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HOMOTOPY-THEORETIC ASPECTS OF 2-MONADS

STEPHEN LACK

(communicated by George Janelidze)

Abstract
We study 2-monads and their algebras using a Cat-enriched

version of Quillen model categories, emphasizing the parallels
between the homotopical and 2-categorical points of view. Ev-
ery 2-category with finite limits and colimits has a canoni-
cal model structure in which the weak equivalences are the
equivalences; we use these to construct more interesting model
structures on 2-categories, including a model structure on the
2-category of algebras for a 2-monad T , and a model structure
on a 2-category of 2-monads on a fixed 2-category K .

1. Introduction

1.1. There are obvious connections between 2-category theory and homotopy
theory. It is possible, for instance, to construct a 2-category whose objects are spaces,
whose morphisms are paths parametrized by intervals of variable length, and whose
2-cells are suitably defined equivalence classes of homotopies between paths. On
the other hand, in 2-category theory one tends to say that arrows are isomorphic
rather than equal, and that objects are equivalent rather than isomorphic, typically
with some coherence conditions involved, and this is analogous to working “up to
all higher homotopies”.

In both these cases, the 2-categorical picture is somewhat simpler than the ho-
motopical one. In the former case, when one says “up to all higher homotopies”, this
process does not extend up very far: there are isomorphisms between arrows, and
equations between the isomorphisms, but that is as far as it goes with 2-categories.
For still higher homotopies, one needs to use n-categories for higher n, or possibly
ω-categories. This “degeneracy” of 2-categories, from the homotopy point of view,
is closely related to the equivalence relations one must impose on homotopies in
order to obtain, as in the previous paragraph, a 2-category of spaces, paths, and
homotopies.

1.2. Under this analogy, 2-categories correspond to spaces whose homotopy
groups πn are trivial for n > 2, while mere categories would correspond to spaces
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with πn trivial for n > 1. It is, however, possible to model all spaces using just cat-
egories, via the nerve construction. This point of view on categories was prominent
in work of Quillen [15] and Segal [16], and is the basis of the theorem of Thomason
[17] that there is a model structure on the category Cat of small categories which
is Quillen equivalent to the standard model structure on the category SSet of sim-
plicial sets. There is also a corresponding result for 2-Cat [18]. Under this point
of view, categories are regarded as being the same if their nerves are homotopy
equivalent; this is a much coarser notion than the usual categorical point of view,
adopted here, that they are the same if they are equivalent as categories.

1.3. In this paper we pursue the point of view that 2-category theory can be seen
as a slightly degenerate part of homotopy theory, and explore various consequences,
mostly within the area of two-dimensional monad theory, as developed for example
in [3]. This point of view builds upon the earlier papers [12, 13] which constructed
Quillen model structures on the categories 2-Cat of 2-categories and 2-functors,
and Bicat of bicategories and strict homomorphisms, investigated their homotopy-
theoretic properties, and related these to the existing theory of 2-categories.

The difference between this paper and the earlier ones is that before we looked
at a model structure for the category of all 2-categories, whereas here we consider
model structures on particular 2-categories. There is a notion of model structure
on an enriched category, where the base V for the enrichment itself has a suitable
model structure, and we use this in the case V = Cat, so that a V -category is a
2-category. We therefore speak of a model 2-category, and these are the tools for
our analysis of the homotopy-theoretic aspects of 2-monad theory.

1.4. A model 2-category has three specified classes of morphisms, called the cofi-
brations, the weak equivalences, and the fibrations. They satisfy all the usual prop-
erties of model categories, as well as a strengthened version of the lifting properties,
which provides the relationship between the model structure and the enrichment.
We describe the details in Section 3.

1.5. It turns out that every 2-category with finite limits and colimits has a
canonical model structure in which the weak equivalences are the equivalences. The
details are described in Section 4. This can be seen as a 2-categorical analogue of
the fact that every category has a model structure, called the “trivial” structure,
in which the weak equivalences are the isomorphisms. This trivial structure is in
practice almost never compatible with the enrichment, and so there is little harm
in speaking of the “trivial model structure on the 2-category K ” to mean this
one with the equivalences as weak equivalences; for a more precise statement, see
Remarks 3.5 and 4.16. Just as in the case of ordinary categories, for the trivial model
structure on a 2-category, all objects are fibrant and cofibrant. The factorizations
can be constructed in a uniform way using limits and colimits.

1.6. The model structures of real interest are not the trivial ones; rather they
can be constructed from the trivial ones via a lifting process. If K is a locally
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presentable 2-category, and T is a 2-monad on K , there is a 2-category T -Algs

of strict T -algebras, strict T -morphisms, and T -transformations, and a forgetful 2-
functor Us : T -Algs → K with a left adjoint Fs a Us. A variety of examples will
be discussed in the following paragraphs; all of these 2-monads and more can be
found in the final section of [3]. We use this adjunction to define a model structure
on T -Algs, in which a strict T -morphism f is a fibration or weak equivalence in
T -Algs if and only if the underlying Usf is one in K , where K is equipped with
the trivial model structure. The resulting model structure on T -Algs is not itself
trivial; in particular it has weak equivalences which are not equivalences in T -Algs.
The details of the process are developed in Section 5. The following section provides
an overview of various examples of such 2-monads T , and of the remainder of the
paper.

1.7. This paper has had a long gestation period, with the basic results dating
back to 2002. I am grateful to the participants of the seminars at which it was
presented — the Australian Category Seminar (2002 and 2006) and the Chicago
Category Seminar (2006) — for their interest and for various helpful comments. Part
of the writing up was done during a visit to Chicago in May 2006, and I am very
grateful to Peter May, Eugenia Cheng, and the members of the topology/categories
group for their hospitality.

2. Overview of examples

2.1. An important class of examples is obtained by taking K = Cat. Then
T describes some sort of algebraic structure borne by categories. For example this
could be monoidal categories, strict monoidal categories, symmetric monoidal cat-
egories, categories with finite limits, categories with finite products and coproducts
satisfying the distributive law, and so on. In each case, an algebra will consist of a
category equipped with a specific choice of all elements of the structure (for exam-
ple, a specific choice of the product X × Y of two objects, if the structure involves
binary products), and the strict T -morphisms will be the functors which strictly
preserve these choices. Such strict morphisms are of theoretical importance only;
usually one would consider the pseudo T -morphisms, which preserve the structure
up to suitably coherent isomorphisms. We write T -Alg for the 2-category of strict
T -algebras, pseudo T -morphisms, and T -transformations, and usually speak just of
T -morphisms, with the “pseudo” variety of morphism being the default. There is
a sense, made precise in Theorem 5.15 below, in which T -Alg is the “homotopy
2-category” of T -Algs.

It is familiar in homotopy theory that up-to-homotopy morphisms from A to
B can be identified, in an up-to-homotopy sense, with ordinary morphisms from a
cofibrant replacement of A to a fibrant replacement of B. There is a corresponding,
but rather tighter result here. Every object is already fibrant, and for any A there is
a particular cofibrant replacement A′ of A for which the pseudomorphisms from A
to B are in bijection with the strict ones from A′ to B. In the 2-categorical context
the cofibrant objects are usually called flexible.
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2.2. There are other algebraic structures borne by categories which cannot be
described in terms of 2-monads on Cat, but can be described by 2-monads on
the 2-category Catg of categories, functors, and natural isomorphisms. A typical
example is the structure of monoidal closed category. The point is that the internal
hom is covariant in one variable but contravariant in the other, and there is no
way to describe operations C op × C → C using 2-monads on Cat. But if we work
with Catg then there is no problem: the internal hom is then seen as an operation
Ciso×Ciso → Ciso, where Ciso is the subcategory of C consisting of the isomorphisms,
and as such the operation is perfectly well-defined. There are subtleties involved, in
that more work is required to encode the functoriality of the tensor product: see [3].
Similarly such structures as symmetric monoidal closed categories, compact closed
categories, cartesian closed categories, or toposes can be described by 2-monads on
Catg.

2.3. Another important class of examples arises on taking obC to be the objects
of a small 2-category C , and K to be the 2-category [obC ,Cat] of obC -indexed
families of categories. Then there is a 2-monad T on K for which T -Algs is the
presheaf 2-category [C op,Cat], consisting of 2-functors, 2-natural transformations,
and modifications. The pseudomorphisms in this case are the pseudonatural trans-
formations. In Section 6 we study this example, thinking of presheaves as being the
weights for weighted colimits (or limits). The cofibrant objects are once again im-
portant: they are the weights for flexible colimits. Flexible colimits are those which
can be constructed out of four basic types: coproducts, coinserters, coequifiers, and
splittings of idempotents. The coinserters and coequifiers are 2-dimensional colimits
which universally add or make equal 2-cells between given 1-cells. In the context of
Cat, this corresponds to adding or making equal morphisms of a category, with-
out changing the objects. One could use these colimits to force two objects to be
isomorphic, but not to be equal.

It is known that the flexible algebras in T -Algs are closed under flexible colimits;
in fact they are precisely the closure under flexible colimits of the free algebras.
In Theorem 6.4 we give a more general reason for this first fact: in any model 2-
category, the cofibrant objects are always closed under flexible colimits. This is a
Cat-enriched version of the fact that in any model category the cofibrant objects
are closed under coproducts and retracts.

2.4. The next example involves a 2-category of 2-monads on a fixed base 2-
category K , which in this introduction could usefully be taken to be Cat. The 2-
category Endf (K ) of finitary (=filtered-colimit-preserving) endo-2-functors of K
is locally finitely presentable, and there is a finitary 2-monadM on Endf (K ) whose
2-category M -Algs of algebras is the 2-category Mndf (K ) of finitary 2-monads on
K . In Section 7 we consider the trivial model structure on Endf (K ) and the
lifted model structure on Mndf (K ). One reason for considering Mndf (K ), is
that one can use colimits in Mndf (K ) to give presentations for monads (exactly
as in the unenriched setting). This depends on the fact that for any object A there
is a 2-monad 〈A,A〉 for which monad morphisms T → 〈A,A〉 are in bijection with
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T -algebra structures on A. Thus one can gradually build up the structure encoded
in the notion of algebra by forming colimits of monads.

The morphisms of M -Alg are the pseudomorphisms of 2-monads. The main rea-
son to consider these is to deal with pseudoalgebras. Whereas for morphisms it is
the pseudomorphisms which arise in practice, and the strict ones are largely just
a theoretical construct, it is somewhat different for algebras. Particular algebraic
structures one might want to consider can most easily be described using strict
algebras — for example there is a 2-monad T whose strict algebras are the not-
necessarily-strict monoidal categories — but some sorts of formal manipulations
one might do fail to preserve strictness, and so even if one starts with a strict T -
algebra one might end up with a non-strict one. This distinction is discussed in
Remark 5.8.

The connection between pseudomorphisms of monads and pseudoalgebras, is that
to give an object A a pseudo T -algebra structure is equivalent to giving a pseu-
domorphism of monads from T to 〈A,A〉. As in Section 2.1, there is a cofibrant
replacement T ′ of T with the property that such pseudomorphisms T → 〈A,A〉 are
in bijection with strict morphisms T ′ → 〈A,A〉; that is, with T ′-algebra structures
on A. Furthermore, if the 2-monad T is flexible, then any pseudo T -algebra can be
replaced by an isomorphic strict one. The fact that flexible colimits of flexible mon-
ads are flexible gives a useful criterion for when a 2-monad given by a presentation
might be flexible.

2.5. The model structure on Mndf (K ) can be used to infer “semantic” in-
formation about a 2-monad T : that is, information about the 2-category T -Alg
of (strict) T -algebras and (pseudo) T -morphisms. The passage from T to T -Alg
is 2-functorial: if 2-CAT/K denotes the (enormous!) 2-category of possibly large
2-categories equipped with a 2-functor into K and the morphisms are the commu-
tative triangles, then there is a 2-functor sem : Mndf (K )op → 2-CAT/K sending
a 2-monad T to T -Alg, equipped with the forgetful 2-functor U : T -Alg → K ; we
write k∗ : T -Alg → S-Alg for the 2-functor induced by a morphism of 2-monads
k : S → T . Section 8 concerns sem : Mndf (K )op → 2-CAT/K .

The definitions of weak equivalence and fibration for 2-functors coming from the
model structure on 2-Cat of [12] make perfectly good sense for large 2-categories,
and it is only size issues which prevent this from making 2-CAT/K into a model
category, and sem into a right Quillen functor. For sem sends preserves limits, fi-
brations, and trivial fibrations (that is, it sends colimits in Mndf (K ) to limits
in 2-CAT/K , cofibrations in Mndf (K ) to fibrations in 2-CAT/K , and so on).
The extent to which sem preserves general weak equivalences is closely related to
the coherence problem for pseudoalgebras (which involves among other things the
replacement of a pseudoalgebra by an equivalent strict one).

The 2-functor k∗ : T -Alg → S-Alg restricts to a 2-functor k∗s : T -Algs → S-Algs,
which is the right adjoint part of a Quillen adjunction, where T -Algs and S-Algs are
given the lifted model structures. We show in Proposition 8.4 that k∗s is a Quillen
equivalence if and only if k∗ : T -Alg → S-Alg is a biequivalence; that is, if sem(k)
is a weak equivalence in 2-CAT/K .
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2.6. Instead of monads, another approach to universal algebra is offered by
operads. In [1] operadic analogues are established to our lifted model structures
on T -Algs and on Mndf (K ), generalizing earlier work by various authors. In one
respect, the setting of [1] is more general than that here, since they work over
an arbitrary monoidal model category V , whereas here we consider only the case
V = Cat. This makes for substantial simplifications, due to the simple nature of
the model structure on Cat. On the other hand, there are significant simplifications
arising from restricting from general monads to operads, essentially because both
in the category of operads, and in the category of algebras for a given operad, one
has much tighter control over colimits than in the corresponding case for monads.
There is also a more technical difference in that, in contrast to the situation in [1],
the model structures arising here are not generally cofibrantly generated although
they are in certain important cases.

In light of this comparison, it is appropriate to give some indication of the greater
generality allowed by monads over operads. Structure described by operads can only
involve operations of the form An → A; or, in the multi-sorted case An1

1 × An2
2 ×

. . . Ank

k → Am, where the superscripts are all natural numbers (corresponding to
finite discrete categories). In the case of monads, one can also use more general limits
such as pullbacks and cotensors. In particular, 2-monads on Cat allow considering
structures involving maps AC → A defined on all diagrams of shape C, for a (not
necessarily discrete) category C.

3. Model 2-categories

3.1. The category Cat of small categories and functors has a well-known “cate-
gorical” or “folklore” model structure in which the weak equivalences are the equiv-
alences of categories, and the fibrations are the isofibrations: these are the functors
p : E → B for which if e ∈ E, and β : b ∼= pe is an isomorphism in B, there exists
an isomorphism ε : e′ ∼= e in E with pe′ = b and pε = β. The model structure
is cofibrantly generated, with generating cofibrations 0 → 1, 2 → 2, and 22 → 2,
where 2 is the discrete category with two objects, 2 is the arrow category, and
22 is the category with two objects, and a parallel pair of arrows between them.
There is a single generating trivial cofibration 1 → I , where I is the “free-living
isomorphism”.

3.2. As well as the model structure, Cat also has monoidal structure given by
the cartesian product. These two structures satisfy the compatibility conditions
required to make Cat into a monoidal model category. See [5] for the precise defi-
nition of monoidal model category; the important point is that there is a resulting
notion of “Cat-model category” (see [5] once again). We call such a structure a
model 2-category; explicitly, this is a 2-category K , with a model structure on the
underlying ordinary 2-category K0 of K , satisfying the following properties. First
of all not just K0 but K must have finite limits and colimits. This reduces to the
further condition that K have tensors and cotensors by the arrow category 2, which
means in turn that for every object A there are objects 2 ·A and 2 t A with natural
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isomorphisms

K (2 ·A,B) ∼= Cat(2,K (A,B) ∼= K (A,2 t B).

As well as this condition on the 2-category, there is also a compatibility condition
on the model structure. Let i : A → B be a cofibration and p : C → D a fibration
in K . Then there is a commutative square

K (B,C)
K (i,C)//

K (B,p)

��

K (A,C)

K (A,p)

��
K (B,D)

K (i,D)
// K (A,D)

in Cat, and so an induced functor [i, p] from K (B,C) to the pullback. The further
property required of a Cat-model category is that [i, p] be an isofibration in any
case, and moreover an equivalence if either i or p is trivial.

The fact that [i, p] is surjective on objects if either i or p is a weak equivalence
is just the usual lifting property for the ordinary model category. We still need (i)
that [i, p] is fully faithful if either i or p is a weak equivalence, and (ii) that in any
case [i, p] is an isofibration.

Condition (i) says that for any x, y : B → C, there is a bijection between 2-cells
x→ y and pairs α : xi→ yi and β : px→ py with pα = βi. Condition (ii) says that
if z : B → C is given, and isomorphisms α : x ∼= zi and β : y ∼= pz with pα = βi, as
in

A
i
//

x

##
�� ��
�� α
B z

// C p
// D = A

i
// B z

//

y

##
�� ��
�� β
C p

// D

then there exist a 1-cell t : B → C and an isomorphism τ : t ∼= z with pτ = β and
τi = α, as in

A
i
// B z

//

t

��
�� ��
�� τ

C = A
i
//

x

##
�� ��
�� α
B z

// C

B z
//

t

��
�� ��
�� τ

C p
// D = B z

//

y

##
�� ��
�� β
C p

// D

The special case A = 0 of (i) gives the first half of:

3.3. Proposition: If B is cofibrant then K (B,−) : K → Cat preserves fi-
brations and trivial fibrations. In particular, if p : C → D is a trivial fibration,
then composition with p induces an equivalence of categories K (B,C) ' K (B,D).
Dually, if E is fibrant, then K (−, E) : K op → Cat preserves cofibrations and
trivial cofibrations, and if j : C → D is a trivial cofibration, then composition with
j induces an equivalence K (D,E) ' K (C,E).
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As a further consequence of the definition we have:

3.4. Proposition: If f : B → B′ is a weak equivalence and f ∼= g then g is a
weak equivalence.

Proof. Let q : QB → B be a cofibrant replacement of B. Then fq is a weak
equivalence and gq ∼= fq, while gq will be a weak equivalence if and only if g is one.
So we may as well suppose that B is cofibrant.

Thus the unique map 0 → B is a cofibration. Condition (ii) now says that for
any fibration p : C → D, and any z : B → C, y : B → D, and β : y ∼= pz, there
exists a lifting of β to τ : t→ z with pt = y and pτ = β.

Let I · B be the tensor of B by I , this is the universal object equipped with
maps d, c : B → I · B and an isomorphism λ : d→ c. For fixed z, to give y and β
is to give a map h : I ·B → D with hd = pz. Thus condition (ii) can equivalently
be expressed as saying that d : B → I ·B has the left lifting property with respect
to any fibration; that is, that d : B → I ·B is a trivial cofibration.

In particular, d : B → I · B is a weak equivalence. But there is a unique
e : I ·B → B with ed = ec = 1 and eλ = id; since d is a weak equivalence, so are e
and c.

Now f ∼= g, so there is a unique induced h : I · B → B′ with hd = f , hc = g,
and hλ equal to the given isomorphism f ∼= g. Since d and c are weak equivalences
it follows that f is one if and only h is one if and only if g is one. 2

3.5. Remark: There are three ways of defining a model structure on an arbitrary
(unenriched) category with finite limits and colimits: one can take the cofibrations to
be the isomorphisms, the weak equivalences to be the isomorphisms, or the fibrations
to be the isomorphisms. (In each case the other two classes of maps then must consist
of all the morphisms.) It is easy to see that for a 2-category K with finite limits and
colimits, we can take either the fibrations or the cofibrations to be the isomorphisms
and obtain a model 2-category. The other case, where the weak equivalences are the
isomorphisms is more complicated, but it is easy to see that this gives a model 2-
category if the only invertible 2-cells in K are the identities. Actually the converse
is also true. Suppose that K is a model 2-category in which the weak equivalences
are the isomorphisms, and all maps are fibrations and cofibrations. Let f, g : A→ B
be given, with ϕ : f ∼= g. Form I · A as in the proof of the previous proposition,
and the induced h : I · A → B. Now e : I · A → A is a weak equivalence, as in
the proof of the proposition, but it is a cofibration by assumption, so is a trivial
cofibration. Also B is fibrant, so h : I · A → B extends along e as h = ke. Now
f = hd = ked = k = kec = hc = g and ϕ = hλ = keλ = id. Thus the identities are
indeed the only invertible 2-cells; it follows that all equivalences are isomorphisms.

3.6. The homotopy category of Cat is the category HoCat of small categories
and isomorphism classes of functors. This category has finite products (computed
as in Cat), and so we can consider categories enriched in it. The canonical map
p : Cat → HoCat preserves finite products, and so every 2-category has an asso-
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ciated HoCat-category, obtained by applying p to each hom-category. (There are
corresponding facts with Cat replaced by an arbitrary monoidal model category; see
[5].) The homotopy category of a model 2-category is canonically a HoCat-category
(once again, see [5] for the general situation). If K is a model Cat-category, then
the unenriched homotopy category is the category of objects of K and isomor-
phism classes of morphisms. The enriched homotopy category HoK consists of the
objects of K , and the category Ho(K (A,B)) for each A,B ∈ K . The point is that
horizontal composition of 2-cells is now only determined up to isomorphism.

3.7. A right adjoint 2-functor U : L → K between model 2-categories will be
called a right Quillen 2-functor if it sends fibrations to fibrations and trivial fibra-
tions to trivial fibrations; given that U and not just its underlying ordinary functor
U0 has a left adjoint, this will be the case if and only if U0 is a right Quillen functor.
There is a derived HoCat-adjunction between the homotopy HoCat-categories, just
as in the usual case. This derived HoCat-adjunction is a HoCat-equivalence if and
only if the unit and counit are invertible, but this depends only on the underlying
ordinary adjunction between unenriched homotopy categories, so the usual theory
of Quillen equivalences applies.

3.8. There is a 2-categorical construction called the pseudolimit of a morphism
which will be crucial to many parts of this paper. If f : A → B is any 1-cell, its
pseudolimit is the universal diagram of shape

A

f

��

L

u
::tttttt

v $$JJJJJJ � �� �KSλ

B

with λ invertible. Thus if a : X → A and b : X → B with ϕ : b ∼= fa, there is
a unique 1-cell c : X → L with ux = a, vx = b, and λx = ϕ. There is also a
2-dimensional aspect to the universal property, which can most simply be expressed
by saying that if c, c′ : X → L, then composition with u induces a bijection between
2-cells c→ c′ and 2-cells uc→ uc′; in other words u is representably fully faithful.
Pseudolimits of arrows can be constructed using pullbacks, equalizers, and cotensors
with 2; or alternatively using pullbacks and cotensors with I , the category with
two objects and an isomorphism between them.

By the universal property, there is a unique d : A→ L with ud = 1, vd = f , and
λd = id. By the 2-dimensional aspect of the universal property, there is a unique
invertible 2-cell δ : ud ∼= 1 with dδ = id. We say that u is a retract equivalence: this
means that it has a section d, with du ∼= 1.

For our first application of the construction we have:

3.9. Proposition: In a model 2-category, every equivalence is a weak equiva-
lence.
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Proof. Let f : A → B be an equivalence in a model 2-category K . Form the
pseudolimit L of f as above. We know that f = vd with d the section of a retract
equivalence. But f is itself an equivalence, so there is a g : B → A with β : fg ∼= 1,
and this induces a unique c : B → L with uc = g, vc = 1, λc = β, as in

A

f

��

A

f

��

B
L //

g --

1
11

L

u
::tttttt

v $$JJJJJJ � �� �KSλ = B

g
99sssssss

1 %%KKKKKK � �� �KSβ

B B.

Furthermore ucv = gv ∼= gfu ∼= u, so cv ∼= 1, and so v is also a retract equiva-
lence. So now it will suffice to show that every retract equivalence is a weak equiv-
alence: for then u and v will be weak equivalences; but ud = 1 will imply that d is
a weak equivalence and vd = f will imply that f is a weak equivalence.

Suppose then that f : A → B has fg = 1 and gf ∼= 1. Then gf is a weak
equivalence by Proposition 3.4, and f is a retract of gf by a standard argument, so
is itself a weak equivalence, since these are closed under retract. 2

4. The trivial model structure on a 2-category

4.1. Let K be a 2-category with finite limits and colimits. In this section we
describe a model 2-category structure on K ; we call it the trivial model structure
on the 2-category. An ordinary model category is trivial when the weak equivalences
are precisely the isomorphisms; in a trivial model 2-category the weak equivalences
are precisely the equivalences, while the fibrations are defined similarly to the (cat-
egorical) model structure on Cat. Indeed Cat will be our first example of a trivial
model 2-category. Note that triviality of a model 2-category is not the same as triv-
iality of the underlying model category: Cat is trivial as a model 2-category but
the underlying ordinary model category is not trivial, since not every equivalence of
categories is an isomorphism. On the other hand, if K is a model 2-category and
the underlying ordinary model category K0 is trivial, then so is K : see Remark 4.16

4.2. The trivial model structure on a 2-category K can most concisely be de-
scribed by saying that a morphism f : A → B is a weak equivalence or fibration
in K if and only if the functor K (E, f) : K (E,A) → K (E,B) is one in Cat,
for every object E of K . A morphism is a cofibration if and only if it has the left
lifting property with respect to the trivial fibrations.

Most of this section will be devoted to the proof of:

4.3. Theorem: If K is a 2-category with finite limits and colimits then the def-
inition just given makes it into a model 2-category. The weak equivalences are pre-
cisely the (adjoint) equivalences, and the fibrations are the isofibrations. We call this
the trivial model structure, to distinguish it from any others which may exist.The
factorizations are functorial, and every object is fibrant and cofibrant.
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4.4. First we explicate the definition. A morphism f : A → B in a 2-category
K is said to be an equivalence if there exists a morphism g : B → A with
gf ∼= 1A and fg ∼= 1B . Since any 2-functor sends equivalences to equivalences,
the equivalences are certainly weak equivalences. Conversely, if f : A → B is a
weak equivalence, then K (B, f) : K (B,A) → K (B,B) is an equivalence of cat-
egories, so by essential surjectivity there exists a g : B → A and β : fg ∼= 1B .
Since K (A, f) : K (A,A) → K (A,B) is also an equivalence of categories, and
K (A, f)gf = fgf ∼= f = K (A, f)1A, via the isomorphism βf , there is a unique
isomorphism α : gf ∼= 1A with fα = βf . Thus f is an equivalence, and so the weak
equivalences are precisely the equivalences. (We note in passing the well-known fact
that the isomorphisms gf ∼= 1 and 1 ∼= fg can always be chosen so as to satisfy the
triangle equations, and so give an adjoint equivalence.) The weak equivalences are
closed under retracts and satisfy the 2-out-of-3 property.

The fibrations are the isofibrations: these are the maps f : A→ B such that for
any morphisms a : X → A and b : X → B, and any invertible 2-cell β : b ∼= fa,
there exists a 1-cell a′ : X → A and an invertible 2-cell α : a′ ∼= a with fa′ = b and
fα = β.

It now follows that the trivial fibrations are precisely the retract equivalences;
that is, the morphisms g : B → A for which there exists a morphism f : A → B
with gf = 1A and fg ∼= 1B . Once again, the isomorphism can be chosen so as to
give an adjoint equivalence.

We define the trivial cofibrations to be the maps with the left lifting property
with respect to the fibrations; of course these will turn out to be precisely those
cofibrations which are weak equivalences.

4.5. In the case K = Cat, this gives the “categorical” or “folklore” model
structure, defined in [6], for example. In the case K = CatX for a set X, this gives
the pointwise model structure coming from Cat. In the case of K = Cat(E ) of
internal categories in a topos E , this will not in general be the model structure of
[6], since there the weak equivalences were the internal functors which are (in the
suitably internal sense) fully faithful and essentially surjective on objects, and these
are more general than the adjoint equivalences unless the axiom of choice holds in
E . In the case K = Cat(C ) for a suitable finitely complete category C , it does
agree with the model structure “for the trivial topology” of [4].

Once again, the construction of the pseudolimit of an arrow will play a key role:

4.6. Proposition: If an arrow f : A → B in a 2-category K admits a pseu-
dolimit L as in Section 3.8 above, then f is an isofibration if and only if there exists
a 1-cell v′ : L → A and an isomorphism λ′ : v′ → u with fv′ = v and fλ′ = λ; in
other words, if and only if K (L, f) is an isofibration in Cat.

Proof. The “only if” part is immediate; as for the “if” part: if a : C → A, b : C → B,
and β : b ∼= fa are given, let c : C → L be the induced map; then v′c : C → A and
λ′c : v′c ∼= uc = a provide the required lifting. 2

The 1-cells 1 : A → A and f : A → B, and the identity 2-cell f = f , induce a
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unique 1-cell d : A→ L with ud = 1, vd = f , and λd = idf . Since udu = u, there is
a unique invertible 2-cell ζ : du ∼= 1 with uζ equal to the identity. It easily follows
that ζd is also the identity, so that d and ζ exhibit u as a retract equivalence.

Furthermore, the universal property of L implies

4.7. Proposition: The morphism v : L→ B is a fibration.

Proof. If c : C → L and γ : e ∼= vc, then let (a = uc, b = vc, β = λc) be the data
corresponding to c via the universal property, so that γ : e ∼= b. Composing β and
γ gives an isomorphism e ∼= b ∼= fa, which therefore has the form λy for a unique
y : C → L, so that in particular vy = e and uy = a. Now uy = a = uc, so there is a
unique δ : y ∼= c with uδ equal to the identity, and now

A

f

��

A

f

��

C
c //

44
e

����
FN

γ

L

u
::tttttt

v $$JJJJJJ � �� �KSλ = C
y // L

u
::tttttt

v $$JJJJJJ � �� �KSλ

B B

A

f

��

= C

c
%%

y

99� �� �KSδ

44
e

L

u
::tttttt

v $$JJJJJJ � �� �KSλ

B

and λc is invertible, so that vδ = γ, and δ is the required lifting. 2

4.8. Observe also that if f is itself an equivalence, then composing with the
equivalence u gives an equivalence fu, so v is an equivalence since it is isomorphic
to fu. Thus any morphism f can be factorized as a weak equivalence d followed
by a fibration v, and the fibration will be trivial if (and only if) f was a weak
equivalence.

4.9. Dually, we can form the pseudocolimit of a morphism f : A→ B, involving
i : A→ C, j : B → C, and λ : i ∼= jf , as in

A

f

��

i

%%JJJJJJ

�� ��
�� λ C

B
j

99tttttt

and there is an induced e : C → B with ei = f , ej = 1B , eλ = id, and an
isomorphism ε : je ∼= 1 with εj and eε both identity 2-cells. In particular, e is
always a trivial fibration.
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4.10. Lemma:

1. For any f as above, i is a cofibration and e a trivial fibration.

2. If f is a weak equivalence, then i is a trivial cofibration.

Proof. 1. The fact that e is a trivial fibration was observed above. Let’s prove that
i is a cofibration. Suppose given then a commutative square

A

i

��

u // E

p

��
C v

// D

with p a trivial fibration. By the universal property of C, to give v is equivalently
to give t : B → D and τ : pu ∼= tf .

Since p is a retract equivalence, there exists a 1-cell s : B → E with ps = t.
Then τ : pu ∼= tf = psf has the form pσ for a unique isomorphism σ : u ∼= sf .
By the universal property of C, there is a unique r : C → E with ri = u, rj = s,
and rλ = σ. If pr = v then r will provide the desired lifting. But pri = pu = vi,
prj = ps = t = vj, and prλ = pσ = τ = vλ, and so pr = v by the universal property
of C once again.

2. We must show that i has the left lifting property with respect to the fibrations.
Suppose given a commutative square

A

i

��

u // E

p

��
C v

// D

with p a fibration. To give v is equivalently to give t : B → D and τ : pu ∼= tf . We
are assuming that f is an equivalence, so we can choose g : B → A, α : 1 → gf ,
and β : fg → 1 giving an adjoint equivalence. Now there are 1-cells ug : B → E
and t : B → D, and an isomorphism t ∼= pug as in the left hand side of

A
u //

f

��

E

p

��

A
u // E

p

��

�� ��
�� β

�� ��
�� τ =

�� ��
�� σ

B

g

::uuuuuuuuuuuuuu
1

// B
t
// D B

g

::uuuuuuuuuuuuuu
1

//
s

>>

B
t
// D

and so since p is a fibration, there exist an s : B → E and an isomorphism σ : ug ∼= s,
giving the equality displayed above. Now by the universal property of C, there is a
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unique r : C → E with ri = u, rj = s, and

A

f

��

i

%%JJJJJJ
u

��

A

f

��

1

$$JJJJJJ
u

���� ��
�� λ C r

// E =
�� ��
�� α A

u // E

B
j

99tttttt

DD

s
B

DD

s

** **
�� σ

g

::tttttt

If pr = v then r will provide the desired lifting. Now pri = pu = vi and prj = ps =
t = vj, while

A

f

��

i

%%JJJJJJ A

f

��

1

$$JJJJJJ

�� ��
�� λ C

r // E
p��

=
�� ��
�� α A

u // E
p��

B
j

99tttttt
D B

g

::tttttt

DD

s

)) ))
�� σ D

A

f

��

1

$$JJJJJJ

=
�� ��
�� α

������ β
A

u //

f %%JJJJJJ
������ τ
E

p

%%JJJJJJ

B
1

//
g

::tttttt
B v

// D

but by one of the triangle equations this last just reduces to τ ; that is to vλ. Thus
prλ = vλ and so pr = v. 2

4.11. By the lemma we know that every morphism can be factorized as a cofibra-
tion followed by a trivial fibration, and that every weak equivalence can be factorized
as a trivial cofibration followed by a trivial fibration. But we saw in 4.8 that every
map can be factorized as a weak equivalence followed by a fibration, thus we now
have both factorization properties. Notice that in order to obtain the factorization
as a trivial cofibration followed by a fibration we have used both the pseudocol-
imit and the pseudolimit, whereas for the other factorization we only needed the
pseudocolimit.

4.12. We now check that the trivial cofibrations are precisely the maps that
are both weak equivalences and cofibrations. If f : A → B is a weak equivalence
and a cofibration, then by the lemma we can factorize it as f = pi with i a trivial
cofibration and p a trivial fibration. The lifting property for cofibrations and trivial
fibrations now makes f a retract of the trivial cofibration i, and so f is itself a
trivial cofibration.

If conversely f is a trivial cofibration, then certainly it is a cofibration; we must
show that it is a weak equivalence. To do this, factorize it as a weak equivalence d
followed by a fibration v, using the pseudolimit of f , and now the lifting property for
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trivial cofibrations and fibrations shows that f is a retract of the weak equivalence
d, and so a weak equivalence.

This completes the verification of the model category axioms; the factorizations
were explicitly constructed and clearly functorial, and every object is fibrant and
cofibrant. It remains to check that this gives a model 2-category.

4.13. We now check the conditions (i) and (ii) in the definition of model 2-
category 3.2. For the first of these, let i : A→ B be a cofibration and p : C → D a
fibration in K . Let x, y : B → C be given, with 2-cells α : xi→ yi and β : px→ py
satisfying pα = βi. If p is a trivial fibration, then in particular it is an equivalence,
and so there is a unique γ : x → y satisfying pγ = β. Furthermore the 2-cells
γi, α : xi→ yi satisfy pγi = βi = pα, and so γi = α. Similarly if i is an equivalence
then there is a unique γ : x → y satisfying γi = α, and it is also the case that
pγ = β. This proves (i).

As for condition (ii), let x : A → C, y : B → D, z : B → C, α : x ∼= zi, and
β : y ∼= pz be given with pα = βi. We must find t : B → C and τ : t ∼= x satisfying
pτ = β and τi = α. We do this first under the assumption that i appears in a
pseudocolimit

A
f //

i   A
AA

AA
AA

A
____ +3
ϕ

E

j~~}}
}}

}}
}}

B.

The general case will then follow since a general cofibration i′ can be factorized
as such an i followed by a trivial fibration, as in Lemma 4.10, thus by the lifting
property i′ is a retract of i, whence the general result.

Suppose then that i does indeed arise in such a pseudocolimit. By the universal
property of B, to give y : B → D is to give y1 : A → D, y2 : E → D, and an
isomorphism η : y1 ∼= y2f . Similarly, to give z : B → C is to give z1 : A → C,
z2 : E → C, and ζ : z1 ∼= z2f . To give β : y ∼= pz is just to give β2 : y2 ∼= pz2 (with
β2 = βj and βi = pzλ−1.β2f.yλ = pζ−1.β2f.η). Thus since α : x ∼= zi = z1 satisfies
pα = βi we have pα = pζ−1.β2f.η or equivalently pζ.pα = β2f.η.

Since p is a fibration, there exist a 1-cell t2 : E → C and an isomorphism
τ2 : t2 ∼= z2 as in

C

p

��

C

p

��

=

E

z2

77

t2

KK

EEEE^f
τ2

y2
// D E y2

//

z2

11

EEEE^f
β2

D

with pt2 = y2 and pτ2 = β2. The 1-cells x : A → C and t2 : E → C, and the
isomorphism

x
α // zi = z1

ζ // z2f
τ−1
2 f // t2f

has the form tϕ for a unique t : B → C by the universal property of the pseudo-
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colimit B. Now tj = t2 and zj = z2, so the isomorphism τ2 : t2 ∼= z2 extends to a
unique isomorphism τ : t ∼= z with τj = τ2. We shall show that t and τ have the
required properties.

We have ti = x by construction; we show that pt = y using the universal property
of the pseudocolimit B. Now pti = px = yi and ptj = pt2 = y2 = yj, while

ptϕ = (pτ−1
2 f).(pζ).(pα) = β−1

2 f.β2f.η = η = yϕ

so that pt = y as required.
Thus pτ and β both go from pt = y to pz. Since j is an equivalence, they will be

equal if and only if pτj = βj; but pτj = pτ2 = β2 = βj.
It remains to show that τi = α. To do so, observe that zϕ.τi = τjf.tϕ by the

middle-four interchange law applied to

A

i
&&

jf

88
�� ��
�� ϕ B

t
''

z

77
�� ��
�� τ C,

while τjf.tϕ = τ2f.tϕ = ζ.α = zϕ.α, so that zϕ.τi = zϕ.α, but zϕ is invertible, so
τi = α as desired.

This completes the proof of Theorem 4.3.

4.14. Example: If K is a locally discrete 2-category, meaning that the only
2-cells are the identities, we may identify it with its underlying ordinary category.
The resulting model structure is the trivial model structure on the category: the
weak equivalences are just the isomorphisms, and all maps are both fibrations and
cofibrations.

4.15. Example: If K is locally chaotic, so that between any two parallel arrows
f, g : A→ B, there is a unique 2-cell f → g (necessarily invertible), then once again
we can identify K (in a different way) with its underlying category. This time a
map f : A → B is a weak equivalence if and only if there exists an arbitrary map
B → A. The trivial fibrations are precisely the retractions.

4.16. Remark: Let K be a 2-category with finite limits and colimits, and con-
sider the trivial model category structure on the underlying ordinary category K0

of K . As observed in Remark 3.5 above, this will give a model 2-category if and
only if the only invertible 2-cells in K are identities. But in this case the equiva-
lences are exactly the isomorphisms, and every morphism is an isofibration, so K
will also be trivial as a model 2-category. Thus a model 2-category which is trivial
as an ordinary model category is also trivial as a model 2-category; in contrast, as
observed above, a trivial model 2-category need not have an underlying ordinary
model category which is trivial.

4.17. Finally we observe that even for extremely well-behaved 2-categories, the
trivial model structure need not be cofibrantly generated. We write Cat2 for the
2-category of arrows in Cat: an object is a functor a : A → A′, a morphism from
a : A → A′ to b : B → B′ is a commutative square, involving f : A → B and

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 2(2), 2007 245

f ′ : A′ → B′, and a 2-cell from (f, f ′) to (g, g′) consists of 2-cells α : f → g and
α′ : f ′ → g′ satisfying bα = αa′.

4.18. Proposition: The trivial model structure on Cat2 is not cofibrantly gen-
erated.

Proof. Let K be the category Set2 of arrows in Set, seen as a locally chaotic
2-category. There is a fully faithful 2-functor U : K → Cat2 sending a function
f : X → Y to the corresponding functor between the chaotic categories on X and
Y . This 2-functor has a left adjoint, which sends a functor to the corresponding
function between object-sets. The trivial model 2-category structure on Set2 can
be obtained as the lifting of the trivial model 2-category structure on Cat2. Now
if Cat2 were cofibrantly generated, then so would be Set2, but it is not. For if
(mi : Ai → Ai +Bi)i∈I were a small family of generating cofibrations (here Ai and
Bi denote objects of Set2; that is, functions) then so would be (0 → Bi)i∈I . Now
every object of Set2 is cofibrant, so would be a retract of a coproduct of Bi’s. By the
exactness properties of Set, it would then follow that every object was a coproduct
of retracts of Bi’s. Now the closure under retracts of the Bi’s is still small, so there
would be a small full subcategory G of Set2 such that every object was a coproduct
of objects in G . But now consider the objects of the form X → 1. These constitute
a large family, and none of them can be decomposed non-trivially as a coproduct.
Thus there cannot be a small family of generating cofibrations. 2

4.19. This should not perhaps be too surprising. We have defined the weak
equivalences and fibrations by lifting through the representables K (C,−) for arbi-
trary C. Since this is generally a large set of objects it is not surprising that it would
not lead to a cofibrantly generated structure. In some cases however a small set of
objects will suffice, and then the structure will be cofibrantly generated. In partic-
ular, if K = Cat, then it suffices to use just the single representable Cat(1,−)
(which is the identity 2-functor on Cat).

5. The lifted model structure on a 2-category of algebras

5.1. Suppose now that K is a locally presentable 2-category, endowed with the
trivial model structure as in the previous section. Suppose that T is a 2-monad on
K with rank (it preserves α-filtered colimits for some α), and that T -Algs is the
2-category of strict T -algebras, strict morphisms, and T -transformations. Then the
forgetful 2-functor Us : T -Algs → K has a left 2-adjoint Fs, with unit n : 1 → UsFs

and counit e : FsUs → 1. We shall use this adjunction to construct a “lifted” model
structure on T -Algs. A morphism f in T -Algs is defined to be a fibration or weak
equivalence if and only if Usf is one in K , while a morphism is a cofibration if and
only if it has the left lifting property with respect to the trivial fibrations (the maps
which are both fibrations and weak equivalences), and a trivial cofibration if and
only if it has the left lifting property with respect to the fibrations. The fact that
this is a model 2-category will follow immediately from the usual model category
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axioms thanks to the 2-dimensional aspect of the 2-adjunction.
There exist many theorems about lifting model structures, but they generally

depend upon the lifted model structure being cofibrantly generated, which we are
not assuming here.

5.2. Given a strict morphism f : A→ B we can form in T -Algs the pseudolimit
L of f , with projections u : L → A and v : L → B and isomorphism λ : v ∼= fu;
since Us : T -Algs → K preserves limits, UsL will also be the limit in K , and so
Usv : UsL→ UsB will be a fibration in K by Proposition 4.7, and so in turn v will
be a fibration in T -Algs. Furthermore, we have the unique induced d : A→ L with
ud = 1 and λd the identity, and just as before this d is an equivalence in T -Algs, and
so in particular a weak equivalence. This proves that every map can be factorized
as a (weak) equivalence followed by fibration. This already implies that every trivial
cofibration is a weak equivalence, by the same argument used in Section 4.12.

5.3. Let f : A → B be an arbitrary strict morphism. Factorize Usf : UsA →
UsB in K as a cofibration i1 : UsA→ X1 followed by a trivial fibration p1 : X1 →
UsB. Pushout Fsi1 along the counit eA : FsUsA → A, and form the induced map
f1 as in

FsUsA
Fsi1 //

eA

��

FsX1

c1

��

Fsp1 // FsUsB

eB

��
A

j1
// C1

f1

// B

where the left square is the pushout, and f1j1 = f . Now i1 is a trivial cofibration
in K , so Fsi1 is a trivial cofibration in T -Algs, and so in turn is its pushout
j1. There is not so much we can say about f1 at this stage, but we do know
that Usf1 has a section, for if s1 is a section of the trivial fibration p1, then
Usf1.Usc1.UsFss1.nUsB = UseB.UsFsp1.UsFss1.nUsB = UseB.nUsB = 1.

If f is in fact a weak equivalence, then since f = f1j1 and j1 is a weak equivalence,
f1 will be one too. But now Usf1 is a weak equivalence with a section, hence a
trivial fibration, and so finally f1 is a trivial fibration. Thus every weak equivalence
factorizes as trivial cofibration followed by a trivial fibration. Combined with the
factorization, given in Section 5.2, of any map into a weak equivalence followed by
a fibration, this now proves that any map can be factorized as a trivial cofibration
followed by a fibration. It now follows that the trivial cofibrations are precisely the
weak equivalences which are cofibrations, by the argument used in Section 4.12.

5.4. So far things have gone essentially as usual. It remains to show the existence
of the other factorization: cofibration followed by trivial fibration. This is the most
technical part of the proof. Suppose again then that f is arbitrary, and factorize it
as f = f1j1 as above. We know that Usf1 has a section. If we could show that for
any two maps x, y : UsB → UsC1 with Usf1.x ∼= Usf1.y we have x ∼= y, then Usf1
would be a trivial fibration, and we would be done; but in general there is no reason
why this should be true, and there is more work to be done. Factorize f1 as f2j2
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via the same process, also involving i2 : UsC1 → X2 and p2 : X2 → UsB, and now
iterate to obtain a trivial cofibration jn+1 : Cn → Cn+1 and map fn+1 : Cn+1 → B
for any n. Continue transfinitely, setting Cm = colimn<mCn for any limit ordinal
m. Any transfinite composite of the j’s will be a trivial cofibration, and each fn will
have the property that Usfn has a section. So if we can find an n such that for any
x, y : UsB → UsCn with Usfn.x ∼= Usfn.y we have x ∼= y, then fn will be a trivial
fibration, and we will be done.

Let α be a regular cardinal with the property that T preserves α-filtered colimits
and that UsB is α-presentable in K . Since T preserves α-filtered colimits, so does
Us. Let x, y : UsB → Cα be given with Usfα.x ∼= Usfα.y. Now Cα = colimn<αCi,
so UsCα = colimn<αUsCi, and so there exists an n < α such that x and y land in
UsCn, say via x′, y′ : UsB → UsCn. Now Usfn.x

′ = Usfα.x ∼= Usfα.y = Usfn.y
′, and

Usfn = pn+1.in+1, with pn+1 a trivial fibration, so the isomorphism lifts through
pn+1 to give in+1.x

′ ∼= in+1.y
′. Now

jn+1.eCn.Fsx
′ = cn+1.Fsin+1.Fsx

′ ∼= cn+1.Fsin+1.Fsy
′ = jn+1.eCn.Fsy

′

and jn+1 is a trivial cofibration, so has a retraction, and so eCn.Fsx
′ ∼= eCn.Fsy

′,
but by adjointness this is just x′ ∼= y′, which finally gives x ∼= y as required.

This proves the existence of the model structure; it is automatically a model
2-category, via the 2-dimensional aspect of the adjunction.

5.5. Theorem: For a 2-monad T with rank, on a locally finitely presentable 2-
category K , the category T -Algs of strict T -algebras and strict T -morphisms has a
model 2-category structure for which the weak equivalences are the maps which are
equivalences in K , and the fibrations are the maps which are isofibrations in K .

5.6. Remark: Observe that the class of all strict T -morphisms of the form Ti :
TX → TZ with i : X → Z a cofibration in K , while not small, does nonetheless
generate the cofibrations of T -Algs. Furthermore, we can even restrict to those Ti
for which there exist f : X → Y , j : Y → Z , and λ : i ∼= fj, such that i, j, and λ
exhibit Z is as the pseudocolimit in K of f , for every cofibration in K is a retract
of one of these.

Once again every object is fibrant, but it is no longer the case that every object
is cofibrant; we shall see below that the cofibrant objects are precisely the flexible
ones, in the sense of [3].

5.7. The strict morphisms, as in T -Algs, are very useful for theoretical reasons,
but in practice they are rare. More common are the pseudo T -morphisms, which
preserve the structure only up to coherent isomorphism. Since we are treating this
as the basic notion of morphism, we call them simply T -morphisms. They are the
morphisms of a 2-category T -Alg of (still strict) T -algebras, T -morphisms, and T -
transformations. The inclusion 2-functor T -Algs → T -Alg is the identity on objects,
and fully faithful on the hom-categories.
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5.8. Remark: There is also a notion of pseudo T -algebra for a 2-monad T , in
which the usual laws for T -algebras are replaced by coherent isomorphisms; these are
considered in Section 7 below. The pseudo algebras are less important than the strict
ones for two reasons. First there is a “theoretical” reason, discussed in Section 7, that
for a 2-monad T with rank on a locally presentable 2-category K , the pseudo T -
algebras are just the strict algebras for a different 2-monad T ′. There is also a more
practical reason, which we illustrate with the example of monoidal categories. There
is a 2-monad T on Cat whose strict algebras are the strict monoidal categories.
It is true that “up to equivalence” the pseudo T -algebras are the same as the
(not necessarily strict) monoidal categories, but this is a relatively hard fact. Much
easier is the fact that there is a 2-monad S whose strict algebras are precisely
the monoidal categories (we sketch in Section 7.4 below the slightly simpler case
of “semigroupoidal categories”). The situation is similar but more pronounced in
the case of more complicated structures than monoidal categories. The reason for
considering pseudoalgebras at all is that some natural constructions on algebras
only produce pseudoalgebras, even if one starts with a strict one.

5.9. We write U : T -Alg → K for the forgetful map, to distinguish it from
Us : T -Algs → K . The evident inclusion J : T -Algs → T -Alg clearly satisfies
UJ = Us. It was proved in [3] that J : T -Algs → T -Alg has a left 2-adjoint, sending
an algebra A to an algebra A′, with counit a strict map q : A′ → A and with unit
a pseudomap p : A→ A′ satisfying qp = 1 and pq ∼= 1. Thus q is a trivial fibration.
The universal property of A′ asserts among other things that for any algebra B,
composition with p induces a bijection between strict maps A′ → B and pseudo
maps A→ B.

5.10. Proposition: For a strict morphism f : A → B, the following are equiv-
alent:

(i) f is a weak equivalence;
(ii) Usf is an equivalence in K ;
(iii) Jf is an equivalence in T -Alg.

Proof. The equivalence of (i) and (ii) holds by definition of weak equivalences in
T -Algs. The equivalence of (ii) and (iii) is a routine (but important) exercise. 2

5.11. Proposition: For a strict morphism f : A → B, the following are equiv-
alent:

(i) f is a fibration;
(ii) Usf is an isofibration in K ;
(iii) Jf is an isofibration in T -Alg.

Proof. The equivalence of (i) and (ii) holds by definition of weak equivalences in
T -Algs. The equivalence of (ii) and (iii) is a straightforward consequence of Propo-
sition 4.6. For let u : L→ A, v : L→ B, and λ : v ∼= fu exhibit L as the pseudolimit
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of f (in T -Algs, and so also in T -Alg and in K ). Then by Proposition 4.6, con-
dition (ii) holds if and only if there are a v′ : L → A and λ′ : v′ ∼= u in K with
fλ′ = λ and fv′ = v, while (iii) holds if and only if there exist such a v′ and λ′ in
T -Alg; but the pseudomorphism structure of u can be transported across λ′ to give
a pseudomorphism structure on v′, and so these are indeed equivalent. 2

Notice in particular that q : A′ → A is a trivial fibration for any algebra A, since
we have qp = 1 and pq ∼= 1 in T -Alg (and in K ). Thus for any algebra A, the map
q : A′ → A has a section in T -Alg; if it has a section in T -Algs— that is, a strict
map r : A→ A′ with qr = 1 — then A is said to be flexible [3].

5.12. Theorem: The cofibrant objects of T -Algs are precisely the flexible al-
gebras; in particular, any algebra of the form A′ is cofibrant, and so a cofibrant
replacement for A. Every free algebra is flexible.

Proof. Since q : A′ → A is a trivial fibration, then certainly it will have a section
if A is cofibrant. Thus cofibrant objects are flexible. For the converse, it will suffice
to show that each A′ is cofibrant, for any retract of a cofibrant object is cofibrant.

Suppose then that t : E → B is a trivial fibration in T -Algs, and v : A′ → B
an arbitrary strict map. We must show that it lifts through t. There is a pseu-
domorphism s : B → E with ts = 1, and so tsv = v. But the pseudomorphism
svp : A → E has the form up for a unique strict map u : A′ → E. Now the strict
maps tu and v from A′ to B satisfy tup = tsvp = vp, and so tu = v by the universal
property of A′, which gives the required lifting.

To see that free algebras are flexible, observe that any object X ∈ K is cofibrant,
but for the lifted model structure the left adjoint preserves cofibrant objects, so the
free algebra TX on X is cofibrant, and so flexible. 2

The same relationship between flexibility and cofibrancy was observed in [12].
The following result was in [3]:

5.13. Proposition: Any pseudomorphism with flexible domain is isomorphic to
a strict morphism.

Proof. Let r : A→ A′ be a strict morphism which is a section of q : A′ → A. Now
qrq = q = q1, and q is an equivalence in T -Alg, so rq ∼= 1 in T -Alg; but rq and 1
are in T -Algs, and the inclusion J : T -Algs → T -Alg is locally fully faithful (fully
faithful on 2-cells) and so rq ∼= 1 in T -Algs. This also implies that r = rqp ∼= p in
T -Alg.

Now suppose that f : A→ B is a pseudomorphism. It can be written as f = gp
for a unique strict morphism g : A′ → B, and now gr ∼= gp = f , so that the
pseudomorphism f is isomorphic to the strict morphism gr. 2

5.14. The homotopy category of T -Algs is easily described: it is the category of
strict T -algebras, and isomorphism classes of pseudo T -morphisms. As explained in
Section 3.6, it has a canonical enrichment to a HoCat-category. But the resulting
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HoCat-category can also be seen as the HoCat-category underlying the 2-category
T -Alg (again in the sense of Section 3.6). Thus T -Alg is a kind of “homotopy 2-
category” of T -Algs. This point of view is reinforced by the following proposition,
which describes a universal property of T -Alg.

For 2-categories M and L we write Ps(M,L ) for the 2-category of 2-functors,
pseudonatural transformations, and modifications, from M to L .

5.15. Theorem: Let L be any 2-category. Composition with J : T -Algs →
T -Alg induces a biequivalence of 2-categories between Ps(T -Alg,L ) and the full
sub-2-category Psw(T -Algs,L ) consisting of those 2-functors T -Algs → L sending
weak equivalences to equivalences.

Proof. First observe J : T -Algs → T -Alg sends weak equivalences to equivalences,
by Proposition 5.10, and pseudofunctors preserve equivalences, so composition with
J does indeed induce a 2-functor R : Ps(T -Alg,L ) → Psw(T -Algs,L ). If F :
T -Algs → L sends weak equivalences to equivalences, then in particular it sends
each qA : A′ → A to a weak equivalence. Now q is the counit of the adjunction
L a J , so Fq is an equivalence in Ps(T -Algs,L ), and so F ' FLJ = R(FL),
and R is biessentially surjective on objects. To see that it is an equivalence on
hom-categories, and so a biequivalence, observe that for M,N : T -Alg → L we
have

Psw(T -Algs,L )(MJ,NJ) = Ps(T -Algs,L )(MJ,NJ)
' Ps(T -Alg,L )(M,NJL)
' Ps(T -Alg,L )(M,N)

using adjointness and the fact that the unit 1 → JL is an equivalence. 2

We cannot expect this to work using 2-natural transformations. It is clear from
the proof that rather than sending all weak equivalences to equivalences, we could
ask only that trivial fibrations be sent to equivalences; but by Ken Brown’s lemma
[5, 1.1.2] and the fact that all objects of T -Algs are fibrant, any 2-functor T -Algs →
L sending all trivial fibrations to equivalences must in fact send all weak equiva-
lences to equivalences.

6. Flexible colimits

6.1. In this section we consider T -Algs and its model structure for a particular
case of T , relevant to (weighted) colimits in 2-categories. Recall that if S : C → K
and J : C op → Cat are 2-functors, with C small, we write J ∗S for the J-weighted
colimit of S, defined by an isomorphism

K (J ∗ S,A) ∼= [C op,Cat](J,K (S,A))

natural in A, where [C op,Cat] is the 2-category of 2-functors, 2-natural transfor-
mations, and modifications. The presheaf J is called the weight. We shall describe a
2-category K and a 2-monad T on K for which T -Algs is precisely this 2-category
[C op,Cat].
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6.2. Let C be a small 2-category, and write obC for its set of objects. Our
base 2-category K will be [obC ,Cat]; this is just the set of obC -indexed families
of categories. The 2-category [C op,Cat] has an evident forgetful 2-functor Us :
[C op,Cat] → [obC ,Cat] given by restriction along the inclusion obC → C op, and
Us has left and right adjoints given by left and right Kan extension along the
inclusion. It is now straightforward to verify using (an enriched variant of) Beck’s
theorem that Us is monadic, so that [C op,Cat] has the form T -Algs for a 2-monad
T on [obC ,Cat]. Since Us has a right as well as a left adjoint, it follows that
T too has a right adjoint, so preserves all colimits, thus in particular is finitary.
The corresponding 2-category T -Alg is Ps(C op,Cat), consisting of the 2-functors,
pseudonatural transformations, and modifications. A flexible algebra for this 2-
monad is called a flexible weight [2], and colimits weighted by flexible weights are
called flexible colimits.

Just as all ordinary colimits can be computed using coproducts and coequaliz-
ers, all flexible colimits can be computed using four basic types of flexible colimit:
coproducts, coinserters, coequifiers, and splittings of idempotents [2]. For a good
introduction to these various limit notions, see [8]. Here we simply recall that all
these notions are defined by universal properties involving 2-natural isomorphisms,
and that the coinserter of a pair f, g : A → B is the universal map p : B → C
equipped with a 2-cell pf → pg; while the coequifier of a parallel pair α and β of
2-cells between 1-cells f, g : A→ B is the universal p : B → C for which pα = pβ.

6.3. A fundamental result [2, Theorem 4.9 and Proposition 4.10] is that the
flexible algebras are closed under flexible colimits (in T -Algs). This is equivalent to
being closed under these four types of colimit. Here we offer an alternative viewpoint
on this fundamental result, based on the fact that the flexible algebras are precisely
the cofibrant objects in a model 2-category. In any model category the cofibrant
objects are closed under coproducts and splittings of idempotents; but in a model
2-category we have:

6.4. Theorem: In a model 2-category, the cofibrant objects are closed under flex-
ible colimits.

Proof. Since cofibrant objects are always closed under coproducts and splittings of
idempotents (retracts), it remains to show that they are closed under coinserters
and coequifiers.

Let f, g : F → A be morphisms between cofibrant objects, and let i : A → B
and α : if → ig exhibit B as the coinserter of f and g. We shall show that i is a
cofibration, and so that B is cofibrant. Suppose then that

A
x //

i

��

C

p

��
B y

// D

is a commutative square with p a trivial fibration. Regarding p and x as fixed, to

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 2(2), 2007 252

give y is just to give ϕ : pxf → pxg. Since A is cofibrant there is by Proposition 3.3 a
unique 2-cell ψ : xf → xg with pψ = ϕ. By the universal property of the coinserter
there is now a unique z : B → C with zi = x and zα = ψ. On the other hand
pzi = px = yi and pzα = pψ = ϕ = yα so pz = y by the uniqueness part of the
universal property. Thus z is the required fill-in and so i is a cofibration.

Now we turn to coequifiers. Let f, g : F → A be morphisms between cofibrant
objects, and let i : A → B be the coequifier of 2-cells α, β : f → g. We shall show
that i is a cofibration and so that B is cofibrant. Consider a square as above; this
time y is uniquely determined by px, and its existence is equivalent to the equation
pxα = pxβ. Since F is cofibrant and p is a trivial fibration, we have xα = xβ by
Proposition 3.3 once again, and so a unique z : B → C with zi = x. The equation
pz = y is an immediate consequence using the universal property of B once again,
so z provides the fill-in for the square, and i is once again a cofibration. 2

6.5. In the case of the lifted model structure on T -Algs, the flexible (=cofibrant)
algebras are precisely the closure under flexible colimits of the free algebras. On the
one hand, all objects of K are cofibrant, so all free algebras are cofibrant, and we
have seen that cofibrant objects are closed under flexible colimits. For the converse,
it was shown in [11] that for any algebra A, the algebra A′ can be constructed from
free algebras using coinserters and coequifiers (in T -Algs); since the flexible algebras
are the retracts of the A′, it follows that they are flexible colimits of free algebras.

7. Flexible monads

7.1. In this section we study a certain 2-category of 2-monads, and a lifted model
structure coming from the underlying 2-category of endo-2-functors. We continue
to consider a fixed locally finitely presentable 2-category K ; for this section the
most important case is K = Cat. A 2-functor T : K → K is said to be finitary
if it preserves filtered colimits; or, equivalently, if it is the left Kan extension of its
restriction to the full sub-2-category Kf of K consisting of the finitely presentable
objects. Since the composite of finitary 2-functors is clearly finitary, and identity
2-functors are so, one obtains a strict monoidal category Endf (K ) of finitary endo-
2-functors of K . As a category, it is equivalent to the 2-functor category [Kf ,K ]:
the equivalence sends a finitary 2-functor T to its composite TJ with the inclusion
J : Kf → K , and sends S : Kf → K to the left Kan extension LanJ(S). The
strict monoidal structure on Endf (K ) transports across the equivalence to give a
(no longer strict) monoidal structure on [Kf ,K ]: the tensor product S ◦R is given
by LanJ(S)R, and the unit is J . We sometimes identify 2-functors Kf → K with
the corresponding finitary endo-2-functors of K .

7.2. A 2-monad on K consists of a 2-functor T : K → K equipped with 2-
natural transformations m : T 2 → T and i : 1 → T satisfying the usual monad
equations. It is said to be finitary if the endo-2-functor T is so. (We often allow
ourselves to speak of “the 2-monad T”, leaving the multiplication m and unit i
understood.)
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There is now a category Mndf (K ) of finitary 2-monads on K and strict mor-
phisms; it is the category of monoids in Endf (K ) or equivalently in [Kf ,K ]). The
forgetful functor W : Mndf (K ) → [Kf ,K ] has a left adjoint H and is monadic
[10].

7.3. Monad morphisms are useful for describing algebras for monads. Recall
from [7] or [9, Section 2] that if A and B are objects of K then there is a 2-
functor 〈A,B〉 : Kf → K which sends a finitely presentable object C to the
cotensor K (C,A) t B, and now to give a 2-natural transformation T → 〈A,B〉 is
equivalently to give a map TA→ B in K ; more precisely, we have an isomorphism of
categories [Kf ,K ](T, 〈A,B〉) ∼= K (TA,B). Furthermore, if A = B, then there is a
2-monad structure on 〈A,A〉, such that for a 2-monad T , a 2-natural transformation
T → 〈A,A〉 is a monad map if and only if the corresponding TA→ A makes A into
a T -algebra. This observation illustrates the importance of colimits in Mndf (K ):
it shows, for example, that an algebra for the coproduct S + T of monads S and T
is just an object equipped with an S-algebra structure and a T -algebra structure.
We shall see further examples below.

First observe, following [7, 9] once again, that if f, g : A→ B we may form the
comma-object

{f, g} c //

d

��
				�� λ

〈A,A〉

〈A,g〉
��

〈B,B〉
〈f,B〉

// 〈A,B〉

in Endf (K ), and now to give a 2-natural transformation γ : T → {f, g} is equiv-
alently to give morphisms a : TA → A (corresponding to cγ) and b : TB → B
(corresponding to dγ), and an invertible 2-cell b.Tf → ga. Once again, if f = g,
then there is a trivial 2-monad structure on {f, f} such that if T is a 2-monad, then
γ is a monad map if and only if (A, a) and (B, b) are T -algebras and the induced 2-
cell f : b.Tf → fa makes (f, f) into a T -morphism. Thus once again we can analyze
the (pseudo)morphisms of algebras for colimits of 2-monads. Finally, if ρ : f → g is
a 2-cell in K , then we may form the pullback

[ρ, ρ] //

��

{f, f}

{f,ρ}
��

{g, g}
{ρ,g}

// {f, g}

and this has a canonical monad structure for which monad maps T → [ρ, ρ] corre-
spond to 2-cells in T -Alg.

7.4. This allows us to give presentations for 2-monads, as in [10]. For example,
take K = Cat, and let E : Cat → Cat be the finitary 2-functor sending a category
C to C × C . An algebra for the free monad HE on E is just a category C with a
functor ⊗ : C × C → C . A (pseudo)morphism is a functor between such categories
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which preserves the “tensor product” up to an arbitrary natural isomorphism: there
are no coherence conditions at this stage.

Now let D : Cat → Cat be the finitary 2-functor sending C to C × C × C , and
HD the free monad on D. Since for any HE-algebra C there are two trivial HD-
algebra structures (corresponding to the two bracketings of a triple product), there
are two induced monad maps f, g : HD → HE. We can form the co-isoinserter
of these maps, which is the universal monad map r : HE → S equipped with a
monad isomorphism ρ : rf ∼= rg. An S-algebra is now a category C , with a functor
⊗ : C ×C → C , and a natural isomorphism α : (A⊗B)⊗C ∼= A⊗ (B⊗C). An S-
morphism is a functor preserving the tensor product up to coherent isomorphism.
Finally we may consider the finitary 2-functor B : Cat → Cat sending C to
C 4. There are two HB-algebra structures on an S-algebra C , involving the derived
operations ((A⊗B)⊗C)⊗D andA⊗(B⊗(C⊗D)), and these induce two monad maps
f ′, g′ : HB → S. The two isomorphisms ((A⊗B)⊗C)⊗D ∼= A⊗(B⊗(C⊗D)) which
can be built out of α induce two monad transformations ϕ,ψ : f ′ → g′, and we can
now form the coequifier of these 2-cells, namely the universal monad map q : S → T
for which qϕ = qψ. A T -algebra is now exactly what one might call a semigroupoidal
category: a category C equipped with a tensor product ⊗ which is associative up to
coherent isomorphism (coherent in the sense of the Mac Lane pentagon), but not
necessarily having a unit. A T -morphism is a strong semigroupoidal functor (one
which preserves the tensor product up to coherent isomorphism).

7.5. Since Mndf (K ) is monadic over Endf (K ) via a finitary 2-monad M ,
we have a lifted model structure on Mndf (K )(= M -Algs). As usual the cofibrant
objects are the flexible algebras, here called flexible monads.

We know that (i) free monads (on a finitary endo-2-functor) are flexible, and
that (ii) flexible colimits of flexible monads are flexible. Since co-isoinserters and
coequifiers are both flexible colimits (a co-isoinserter can be constructed out of
coinserters and coequifiers) it follows that T is a flexible monad. The key feature
of the presentation given above is that it used coinserters and coequifiers but not
such “inflexible” colimits as coequalizers. As observed by Kelly, Power, and various
collaborators, a 2-monad is always flexible if it can be given by a presentation which
“involves no equations between objects”. Thus the 2-monad for monoidal categories
is flexible, while that for strict monoidal categories is not (it involves the equation
A⊗ (B ⊗ C) = (A⊗B)⊗ C).

7.6. A monad morphism k : S → T induces a 2-functor k∗s : T -Algs → S-Algs

commuting with the forgetful 2-functors into K ; there is also an induced 2-functor
T -Alg → S-Alg, considered in Section 8 below. Explicitly, k∗s sends a T -algebra
(A, a : TA → A) to the S-algebra (A, a′), where a′ is the composite of a and
fA : SA→ TA. Since fibrations and trivial fibrations in the 2-categories of algebras
are defined as in K , and k∗s commutes with the forgetful 2-functors, k∗s preserves
fibrations and trivial fibrations. It also has a left adjoint [3], and so is the right
adjoint part of a Quillen adjunction. In Section 8 we shall find conditions under
which it is a Quillen equivalence.
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7.7. As well as the 2-category Mndf (K ) = M -Algs of 2-monads and strict mor-
phisms, we can also consider the 2-category M -Alg of finitary 2-monads on K and
pseudomorphisms of monads. Explicitly, a pseudomorphism from T to S consists of
a 2-natural transformation f : T → S which preserves the unit and multiplication
up to isomorphism; these isomorphisms are required to satisfy coherence conditions
formally identical to those for a strong monoidal functor. One of the main reason for
considering pseudomorphisms is for dealing with pseudoalgebras; this technique goes
back to [7]. A pseudoalgebra for a 2-monad T is an object A equipped with a mor-
phism a : TA→ A satisfying the usual algebra axioms up to coherent isomorphism.
This may be expressed by saying that the 2-natural α : T → 〈A,A〉 corresponding to
A is a pseudomorphism of monads. Thus we have bijective correspondences between
pseudo T -algebra structures on A, pseudomorphisms T → 〈A,A〉, strict morphisms
T ′ → 〈A,A〉, and (strict) T ′-algebra structures on A, and in fact T ′-Algs is isomor-
phic to the 2-category Ps-T -Algs of pseudo T -algebras and strict T -morphisms, and
similarly T ′-Alg isomorphic to the 2-category Ps-T -Alg of pseudo T -algebras and
pseudo T -morphisms.

7.8. Notice that if T is flexible, then by Proposition 5.13 every pseudomorphism
T → 〈A,A〉 is isomorphic to a strict one. When this is translated into a statement
about algebras it states that for a flexible T , every pseudoalgebra structure on an
object A is isomorphic in Ps-T -Alg to a strict algebra structure on A via pseudomor-
phism of the form (1A, ϕ). In particular, for a flexible monad, every pseudoalgebra
is isomorphic to a strict one.

8. Structure and semantics

8.1. We now turn from monads to their algebras. Whereas earlier we considered
model structures on T -Algs, as a vehicle to understanding the more important 2-
category T -Alg, we now focus on T -Alg itself. The passage from a 2-monad T on K
to the 2-category T -Alg with forgetful 2-functor U : T -Alg → K is functorial. Given
a (strict) morphism k : S → T of 2-monads, the 2-functor k∗s : T -Algs → S-Algs

extends to a 2-functor k∗ : T -Alg → S-Alg, also commuting with the forgetful 2-
functors. In order to capture this situation, we consider the (enormous) 2-category
2-CAT of (not necessarily small) 2-categories, 2-functors, and 2-natural transfor-
mations (ignoring the further structure which makes it into a 3-category), and then
the slice 2-category 2-CAT/K , an object of which is a 2-category L equipped
with a 2-functor U : L → K , and a morphism of which is a commutative triangle.
If M and N are morphisms from U : L → K to U ′ : L ′ → K , a 2-cell from
M to N is a 2-natural transformation ρ : M → N whose composite with U ′ is the
identity on U . Then there is a functor sem : Mndf (K )op → 2-CAT/K which
sends a 2-monad T to U : T -Alg → K , and a morphism j : S → T in Mndf (K )
to k∗ : T -Alg → S-Alg.

8.2. Although size problems prevent there from being a model structure on
2-CAT/K , there are nonetheless obvious notions of fibration and weak equivalence,
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which we now describe.
There is a Quillen model structure on the category 2-Cat of small 2-categories

and 2-functors, described in [12], for which the weak equivalences are the biequiva-
lences: these are the 2-functors F : K → L for which each functor F : K (A,B) →
L (FA,FB) is an equivalence and furthermore for each C ∈ L there is an A ∈ K
and an equivalence C ' FA in L . A 2-functor F : K → L is a fibration if each
F : K (A,B) → L (FA,FB) is a fibration in Cat, and moreover equivalences lift
through F in a sense made precise in [13]. (There is a mistake in the description of
fibrations and trivial cofibrations in [12]; this is corrected in [13], which also pro-
vides a model structure on the category of bicategories and strict homomorphisms,
and shows that these two model categories are Quillen equivalent.) The cofibra-
tions are of course the maps with the left lifting property with respect to the trivial
fibrations; these are characterized in [12].

Clearly the definitions of weak equivalence and fibration have nothing to do
with size, and one can easily extend them to give notions of fibration and weak
equivalence in 2-CAT.

There is an evident functor D : 2-CAT/K → 2-CAT sending U : L → Cat to
L , and we define a morphism f in 2-CAT/K to be a weak equivalence or fibration
if and only if Df is one in 2-CAT.

8.3. Let k : S → T be a monad morphism. We consider the following in-
duced maps. First of all there is k∗s : T -Algs → S-Algs, which is a right Quillen
2-functor. Then there is the 2-functor k∗ : T -Alg → S-Alg which extends k∗s . Fi-
nally there is the HoCat-functor Ho(k∗s) : Ho(T -Algs) → Ho(S-Algs). Since all
objects in T -Algs are fibrant, Ho(k∗s) is induced directly from k∗s without having to
use fibrant approximation. Thus Ho(k∗s) is simply the underlying HoCat-functor of
k∗ : T -Alg → S-Alg.

8.4. Proposition: The following are equivalent:
(i) k∗s : T -Algs → S-Algs is a Quillen equivalence;
(ii) Ho(k∗s) : Ho(T -Algs) → Ho(S-Algs) is an equivalence of HoCat-categories;
(iii) k∗ : T -Alg → S-Alg is a biequivalence.

Proof. The equivalence of (i) and (ii) was proved in Section 3.7. For T -algebras A
and B, we have k∗ : T -Alg(A,B) → S-Alg(k∗A, k∗B) an equivalence if and only if
Ho(k∗s) : HoT -Algs(A,B) → HoS-Algs(k∗A, k∗B) is invertible, while for a T -algebra
A and an S-algebra C, we have k∗A ∼= C in HoS-Algs if and only if k∗A ' C in
S-Alg. This gives the equivalence between (ii) and (iii). 2

8.5. Colimits in Mndf (K ) of course become limits in Mndf (K )op, and cofi-
brations and weak equivalences in Mndf (K ) become fibrations and weak equiva-
lences in Mndf (K )op. Size issues notwithstanding, the functor sem : Mndf (K )op →
2-CAT/K sends limits to limits, fibrations to fibrations, and trivial fibrations to
trivial fibrations, as we verify in Sections 8.6-8.10 below, using the constructions
〈A,A〉, {f, f}, and [ρ, ρ] of Section 7.3.
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8.6. To say that sem preserves limits is to say that it sends colimits in Mndf (K )
to limits in 2-CAT/K . Consider the case of coproducts. A product in 2-CAT/K
is just a fibre product in 2-Cat (over Cat). Suppose then that (Si)i∈I is a small
family of finitary 2-monads on Cat, with coproduct S =

∑
i Si. The product in

2-CAT/K of the sem(Si), is the 2-category in which an object is a K -object A
equipped with an Si-algebra structure ai : SiA→ A for each i; a morphism between
two such is a K -morphism f : A → B equipped with, for each i, an isomorphism
f i : bi.Sf ∼= fai making f into an Si-morphism; and a 2-cell between two such is a
K -transformation f → g compatible with the Si-morphism structure for each i. So
to make A into an object of

∏
i sem(Si) is to give a monad map αi : Si → 〈A,A〉 for

each i; but this is precisely to give a single monad map α : S → 〈A,A〉; that is, an
S-algebra a : SA → A structure for A. The case of morphisms is treated similarly.
Let (A, a) and (B, b) be S-algebras, with notation for the other associated maps as
above. Then to make a K -morphism f : A→ B into a morphism in

∏
i sem(Si) is to

give monad maps ϕi : Si → {f, f} for each i, compatible with the αi : Si → 〈A,A〉
and βi : Si → 〈B,B〉. But by the universal property of S, this amounts to giving
a single monad map ϕ : S → {f, f} compatible with α and β; that is, to a single
f : b.Sf ∼= fa making f into an S-morphism. Thus sem(S) and

∏
i sem(Si) have

the same objects and morphisms; it remains to check the 2-cells, and this can be
done entirely analogously, using the construction [ρ, ρ].

This proves that sem : Mndf (K )op → 2-CAT/K preserves products; the case
of general limits is similar, and left to the reader.

8.7. Let j : S → T be a trivial cofibration in Mndf (K ), and so a trivial fibra-
tion in Mndf (K )op from T to S; we shall show that j∗ : T -Alg → S-Alg is a trivial
fibration in 2-CAT, and so that sem(j) is a trivial fibration in 2-CAT/K . Since S
(like every other object of Mndf (K )) is fibrant, we know by Proposition 3.3 that
Mndf (K )(j, S) : Mndf (K )(T, S) → Mndf (K )(S, S) is a surjective equivalence.
Thus there is a monad morphism g : T → S with gj = 1, and a unique isomorphism
ρ : jg ∼= 1 in Mndf (K ) with gρ = id and ρj = id. By functoriality of sem, we have
j∗g∗ = 1 and g∗j∗ ∼= 1, so j∗ is not just a trivial fibration, but in fact a retract
equivalence in 2-CAT/K . This proves that sem : Mndf (K )op → 2-CAT/K
sends trivial fibrations to trivial fibrations.

8.8. Remark: In fact by the same argument even the trivial cofibrations for the
trivial model structure in Mndf (K ) are sent to trivial fibrations in 2-CAT/K .

8.9. The situation with general weak equivalences is more delicate. A morphism
f : S → T in Mndf (K ) is a weak equivalence if and only if there exists a 2-
natural g : T → S with gf ∼= 1 and fg ∼= 1. This g will automatically be a
monad pseudomorphism, but need not in general be a monad morphism, thus it
need not induce a 2-functor g∗ : S-Alg → T -Alg. As a special case, consider the
weak equivalence q : T ′ → T . Then q∗ is the inclusion T -Alg → Ps-T -Alg, which
is a weak equivalence if and only if every pseudo T -algebra is equivalent to a strict
one: the “general coherence problem” for T -algebras. This is still an open problem
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in the current generality, but has been solved in various special cases — see [11]
and the references therein.

If the monads S and T are flexible, however, then any weak equivalence f : S → T
does induce a biequivalence f∗ : T -Alg → S-Alg. This can be proved using the
observation of Section 7.8, or it could also be deduced using Ken Brown’s lemma [5,
1.1.2]. More generally, f∗ will be a biequivalence for any weak equivalence f : S → T
for which every pseudo S-algebra is equivalent to a strict one.

On the other hand, the weak equivalences in Mndf (K ) for the trivial model
structure are just the equivalences in Mndf (K ), and these are mapped to weak
equivalences in 2-CAT/K .

8.10. The next thing to do is to check whether sem preserves fibrations; that
is, whether j∗ : T -Alg → S-Alg is a fibration in 2-CAT whenever j : S → T is a
cofibration in Mndf (K ). First we check that equivalences can be lifted through
j∗. Suppose then that (A, a) is a T -algebra, that (B, b) is an S-algebra, and that
(f, f) : (B, b) → j∗(A, a) is an equivalence of S-algebras; the latter implies in
particular that (f, f) is a morphism of S-algebras with f : A→ B an equivalence in
K . We must show that the S-algebra structure on B can be extended to a T -algebra
structure in such a way that f becomes a morphism of T -algebras.

To do this, let β : S → 〈B,B〉 and α : T → 〈A,A〉 be the monad morphisms
corresponding to b : SB → B and a : TA → A. We shall need, among other
things, to extend β along j : S → T . Let ϕ : S → {f, f} be the monad morphism
corresponding to (f, f). Then the diagram

S
ϕ //

m

��

{f, f}

d

��
T α

// 〈A,A〉

of monad morphisms commutes, and the equivalence lifting property for j∗ : T -Alg →
S-Alg now amounts to the existence of a fill-in. Since j was assumed to be a cofi-
bration, this fill-in will exist provided that f : {f, f} → 〈A,A〉 is a trivial fibration
in Mndf (K ), or equivalently in Endf (K ). But f : A→ B was assumed an equiv-
alence, thus 〈f,B〉 is an equivalence, and the result now follows by the general fact
that if

W //

p

��

X

w

��

�� ��
��

Y // Z

is an iso-comma object (in any 2-category) and w an equivalence then p is a retract
equivalence.

This proves the equivalence lifting property. We now turn to the 2-dimensional
aspect of the definition of fibration. This asserts that if (f, f) : (A, a) → (B, b) is
a T -morphism, and ρ : (g, g) ∼= j∗(f, f) is an invertible S-transformation, then we
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can lift this to an invertible T -transformation. This is entirely straightforward and
is true for any monad morphism j : S → T .

This completes the verification that sem : Mndf (K )op → 2-CAT/K preserves
fibrations and trivial fibrations.

8.11. The statement about fibrations is that if j : S → T is a cofibration in
Mndf (K ), then j∗ : T -Alg → S-Alg is a fibration in 2-CAT. As a special case, if
T is flexible (cofibrant), then the forgetful 2-functor U : T -Alg → K is a fibration
in 2-CAT. This amounts to the facts that (i) if (A, a) is a T -algebra, and f : B → A
an equivalence in K , then there is a T -algebra structure (B, b) on B, for which f
can be made into a T -morphism, and (ii) if (f, f) : (A, a) → (B, b) is a T -morphism,
and ϕ : g ∼= f , then g can be made into a T -morphism (g, g) in such a way that
ϕ is a T -transformation (g, g) → (f, f). As before, (ii) is true for any 2-monad T ,
while (i) asserts that T -algebra structure can be transported along equivalences.
This is true for flexible monads, but not in general. It is false, for example, in the
case of the 2-monad T for strict monoidal categories. Consider the category C of
countable sets, viewed as a monoidal category under the cartesian product. This
can be replaced by an equivalent strict monoidal category A. Let B be a skeleton of
C (choose one set of each countable cardinality), then there exists an equivalence
of categories f : B → A. But by an argument due to Isbell (see[14, VII.1]), there is
no way to transport the strict monoidal structure on A across the equivalence f to
obtain a strict monoidal structure on B.

8.12. It is only the hugeness of 2-CAT/K that prevents it from having a model
structure, and sem from having a left adjoint, and so becoming a right Quillen 2-
functor. It would be interesting to find a full sub-2-category of 2-CAT/K contain-
ing the image of sem, admitting a model structure with the fibrations and weak
equivalences defined as in 2-CAT/K , and on which a left adjoint to sem can be
defined.
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