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This paper obtains an explicit analytical solution for nonlinear Poisson-Boltzmann equa-

tion by the homotopy perturbation method, which does not require a small parameter

in the equation under study, so it can be applied to both the weakly and strongly nonlin-

ear problems. The obtained results show the evidence of the usefulness of the homotopy

perturbation method for obtaining approximate analytical solutions for nonlinear equa-

tions.
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1. Introduction

Recently Oyanader and Arce [11] suggested a more effective, accurate, and mathemat-

ically friendly solution for prediction of the electrostatic potential, commonly used on

electrokinetic research and its related applications. In order to obtain an explicit mathe-

matical expression for the electrostatic potential, we have to solve the following nonlinear

Poisson-Boltzmann equation:

u′′ = λ2 sinhu, (1.1)

where u is the dimensionless electrical potential, λ the dimensionless inverse Debye

length. The nonlinear term on the right-hand side of (1.1) is related to the free charge

density. A very common simplification invokes the Debye-Hückel approximation usually

written as

sinhu≈ u. (1.2)

As a result, the nonlinear Poisson-Boltzmann equation reduces to the following linear

equation:

u′′ = λ2u. (1.3)
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Such approximation is valid for the case when −1 ≤ u ≤ +1. In this paper, we will sug-

gest an alternative approach to the search for an explicit analytical solution for (1.1) by

homotopy perturbation method [2, 3].

2. A brief introduction to homotopy perturbation method

Homotopy perturbation method [2, 3] is a novel and effective method, and can solve var-

ious nonlinear equations. Recently, some rather extraordinary virtues of the homotopy

perturbation method have been exploited, and there has been a considerable deal of re-

search in applying homotopy technique for solving various strongly nonlinear equations

[1, 4–7, 9, 12, 13], a complete review is available in [10], to illustrate its basic ideas of the

new method, we consider the mathematical pendulum, the equation can be expressed as

u′′ + λ2 sinu= 0, (2.1)

with initial conditions u(0)=A and u′(0)= 0.

Equation (2.1) can be approximated as follows:

u′′ + λ2u−
1

6
λ2u3

= 0, u(0)=A, u′(0)= 0. (2.2)

According to the homotopy perturbation method, we construct a homotopy in the form

u′′ +ω2u+ p

[

(

λ2
−ω2

)

u−
1

6
λ2u3

]

= 0, p = 1, (2.3)

where p ∈ [0,1] is an embedding parameter, ω is the frequency of the mathematical pen-

dulum which is to be determined further.

It is obvious that when p = 0, (2.3) becomes a linearized equation,

u′′ +ω2u= 0. (2.4)

When p = 1, it becomes the original nonlinear one. So the changing process of p from

zero to unity is just that of (2.4) to (2.2). The embedding parameter p monotonically

increases from zero to unity as the trivial problem (2.4) is continuously deformed to the

studied problem (2.2). This is the basic idea of homotopy method which is to continu-

ously deform a simple problem easy to solve into the difficult problem under study.

The homotopy perturbation method [2, 3, 9] uses the imbedding parameter p as a

small parameter. The basic assumption is that the solution of (2.3) can be written as a

power series in p:

u= u+
0 pu1 + p2u2 + ··· . (2.5)

The convergence of the above series is discussed in [9], the asymptotic character of the

series is illustrated in [8, 10].
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Substituting (2.5) into (2.3), collecting terms of the same power of p, gives

u′′0 +ω2u0 = 0, u0(0)= A, u′0(0)= 0, (2.6)

u′′1 +ω2u1 +
(

λ2
−ω2

)

u0−
1

6
λ2u3

0 = 0, u1(0)= 0, u′1(0)= 0. (2.7)

Equation (2.6) can be solved easily, giving u0 = Acosωt. If u0 is substituted into (2.7),

and the resulting equation is simplified, we obtain

u′′1 +ω2u1 +

(

λ2
−ω2

−
1

8
λ2A2

)

Acosωt−
1

24
λ2A3 cos3ωt = 0. (2.8)

In order to avoid secular terms in u1, ω is chosen to eliminate the coefficient of cosωt.

This condition determines ω to be

ω = λ

√

1−
1

8
A2. (2.9)

The approximate period for mathematical pendulum reads

T =
2π

λ
√

1− (1/8)A2
. (2.10)

When A= π/2, the value obtained from (2.10) is T = 1.20T0, while the exact one is Tex =

1.16T0, where T0 = 2π/ω, the 3.4% accuracy is remarkably good in view of the crude

approximation, sinx ≈ x− (1/6)x3. If we approximate the sine function to the order x5,

sinx ≈ x− (1/6)x3 + (1/120)x5, by the same manipulation as illustrated above, we obtain

T =
2π

ω
√

1− (1/8)A2 + (1/192)A4 + ···
. (2.11)

The accuracy, for example, when A= π/2, reaches 0.86%.

3. Explicit analytical solution for Poisson-Boltzmann equation

We approximate the nonlinear Poisson-Boltzmann equation in the form

u′′ = λ2

(

u+
1

6
u3

)

. (3.1)

Suppose that the linearized equation of (1.1) can be expressed as

u′′ = ω2u. (3.2)

Hereby, ω is a modified inverse Debye length. Equation (3.2) is different from the Debye-

Hüchel approximation (1.3) in that the former is valid for the whole solution domain,

while the latter for −1≤ u≤ +1.
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Now we construct a homotopy in the form

u′′−ω2u− p

[

(

λ2
−ω2

)

u+
1

6
u3

]

= 0. (3.3)

As an illustrative example, we consider the following boundary conditions:

u(−1)=A, u(+1)=A, u′(0)= 0. (3.4)

Supposing that the solution of (3.3) can be expressed in the form of (2.5), by the same

operation as illustrated in the above section, we obtain the differential equations for u0

and u1:

u′′0 −ω2u0 = 0, u0(−1)=A, u0(+1)=A, u′0(0)= 0, (3.5)

u′′1 −ω2u1−

[

(

λ2
−ω2

)

u0 +
1

6
u3

0

]

= 0, u1(−1)= 0, u1(+1)= 0, u′1(0)= 0.

(3.6)

The solution of (3.5) is

u0 =
Acoshωx

coshω
. (3.7)

Substituting u0 into (3.6) results in

u′′1 −ω2u1−
(

λ2
−ω2

)Acoshωx

coshω
−
A3(cosh3ωx+ 3coshωx)

24cosh3ω
= 0. (3.8)

Collecting the coshωx term, and eliminating the coshωx term from (3.8) altogether, we

have

−

(

λ2
−ω2

) A

coshω
−

A3

8cosh3ω
= 0, (3.9)

or

ω2
= λ2 +

A2

8cosh2ω
. (3.10)

With this requirement, (3.8) becomes

u′′1 −ω2u1−
A3 cosh3ωx

24cosh3ω
= 0. (3.11)
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The solution of (3.11), incorporating with the boundary conditions, u1(−1)=0, u1(+1)=

0, and u′1(0)= 0, is

u1 =
A3

192ω2 cosh3ω

(

cosh3ωx−
cosh3ω

coshω
coshωx

)

. (3.12)

So we obtain the first-order approximation, which reads as

u= u0 +u1 =
Acoshωx

coshω
+

A3

192ω2 cosh3ω

(

cosh3ωx−
cosh3ω

coshω
coshωx

)

, (3.13)

where ω is solved from (3.10). In practice, we always use its zero-order approximate so-

lution for simplicity:

u= u0 =
Acoshωx

coshω
. (3.14)

4. Conclusions

In this paper, an explicit analytical solution is obtained for the nonlinear Poisson-

Boltzmann equation by means of the homotopy perturbation method, which is a power-

ful mathematical tool in dealing with nonlinear equations. The technique does require a

small parameter in the equation under study. As a result, the technique eliminates com-

pletely the difficulty arising in the classic perturbation method.
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