbation length pmax. The other, denoted by ξpct, is a
variant of HR where the maximum perturbation length is a percentage of ‖x‖2, where
x is the point being perturbed. The percentage is fixed throughout each run of an
experiment and is denoted by p̃max.

All of the experiments were run under Linux on a 2.5 GHz Intel Pentium 4 pro-
cessor using Matlab 6.5 and the Optimization Toolbox 2.2 from Mathworks, Inc. In
Matlab, QNewton is implemented in the routine fminusub and is accessed from the
unconstrained minimization driver, fminunc.

4.1 Comparison of methods applied to standard test prob-
lems

The problems in this section are a subset of the test functions in [30] and consist of
sums of squares of ms functions of n variables. Using the starting points reported
in that paper, QNewton converged to the correct solution for all but 5 of the 35 test
problems:
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• Freudenstein and Roth Function (Freu) [18] n = 2, ms = 2.

• Jennrich and Sampson Function (Jenn) [22] n = 2, ms = 10.

• Meyer Function (Mey) [28] n = 3, ms = 16.

• Biggs EXP6 Function (Be6) [6] n = 6, ms = 13.

• Trigonometric Function (Trig) [40] n = 10, ms = 10.

The homotopy function for HOPE and HOM used

f 0(x) =
1

2
(x − x0)T (x − x0) , (7)

using the starting points as reported in [30]. This generic function is often associated
with probability-one homotopy methods used to solve optimization problems [45, 47].

Table 1 presents results of minimizing these functions using QNewton, HOM, and
HOPE. In HOM and HOPE, QNewton was used for local minimization with MaxIter = 20.
The second and third columns contrast the global minimum with the function value
at the point x1 found by QNewton. The points produced by QNewton for Be6 and Trig

are documented local minima [24] with function values close to the global minimum.

For the experiments using HOM, values of m = 1, . . . , 100 were used. Only marginal
improvement was achieved as the number of steps is increased, despite a large increase
in computational cost. Columns 4 and 5 in the table show the lowest function value
generated using HOM and the value of m at which that value was attained (with “—”
signifying that no improvement was made in using HOM over QNewton for any value of
m = 1, . . . , 100).

HOM correctly predicted only one global minimizer (Jenn) and found only one
other local minimizer (Mey) with a significantly lower function value than the one
found using QNewton. In the latter case, the improvement was dramatic, as measured
by relative error in the function value

rf1 =
|f 1(x1) − f 1(x∗)|

|f 1(x∗)| . (8)

HOM achieved rf1 ≈ 6.62 × 10−1 versus rf1 ≈ 5.73 × 107 for QNewton. However,
this improvement came at the cost of m = 81 steps in the homotopy parameter
and a correspondingly large number of function evaluations: a total of 7675 function
evaluations for HOM versus 45 for QNewton . In general, such an increase in the number
of function evaluations may not produce as significant an improvement.

The results of experiments using HOPE to minimize these functions are presented
in the remaining columns of the table, using ĉ = 1 and cmax = 2m, with perturbations
generated using ξhr with pmax = 10−3 (i.e., very local perturbations). The column
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QNewton HOM HOPE

f 1(x∗) f 1(x1) f 1(x1) m f 1(x1) m
Freu 0 48.98 48.98 — 0 9
Jenn 124.36 2020 124.36 2 124.36 2
Mey 87.95 5.0 ×108 146.18 81 87.95 3†

Be6 0 5.7 ×10−5 5.7 ×10−5 — 10−14 1
Trig 0 2.8 ×10−5 2.8 ×10−5 — 10−14 5
†For 1 ≤ m ≤ 10, there was only a single successful run, and it was when m = 3.

Table 1. Results of QNewton HOM, and HOPE applied to
Moré test functions. The lowest function values found and
the fewest number of steps in λ (HOM and HOPE) to find the
corresponding minimizer are presented.

labeled f 1(x1) shows the lowest function value attained in the experiments using HOPE,
where 10 runs were performed for each of the values m = 1, . . . , 10. (Note that when
m = 1, HOPE is a stochastic search method.) Since no points were discarded from the
ensembles in HOPE, the runs at m = 10 require a considerable amount of computation
compared to those for HOM and QNewton. The last column shows the lowest value of
m (1 ≤ m ≤ 10) for which all 10 runs were successful (i.e., 100% success rate). The
best results were for Be6 and Jenn, where only 1 and 2 steps in λ, respectively, were
required. Compared to the results for these problems where one fewer step in λ was
taken, the increases in success rates were dramatic (0% success at m = 0 for Be6 and
30% at m = 1 for Jenn). This suggests that for these problems the perturbations
were most responsible for the success of HOPE. For Trig and Freu, more steps in
λ (m = 5 and m = 9, respectively) were required before achieving a perfect set of
runs. Furthermore, the increases in success rates were more gradual for these two
problems (80% successes for Trig at m = 4 and for Freu at m = 8), suggesting that
the performance of HOPE depends on more than perturbations alone.

For Mey, HOPE had difficulty for all values m ≤ 10. The only successful result
is shown in the table, where the global minimizer was found in 1 of the 10 runs for
m = 3 steps in λ. For Mey, there are several orders of magnitude difference in x∗

1

and x∗
2, the first two elements of the global minimizer. The amount of perturbation

(pmax = 10−3) used in these experiments was not enough to lead HOPE to success for
m ≤ 10. In followup experiments using larger perturbations (pmax = 100), though,
HOPE was successful in finding the global minimizer of Mey in 100% of the runs for
each m = 1, . . . , 10.

We conclude that for these problems HOPE outperformed QNewton and HOM in terms
of successfully finding the global minimizer of a function. Moreover, the results sug-
gest that a small amount of perturbation can dramatically increase the performance
of HOPE over HOM.
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4.2 Influence of parameter choice

In this experiment we see that when we limit the ensemble size, a larger amount of
perturbation may be required to produce comparable results. We applied HOPE to
the Freu problem using various amounts of perturbation, maximum ensemble sizes,
and numbers of steps in λ to illustrate the impact of the algorithm parameters on
performance. In HOPE, QNewton was used with MaxIter = 60. Perturbations of
ensemble members were generated using ξhr and ĉ = 1. A total of 100 runs were
performed for each combination of pmax = 1, 2, 4, 8, cmax = 2, 4, 8, 16, and m =
1, 2, 4, 8.

Table 2 presents the results of this experiment. The first two columns show the
amount of perturbation and the maximum ensemble size. The next four columns
show the number of runs where HOPE correctly predicted the global minimizer for
m = 1, 2, 4, 8, respectively. Denoting Nf as the total number of function evaluations
performed over the 100 runs, the last four columns show the number of function
evaluations per success for m = 1, 2, 4, 8, respectively.

Success (%) Nf per Success
when m = when m =

pmax cmax 1 2 4 8 1 2 4 8
1 2 7 1 1 3 3245 230915 157891 64000

4 5 0 1 3 5365 — 257884 79734
8 6 1 4 8 3959 234786 122038 81714
16 8 0 5 8 3724 — 96013 73627

2 2 12 13 24 36 1897 15710 6034 6244
4 7 19 32 41 2320 12370 7688 7971
8 9 24 54 65 2388 9177 7754 10150
16 4 23 56 72 6265 9104 7471 17395

4 2 9 27 48 60 2418 7239 2544 4538
4 5 27 52 74 6337 7709 4081 5039
8 7 25 75 95 2978 8310 5174 6652
16 8 21 77 98 2901 10253 4712 11717

8 2 22 48 73 95 779 3991 1598 2987
4 15 49 79 98 1788 4075 2368 5252
8 20 54 94 100 1267 3574 3355 8081
16 17 59 95 100 995 3153 2681 15442

Table 2. Results of HOPE applied to Freu for different
amounts of perturbation, maximum ensemble sizes and steps
in λ.

The general trend of these results show that as the amount of perturbation and the
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amount of computational effort increases (as controlled by cmax and m) the chances
of correctly predicting the global minimizer increases as well. However, the amount
of perturbation appears to be the most important parameter affecting the success
of HOPE, where a trend of increasing success is coupled with a trend of decreasing
number of function evaluations per successful run. This was expected for the Freu

problem since there is a relatively high barrier between the standard starting point
and the global minimizer that prevents many methods from converging to the correct
solution. Increasing the amount of perturbation may not always be the most effective
use of resources: in cases where f 0 and f 1 are closely related (e.g., in terms of location
of their global minimizers), less perturbation may lead to better results, with larger
perturbations unnecessarily searching the domain in unpromising areas.

The ratios of function evaluations to successes per run (last four columns) show
that although HOPE has a high success rate, it is expensive. For example, for pmax = 8
and m = 8, the number of successful runs was 95, 98, 100, 100 for cmax = 2, 4, 8, 16,
respectively, suggesting that larger ensemble sizes lead to more successful runs. An
important question then is whether this increase in success justifies the corresponding
increase in the amount of computational effort. In this case, as cmax increases, there
is only a gradual increase in success rate corresponding to a more dramatic increase
in number of function evaluations performed per success. Specifically, for cmax = 8,
HOPE had the same number of successes (100%) as for cmax = 16, but at half the
computational effort (8081 to 15442 Nf per success, respectively).

Another presentation of the results for pmax = 8 is given in Figure 4, where the
number of successful predictions of the global minimizer is plotted against the average
number of calls to QNewton, the average total number of iterations of QNewton for all
steps in λ, and the average number of function evaluations for each run. The four
points for the different number of steps in λ correspond to the results for cmax =
1, 2, 4, 8. Again, the general trend is that HOPE is more successful when more steps
in λ are taken. Also, as the maximum ensemble size increases, more computation
was performed and this led to slightly better results. However, the increase in the
amount of computation did not lead to significant increases in the number of successful
predictions. This suggests that the number of steps in λ may impact performance of
HOPE more than ensemble size.

4.3 Influence of homotopy function

Several experiments were performed on the Nmod function

f 1(x) = sin(x) + sin(Nx) ,

of Figure 5a, using the related function

f 0
a (x) = − sin(x) + sin(Nx)
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Figure 4. Results of HOPE applied to Freu for pmax = 8.
The four markers for each value of m correspond to the four
values of cmax = 2, 4, 8, 16.

or the quadratic function

f 0
b (x) =

1

2
(x − π)2 . (9)

The experiments consisted of 1000 runs of HOPE using ĉ = 1, cmax = 8, and
m = kN/5, k = 1, . . . , 5. QNewton was used for performing local minimization in
HOPE with MaxIter = 10. Perturbations in HOPE were performed using ξhr with
maximum perturbation lengths of pmax = 3π/N . Thus, perturbations of point x lay
in the same basin of attraction as x or in one of the two adjacent basins (see Figure
5a).

Figure 6 shows plots of the percentage of successful runs versus m, the number
of steps in λ, for N = 10, 20, 40, 60. The solid and dashed lines in the figure are the
results using f 0

a and f 0
b , respectively. For smaller values of N , there is little difference
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Figure 5. (a) Plots of f0
a (dashed) and f1 (solid) used

in the Nmod function experiments. (b) Plot of Pint in one
dimension with x∗ = −0.1.

in the performance of HOPE using the different homotopies. As N increases, there is
a definite advantage in using the quadratic function, f 0

b .

These results suggest that the choice of homotopy affects the performance of
HOPE. In these experiments, the generic homotopy performed better; f 0

a provided a
very poor homotopy since its global minimizer is far from x∗ and there are many
intermediate local minimizers. In general, we find that a well-designed customized
homotopy function improves performance [16].

4.4 Comparison of methods on a problem of varying size

In [34], Pintér advocates using “randomized test functions that will have a randomly
selected unique global solution” in testing global optimization methods. He argues
that this reduces the ability to tune a method’s performance to the test problems.
We follow this advice and test HOPE and HOM on the functions described by him in
that work. The general form of the test problem, denoted as Pint, is

f(x) = s
n∑

i=1

(xi − x∗
i )

2 +
kmax∑
k=1

ak sin2[fkPk(x − x∗)] , (10)

where x∗ is the unique global solution, s > 0 is a scaling factor, ak > 0 are amplitude
scaling factors, fk are (integer) frequency multipliers, and Pk(·) are polynomial noise
terms that vanish at the zero vector. Note that this defines a class of functions where
each instance is specified by the choice of x∗. Thus, we can create a set of random
test functions by randomly choosing the elements of x∗.
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Figure 6. Results of 1000 runs of HOPE applied to Nmod
function f1 using f0

a (x) = − sin(x) + sin(Nx) (solid lines)
and f0

b (x) = 1
2(x − π)2 (dashed lines).

Figure 5b shows an example of a Pint function in 1-dimension with global min-
imizer x∗ = −0.1. Pint functions have the property that the basin of attraction of
the global minimizer is relatively large compared to the basins of other local mini-
mizers. Also, far from the global minimizer, high frequency oscillation terms create
local minimizers with deep narrow basins of attraction. Minimization methods that
rely on local methods for searching for a global minimizer will likely converge to a
local minimizer unless the method starts at a good approximation of the solution.

Values of the parameters and the functions in f(x) used in the experiments are
defined in Table 3. Note that the elements of the global solutions, x∗

i (i = 1, . . . , n),
for each problem instance were chosen from a uniform distribution on [−5, 5]. We
applied HOPE to Pint functions of dimension n = 1, . . . , 10. The Pint function for
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Parameter Value
s 0.025n
kmax 2
ak 1
fk 1

P1(x − x∗)
n∑

i=1

(xi − x∗
i ) +

n∑
i=1

(xi − x∗
i )

2

P2(x − x∗)
n∑

i=1

(xi − x∗
i )

Table 3. Parameters and functions used to define the Pint
functions.

n = 10 is defined using

x∗ = (−3.0173,−4.4483, 4.6930,−4.7538, 1.5104,

−3.9100,−4.3961,−1.4326,−0.3789, 1.4885)T . (11)

These values were samples from a uniform distribution on [−5, 5].

The homotopy function for HOPE used the function

f 0(x) =
1

2
(x − x0)2 , (12)

with

x0 = ( 1.4127, 4.3035,−4.1816,−0.8379, 3.5322,

3.1757, 2.9291, 0.1542, 3.2336, 3.0290)T . (13)

The Pint and homotopy functions for problems with n < 10 are defined using the
first n elements of each of x∗ and x0 above.

In the first set of experiments, HOPE was compared to another global optimization
method in cases where both methods perform the same amount of computation. We
also focused on the the interplay between the number of steps taken in λ and the
dimension of the function being minimized in the experiments of HOPE.

The global optimization method used in these experiments was a two-phase stochas-
tic search method [38] consisting of Multistart [37] for the global phase and QNewton

for local refinement, which we denote as MS-QNewton. The elements of each of the
starting points used were chosen from a uniform distribution on [−5, 5], and local
minimization using QNewton was then performed from each of these points. Note
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that a single run of MS-QNewton consisted of this procedure being repeated until the
total number of function evaluations performed, Nf , reached a specified maximum,
Ñf . The approximation to the global minimizer for each run was taken to be the
point with lowest function value of all points found during the run.

In these experiments, HOPE was performed using QNewton for local minimization
with MaxIter = 10; the HOPE parameters used were ĉ = 1, cmax = 2m (i.e., no pruning
of duplicate points), and m = 1, 2, 4, 8. Perturbations of ensemble points in HOPE

were generated using ξpct with a maximum of 10% perturbation (p̃max = 0.10). As for
MS-QNewton, a single run of HOPE consisted of repeated calls to HOPE from different
starting points (generated as for MS-QNewton above) until a maximum number of
function evaluations were performed.

To compare the two methods, HOPE and MS-QNewton were run 20 times for each
value of n, using several values for the maximum number of function evaluations
allowed in each run. Table 4 presents the results of 20 runs of each method using two
values of Ñf . Column 1 shows the value of n, the dimension of the Pint function being
minimized. Columns 2–6 present the percentages of successful runs for MS-QNewton

and HOPE with m = 1, 2, 4, 8, respectively, using Ñf = 1000; columns 7–11 show the
corresponding percentages for runs using Ñf = 10000.

In both cases, HOPE with m = 1 and MS-QNewton performed very comparably.
This result was expected as the only difference between the two methods is that in
each run of HOPE two local minimizations are performed—one from the starting point
and one from a perturbed version of the starting point. For the experiments using
Ñf = 1000, there is a trend of decline in the success of HOPE as m increases. Note
that none of the runs of HOPE with m = 8 completed with fewer than 1000 function
evaluations, and thus no runs were considered successful. This highlights the need for
careful planning for the choices of parameters in HOPE when computational resources
are limited.

For the experiments using Ñf = 10000, the success rates of MS-QNewton and
HOPE for all values of m are more consistent and significantly better for those using
Ñf = 1000. Again, there is an slight overall downward trend in performance of
HOPE as m increases—for m = 1, 2, 4, 8, HOPE failed to find the global minimizer in
1, 2, 5, 16 runs, respectively, out of the total 200 runs for all values of n combined.
This is compared to 4 failures in all 200 runs of MS-QNewton. Note that in these
experiments, the average number of starting points per run over all n was 729.4
for MS-QNewton and 346.1, 121.0, 24.5, 1.2 for HOPE with m = 1, 2, 4, 8, respectively.
The relatively consistent success rates for HOPE over these values of m suggest that
for some problems, HOPE can be parameterized to use a few (or just one) starting
points to produce acceptable results, even when the overall amount of computation
is constrained.

We conclude that on these problems, HOPE using local perturbations and a generic
homotopy function performs as well as MS-QNewton, which uses global perturbations.
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Ñf = 1000 Ñf = 10000
MS- HOPE when m = MS- HOPE when m =

n QNewton 1 2 4 8† QNewton 1 2 4 8
1 100 100 90 50 — 100 100 100 100 85
2 65 55 40 25 — 100 100 100 95 80
3 40 50 40 20 — 100 100 100 95 70
4 55 45 50 15 — 100 100 100 100 90
5 45 45 40 15 — 100 100 100 95 100
6 40 55 40 20 — 100 95 100 95 100
7 20 20 35 25 — 100 100 100 100 95
8 40 50 40 15 — 95 100 100 95 100
9 35 35 30 15 — 90 100 90 100 100
10 25 40 45 30 — 95 100 100 100 100
†: Nf > 1000 for each run of HOPE when m = 8.

Table 4. Percentages of successful runs of MS-QNewton and
HOPE applied to Pint problems of dimensions n = 1, . . . , 10.
Ñf is the maximum number of function evaluations allowed
for each run.

Note that the perturbations used in MS-QNewton in these experiments were confined to
the interval [−5, 5]; in general such tight bounds around the global minimizer may not
be known, and MS-QNewton may require more starting points (and thus more function
evaluations) to perform as well in those cases. In contrast, we expect that using larger
perturbations in HOPE would lead to higher success rates, as was demonstrated in the
previous sections.

In a final experiment, MS-QNewton, HOM, and HOPE were used to solve the Pint

problem from [34] with n = 100. For these methods, 100 runs were performed starting
at random points (generated as in the experiments above). MS-QNewton and HOPE used
the same parameters as above, except cmax = 4. Perturbations in HOPE were performed
as above, using ξpct with p̃max = 0.10. HOM was run using the same parameters as
HOPE.

Table 5 presents the results of these experiments. The columns of the table show
the method used, number of steps in λ, percentage of successful runs, average num-
ber of function evaluations per run (N f ), ratio of function evaluations performed

to number of successes, and average function value of the predicted points (f 1(x1)),
respectively. These results present evidence that HOPE outperforms HOM and that
HOM outperforms MS-QNewton. For the same number of starting points, HOPE clearly
outperforms the other two methods, as shown by the percentage of successful runs.
However the increase in success requires more computation per run. The ratio of
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function evaluations performed to number of successes allows for more direct com-
parison of the three methods. When this ratio is in the range of 16–18, HOPE is about
twice as effective as the other methods (HOPE has 44 successes when the ratio is 16,
HOM has 22 when the ratio is 17, and MS-QNewton has 20 when the ratio is 18). Results
when the ratios are at 28 for HOPE and HOM also show increased success for HOPE: 70
successes for HOPE to HOM’s 43 (approximately 1.63 times more).

Success Nf per

Method m (%) N f Success f 1(x1)
MS-QNewton — 20 35 18 1.431

HOM 1 22 37 17 1.028
2 30 64 21 1.021
4 43 119 28 0.283
8 36 227 63 0.221

HOPE 1 44 71 16 0.436
2 70 196 28 0.085
4 94 695 73 0.012
8 98 1739 177 10−11

Table 5. Results of MS-QNewton, HOM, and HOPE applied to
the Pint function with n = 100.

5 Discussion and conclusions

We have presented two new methods for optimization. HOM differs from previous ho-
motopy and continuation methods in that its aim is to find a minimizer for every step
in the homotopy parameter, and it does not necessarily follow a path of minimizers.
HOPE allows HOM to follow an ensemble of points obtained by perturbation of previous
ones and is related to standard methods such as simulated annealing and stochastic
search.

We have demonstrated that HOPE and HOM are more reliable than a quasi-Newton
method and a stochastic search method in solving general unconstrained minimization
problems. Results of several experiments suggest that as more steps in λ are taken
and larger perturbations are used, the performance of HOPE improves. By taking more
steps in λ, the function f 0 is deformed more gradually into the function f 1. Such
gradual change may be necessary for problems where these two functions behave very
differently. The use of perturbations allows searching of the function domain in areas
that may not be reachable by following curves of minimizers of the homotopy function.
We suspect that larger perturbations will be more useful when little is known about
the relationship between f 0 and f 1 and a generic homotopy function is used.
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Both methods allow the homotopy to be tuned to a particular application, but
we have shown that both are successful even when no domain-specific information is
included.

For most of the experiments, HOPE performed considerably more computation than
other methods, but the increase in cost was coupled with an increase in performance.
An important feature of HOPE is that it is inherently parallelizable and communication
between processors would be minimal.

Some refinements to our algorithm are possible:

• Several of the parameters used in HOPE could be determined adaptively, leading
to more efficient use of computational resources and faster convergence for some
problems. The value of ∆(k) could be determined, for example, as a function
of the number of local minimization iterations required in the previous step,
or based on the changes in homotopy function values from one step to the
next. This may allow for larger (and thus fewer) steps in λ with no significant
decrease in the success rate. Investigation into the use of adaptive steps in
λ (as described in [3]), as well as into adaptively determining the amount of
perturbation, number of perturbations of ensemble members to generate, and
the maximum ensemble size may lead to more optimal implementations of HOPE.

• In this work, the ensemble members carried forward from the previous iteration
were used as starting points for local minimization. However, we could extrapo-
late from these starting points using derivative information to produce starting
points that may lead to less work in the local minimization [3].

These will be the subject of future work.
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