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A user friendly algorithm based on new homotopy perturbation Sumudu transform method (HPSTM) is proposed to solve
nonlinear fractional gas dynamics equation.�e fractional derivative is considered in the Caputo sense. Further, the same problem
is solved by Adomian decomposition method (ADM). �e results obtained by the two methods are in agreement and hence this
technique may be considered an alternative and e�cient method for nding approximate solutions of both linear and nonlinear
fractional di�erential equations. �e HPSTM is a combined form of Sumudu transform, homotopy perturbation method, and He’s
polynomials. �e nonlinear terms can be easily handled by the use of He’s polynomials. �e numerical solutions obtained by the
proposed method show that the approach is easy to implement and computationally very attractive.

1. Introduction

Fractional calculus is a eld of appliedmathematics that deals
with derivatives and integrals of arbitrary orders. During
the last decade, fractional calculus has found applications in
numerous seemingly diverse elds of science and engineer-
ing. Fractional di�erential equations are increasingly used
to model problems in �uid mechanics, acoustics, biology,
electromagnetism, di�usion, signal processing, and many
other physical processes [1–19].

�ere exists a wide class of literature dealing with the
problems of approximate solutions to fractional di�erential
equations with various di�erent methodologies, called per-
turbation methods. �e perturbation methods have some
limitations; for example, the approximate solution involves
series of small parameters which poses di�culty since the
majority of nonlinear problems have no small parameters at
all. Although appropriate choices of small parameters some-
times lead to ideal solution, in most of the cases unsuitable
choices lead to serious e�ects in the solutions. �erefore, an
analytical method is welcome which does not require a small
parameter in the equation modeling the phenomenon.

Recently, there is a very comprehensive literature review
in some new asymptotic methods for the search for the
solitary solutions of nonlinear di�erential equations, nonlin-
ear di�erential-di�erence equations, and nonlinear fractional
di�erential equations; see [20]. �e homotopy perturbation
method (HPM)was rst introduced byHe [21].�eHPMwas
also studied by many authors to handle linear and nonlinear
equations arising in various scientic and technological elds
[22–32]. �e Adomian decomposition method (ADM) [33]
and variational iteration method (VIM) [34] have also been
applied to study the various physical problems.

In a recent paper, Singh et al. [35] have paid attention to
study the solutions of linear and nonlinear partial di�erential
equations by using the homotopy perturbation Sumudu
transform method (HPSTM). �e HPSTM is a combination
of Sumudu transform, HPM, and He’s polynomials and
is mainly due to Ghorbani and Saberi-Nadja [36] and
Ghorbani [37].

In this paper, we consider the following nonlinear time-
fractional gas dynamics equation of the form

��� � + 12 (�2)� − � (1 − �) = 0, � > 0, 0 < � ≤ 1, (1)
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with the initial condition

� (	, 0) = 
−�, (2)

where � is a parameter describing the order of the fractional
derivative. �e function �(	, �) is the probability density
function, � is the time, and 	 is the spatial coordinate. �e
derivative is understood in the Caputo sense. �e general
response expression contains a parameter describing the
order of the fractional derivative that can be varied to obtain
various responses. In the case of � = 1 the fractional gas
dynamics equation reduces to the classical gas dynamics
equation.�e gas dynamics equations are based on the phys-
ical laws of conservation, namely, the laws of conservation
of mass, conservation of momentum, conservation of energy,
and so forth.�e nonlinear fractional gas dynamics has been
studied previously by Das and Kumar [38].

Further, we apply the HPSTM and ADM to solve the
nonlinear time-fractional gas dynamics equation. �e objec-
tive of the present paper is to extend the application of the
HPSTM to obtain analytic and approximate solutions to the
time-fractional gas dynamics equation. �e advantage of the
HPSTM is its capability of combining two powerful methods
for obtaining exact and approximate analytical solutions for
nonlinear equations. It provides the solutions in terms of con-
vergent series with easily computable components in a direct
way without using linearization, perturbation, or restrictive
assumptions. It is worth mentioning that the HPSTM is
capable of reducing the volume of the computational work
as compared to the classical methods while still maintaining
the high accuracy of the numerical result; the size reduction
amounts to an improvement of the performance of the
approach.

2. Sumudu Transform

In the early 90’s, Watugala [39] introduced a new integral
transform, named the Sumudu transform and applied it
to the solution of ordinary di�erential equation in control
engineering problems. �e Sumudu transform, is dened
over the set of functions

� = { (�) | ∃ �, �1, �2 > 0, ���� (�)����
< �
|�|/�� , if � ∈ (−1)� × [0,∞)} (3)

by the following formula:

 (�) = � [ (�)]
= ∫∞
0
 (��) 
−���, � ∈ (−�1, �2) . (4)

Some of the properties were established by Weerakoon
in [40, 41]. In [42], by Aşiru, further fundamental properties
of this transform were also established. Similarly, this trans-
form was applied to the one-dimensional neutron transport
equation in [43] by Kadem. In fact it was shown that there
is a strong relationship between Sumudu and other integral
transforms; see Kılıçman et al. [44]. In particular the relation

between Sumudu transform and Laplace transforms was
proved in Kılıçman and Gadain [45].

Further, in Eltayeb et al. [46], the Sumudu transform was
extended to the distributions and some of their properties
were also studied in Kılıçman and Eltayeb [47]. Recently,
this transform is applied to solve the system of di�erential
equations; see Kılıçman et al. in [48].

Note that a very interesting fact about Sumudu transform
is that the original function and its Sumudu transform have
the same Taylor coe�cients except the factor �; see Zhang
[49]. �us if (�) = ∑∞�=0 ���� then  (�) = ∑∞�=0 �!����;
see Kılıçman et al. [44]. Similarly, the Sumudu transform
sends combinations,"(#, �), into permutations,$(#, �), and
hence it will be useful in the discrete systems.

3. Basic Definitions of Fractional Calculus

In this section, we mention the following basic denitions
of fractional calculus which are used further in the present
paper.

De�nition 1. �eRiemann-Liouville fractional integral oper-
ator of order � > 0, of a function (�) ∈ "	, and % ≥ −1 is
dened as [5]

'� (�) = 1Γ (�) ∫
�

0
(� − �)�−1 (�) ��, (� > 0) , (5)

'0 (�) =  (�) . (6)

For the Riemann-Liouville fractional integral, we have

'��
 = Γ (- + 1)
Γ (- + � + 1) ��+
. (7)

De�nition 2. �e fractional derivative of (�) in the Caputo
sense is dened as [10]

���  (�) = '�−��� (�)
= 1Γ (� − �) ∫

�

0
(� − �)�−�−1(�) (�) ��, (8)

for# − 1 < � ≤ #,# ∈ /, � > 0.
For the Riemann-Liouville fractional integral and the

Caputo fractional derivative, we have the following relation:

'�� ���  (�) =  (�) − �−1∑
�=0

(�) (0+) ��4! . (9)

De�nition 3. �eSumudu transform of the Caputo fractional
derivative is dened as follows [50]:

� [���  (�)] = �−�� [ (�)]
− �−1∑
�=0

�−�+�(�) (0+) , (# − 1 < � ≤ #) .
(10)
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4. Solution by Homotopy Perturbation
Sumudu Transform Method (HPSTM)

4.1. Basic Idea of HPSTM. To illustrate the basic idea of
this method, we consider a general fractional nonlinear
nonhomogeneous partial di�erential equationwith the initial
condition of the form

��� � (	, �) + 5� (	, �) + /� (	, �) = 6 (	, �) , (11)

� (	, 0) =  (	) , (12)

where ��� �(	, �) is the Caputo fractional derivative of the
function �(	, �), 5 is the linear di�erential operator, /
represents the general nonlinear di�erential operator, and6(	, �) is the source term.

Applying the Sumudu transform (denoted in this paper
by �) on both sides of (11), we get

� [��� � (	, �)] + � [5� (	, �)] + � [/� (	, �)] = � [6 (	, �)] .
(13)

Using the property of the Sumudu transform, we have

� [� (	, �)] =  (	) + ��� [6 (	, �)]
− ��� [5� (	, �) + /� (	, �)] . (14)

Operatingwith the Sumudu inverse on both sides of (14) gives

� (	, �) = 7 (	, �) − �−1 [��� [5� (	, �) + /� (	, �)]] , (15)

where 7(	, �) represents the term arising from the source
term and the prescribed initial conditions. Now we apply the
HPM:

� (	, �) = ∞∑
�=0

8��� (	, �) , (16)

and the nonlinear term can be decomposed as

/�(	, �) = ∞∑
�=0

8�9� (�) , (17)

for some He’s polynomials9�(�) [37] that are given by

9� (�0, �1, . . . , ��)
= 1�! :

�

:8�[/(∞∑
=0
8�)]

�=0
, � = 0, 1, 2, . . . . (18)

Substituting (16) and (17) in (15), we get

∞∑
�=0

8��� (	, �)
= 7 (	, �)
− 8(�−1 [��� [5 ∞∑

�=0
8��� (	, �) + ∞∑

�=0
8�9� (�)]]) ,

(19)

which is the coupling of the Sumudu transform and the HPM
using He’s polynomials. Comparing the coe�cients of like
powers of 8, the following approximations are obtained:

80 : �0 (	, �) = 7 (	, �) ,
81 : �1 (	, �) = −�−1 [��� [5�0 (	, �) + 90 (�)]] ,
82 : �2 (	, �) = −�−1 [��� [5�1 (	, �) + 91 (�)]] ,
83 : �3 (	, �) = −�−1 [��� [5�2 (	, �) + 92 (�)]] ,

...

(20)

Proceeding in this same manner, the rest of the components��(	, �) can be completely obtained and the series solution
is thus entirely determined. Finally, we approximate the
analytical solution �(	, �) by truncated series:

� (	, �) = lim
�→∞

�∑
�=0

�� (	, �) . (21)

�e above series solutions generally converge very rapidly.

4.2. Solution of the Problem. Consider the following nonlin-
ear time-fractional gas dynamics equation:

��� � + 12 (�2)� − � (1 − �) = 0, 0 < � ≤ 1, (22)

with the initial condition

� (	, 0) = 
−�. (23)

Applying the Sumudu transformonboth sides of (22), subject
to the initial condition (23), we have

� [� (	, �)] = 
−� − ��� [12(�2)� − � (1 − �)] . (24)

�e inverse Sumudu transform implies that

� (	, �) = 
−� − �−1 [��� [12(�2)� − � (1 − �)]] . (25)

Now applying the HPM, we get

∞∑
�=0

8��� (	, �)

= 
−� − 8(�−1 [��� [12 (
∞∑
�=0

8�9� (�))

− (∞∑
�=0

8��� (	, �))

+ (∞∑
�=0

8�9�� (�))]]) ,
(26)
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where 9�(�) and 9��(�) are He’s polynomials [37] that
represent the nonlinear terms. So, the He’s polynomials are
given by

∞∑
�=0

8�9� (�) = (�2)�. (27)

�e rst few components of He’s polynomials are given by

90 (�) = (�20)�,
91 (�) = 2(�0�1)�,

91 (�) = (�21 + 2�0�2)�,
...

(28)

and for9��(�), we nd that

∞∑
�=0

8� 9�� (�) = �2,
9�0 (�) = �20 ,

9�1 (�) = 2�0�1,
9�2 (�) = �21 + 2�0�2,

...

(29)

Comparing the coe�cients of like powers of 8, we have
80 : �0 (	, �) = 
−�,

81 : �1 (	, �) = −�−1 [��� [1290 (�) − �0 + 9�0 (�)]]
= 
−� ��Γ (� + 1) ,

82 : �2 (	, �) = −�−1 [��� [1291 (�) − �1 + 9�1 (�)]]
= 
−� �2�Γ (2� + 1) ,

83 : �3 (	, �) = −�−1 [��� [1292 (�) − �2 + 9�2 (�)]]
= 
−� �3�Γ (3� + 1) ,

...

(30)

�erefore, the series solution is

� (	, �)
= 
−� [1 + ��Γ (� + 1) + �2�Γ (2� + 1) + �3�Γ (3� + 1) + ⋅ ⋅ ⋅] .

(31)

Setting � = 1 in (31), we reproduce the solution of the
problem as follows:

� (	, �) = 
−� (1 + � + �22! + �33! + ⋅ ⋅ ⋅) . (32)

�is solution is equivalent to the exact solution in closed
form:

� (	, �) = 
�−�. (33)

Now, we calculate numerical results of the probability den-
sity function �(	, �) for di�erent time-fractional Brownian
motions � = 1/3, 2/3, 1 and for various values of � and 	. �e
numerical results for the approximate solution (31) obtained
by using HPSTM and the exact solution (33) for various
values of �, 	, and � are shown in Figures 1(a)–1(d) and those
for di�erent values of � and� at 	 = 1 are depicted in Figure 2.

It is observed from Figures 1 and 2 that �(	, �) increases
with the increase in � and decreases with the increase in �.
Figures 1(c) and 1(d) clearly show that, when � = 1, the
approximate solution (31) obtained by the present method
is very near to the exact solution. It is to be noted that only
the third-order term of the HPSTM was used in evaluating
the approximate solutions for Figures 1 and 2. It is evident
that the e�ciency of the present method can be dramatically
enhanced by computing further terms of �(	, �) when the
HPSTM is used.

5. Solution by Adomian Decomposition
Method (ADM)

5.1. Basic Idea of ADM. To illustrate the basic idea of
ADM [51, 52], we consider a general fractional nonlinear
nonhomogeneous partial di�erential equationwith the initial
condition of the form

��� � (	, �) + 5� (	, �) + /� (	, �) = 6 (	, �) , (34)

where ��� �(	, �) is the Caputo fractional derivative of the
function �(	, �), 5 is the linear di�erential operator, /
represents the general nonlinear di�erential operator, and6(	, �) is the source term.

Applying the operator '�� on both sides of (34) and using
result (9), we have

� (	, �) = �−1∑
�=0

(:��:�� )�=0
��4!

+ '�� 6 (	, �) − '�� [5� (	, �) + /� (	, �)] .
(35)

Next, we decompose the unknown function �(	, �) into
sum of an innite number of components given by the
decomposition series

� = ∞∑
�=0

��, (36)

and the nonlinear term can be decomposed as

/� = ∞∑
�=0

��, (37)
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Figure 1: �e behaviour of the �(	, �) w.r.t. 	 and � are obtained when (a) � = 1/3, (b) � = 2/3, (c) � = 1, and (d) exact solution.

where �� are Adomian polynomials that are given by

�� = 1�![ ���L�/( �∑
=0
L�)]

�=0
, � = 0, 1, 2, . . . (38)

�e components�0, �1, �2, . . . are determined recursively by
substituting (36) and (37) into (34) leading to
∞∑
�=0

�� = �−1∑
�=0

(:��:�� )�=0
��4!

+ '�� 6 (	, �) − '�� [5(∞∑
�=0

��) + ∞∑
�=0

��] .
(39)

�is can be written as

�0 + �1 + �2 + ⋅ ⋅ ⋅ = �−1∑
�=0

(:��:�� )�=0
��4! + '�� 6 (	, �)

− '�� [5 (�0 + �1 + �2 + ⋅ ⋅ ⋅)+ (�0 + �1 + �2 + ⋅ ⋅ ⋅)] .
(40)

Adomian method uses the formal recursive relations as

�0 = �−1∑
�=0

(:��:�� )�=0
��4! + '�� 6 (	, �) ,

��+1 = −'�� [5 (��) + ��] , � ≥ 0.
(41)
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Table 1: Comparison study between HPSTM, ADM, and the exact solution when � = 1.

x t HPSTM ADM Exact solution

0 0.1 1.221333333 1.221333333 1.221402758

0.2 0.1 0.9999431595 0.9999431595 1.000000000

0.4 0.1 0.8186842160 0.8186842160 0.8187307531

0.6 0.1 0.6702819447 0.6702819447 0.6703200460

0.8 0.1 0.5487804413 0.5487804413 0.5488116361

1.0 0.1 0.4493037263 0.4493037263 0.4493289641

� = 1

� = 1/3

� = 2/3

0 0.2 0.4 0.6 0.8 1

�

1.4
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0.4
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Figure 2: Plots of �(	, �) versus � at 	 = 1 for di�erent values of �.

5.2. Solution of the Problem. Consider the following nonlin-
ear time-fractional gas dynamics equation:

��� � + 12 (�2)� − � (1 − �) = 0, 0 < � ≤ 1, (42)

with the initial condition

� (	, 0) = 
−�. (43)

Applying the operator '�� on both sides of (42) and using
result (9), we have

� = 1−1∑
�=0

��4! [����] �=0 − '�� [12 (�2)� − � + �2] . (44)

�is gives the following recursive relations using (41):

�0 = 0∑
�=0

��4![����] �=0,
��+1 = −'�� [�� − ��] , � = 0, 1, 2, . . . ,

(45)

where

�� = 1�![[
(12 ::	 + 1) ���L�(

�∑
=0
L�)

2]
]�=0

,
� = 0, 1, 2, . . .

(46)

which using the results (7), (5), and (43) gives

�0 (	, �) = 
−�,
�0 = 0,

�1 (	, �) = 
−� ��Γ (� + 1) ,
�1 = 0,

�2 (	, �) = 
−� �2�Γ (2� + 1) ,
�2 = 0,

�3 (	, �) = 
−� �3�Γ (3� + 1) ,
...

(47)

�erefore, the decomposition series solution is

� (	, �)
= 
−� [1 + ��Γ (� + 1) + �2�Γ (2� + 1) + �3�Γ (3� + 1) + ⋅ ⋅ ⋅] ,

(48)

which is the same solution as obtained by using HPSTM.
From Table 1, it is observed that the values of the

approximate solution at di�erent grid points obtained by the
HPSTMandADMare close to the values of the exact solution
with high accuracy at the third-term approximation. It can
also be noted that the accuracy increases as the order of
approximation increases.

�e comparison between the third iteration solution of
the HPSTM and the second iteration solution of the ADM is
given in Figure 3.

It is observed that for 	 = 1 and � = 1, there is a good
agreement between the two methods.
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Figure 3: Comparison of the HPSTM and the ADM when 	 = 1
and � = 1.
6. Conclusions

In this paper, the homotopy perturbation Sumudu transform
method (HPSTM) and the Adomian decomposition method
(ADM) are successfully applied for solving nonlinear time-
fractional gas dynamics equation. �e numerical solutions
show that there is a good agreement between the two
methods.�erefore, these twomethods are very powerful and
e�cient techniques for solving di�erent kinds of linear and
nonlinear fractional di�erential equations arising in di�erent
elds of science and engineering. However, the HPSTM has
an advantage over the ADM which is that it solves the
nonlinear problems without using Adomian polynomials. In
conclusion, the HPSTM and the ADMmay be considered as
a nice renement in existing numerical techniques andmight
nd the wide applications.
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