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e homotopy perturbation method, Sumudu transform, and He’s polynomials are combined to obtain the solution of fractional
Black-Scholes equation. 
e fractional derivative is considered in Caputo sense. Further, the same equation is solved by homotopy
Laplace transform perturbation method. 
e results obtained by the two methods are in agreement. 
e approximate analytical
solution of Black-Scholes is calculated in the form of a convergence power series with easily computable components. Some
illustrative examples are presented to explain the e�ciency and simplicity of the proposed method.

1. Introduction

Fractional di�erential equations have attracted much atten-
tion, recently, see, for instance [1–5].
is is mostly due to the
fact that fractional calculus provides an e�cient and excellent
instrument for the description of many practical dynamical
phenomena arising in engineering and scienti
c disciplines
such as, physics, chemistry, biology, economy, viscoelasticity,
electrochemistry, electromagnetic, control, porous media,
and many more, see, for example, [6–9].

Many partial di�erential equations of fractional order
have been studied and solved. For example many researchers
studied the existence of solutions of the Black-Scholes model
using many methods, see [10–14].


e homotopy perturbation method was 
rst introduced
and applied by He [15–17]. 
is method has been applied by
many authors in many 
elds, for example, it is applied to
nonlinear oscillator [18], nonlinear wave equation [19], non-
linear partial di�erential equations [20], integro-di�erential
equation of fractional order [21], fuzzy di�erential equation
[22], and other 
elds [23, 24]. Further homotopy perturbation
methods are combined with Laplace transform to solve
many problems such as one dimensional nonhomogeneous
partial di�erential equations with a variable coe�cient [25],

Black-Scholes of fractional order [26], and parabolic par-
tial di�erential equations [27]. 
e homotopy perturbation
method coupled with Sumudu transform basically illustrates
how Sumudu transform can be used to approximate the
solutions of the linear and nonlinear di�erential equations
by manipulating the homotopy perturbation method. In [28]
Singh et al. studied the solution of linear and nonlinear partial
di�erential equations by using the homotopy perturbation
method coupled with Sumudu transform. Further, in [29]
the authors proposed the homotopy perturbation method
coupled with Sumudu transform to solve nonlinear fractional
gas dynamics equation.


e Black-Scholes equation is one of the most signi
cant
mathematical models for a 
nancial market. It is a second-
order parabolic partial di�erential equation that governs the
value of 
nancial derivatives. 
is Black-Scholes model for
the value of an option is described by the following equation:

�V
�� + ��2

2
�2V
��2 + � (�) � �V

�� − � (�) V = 0,
(�, �) ∈ �+ × (0, 	) , 0 < 
 ≤ 1,

(1)

where V(�, �) is the European call option price at asset price� and at time �, 	 is the maturity, �(�) is the risk free
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interest rate, and �(�, �) represents the volatility function of
underlying asset. 
e payo� functions are

V� (�, �) = max (� − �, 0) ; V� (�, �) = max (� − �, 0) ,
(2)

where V�(�, �) and V�(�, �) are the value of the European call
and put options, respectively, � denotes the expiration price
for the option, and the function max(�, 0) gives the large
value between � and 0.

In this paper, we consider the following fractional Black-
Scholes of the form

��V
��� +

��2
2

�2V
��2 + � (�) � �V

�� − � (�) V = 0,
(�, �) ∈ �+ × (0, 	) , 0 < 
 ≤ 1.

(3)

In [29] Singh et al. used homotopy perturbation method
coupled with Sumudu transform to solve fractional gas
dynamics equation. 
e aim of this paper is to applied the
homotopy perturbation method for fractional Black-Scholes
equation by using He’s polynomials and Sumudu transform.

2. Sumudu Transform


e Sumudu transform was 
rst introduced and applied by
Watugala [30] in (1998). For further details and properties
of Sumudu transform see [31–34]. 
e Sumudu transform is
de
ned over the set of functions:


 = {� (�) : ∃�, �1, �2 > 0, ����� (�)���� < ���/�� ,
if � ∈ (−1)� × [0,∞)}

(4)

by the following formula

� (�) = � [� (�) ; �] =: ∫∞
0

� (��) �−���, � ∈ (−�, �) . (5)


e existence and uniqueness was discussed in [35]. For
further properties of Sumudu transform and its derivatives,
see [36]. Some fundamental further established properties of
Sumudu transform can be found in [31].

Similarly, this new transform was applied to one-dimen-
sional neutron transport equation [37]. In [34] Kılıçman et al.
show that there is a strong relationship between Sumudu and
other integral transforms. Further in [33] the Sumudu trans-
form was extended to the distributions, and some of their
properties were also studied in [38]. Recently Kılıçman et al.
applied this transform to solve system of di�erentials equa-
tions, for more details see [34, 35, 37–39].

3. Basic Definitions of Fractional Calculus

In this section, we give some basic de
nitions and properties
of fractional calculus theory which will be used in this paper.

De	nition 1. 
eRiemann-Liouville fractional integral oper-
ator of order 
 ≥ 0 of a function � ∈ ��, � ≥ −1 is de
ned as
follows:

 �� (�) = 1
Γ (
) ∫

	

0
(� − �)�−1� (�) ��,


 > 0, � > 0
(6)

in particular  0�(�) = �(�).
For Riemann-Liouville fractional integral, one has

 ��
 = Γ (# + 1)
Γ (
 + # + 1)��+
. (7)

De	nition 2. 
e Caputo fractional derivative of � ∈ ��−1,% ∈ & is de
ned as follows:

'�� (�) = 1
Γ (% − 
) ∫

	

0
(� − �)�−�−1�� (�) ��,

% − 1 < 
 ≤ %.
(8)

Lemma 3. If % − 1 < 
 ≤ %, % ∈ &, � ∈ ��� , � > −1 then

the following two properties hold:

(1) '�[ ��(�)] = �(�),
(2)  �['��(�)] = �(�) − ∑�−1
=1 �
(0)(�
/-!).

De	nition 4. 
eMittag-Le�er function ��(4) with 
 > 0 is
de
ned by the following series representation, valid in the
whole complex plane:

�� (4) =
∞∑
0

4�
Γ (
6 + 1) . (9)

De	nition 5. 
eSumudu transform of the Caputo fractional
derivative is de
ned as follows [40]:

� ['�� � (�)] = �−�� [� (�)] − �−1∑

=0

�−�+
�(
) (0+) ,
(% − 1 < 
 ≤ %) .

(10)

4. Homotopy Perturbation Method

To illustrate the basic idea of this method, we consider the
following nonlinear di�erential equation:


 (�) − � (�) = 0, � ∈ Ω (11)

with boundary conditions

8(�, ���6) = 0, � ∈ Γ, (12)

where 
 is a general di�erential operator, 8 is a boundary
operator, �(�) is a known analytic function, and Γ is the
boundary of the domainΩ.
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In general, the operator
 can be divided into two parts @
and &, where @ is linear, while & is nonlinear. Equation (11)
therefor can be rewritten as follows:

@ (�) + & (�) − � (�) = 0. (13)

By the homotopy technique [41, 42] we construct a homotopy
V(�, A) : Ω × [0, 1] → � which satis
es

C(V, A) = (1 − A) [@ (V) − @ (�0)] + A [
 (V) − � (�)] = 0
A ∈ [0, 1] , � ∈ Ω

(14)

or

C(V, A) = @ (V) − @ (�0) + A@ (�0) + A [& (V) − � (�)] = 0,
(15)

where A ∈ [0, 1] is an embedding parameter, and �0 is an
initial approximation of (11) which satis
es the boundary
conditions.

From (14) and (15) we have

C(V, 0) = @ (V) − @ (�0) = 0,
C (V, 1) = 
 (V) − � (�) = 0. (16)


e changing in the process of A from zero to unity is just
that of V(�, A) from �0(�) to �(�). In topology this is called
deformation, and @(V) − @(�0) and 
(V) − �(�) are called
homotopic.

Now, assume that the solution of (14), (15) can be
expressed as

V = V0 + AV1 + A2V2 + ⋅ ⋅ ⋅ . (17)

Setting A = 1 results in the approximate solution of (11):

� = lim
�→1

V = V0 + V1 + V2 + ⋅ ⋅ ⋅ . (18)

5. Homotopy Perturbation Method Coupled
with Sumudu Transform

To illustrate the basic idea of this method, we consider the
following nonlinear fractional di�erential equation:

'�� � (�, �) + @ [�] � (�, �) + & [�] � (�, �)
= E (�, �) , � > 0, % − 1 < 
 ≤ %, (19)

where '�� = ��/��� is the fractional Caputo derivative of the
function �(�, �), @ is the linear di�erential operator, & is the
nonlinear di�erential operator, and E(�, �) is the source term.

Now, applying the Sumudu transform on both sides of
(19), we have

� ['�� � (�, �)] + � [@ [�] � (�, �) + & [�] � (�, �)]
= � [E (�, �)] . (20)

Using the di�erential property of Sumudu transform, we have

� [� (�, �)]
= � (�) − ��� [@ [�] � (�, �) + & [�] � (�, �)]

+ ��� [E (�, �)] .
(21)

Operating with Sumudu inverse on both sides of (21)

� (�, �) = F (�, �) − �−1 [��� (@ [�] � (�, �) + & [�] � (�, �))] ,
(22)

where F(�, �) represents the term arising from the source
term and the prescribed initial conditions.

Now, applying the classical homotopy perturbation tech-
nique, the solution can be expressed as a power series in A as
given below:

� (�, �) = ∞∑
�=0

A��� (�, �) , (23)

where the homotopy parameter A is considered as a small
parameter (A ∈ [0, 1]).

We can decompose the nonlinear term as

&� (�, �) = ∞∑
�=0

A�C� (�) , (24)

where C� are He’s polynomials of �0, �1, �2, . . . , �� [43–45],
and it can be calculated by the following formula:

C(�0, �1, �2, . . . , ��)
= 1

6!
��
�A�[&(∞∑

�=0
A���)]

�=0
, 6 = 0, 1, 2, . . . . (25)

By substituting (23) and (24) and using HPM [15] we get

∞∑
�=1

A��� (�, �)
= F (�, �)

− A(�−1 [��� [@ ∞∑
�=0

A��� (�, �) +
∞∑
�=0

A�C� (�)]]) .
(26)


is is coupling of Sumudu transform and homotopy per-
turbation method using He’s polynomials. By equating the
coe�cient of corresponding power of A on both sides, the
following approximations are obtained as

A0 : �0 (�, �) = F (�, �) ,
A1 : �1 (�, �) = −�−1 (��� [@ [�] �0 (�, �) + C0 (�)]) ,
A2 : �2 (�, �) = −�−1 (��� [@ [�] �1 (�, �) + C1 (�)]) ,
A3 : �3 (�, �) = −�−1 (��� [@ [�] �2 (�, �) + C2 (�)]) ,

...

(27)
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Proceeding in the same manner, the rest of the components��(�, �) can be completely obtained, and the series solution is
thus entirely determined. Finlay we approximate the solution�(�, �) by truncated series

� (�, �) = lim
�→∞

�∑
�=0

�� (�, �) . (28)


is series solutions generally converge very rapidly.

6. Examples

In this section, we discuss the implementation of the pro-
posed method.

Example 6. We consider the following fractional Black-
Scholes option pricing equation as follows:

��V
��� = �2V

��2 + (- − 1) �V
�� − -V, 0 < 
 ≤ 1 (29)

subject to initial condition

V (�, 0) = max (�	 − 1, 0) . (30)

Applying Sumudu transform on both sides of (29) subject to
initial condition (30), we get

� [V (�, �)]
= max (�	 − 1, 0) + ��� [V		 + (- − 1) V	 − -V] . (31)

Operating the inverse Sumudu transform on both sides in
(31), we have

V (�, �) = max (�	 − 1, 0) − �−1 [��� (V		 + (- − 1) V	 − -V)] .
(32)

Now, applying homotopy perturbation method

∞∑
�=0

A�V� (�, �)

= max (�	 − 1, 0) − A(�−1 [��� [∞∑
�=0

A�C� (V)]]) ,
(33)

where

C� = V�		 + (- − 1) V�	 + -V�, 6 ∈ &. (34)

Equating the corresponding power of A on both sides in
(38), we have

A0 : V0 (�, �) = max (�	 − 1, 0) ,
A1 : V1 (�, �) = �−1 (��� [C0 (V)])

= −max (�	, 0) (−-��)
Γ (
 + 1)

+max (�	 − 1, 0) (−-��)
Γ (
 + 1) ,

A2 : V2 (�, �) = �−1 (��� [C1 (V)])
= max (�	, 0) (−-��)2

Γ (2
 + 1)
+max (�	 − 1, 0) (−-��)2

Γ (2
 + 1) ,
...

A� : V� (�, �) = �−1 (��� [C� (V)])
= max (�	, 0) (−-��)�

Γ (6
 + 1)
+max (�	 − 1, 0) (−-��)�

Γ (6
 + 1) .

(35)

So that the solution V(�, �) of the problem is given by

V (�, �) = lim
�→1

∞∑
�=0

A��� (�, �)
= max (�	 − 1, 0) �� (−-��)

+max (�	, 0) (1 − �� (−-��)) ,
(36)

where ��(4) is Mittag-Le�er function in one parameter. For
special case 
 = 1, we get

V (�, �) = max (�	 − 1, 0) �−
�
+max (�	, 0) (1 − �−
�) , (37)

which is an exact solution of the given Black-Scholes equation
(29) for 
 = 1.


e behaviour of V (�, �)with respect to � and �when 
 =1 is given in Figure 1.

Example 7. We consider the following fractional Black-
Scholes option pricing equation as follows:

��V
��� + 0.08(2 + sin�)2�2 �2V��2 + 0.06 �V�� − 0.06V = 0,

0 < 
 ≤ 1
(38)
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Figure 1:
e surface shows the V(�, �) for (29) with respect to � and� for 
 = 1.

subject to initial condition

V (�, 0) = max (� − 25�−0.06, 0) . (39)

Firstly, applying Sumudu transform on both sides of (38)
subject to initial condition (39), we get

� [V (�, �)] = max (� − 25�−0.06, 0) − ���
× [0.08(2 + sin�)2�2V		 + 0.06V	 − 0.06V] .

(40)

Operating the inverse Sumudu transform on both sides in
(40), we have

V (�, �) = max (� − 25�−0.06, 0) − �−1
× [��� (0.08(2 + sin�)2�2V		 + 0.06V	 − 0.06V)] .

(41)

Now, applying the homotopy perturbation method we have

∞∑
�=0

A�V� (�, �) = max (� − 25�−0.06 − 1, 0)

− A(�−1 [��� [∞∑
�=0

A�C� (V)]]) ,
(42)

where

C� = 0.08(2 + sin�)2�2V�		 + 0.06V�	 − 0.06V�, 6 ∈ &.
(43)

Equating the corresponding power of A on both sides in (42),
we have

A0 : V0 (�, �) = max (� − 25�−0.06, 0) ,
A1 : V1 (�, �)

= �−1 (��� [C0 (V)])
= −�(−0.06��)

Γ (
 + 1) +max (� − 25�−0.06, 0) (−0.06��)
Γ (
 + 1) ,

A2 : V2 (�, �)
= �−1 (��� [C1 (V)])
= −�(−0.06��)2

Γ (2
 + 1) +max (� − 25�0.06, 0) (−0.06��)2
Γ (2
 + 1) ,

...

A� : V� (�, �) = �−1 (��� [C� (V)])
= −�(−0.06��)�

Γ (6
 + 1)
+max (� − 25�	, 0) (−0.06 − ��)�

Γ (6
 + 1) .
(44)

So that the solution V(�, �) of the problem is given by

V (�, �) = lim
�→1

∞∑
�=0

A��� (�, �)
= � (1 − �� (−0.06��))

+max (� − 25�−0.06, 0) �� (−0.06��) .
(45)


is is the exact solution of the given option pricing equation
(38). 
e solution of (38) at the special case 
 = 1 is

V (�, �) = � (1 − �0.06� − 1, 0)
+max (� − 25�−0.06, 0) �−0.06�. (46)


e behaviour of V(�, �) with respect to � and � when 
 = 1 is
given in Figure 2.

7. Conclusion

In this paper, the homotopy perturbation Sumudu transform
method (HPSTM) is successfully applied for getting the
analytical solution of the fractional Black-Scholes option
pricing equation. Two examples from the literature [26]
are presented. 
e results of the illustrated examples are in
agreementwith the results of themethod presented in [26]. In
conclusion, HPSTM is a very powerful and e�cient method
to 
nd approximate solutions as well as numerical solutions.
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e surface shows the V(�, �) for (38) with respect to � and� for 
 = 1.
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