
HOMOTOPY THEORY IN TORIC TOPOLOGY

J. GRBIĆ AND S. THERIAULT

Abstract. In toric topology, to each simplicial complex K on m vertices one associates two key

spaces, the Davis-Januskiewicz space DJK and the moment-angle complex ZK , which are related

by a homotopy fibration ZK
w̃−→ DJK −→

∏m
i=1 CP∞. A great deal of work has been done to

study properties of DJK and ZK , their generalisations to polyhedral products, and applications

to algebra, combinatorics and geometry.

In the first part of this paper we survey some of the main results in the study of the homotopy

theory of these spaces. In the second part we break new ground by initiating a study of the map w̃.

We show that, for a certain family of simplicial complexes K, the map w̃ is a sum of higher and

iterated Whitehead products.
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Part 1. A Survey of Homotopy Theory in Toric Topology

In the first part of the paper we survey some of the homotopy theory surrounding moment-angle

complexes and their generalisation to polyhedral products. The topics covered are not meant to be

comprehensive but instead reflect some of the problems and properties that have motivated research

in the area over the past decade.

1. Introduction

1.1. Davis-Januszkiewicz spaces and moment-angle complexes. The story starts with Davis

and Januszkiewicz’s work [DJ] which uses simple polytopes to construct new families of manifolds

with torus actions. However, it is more convenient for us to begin with Buchstaber and Panov’s

generalisation [BP1] of their construction to simplicial complexes. Let K be a simplicial complex on

the vertex set [m]. Let Tm =
∏m
i=1 S

1 be the m-torus and let BTm =
∏∞
i=1 CP∞ be its classifying

space. For a face σ ∈ K, let

DJσ =

m∏
i=1

Yi where Yi =

 CP∞ if i ∈ σ

∗ if i /∈ σ.

The Davis-Januszkiewicz space DJK is defined by

(1) DJK =
⋃
σ∈K

DJσ.

Observe that DJK is a subspace of the product
∏m
i=1 CP∞.

There is another fundamental space constructed analogously to DJK . For a face σ ∈ K, let

Zσ =

m∏
i=1

Yi where Yi =

 D2 if i ∈ σ

S1 if i /∈ σ.

The moment-angle complex ZK is defined by

(2) ZK =
⋃
σ∈K
Zσ.
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Notice that ZK is a subspace of the product
∏m
i=1D

2. There is a canonical action of Tm on
∏m
i=1D

2

given by coordinate wise rotation of the disc. This induces an action of Tm on the subspace ZK . A

remarkable feature of this action is that the homotopy orbit space of ZK is DJK . Thus there is a

homotopy fibration sequence

(3) Tm −→ ZK −→ DJK −→ BTm.

Davis and Januszkiewicz were interested in the case when the simplicial complex K is the dual

of the boundary of a simple polytope, in which case the moment-angle complex can be shown to be

a manifold. They then considered characteristic maps λ : Tm −→ Tn for n < m satisfying certain

condition (∗) whose kernel ker λ ' Tm−n had the property that the quotient space Mλ = ZK/ker λ

was a manifold, equipped with an action of Tn. The manifolds Mλ have come to be known as quasi-

toric manifolds and their geometry and algebraic topology are the subject of intense investigation.

A good survey describing research in this direction is [CMS].

1.2. Connections to commutative algebra and combinatorics. The spaces DJK and ZK are

intimately related to concepts in commutative algebra and combinatorics. To describe connections

to commutative algebra, let R be a commutative ring with a unit and let R[v1, . . . , vm] be the graded

polynomial algebra on m variables, where deg(vi) = 2 for each i. If K is a simplicial complex on the

vertex set [m], the Stanley-Reisner ring R[K], also known as the face ring of K, is the quotient ring

R[K] = R[v1, . . . , vn]/IK

where IK is the homogeneous ideal generated by all square free monomials vσ = vi1 · · · vis such that

σ = {vi1 , . . . vis} 6∈ K. In [DJ, BP1] it is shown that there is a ring isomorphism

H∗(DJK) ∼= Z[K].

Thus the algebraic topology of DJK can be used to determine information about the Stanley-Reisner

ring Z[K] and vice-versa. Further, by [BBP] there is a ring isomorphism

H∗(ZK ;Z) ∼= TorZ[v1,...,vm](Z[K],Z).

For a given K, the Tor-algebra may be very complex, involving non-trivial cup products or non-

trivial higher Massey products. An important special case is when the Tor-algebra is as simple as

possible. A local ring R is Golod over k if all Massey products in Tork[v1,...,vm](R,k) vanish, where

k is a field or Z. Golod [Go] showed that if R is Golod then its Poincaré series is a rational function.

It is a major problem in commutative algebra to determine which local rings are Golod. In our case,

we ask when the Stanley-Reisner face ring Z[K] is Golod - which is equivalent to H∗(ZK) having all

cup products and higher Massey products being trivial. Trevisan [Tr] showed that the case of the

Stanley-Reisner ring is sufficient in determining the Golod property of a local ring as polarisation of

a local ring keeps the Golod property.
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To describe the connection to combinatorics, again assume that K is a simplicial complex on the

vertex set [m]. Let Lσ be the complex coordinate subspace of Cm given by

Lσ = {(z1, . . . , zm) ∈ Cm | zi1 = · · · = zik = 0}

where σ = {i1, . . . , ik} is a subset of [m]. Taking the union of all such Lσ for σ /∈ K, we obtain a

complex coordinate subspace arrangement

CA(K) =
⋃
σ/∈K

Lσ.

Its complement is

U(K) = Cm\CA(K).

Notice that the torus Tm acts coordinate wise on each Lσ and these actions are compatible over the

union, so it acts on CA(K) and therefore on its complement U(K). Buchstaber and Panov [BP1]

showed that the moment-angle complex ZK is a Tm-equivariant retract of U(K). Consequently,

there is a homotopy equivalence

U(K) ' ZK

implying that homotopy theoretic properties of ZK determine those of the complement of the cor-

responding coordinate subspace arrangement.

This interplay between Davis-Januszkiewicz spaces, moment-angle complexes, Stanley-Reisner

rings, Golod rings and complements of coordinate subspace arrangements has motivated much of

the research into the homotopy theory of DJK and ZK .

1.3. Polyhedral products. The analogous constructions of DJK and ZK in (1) and (2) suggest

that a generalised functorial construction. This led Buchstaber and Panov [BP2] to define K-powers

which later in various work [GT1, DS, BBCG1] developed more fully as polyhedral products. Let

K be a simplicial complex on m vertices. For 1 ≤ i ≤ m, let (Xi, Ai) be a pair of pointed CW -

complexes, where Ai is a pointed subspace of Xi. Let (X,A) = {(Xi, Ai)}mi=1 be the sequence of

pointed CW -pairs. For each simplex σ ∈ K, let (X,A)σ be the subspace of
∏m
i=1Xi defined by

(X,A)σ =

m∏
i=1

Yi where Yi =

 Xi if i ∈ σ

Ai if i /∈ σ.

The polyhedral product of (X,A) and K is

(4) (X,A)K =
⋃
σ∈K

(X,A)σ.

Notice that (X,A)K is a subspace of the product
∏m
i=1Xi. Notice as well that the polyhedral

product construction (X,A)K is natural for maps of pairs (Xi, Ai) −→ (X ′i, A
′
i) and for maps of

simplicial complexes K −→ L where K and L may have different vertex sets. If each pair (Xi, Ai)
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equals a fixed pair (X,A), write (X,A)K for the polyhedral product of (X,A) and K. Observe

from (1) and (2) that DJK = (CP∞, ∗)K and ZK = (D2, S1)K .

Polyhedral products are homotopy theoretic generalisations of Davis-Januszkiewicz spaces and

moment-angle complexes, so it is reasonable to expect that most of the homotopy theoretical results

that can be determined about DJK and ZK also hold for the corresponding polyhedral products

(X, ∗)K and (CX,X)K , where CX is the reduced cone on X. Of course, none of the geometry of

moment-angle complexes, such as the existence of a manifold structure, can be expected to hold in

general for polyhedral products, unless the pairs considered are (Dn, Sn−1) for n ≥ 1.

To get a feeling for polyhedral products it is helpful to describe several examples. For pointed

spaces X and Y , the smash product X ∧ Y is the quotient space X ∧ Y = (X × Y )/(X ∨ Y ).

Let I be the unit interval, with 0 as basepoint. The (reduced) cone on X is the quotient space

CX = (I×X)/ ∼, where (1, x) ∼ (1, x′) and (t, ∗) ∼ (0, ∗). The (reduced) join X ∗Y is the quotient

space X ∗Y = (X × I ×Y )/ ∼ where (x, 0, y) ∼ (x′, 0, y), (x, 1, y) ∼ (x, 1, y′) and (∗, t, ∗) ∼ (∗, 0, ∗).

It is well known that there is a natural homotopy equivalence X ∗Y ' ΣX ∧Y . It is also well known

that X ∗ Y is homotopy equivalent to the pushout

X × Y //

��

CX × Y

��
X × CY // (X × CY )

⋃
X×Y (CX × Y ).

Examples:

(1) Suppose that each Ai is a point. If K is a disjoint union of m points, then

(X, ∗)K = X1 ∨ · · · ∨Xm

and if K is an (m− 1)-simplex ∆m−1, then

(X, ∗)∆m−1

= X1 × · · · ×Xm.

(2) Again, suppose that each Ai is a point. For 0 ≤ i ≤ m− 1, let ∆m−1
i be the full i-skeleton

of ∆m−1. Then

(X, ∗)∆m−1
i = {(x1, . . . , xm) ∈

m∏
i=1

Xi | at least m− i− 1 of the xi’s equals ∗}.

The space on the right side is the ith-stage of Whitehead’s filtration on
∏m
i=1Xi.

(3) If K is 2 disjoint points, then (D2, S1)K = D2×S1∪S1×D2, where the union is taken over

S1 × S1. Therefore, (D2, S1)K is the boundary of D4, that is, S3. Since D2 is contractible,

(D2, S1)K is homotopy equivalent to the pushout of the maps S1 × S1 −→ CS1 × S1 and

S1 × S1 −→ S1 × CS1. Thus

ZK = (D2, S1)K ' S1 ∗ S1 ' S3.
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(4) Generalising (3), if K is 2 disjoint points then

(CX,X)K ' X1 ∗X2.

In particular,

(Dn+1, Sn)K ∼= ∂D2n+2 ' Sn ∗ Sn ' S2n+1.

Polyhedral products have found many uses beyond those involving Stanley-Reisner rings and

complements of coordinate subspace arrangements. There is a large literature relating them to

quasi-toric manifolds and small covers. Other applications include studying group actions on graphs,

monodromy representations, configuration spaces of planar linkages, the A1-homotopy theory of

smooth toric varieties, and assorted classes of arrangements. Their rising popularity is owned to

the fact that they are complicated but approachable constructions which may be used to verify or

predict conjectures.

1.4. Problems. We now have a large collection of spaces whose homotopy theory is interesting

and connected to several other areas of mathematics. This gives rise to many natural problems,

including:

(1) calculate the homology and cohomology of these spaces;

(2) determine their rational homotopy theory;

(3) determine their stable homotopy theory;

(4) determine families of simplicial complexes K and CW -pairs (X,A) for which the homotopy

type of (X,A)K can be described precisely.

Many of these problems overlap and many lead to other questions, some of which will be indicated

as we go.

Most of what follows will be developed in its general polyhedral product form as a great deal

of the homotopy theory of the fundamental spaces, DJK and ZK , does not depend on properties

specific to these spaces. But it is important to always keep in mind that it is the connections between

algebraic topology, commutative algebra and combinatorics encoded by DJK and ZK that drives

most investigations.

2. Stable homotopy

We first consider the stable decomposition of (X,A)K because it plays a central role in proving

many other properties of polyhedral products. A stable decomposition implies a description of

the homology of (X,A)K and, remarkably, it can be used to determine the cup product structure

in cohomology. It is also helpful when determining the homotopy type of particular families of

polyhedral products because it acts as a bookkeeper, keeping track of vital information such as

Poincaré series.
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The word stable may be a bit misleading, as the stable decomposition of (X,A)K to be described

occurs after only one suspension. However, it is a functorial decomposition which, stably, has no

functorial refinement. It may be the case that a particular polyhedral product splits further after

more suspensions but this arises from stable properties of the ingredient spaces rather than from the

polyhedral product itself.

To begin we require the notion of a smash polyhedral product. Let K be a simplicial complex on

the vertex set [m] and for 1 ≤ i ≤ m let (Xi, Ai) be pairs of pointed CW -complexes. Recall that

(X,A)σ =

m∏
i=1

Yi where Yi =

 Xi if i ∈ σ

Ai if i /∈ σ

and the polyhedral product is

(X,A)K =
⋃
σ∈K

(X,A)σ.

For σ ∈ K, let

(̂X,A)
σ

=

m∧
i=1

Yi where Yi =

 Xi if i ∈ σ

Ai if i /∈ σ.

The smash polyhedral product is

(̂X,A)
K

=
⋃
σ∈K

(̂X,A)
σ
.

Another way to think of this is to recall that (X,A)K is a subspace of the product
∏m
i=1Xi, and

(̂X,A)
K

is the image of (X,A)K under the natural quotient map
∏m
i=1Xi −→

∧m
i=1Xi.

As motivation for the stable decomposition, recall that there is a natural homotopy equivalence

Σ(X1 ×X2) ' ΣX1 ∨ ΣX2 ∨ (ΣX1 ∧X2).

Iterating this decomposition gives a natural homotopy equivalence

Σ(X1 × · · · ×Xm) '
∨

1≤i1<···<ik≤m

ΣXi1 ∧ · · · ∧Xik .

The index set runs over all ordered subsequences of [m] and therefore there is one-to-one correspon-

dence with the faces in ∆m−1. Further, the polyhedral product (X,A)∆m−1

is precisely the product

X1 × · · · × Xm, and each term Xi1 ∧ · · · ∧ Xik equals the smash polyhedral product (̂X,A)
KI

for

I = {i1, . . . , ik}. So the previous homotopy equivalence can be equivalently rewritten as

Σ(X,A)∆m−1

'
∨

I⊆[m]

Σ(̂X,A)
KI
.

This suggests that the suspension of a polyhedral product ought to be a wedge sum of suspensions of

smash polyhedral products where the sum is taken over all full subcomplexes of K. This is exactly

what Bahri, Bendersky, Cohen and Gitler proved in [BBCG1].

Let K be a simplicial complex on the vertex set [m] and for 1 ≤ i ≤ m let (Xi, Ai) be pairs of

pointed CW -complexes. Let I ⊂ [m]. Including I into [m], there is an induced inclusion KI −→ K,
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which in turn induces a map of polyhedral products (X,A)K −→ (X,A)KI . We then obtain a

composition into a smash polyhedral product

(X,A)K −→ (X,A)KI −→ (̂X,A)
KI
.

Suspending, we can add every such composition over all full subcomplexes of K, giving a composition

H : Σ(X,A)K −→
∨

I⊆[m]

Σ(X,A)KI −→
∨

I⊆[m]

Σ(̂X,A)
KI
.

Bahri, Bendersky, Cohen and Gitler [BBCG1, Theorem 2.10] proved the following.

Theorem 2.1. Let K be a simplicial complex on the vertex set [m] and for 1 ≤ i ≤ m, let (Xi, Ai)

be pairs of pointed CW -complexes. The map

H : Σ(X,A)K −→
∨

I⊆[m]

Σ(̂X,A)
KI

is a homotopy equivalence. �

Further, in the special case when each Xi is contractible, Bahri, Bendersky, Cohen and Gitler show

that: (i) if I ∈ K, then the smash polyhedral product (̂X,A)
KI

is contractible [BBCG1, Theorem

2.21]; and (ii) if I /∈ K and I = (i1, . . . , ik), then there is a homotopy equivalence (̂X,A)
KI
'

Σ(|KI | ∧ ÂI) where ÂI =
∧k
j=1Aij [BBCG1, Theorem 2.19]. Specialising to the pairs (CXi, Xi),

where CXi is the reduced cone on Xi, we have ̂(CX,X)
KI
' Σ(|KI | ∧ X̂I) and thus obtain the

following.

Theorem 2.2. Let K be a simplicial complex on the vertex set [m] and for 1 ≤ i ≤ m, let Xi be a

pointed CW -complex. Then the map H specialises to a homotopy equivalence

(5) H : Σ(CX,X)K −→
∨
I /∈K

Σ ̂(CX,X)
KI '−→

∨
I /∈K

Σ2(|KI | ∧ X̂I).

�

The key case is the moment-angle complex ZK . Here, each pair is (D2, S1) and D2 is contractible.

Also, each Xi = S1, so X̂I =
∧k
j=1(S1)ij ' Sk. Write |I| = k. We obtain the following corollary.

Corollary 2.3. Let K be a simplicial complex on the vertex set [m]. There is a homotopy equivalence

(6) ΣZK −→
∨
I /∈K

Σ|I|+2|KI |.

�
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3. Homology and Cohomology

The cohomology of the Davis-Januszkiewicz space has already been discussed. There is a ring

isomorphism

H∗(DJK ;Z) ∼= Z[K] = Z[v1, . . . , vm]/IK

where the left side is the Stanley-Reisner algebra (face ring of K) and IK is the homogeneous ideal

generated by all square free monomials vσ = vi1 · · · vis such that σ = {vi1 , . . . vis} 6∈ K.

The integral cohomology of the moment-angle complex ZK was described as the Tor-algebra

TorZ[v1,...,vm](Z[K],Z), but this may be difficult to compute explicitly. More tractably, there is a

combinatorial description of the cup product structure in ZK for any simplicial complex K, proved

in [BBP, BP1, F]. Take homology with integer coefficients. The join of two simplicial complexes

K1 and K2 is K1 ∗K2 = {σ1 ∪ σ2 | σi ∈ Ki}.

Theorem 3.1. There is an isomorphism of graded commutative algebras

H∗(ZK) ∼=
⊕
I⊂[m]

H̃∗(KI).

Here, H̃∗(KI) denotes the reduced simplicial cohomology of the full subcomplex KI ⊂ K. The

isomorphism is the sum of isomorphisms

Hp(ZK) ∼=
∑
I⊂[m]

H̃p−|I|−1(KI)

and the ring structure (the Hochster ring) is given by the maps

Hp−|I|−1(KI)⊗Hq−|J|−1(KJ) −→ Hp+q−|I|−|J|−1(KI∪J)

which are induced by the canonical simplicial maps KI∪J −→ KI ∗ KJ for I ∩ J = ∅ and zero

otherwise. �

Two key points in Theorem 3.1 are that, additively, the cohomology of ZK is determined by that

of its full subcomplexes, and multiplicatively, non-trivial cup products exist only when cohomology

classes arise from disjoint full subcomplexes.

Bahri, Bendersky, Cohen and Gitler [BBCG2] generalised this to polyhedral products. The cup

product for any space M is induced by the diagonal map ∆: M −→ M ×M . Composing ∆ with

the quotient map to the smash product, we obtain the reduced diagonal

∆̂ : M −→M ∧M.

Now suppose that I ⊆ [m] and consider the space Y I =
∏m
i=1 Yi where Yi = Xi if i ∈ I and Yi = Ai

if i /∈ I. Then there is a reduced diagonal

∆̂I : Ŷ I −→ Ŷ I ∧ Ŷ I .
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Let πI : Y [m] −→ Y I be the projection and let π̂I be the composite

π̂I : Y [m] πI−→ Y I −→ Ŷ I .

Observe that if I = J ∪ L, then the composite Y [m] ∆̂−−−−→ Y [m] ∧ Y [m] π̂J∧π̂L−−−−→ Ŷ J ∧ Ŷ L factors

through π̂I . Thus there is a commutative diagram

(7)

Y [m]
∆̂[m]

//

π̂I
��

Y [m] ∧ Y [m]

π̂J∧π̂L
��

Ŷ I
∆̂J,L
I // Ŷ J ∧ Ŷ L

where ∆̂J,L
I is the quotient map. Notice that if I = J = L then ∆̂J,L

I is the usual reduced diagonal.

Restricting to (X,A)K ⊆ X [m], we obtain a commutative diagram

(8)

(̂X,A)
K ∆̂K //

π̂I

��

(̂X,A)
K
∧ (̂X,A)

K

π̂J∧π̂L
��

(̂X,A)
KI ∆̂J,L

I // (̂X,A)
KJ
∧ (̂X,A)

KL
.

Let u ∈ Hp((X,A)KJ ) and v ∈ Hq((X,A)KL) be cohomology classes. The star product of u

and v is

u ∗ v = (∆̂J,L
I )∗(u⊗ v) ∈ Hp+q((̂X,A)

KI
).

The commutativity of (8) implies that

π̂∗I (u ∗ v) = π̂J
∗
(u) ∪ π̂L∗(v)

where ∪ is the cup product in (X,A)K . Bahri, Bendersky, Cohen and Gitler [BBCG2, Theorem 1.4]

showed the following.

Theorem 3.2. Let K be a simplicial complex on the vertex set [m] and suppose that (X,A) =

{(Xi, Ai)}mi=1 are pairs of pointed CW -complexes. Then there is a ring isomorphism

H∗((X,A)K) ∼= ⊕I⊆[m]H̃
∗((̂X,A)

KI
)

where the product structure on the right is given by the star product. �

Theorem 3.2 corresponds to the first statement in Theorem 3.1 - the cohomology of (X,A)K is

determined by that of its full subcomplexes. The second statement connecting disjoint full sub-

complexes to non-trivial cup products generalises to the case when each pair is a suspension by a

simple observation: if M is a suspension (or more generally, a co-H-space), then the reduced diag-

onal M
M̂−→ M ∧M is null homotopic. Suppose that each of the constituent pairs in (X,A) is a



HOMOTOPY THEORY IN TORIC TOPOLOGY 11

suspension, (Xi, Ai) = (ΣX ′i,ΣA
′
i). Suppose that I = J ∪ L and there is at least one i ∈ J ∩ L.

Consider the composite

θ : Y [m] ∆̂[m]−−−−→ Y [m] ∧ Y [m] π̂J∧π̂L−−−−→ Ŷ J ∧ Ŷ L.

Since i ∈ J ∩L there is a copy of Yi in both Ŷ J and Ŷ L. Permuting the terms of Y [m] so Yi appears

first, θ is the same as the composite

Yi × Y [m]\{i} ∆̂[m]−−−−→ (Yi × Y [m]\{i}) ∧ (Yi × Y [m]\{i})
π̂J∧π̂L−−−−→ (Yi ∧ Ŷ J\{i}) ∧ (Yi ∧ Ŷ L\{i}).

By (7), this composite factors through

(Yi ∧ Ŷ I\{i})
∆̂J,L
I−→ (Yi ∧ Ŷ J\{i}) ∧ (Yi ∧ Ŷ L\{i}).

But ∆̂J,L
I factors through Yi ∧ Ŷ I\{i}

∆̂∧1−→ Yi ∧ Yi ∧ Ŷ I\{i}, which is null homotopic since Yi is a

suspension. Therefore ∆̂J,K
I is null homotopic. Restricting to (̂X,A)

K
⊆ X [m], we obtain a null

homotopy for (̂X,A)
KI ∆̂J,L

I−−→ (̂X,A)
KJ
∧ (̂X,A)

KL
. The latter map induces the star product in

cohomology, so we obtain the following, proved in [BBCG2, Theorem 1.6].

Theorem 3.3. Let K be a simplicial complex on the vertex set [m] and suppose that (X,A) =

{(Xi, Ai)}mi=1 are pairs of suspended pointed CW -complexes. Suppose that I = J ∪L and J ∩L 6= ∅.

Then for any u ∈ Hp((̂X,A)
KJ

) and v ∈ Hq((̂X,A)
KL

), the star product u ∗ v is zero. �

3.1. Moment-angle complexes over simplicial posets. As we saw before, one way of gener-

alising a moment-angle complex ZK = (D2, S1)K is to replace the topological pair (D2, S1) by

any other topological pair or a sequence of pairs (X,A) to obtain a polyhedral product (X,A)K

determined by (X,A) and K. Another way of generalising ZK is to replace a simplicial complex

K by a more general combinatorial object. This approach was taken by Lü, Maeda, Masuda and

Panov [MMP, LP] who defined and studied moment-angle complexes over simplicial posets.

A poset (partially ordered set) S with the order relation ≤ is called simplicial if it has an initial

element 0̂ and for each σ ∈ S the lower segment [0̂, σ] is a boolean lattice (the face poset of a simplex).

We assume all posets to be finite and refer to elements σ ∈ S as simplices. The rank function | · | on

S is defined by setting |σ| = k for σ ∈ S if [0̂, σ] is the face poset of a (k − 1)-dimensional simplex.

The vertices of S are elements of rank one. We assume that S has m vertices and denote the vertex

set by V (S) = [m]. Similarly we denote by V (σ) the vertex set of σ, that is the set of i with i ≤ σ.

To any simplicial poset S, an algebraic object, the face ring of S can be associated.

Definition 3.4. [S] The face ring of a simplicial poset S is the quotient

Z[S] = Z[vσ|σ ∈ S]/IS

where IS is the ideal generated by the elements v0̂ − 1 and

vσvτ − vσ∧τ ·
∑
η∈σ∨τ

vη.
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The ring Z[S] generalises the Stanley-Reisner ring Z[K] of a simplicial complex K. The ring Z[S]

have remarkable algebraic and homological properties, albeit they are much more complicated than

the Stanley-Reisner rings Z[K]. Unlike Z[K], the ring Z[S] is not generated in the lowest positive

degree which makes their study more difficult.

To define a moment-angle complex over a simplicial poset, we need to set some notation. Using

a formal categorical language, we consider the face category CAT(S) whose objects are elements

σ ∈ S and there is a morphism from σ to τ whenever σ ≤ τ .

For every σ ∈ S, consider the following subset in (D2)m

Bσ = {(z1, . . . , zm ∈ (D2)m | |zj | = 1 if j 6≤ σ}.

Then Bσ is homeomorphic to a product of |σ| discs and m − |σ| circles. We have an inclusion

Bτ ⊂ Bσ whenever τ ≤ σ. It follows that the assignment σ 7→ Bσ defines a diagram from CAT(S)

to TOP, which we denote by (D2, S1)S .

Definition 3.5. The moment-angle complex corresponding to a simplicial poset S is

ZS = colim(D2, S1)S

from CAT(S) to TOP.

The space ZS has many important topological properties of the original moment-angle complex

ZK associated to a simplicial complex K. Lü and Panov [LP] proved that the integral cohomology

algebra of ZS is isomorphic to the Tor-algebra of the face ring Z[S]. This led directly to a general-

isation of Hochster’s theorem, expressing the algebraic Betti numbers of the ring Z[S] in terms of

the homology of full subposets of S.

Theorem 3.6. There is a graded ring isomorphism

H∗(ZS ;Z) ∼= TorZ[v1,...,vm](Z[S],Z)

whose graded componetns are given by the group isomorphisms

Hp(ZS ;Z) ∼= ⊕−i+2|a|=pTor
−i,2|a|
Z[v1,...,vm](Z[S],Z)

in each degree p. Here |a| = j1 + · · ·+ jm for a = (j1, . . . , jm).

4. Rational homotopy theory

Rational homotopy theory is one of the great success stories in algebraic topology. The rational

homotopy type of (nilpotent, finite type) spaces is completely determined by algebraic invariants.

The most common way of calculating the rational homotopy theory of a space or a map is to use a

Sullivan minimal model, although there are other models and any would do.
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Formally, a rational model of a connected space X is a commutative differential graded Q-algebra

M which is connected, of finite type and quasi-isomorphic to the commutative differential graded

algebra APL(X) of polynomial differential forms on X with rational coefficients. Félix and Tanré [FT]

constructed a model for the rational homotopy theory of any polyhedral product and used it to prove

their rational properties. To describe their results we need some notation.

Let (X,A) = {(Xi, Ai)}mi=1 be pairs of pointed CW -complexes which are nilpotent and of finite

type. For each pair (Xi, Ai) choose a surjective model ϕi : Mi −→M′i of the inclusion Ai −→ Xi.

For each σ ⊂ [m], let Iσ be the ideal of ⊗mi=1Mi defined by

Iσ = E1 ⊗ · · · ⊗ En where Ei =

 ker(ϕi) if i ∈ σ

Mi if i /∈ σ.

Let

I(K) = Σσ/∈KIσ.

Note the resemblance between ⊗mi=1Mi/I(K) and the cohomology of the Davis-Januskiewicz space,

H∗(DJK ;Z) ∼= Z[v1, . . . , vm]/IK where IK is the homogeneous ideal generated by all square free

monomials vσ = vi1 · · · vik for σ = {vi1 , . . . , vik} /∈ K. Félix and Tanré [FT] proved the following.

Theorem 4.1. Let (X,A) = {(Xi, Ai)}mi=1 be pairs of pointed CW -complexes which are nilpotent

and of finite type. Choose a surjective rational model ϕi : Mi −→ M′i of the inclusion Ai −→ Xi.

Then the following hold:

(a) the quotient ⊗mi=1Mi/I(K) is a rational model of (X,A)K ;

(b) if J ⊂ K is a subcomplex, then the projection

ϕK,J : ⊗mi=1Mi/I(K) −→ ⊗mi=1Mi/I(J)

is a rational model of the inclusion (X,A)J −→ (X,A)K .

�

As with any rational space, the most interesting point is not that there is a good model for it

- Sullivan minimal models are guaranteed to exist, although tractable descriptions may be hard to

obtain - but what can be done with it.

A rational space X is formal if H∗(X;Q) is a model for X. Suppose that each Xi = X and

Ai = ∗. The model for the polyhedral product in Theorem 4.1 immediately shows that if X is

formal then so is (X, ∗)K . This recovers the rational case of a more general result on formality that

holds for cohomology coefficients in any commutative ring by Notbohm and Ray [NR].

A rational space X is elliptic if π∗(X) has finitely many Q-summands. Otherwise it is hyperbolic.

These notions have been well studied in rational homotopy theory and a remarkable fact is that if a

rational space is hyperbolic then the number of rational homotopy groups grows exponentially with

the degree d of πd(X). That is, there are no non-elliptic rational spaces whose rational homotopy
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groups have polynomial growth. Félix and Tanré use their model for the polyhedral product to

show that if each Xi = X and Ai = ∗ then (X, ∗)K is hyperbolic provided K 6= ∆m−1 and

H∗(X;Q) = Q[v] for some v of even degree. For the CW -pair (D2, S1), Bahri, Bendersky, Cohen

and Gitler [BBCG3] showed that the only moment-angle complexes ZK that are rationally elliptic

are those which are products of odd dimensional spheres and a disk, that is, ZK for K being a join

of the boundary of simplices.

5. The homotopy type of ZK and (CX,X)K : Part I

Motivation for determining the homotopy type of the moment-angle complex ZK comes from its

equivalent description, up to equivariant homotopy, as the complement of a coordinate subspace

arrangement, as discussed in Section 1. A major problem in combinatorics for many years was to

describe families of simplicial complexesK for which the complement of the corresponding coordinate

subspace arrangement U(K) was homotopy equivalent to a wedge of spheres. This problem was

motivated by the fact that well-studied complements of hyperplane arrangements break into a wedge

of spheres after being suspended twice. The complement U(K) is substantially different as it may

contain any cohomology torsion. Great progress has been achieved in resolving this problem using

methods from homotopy theory to analyse the homotopy type of ZK . In fact, the methods used are

general enough to allow for a simultaneous analysis of the homotopy types of the polyhedral product

(CX,X)K .

To begin the discussion, we start with some definitions from combinatorics. Let K be a simplicial

complex on the vertex set [m]. For a simplex σ ∈ K, the star, restriction (or deletion) and link of

σ are the subcomplexes

starK(σ) = {τ ∈ K | σ ∪ τ ∈ K};

K\σ = K[m]\σ = {τ ∈ K | σ ∩ τ = ∅};

linkK(σ) = starK(σ) ∩K\σ.

Recall that the join of two simplicial complexes K1,K2 on disjoint index sets is the simplicial complex

K1 ∗K2 = {σ1 ∪ σ2 | σi ∈ Ki}.

From the definitions, it follows that for a vertex {v} ∈ K, the star starK(v) is a join,

starK(v) = {v} ∗ linkK(v),

and there is a pushout

(9)

linkK(v) //

��

starK(v)

��
K\v // K.
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Consider the vertex {m} ∈ K. To compare the polyhedral products for K, linkK(m), starK(m)

and K\{m}, we should really consider each simplicial complex as being on the vertex set [m].

This changes nothing for K and starK(m) as their vertex sets are already [m] but it introduces a

“ghost” vertex {m} for linkK(m) and K\{m}. Let linkK(m) and K\{m} be the simplicial com-

plexes linkK(m) and K\{m}, regarded as simplicial complexes on the vertex set [m]. Then from

pushout (9), we obtain a pushout of polyhedral products

(10)

(X,A)linkK(m) //

��

(X,A)starK(m)

��
(X,A)K\{m} // (X,A)K .

The spaces and maps in (10) can be better identified. First, the definition of the polyhedral

product implies that

(X,A)linkK(m) = (X,A)linkK(m) ×Am

(X,A)K\{m} = (X,A)K\{m} ×Am.

The inclusion linkK(m) −→ K\{m} therefore implies that the induced map of polyhedral prod-

ucts (X,A)linkK(m) −→ (X,A)K\{m} is the same as the product map (X,A)linkK(m) × Am −→

(X,A)K\{m} ×Am.

Second, the definition of the join of two simplicial complexes implies that if K = K1 ∗K2 then

there is an identity of topological spaces

(X,A)K ∼= (X,A)K1 × (X,A)K2 .

In particular, since starK(m) = linkK(m) ∗ {m}, there is an identity

(X,A)star(K)(m) ∼= (X,A)linkK(m) ×Xm.

We may also regard linkK(m) as linkK(m)∗∅, where ∅ corresponds to the ghost vertex at {m}. The

inclusion linkK(m) −→ starK(m) therefore induces a map of joins

linkK(m) = linkK(m) ∗ ∅ −→ linkK(m) ∗ {m} = starK(m).

Thus linkK(m) −→ starK(m) induces a product map (X,A)linkK(m)×Am −→ (X,A)linkK(m)×Xm.

Combining these two observations, (10) can be rewritten as a pushout of polyhedral products

(11)

(X,A)linkK(m) ×Am
1×im //

j×1

��

(X,A)linkK(m) ×Xm

��
(X,A)K\{m} ×Am // (X,A)K

where im is the inclusion and j is the map of polyhedral products induced by the inclusion linkK(m) −→

K\{m}.
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Now take the special case where each pair (Xi, Ai) has Xi being contractible. Recall that it

is standard to adjust notation now, and consider pairs (CX,X) = {(CXi, Xi)}mi=1, where CXi is

the reduced cone on Xi. Then the map (CX,X)linkK(m) × Xm
1×im−−→ (CX,X)linkK(m) × CXm is

equivalent, up to homotopy, to the map (CX,X)linkK(m) ×Xm
π1−→ (CX,X)linkK(m), where π1 is

the projection onto the first factor. Thus (11) specialises to a homotopy commutative diagram

(12)

(CX,X)linkK(m) ×Xm

π1 //

j×1

��

(CX,X)linkK(m)

��
(CX,X)K\{m} ×Xm

// (CX,X)K .

Pushout (12) is a key part of the work of Grbić-Theriault [GT2, GT3], Iriye-Kishimoto [IK1] and

Grujić-Welker [GW] that determined families of simplicial complexes for which the homotopy type

of (CX,X)K can be identified as a wedge of iterated smashes of the Xi’s. The important homotopy

theoretic observation is the following, first proved in [GT1]. The (right) half-smash of two pointed

spaces C and B is the quotient space C o B = C × B/ ∼ where (∗, b) ∼ ∗. It is well known that

if C is a co-H-space then C oB ' C ∨ (C ∧B).

Lemma 5.1. Suppose that there is a homotopy pushout

A×B
π //

∗×1

��

A

��
C ×B // Q

where π is the projection. Then there is a homotopy equivalence Q ' (A ∗B) ∨ (C oB). �

Now suppose thatK is a simplicial complex for which the map (CX,X)linkK(m) −→ (CX,X)K\{m}

is null homotopic. Then Lemma 5.1 can be applied to the homotopy pushout (12) to obtain a ho-

motopy equivalence

(CX,X)K ' ((CX,X)linkK(m) ∗Xm) ∨ ((CX,X)K\{m} oXm).

Definition 5.2. Let Wm be the collection of spaces which are homotopy equivalent to a wedge of

suspensions of iterated smashes of the form Xi1 ∧ · · · ∧Xik for 1 ≤ i1 < · · · < ik ≤ m.

Suppose that (CX,X)linkK(m) ∈ Wm and (CX,X)K\{m} ∈ Wm. Then as (CX,X)K\{m} is a

suspension, we obtain

(CX,X)K\{m} oXm ' (CX,X)K\{m} ∨
(

(CX,X)K\{m} ∧Xm

)
and a homotopy equivalence

(CX,X)K '
(

(CX,X)linkK(m) ∗Xm

)
∨ (CX,X)K\{m} ∨

(
(CX,X)K\{m} ∧Xm

)
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implying that

(CX,X)K ∈ Wm.

Notice that in the special case of primary interest, the moment-angle complex ZK , each Xi = S1

so a suspension of an iterated smash of Xi’s is homotopy equivalent to a sphere. Therefore in

this case Wm consists of those spaces which are homotopy equivalent to a wedge of spheres. So if

ZlinkK(m)
∈ Wm, and ZK\{m} ∈ Wm and the map ZK\{m}

j−→ ZK\{m} is null homotopic then

ZK ∈ Wm, that is, ZK is homotopy equivalent to a wedge of spheres.

The strategy is therefore to find a family K of simplicial complexes where, ideally: (i) if K ∈ K

then linkK(m) ∈ K and K\{m} ∈ K so an inductive procedure can be established, and (ii) the

induced map of polyhedral products (CX,X)linkK(m) −→ (CX,X)K\{m} is null homotopic.

The first such family was shifted complexes. A simplicial complex K is shifted if there is an

ordering on its vertices such that whenever σ ∈ K and ν′ < ν, then (σ − ν) ∪ ν′ ∈ K. Examples

include any full i-skeleton of the simplex ∆m−1. The definition of a shifted complex implies that if K

is shifted then both linkK(m) and K\{m} are shifted. In [GT3, IK1] the main work is in showing

that the map (CX,X)linkK(m) −→ (CX,X)K\{m} is null homotopic, implying the following.

Theorem 5.3. Let K be a shifted complex. Then

(CX,X)K ∈ Wm.

In particular, the moment-angle complex ZK is homotopy equivalent to a wedge of spheres. �

The statement in Theorem 5.3 can be made more precise, in the sense that the wedge summands

in the decomposition for (CX,X)K can be made explicit. The best way to do this is to relate the

decomposition to the stable decomposition for Σ(CX,X)K in Theorem 2.1. The wedge summands

for the stable decomposition are of the form |KI | ∗ X̂I for I /∈ K. This implies that if ZK were to be

a wedge of spheres all full subcomplexes |KI | for I /∈ K after I-fold suspension must be homotopy

equivalent to a wedge of spheres. When K is shifted, each |KI | is homotopy equivalent to a wedge

of spheres, so |KI | ∗ X̂I ∈ Wm. The explicit version of Theorem 5.3 proved in [GT3, IK1] says that

the decomposition for Σ(CX,X)K desuspends.

Theorem 5.4. Let K be a shifted complex. Then there is a homotopy equivalence

(CX,X)K '
∨
I /∈K

(
|KI | ∗ X̂I

)
.

In particular, if |I| equals the cardinality of I then there is a homotopy equivalence

ZK '
∨
I /∈K

(
|KI | ∧ S|I|+1

)
.

�
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In earlier work of the authors [GT2] which used different methods, Theorem 5.3 was proved in

the special case when each pair (CXi, Xi) has Xi ' ΩX ′i for some space X ′i. Note that when each

pair is (D2, S1) then S1 ' ΩCP∞, so the homotopy equivalence for ZK follows.

Theorem 5.4 generalizes results in classical homotopy theory proved by Ganea and Porter in the

1960s. For 0 ≤ k ≤ m, let

Tmm−k = {(x1, . . . , xm) ∈
m∏
i=1

Xi | at least k coordinates xi equal ∗.}

Notice that there are subspace inclusions

Tm0 ⊆ Tm1 ⊆ · · · ⊆ Tmm ⊆
m∏
i=1

Xi.

This is Whitehead’s filtration of the product
∏m
i=1Xi. Several of these spaces are known by other

names: observe that Tm0 ' ∗, Tm1 = X1 ∨ · · · ∨ Xm, Tmm−1 is the fat wedge and Tmm =
∏m
i=1Xi.

Including Tmm−k into the product, define the space Fmm−k by the homotopy fibration

Fmm−k −→ Tmm−k −→
m∏
i=1

Xi.

A natural problem is to try to determine the homotopy type of Fm−k. Ganea [Ga] showed that F 2
1 ,

the homotopy fibre of the inclusion X1 ∨ X2 −→ X1 × X2, is homotopy equivalent to ΩX1 ∗ ΩX2

and Porter generalised this to Fmm−k in a way that will be described momentarily.

First, we rephrase the problem in terms of polyhedral products. Observe that Tmm−k = (X, ∗)K

for K = ∆m−1
m−k, that is, K is the full (m − k)-skeleton of the standard (m − 1)-simplex. Observe

as well that
∏m
i=1Xi = (X,X)K for the same K. Bahri, Bendersky, Cohen and Gilter [BBCG1],

relying heavily on a theorem of Denham and Suciu [DS], proved a general result regarding homotopy

fibrations in this kind of setting. For a space X, let PX be the path space on X.

Theorem 5.5. For 1 ≤ i ≤ m, let Xi be a pointed CW -complex. Let K be a simplicial complex on

the vertex set [m]. There is a homotopy fibration

(PX,ΩX)K −→ (X, ∗)K −→ (X,X)K .

�

It is usual to replace (PX,ΩX) with (CΩX,ΩX) where CΩX is the reduced cone on ΩX. This is

done via a natural homotopy equivalence of pairs (PY,ΩY ) ' (CΩY,ΩY ). Doing so, and rewriting

(X,X)K as
∏m
i=1Xi, we obtain a homotopy fibration

(CΩX,ΩX)K −→ (X, ∗)K −→
m∏
i=1

Xi.

In particular, taking K = ∆m−1
m−k we have a model for the homotopy fibration Fmm−k −→ Tmm−k −→∏m

i=1Xi.
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This lets us write Porter’s result in terms of polyhedral products. Porter [Po2] showed that for

any simply-connected spaces X1, . . . , Xm there is a homotopy equivalence

(CΩX,ΩX)K '
m∨

j=k+2

 ∨
1≤i1<···<ij≤m

(
j − 1

k + 1

)
Σk+1ΩXi1 ∧ · · · ∧ ΩXij

 .

Theorem 5.3 generalizes this. If X1, . . . , Xm are any path-connected spaces then there is a homotopy

equivalence

(CX,X)K '
m∨

j=k+2

 ∨
1≤i1<···<ij≤m

(
j − 1

k + 1

)
Σk+1Xi1 ∧ · · · ∧Xij

 .

In particular, if K = ∆m−1
0 then K is m disjoint points, and there is a homotopy equivalence

(13) (CX,X)K '
m∨
j=2

 ∨
1≤i1<···<ij≤m

(j − 1)ΣXi1 ∧ · · · ∧Xij

 .

Consequently, if K is m disjoint points then there is a homotopy equivalence

ZK '
n∨
k=2

(k − 1)

(
n

k

)
Sk+1

a case revisted in ([GT1]).

There are many shifted simplicial complexes which are not the full skeleta of simplices. For exam-

ple, letK be the simplicial complex with vertices {1, 2, 3, 4} and edges {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}:

1

3

2

4

In [GT3] a detailed description is given of how (12) and Lemma (5.1) can be applied iteratively to

show that there is a homotopy equivalence

(CX,X)K ' (ΣX3 ∧X4) ∨ (Σ2X1 ∧X2 ∧X3) ∨ (Σ2X1 ∧X2 ∧X4) ∨ 2 · (Σ2X1 ∧X2 ∧X3 ∧X4).

In particular, in the moment-angle complex case there is a homotopy equivalence

ZK ' S3 ∨ 2S5 ∨ 2S6.

6. The homotopy type of ZK and (CX,X)K : Part II

Ideally, one would like to push Theorem 5.4 as far as possible by identifying the maximal class of

simplicial complexes for which Bahri, Bendersky, Cohen and Gitler’s decomposition of Σ(CX,X)K

desuspends. To find such a family, we go back to moment-angle complexes and take our cue from

combinatorics and commutative algebra.
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Recall from Section 1.2 that H∗(ZK) ∼= TorZ[v1,...,vm](Z[K],Z) and that the Stanley-Reisner ring

k[K] is Golod over a field k if all cup products and higher Massey products in Tork[v1,...,vm](k[K],k)

are trivial. In fact, Berglund and Jöllenbeck [BJ] showed that the triviality of the higher Massey

products follows from the triviality of cup products, so we may as well only consider cup products.

If ZK is homotopy equivalent to a wedge of spheres then all cup products in H∗(ZK) vanish so Z[K]

is Golod over any field. The converse does not hold as there are examples of Golod ZK with torsion

(an example will be discuss later in Section 7). For many years combinatorists and commutative

algebraists have identified classes K of simplicial complexes which have the property that if K ∈ K

then Z[K] is Golod over any field k, implying that H∗(ZK ; k) has no cup products or higher Massey

products. One such class is shifted complexes, others are shellable and sequentially Cohen-Macaulay

complexes (to be discussed momentarily). In all these cases KI for I /∈ K is homotopy equivalent

to a wedge of spheres. It is natural to ask whether in these cases ZK is homotopy equivalent to a

wedge of spheres. If k is any field, one might hope that there is a a maximal class K of simplicial

complexes with torsion free cohomology which produces three equivalent statements:

• K ∈ K;

• k[K] is Golod;

• ZK is homotopy equivalent to a wedge of spheres.

Proving implications between these statements has been a prime motivator in the area for the past

few years. In this section we will outline three directions where progress has been made.

6.1. Vertex-decomposable, shellable and sequentially Cohen-Macaulay complexes. It is

helpful to have candidates for the class K. As summarised in [BW], there is a hierarchy of families

of simplicial complexes:

shifted ⊂ vertex decomposable ⊂ shellable ⊂ sequentially Cohen-Macaulay

where the containments in each case are proper. The shifted case was discussed in the previous

section.

Definition 6.1. A simplicial complex K is vertex-decomposable if:

(i) K is a simplex or K = ∅, or

(ii) there exists a vertex v ∈ K such that:

(a) K\v and linkK(v) are vertex-decomposable;

(b) no facet of linkK(v) is a facet of K\v.

The vertex-decomposable case is similar in spirit to the shifted case in the sense that it is described

in terms of the vertices of the simplicial complex and is well suited to an inductive procedure using

Lemma 5.1 and (12) since both linkK(v) and K\{v} are also vertex-decomposable.
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Grujić and Welker [GW] used combinatorial Morse theory and the general strategy of Lemma 5.1

and (12) to show the following. The statement is phrased in terms of the dual of a simplicial complex.

The Alexander dual of a simplicial complex K on the index set [m] is the simplicial complex

K◦ = {σ ⊆ [m] | [m]\σ /∈ K}.

Theorem 6.2. Suppose that K is a simplicial complex whose Alexander dual is vertex-decomposable.

Then (Dn, Sn−1)K ∈ Wm. �

Note that no mention was made of the Alexander dual in the corresponding statement for shifted

complexes in Theorem 5.3. This stems from the fact that shifted complexes are self-dual. Analysing

Grujić and Welker’s approach, it is clear that it is really better to think in terms of the dual. Another

point to note about Theorem 6.2 is that it is specialised to the case of polyhedral products on pairs

(Dn, Sn−1). This is due to the Morse theoretic methods used. Ideally, there should be a more

general statement that covers all polyhedral products (CX,X)K .

However, instead of pursuing this, Iriye and Kishimoto [IK2] made the jump to shellable and

sequentially Cohen-Macaulay simplicial complexes. We give only the definition of a shellable complex

to illustrate a point. A facet of a simplicial complex is a maximal simplex and a simplicial complex

is pure if all facets have the same dimension.

Definition 6.3. A simplicial complex K is shellable if there is an ordering of the facets F1, . . . , Ft

such that

〈Fk〉 ∩ 〈F1, . . . , Fk−1〉

is pure and (dim(Fk)− 2)-dimensional for k = 2, . . . , t, where 〈 〉 denotes the linear span.

A simplicial complex is Cohen-Macaulay over Z if its Stanley-Reisner ring Z[K] is a Cohen-

Macaulay ring, meaning that the Krull dimension and the depth of Z[K] are equal. One property of

Cohen-Macaulay complexes is that they are pure. A non-pure generalisation is given by sequentially

Cohen-Macaulay complexes. To define these, we follow [BWW]. If K is a simplicial complex and

i ≥ 0, let K〈i〉 be the subcomplex of K generated by the faces of dimension ≥ i. The simplicial

complex K is sequentially acyclic over Z if K〈i〉 has the property that H̃r(K
〈i〉) = 0 for all r < i ≤

dimK. The link of a face σ in K is the subcomplex

linkK(σ) = {τ ∈ K | σ ∪ τ ∈ K,σ ∩ τ = ∅}.

Definition 6.4. A simplicial complex K is sequentially Cohen-Macaulay over Z if linkK(σ) is

sequentially acyclic over Z for all σ ∈ K.

Observe that the definitions of shellable and sequentially Cohen-Macaulay complexes are very

different in spirit to that of shifted or vertex-decomposable simplicial complexes, in the sense that
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the definitions are not in terms of the vertices. So a different approach is needed for studying the

corresponding polyhedral products.

Iriye and Kishimoto [IK2] give a “fat wedge filtration” of the polyhedral product, which is gov-

erned by the fat wedge filtration of the real moment-angle complex (D1, S0)K . They show that if

this filtration satisfies a triviality condition then the Bahri-Bendersky-Cohen-Gitler decomposition

of Σ(CX,X)K desuspends. They then identify a family of simplicial complexes that satisfy this

triviality condition.

Definition 6.5. A simplicial complex K is fillable if there are minimal non-faces M1, . . . ,Mr of K

such that |K ∪M1 ∪ · · · ∪Mr| is contractible.

They show that if every full subcomplex KI of K is fillable then the fat wedge filtration of K is

trivial and so the Bahri-Benersky-Cohen-Gitler decomposition of Σ(CX,X)K desuspends. They go

on to show that if the Alexander dual of K is shellable then K is fillable, and hence (CX,X)K ∈ Wm.

To deal with the sequentially Cohen-Macaulay case they generalise the notion of fillable to ho-

mology fillable, show that this also implies the triviality of the fat wedge filtration, and show that

the Alexander dual of a sequentially Cohen-Macaulay complex is homology fillable. Collecting these

results gives the following.

Theorem 6.6. Let K be a simplicial complex on the vertex set [m] whose Alexander dual is shellable

or sequentially Cohen-Macaulay (or more generally, K is fillable or homology fillable). Then the

Bahri-Bendersky-Cohen-Gitler decomposition of Σ(CX,X)K desuspends, implying that

Σ(CX,X)K ∈ Wm.

Consequently, ZK is homotopy equivalent to a wedge of spheres. �

6.2. Configuration spaces and polyhedral products. Theorem 6.6 is inspired by known results

in combinatorial commutative algebra. By [HRW] every sequentially Cohen-Macaulay simplicial

complex K has the property that Z[K] is Golod over every field. So it is natural to try to show

that if K is sequentially Cohen-Macaulay then ZK is homotopy equivalent to a wedge of spheres.

Along the way one discovers that the method used to prove this actually holds for a larger family

of complexes, the homology fillable complexes.

Alternatively, it may be fruitful to work with the Golod condition more directly. Recall that

the Stanley-Reisner face ring Z[K] is Golod if all cup products and higher Massey products in

H∗(ZK) ∼= TorK[v1,...,vm](Z[K],Z) vanish. All cup products and higher Massey products in H∗(ZK)

also vanish if ZK is homotopy equivalent to a wedge of spheres. But there are known examples (see

the end of Section 7) where Z[K] is Golod but ZK is not homotopy equivalent to a wedge of spheres.

So it is too strong to ask that ZK be homotopy equivalent to a wedge of spheres. Considering a

desuspension of (6), we see that ZK might have summands of the form Σ|I||KI | which can in general
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be any suspension space. Therefore a sensible alternative arises if the problem is considered more

abstractly. Any co-H space Y has the property that all cup products and higher Massey products in

H∗(Y ) vanish. A more reasonable question to ask is therefore: if Z[K] is Golod is ZK a co-H-space?

Are the two notions equivalent?

Resolving these questions is the motivation behind a recent paper by Beben and the first au-

thor [BG]. They constructed a configuration space model for certain mapping spaces. To keep

focused on the output we care most about in this paper, we consider a special case of their more

general construction. Let W = (X,A)K , a subspace of
∏m
i=1Xi. For ` ≥ 0, let

W ` = (Σ`X,Σ`A)K

be a coordinate suspension space of W . For example, if W = (D1, S0)K then W 1 ' (D2, S1)K = ZK .

They then consider the mapping space

map((Y,B);W `)

whose elements consist of maps f : Y −→W ` with the property that B ⊆ Y is sent to the basepoint.

Note here that B may be empty, in which case one obtains a model for the space of free maps

from Y to W `. They show that for certain pairs (Y,B), which include the cases (Dn, Sn−1), that

map((Y,B);W `) is homotopy equivalent to a certain configuration space of labelled particles.

An important special case is when (Y,B) = (S1, ∗), in which case one obtains a configuration

space model for map((S1, ∗);W `) = ΩW `. The model is then used to produce a homotopy decompo-

sition of ΣΩW ` whose wedge summands correspond to quotient labelled configuration spaces, whose

properties are determined in part - but not exclusively - by the underlying simplicial complex K.

Specialising to W = (D1, S0)K , in which case a model is obtained for ΩW 1 ' ΩZK , and a

homotopy decomposition is obtained for ΣΩZK . The goal, remember, is to say something about

Z[K] being Golod implying that ZK is a co-H-space. It is well known that a space Y is a co-H-space

if and only if Y retracts off ΣΩY . So the aim is to show that if Z[K] is Golod then the configuration

space model ensures that ZK retracts off ΣΩZK . In practise, the Golod condition is difficult to

work with so a variation of it is defined, called homotopy Golod, which tries to capture the notion of

the cup product and all higher Massey products being trivial in H∗(ZK) from a homotopy theoretic

point of view. The definition, which follows, now, is defined directly on the simplicial complex rather

than the Stanley-Reisner ring.

Definition 6.7. A simplicial complex K on the vertex set [m] is homotopy Golod if K is a single

vertex, or recursively, if K\{i} is homotopy Golod for each i ∈ [m] and there is a basepoint preserving

map

ΨK : Σm|K| −→ Σ|∆m−1|
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such that for any y = (t1, . . . , tm−1) ∈ (
∏m
i=1[−1, 1])/∂(

∏m
i=1[−1, 1]) ∼= Sm−1 that is not the base-

point, ΨK maps the subspace {y} ∧ Σ|K| of Σm|K| as follows:

(1) when t1 = · · · = tm−1 = 0, the restriction of ΨK to {y} ∧ Σ|K| is the suspension of the

inclusion Σ|K| −→ Σ|∆m−1|;

(2) letting Sy = (t1, . . . , tn−1, 0) and (I1, . . . , In) be an ordered partition of [m] that depends

on Sy, ΨK maps {y} ∧ Σ|K| to a subspace of Σ|KI1 ∗ · · · ∗KIm | ⊆ Σ|∆m−1|.

Two additional equivalent definitions of homotopy Golod are given in [BG], and they show that the

class of homotopy Golod simplicial complexes includes those whose Alexander duals are sequentially

Cohen-Macaulay. Beben and the first author also give an example to show that this class is strictly

larger than the class of sequentially Cohen-Macaulay complexes. They prove the following.

Theorem 6.8. Let K be a simplicial complex which is homotopy Golod. Then ZK is a co-H-space. �

Theorem 6.8 implies that a homotopy Golod complex K has trivial cup products and higher

Massey products in H∗(ZK), and so Z[K] is Golod. It is not known if Z[K] is Golod then K is

homotopy Golod. Also, it is not known if the converse of Theorem 6.8 holds, that is, whether ZK
being a co-H-space implies that K is homotopy Golod. However, Beben and the first author go on

to show that a weaker version of the homotopy Golod property does establish an equivalence.

Let ∆m be the diagonal

∆m = {(x1, . . . , xn) ∈ Rm | x1 = · · · = xm}.

Let QK be the subspace of the half-smash product ((Rm−∆m)×Σ|∆m−1|)/(Rm−∆m)×∗) defined

as follows:

QK =
⋃

y∈(Rm−∆m)
(I1,...,In)=[m]y

{y} ∧ Σ|KI1 ∗ · · · ∗KIn |

where (I1, . . . , In) = [m]y of [m] depending on y.

Definition 6.9. A simplicial complex K on the vertex set [m] is weakly homotopy Golod if K is a

single vertex, or recursively, if K\{i} is weakly homotopy Golod for each i ∈ [m] and the map

ΦK : Σm|K| −→ ΣQK

given for any z ∈ |K|, t1, . . . , tm−1, t ∈ [−1, 1] and β = max(|t1|, · · · , |tm−1|, 0) by

ΦK(t1, . . . , tm−1, t, z) = (2β − 1, (t1, . . . , tm−1, 0), (t, z))

is null homotopic.

Theorem 6.10. The simplicial complex K is weakly homotopy Golod if and only if ZK is a co-H-

space. �
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Theorem 6.10 classifies those simplicial complexes K for which ZK is a co-H-space. However, it

remains open as to whether K being weakly homotopy Golod is equivalent to Z[K] being Golod.

6.3. Gluing along a common face. To this point the families of simplicial complexes which have

produced decompositions (CX,X)K ∈ Wm have all come from combinatorics - shifted, shellable,

sequentially Cohen-Macaulay - or from generalisations aimed at establishing these cases - fillable,

homology fillable, homotopy Golod. There is another operation on simplicial complexes which does

not behave well combinatorially but does behave well with polyhedral products: gluing two simplicial

complexes along a common face.

Let K be a simplicial complex on the vertex set [m]. Suppose that K = K1 ∪τ K2 where τ is a

simplex in K. That is, there is a pushout of simplicial complexes

(14)

τ //

��

K1

��
K2

// K.

Geometrically, |K| is the result of gluing |K1| and |K2| together along a common face. Relabelling

the vertices if necessary, we may assume that K1 is defined on the vertices {1, . . . , `}, K2 is defined

on the vertices {` − k + 1, . . . ,m} and τ is defined on the vertices {` − k + 1, . . . , `}. Let K1, K2

and τ be K1, K2 and τ regarded as simplicial complexes on [m]. So K = K1 ∪τ K2.

Let σ ∈ K1 and let σ be its image in K1. By definition of σ, we have i /∈ σ for i ∈ {`+ 1, . . . ,m}.

Thus (CX,X)σ = (CX,X)σ ×X`+1 × · · · ×Xm. Consequently, taking the union over all the faces

in K1, we obtain

(CX,X)K1 = (CX,X)K1 ×X`+1 × · · · ×Xm.

Similarly, we have

(CX,X)K2 = X1 × · · · ×X`−k × (CX,X)K2 .

Since τ = ∆k−1, we have (CX,X)τ = CX`−k+1 × · · · × CX`, so as above we obtain

(CX,X)τ = X1 × · · · ×X`−k × CX`−k+1 × · · · × CX` ×X`+1 × · · · ×Xm.

Let M = X1 × · · · ×X`−k and N = X`+1 × · · · ×Xm. By applying polyhedral products to (14), we

obtain a pushout

(15)

M × (CX,X)τ ×N
a //

b

��

(CX,X)K1 ×N

��
M × (CX,X)K2 // (CX,X)K

where a and b are defined coordinate-wise. Since τ is a simplex, (CX,X)τ is a product of cones

and so is contractible. The definitions of the maps immediately implies that a restricted to N is

the identity map and similarly for b restricted to M . In [GT3] a straightforward lemma is proved
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to show that a restricted to M is null homotopic and similarly for b restricted to N . The homotopy

type of (CX,X)K is then identified by a general lemma, also proved in [GT3].

Lemma 6.11. Let

A× E ×B
f×B

//

A×g
��

C ×B

��
A×D // Q

be a homotopy pushout, where E is contractible and f and g are null homotopic. Then there is a

homotopy equivalence

Q ' (A ∗B) ∨ (AnD) ∨ (C oB).

Applying Lemma 6.11 to the pushout in (15), we obtain the following.

Theorem 6.12. Let K be a simplicial complex on the vertex set [m]. Suppose that K = K1 ∪τ K2

where τ is a common face of K1 and K2. Then there is a homotopy equivalence

(CX,X)K ' (M ∗N) ∨ ((CX,X)K1 oN) ∨ (M n (CX,X)K2)

where M = X1 × · · · ×X`−k and N = X`+1 × · · · ×Xm. �

Notice that M ∗N ∈ Wm. If (CX,X)K1 ∈ Wm then it is a suspension, implying that

(CX,X)K1 oN ' (CX,X)K1 ∨ ((CX,X)K1 ∧N) ∈ Wm.

Similarly, if (CX,X)K2 ∈ Wm then (CX,X)K2 nN ∈ Wm. We obtain the following corollary.

Corollary 6.13. With hypotheses as in Theorem 6.12, if (CX,X)K1 and (CX,X)K2 are in Wm

then so is (CX,X)K . �

As all what we need is that (CX,X)K1 and (CX,X)K1 are suspension spaces, we can rephrase

Corollary 6.13 in much more general setting.

Corollary 6.14. With hypotheses as in Theorem 6.12, if the stable splittings (5) for (CX,X)K1

and (CX,X)K2 desuspend, then the one for (CX,X)K does as well.

In particular, Corollary 6.13 holds if K1 and K2 are shifted, shellable or sequentially Cohen-

Macaulay. Note that K need not be shifted, shellable or sequentially Cohen-Macaulay. On the other

hand, K is homology fillable and homotopy Golod in each case, so Corollary 6.13 does not strictly

extend the family of simplicial complexes for which (CX,X)K is now known to be in Wm. Never-

theless, Corollary 6.13 is a simple, practical means of producing interesting examples of simplicial

complexes with (CX,X)K ∈ Wm.

In the terms of Golod complexes, looking combinatorially on all possible cup products, Limonchenko [Li]

produced an analogues result.
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Proposition 6.15. With hypotheses as in Theorem 6.12, if K1 and K2 are Golod complexes, then

so is K.

One very interesting example is flag complexes. A simplicial complex K is a flag complex if each

of its missing faces has two vertices. Equivalently, K is flag if any set of vertices of K which are

pairwise connected by edges spans a simplex. In [GPTW] it is shown that if K is Golod flag then

there is an ordering I1, . . . , Is of its maximal faces such that
(⋃

j<k Ij

)
∩ Ik is a simplex for each

k = 1, . . . , s. That is, K can be formed by iteratively gluing on simplices along common faces.

Therefore, if K is flag then by iterating Corollary 6.13 we obtain (CX,X)K ∈ Wm. In particular,

the moment-angle complex ZK is homotopy equivalent to a wedge of spheres.

The flag case was pursued more deeply in [GPTW] to show that the notional connection between

Golod rings and ZK being homotopy equivalent to a wedge of spheres can be made precise.

Theorem 6.16. Let K be a flag complex and k a field. The following conditions are equivalent:

(a) k[K] is a Golod ring;

(b) the multiplication in H∗(ZK) is trivial;

(c) ZK is homotopy equivalent to a wedge of spheres.

�

Another application of Corollary 6.13 arose in [GT3] in the context of the simplicial wedge con-

struction. Let K be a simplicial complex on vertices {v1, . . . , vm}. Fix a vertex vi. By doubling the

vertex vi, define a new simplicial complexK(vi) on them+1 vertices {v1, . . . , vi−1, vi,1, vi,2, vi+1, . . . , vm}

by

K(vi) = (vi,1, vi,2) ∗ linkK(vi) ∪ {vi,1, vi,2} ∗K\{vi}

where (vi,1, vi,2) denotes the one dimensional simplex on the vertices vi,1 and vi,2. The simplicial

complex K(vi) is called the simplicial wedge of K on vi. This combinatorial construction reflects

the process of polarising the Stanley-Reisner ring of a multicomplex, which needs not be square

free as introduced by Trevisan [Tr]. Let J = (j1, . . . , jm) be an n tuple of positive integers, and let

n =
∑m
i=1 ji. The simplicial multiwedge K(J) is the new simplicial complex on n-vertices

{v1,1, . . . , v1,j1 , v2,1, . . . , v2,j2 , . . . , vm,1, . . . , vm,jm}

obtained by iteratively applying the simplicial wedge construction, starting with K. It turns out

that the order in which the simplicial wedge construction is iterated does not affect the complex

produced, so K(J) is well-defined. Let X = (X1, . . . , Xn) be n topological spaces. Let n0 = 0 and

for 1 ≤ i ≤ m, let ni = Σik=1jk. Note that nm = n. The n topological spaces X1, . . . , Xn are then

written as

Xn0+1, . . . , Xn1 , Xn1+1, . . . , Xn2 , Xn2+1, . . . , Xnm−1 , Xnm−1+1, . . . Xnm .
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Define

(C(∗JX), ∗JX) =
{(
C(Xni−1+1 ∗ . . . ∗Xni), Xni−1+1 ∗ . . . ∗Xni

)}m
i=1

.

In [GT3] the following was proved, with the consequence now following from Theorems 6.6 and 6.8.

Theorem 6.17. For a simplicial complex K on m-vertices, an m-tuple J = (j1, . . . , jm) of posi-

tive integers and
∑m
i=1 ji topological pairs (CXi, Xi) where Xi is a finite CW -complex, there is a

homeomorphism of polyhedral products

(C(∗JX), ∗JX)K −−→ (CX,X)K(J).

Consequently, if K is homology fillable or homotopy Golod then

(CX,X)K(J) '

(∨
I /∈K

|KI | ∗ (̂∗JX)
I
)
.

�

7. Minimally non-Golod complexes and connected sums of products of two spheres

There are now well established connections between a Stanley-Reisner face ring k[K] being Golod

for any field k and the corresponding moment-angle complex ZK being homotopy equivalent to a

wedge of spheres. One would like to take this to the next level.

A simplicial complex K is called Golod over a field k if its Stanley-Reisner face ring k[K] is Golod.

The following definition is due to Berglund and Jöllenbeck [BJ].

Definition 7.1. Let K be a simplicial complex on m vertices. For 1 ≤ i ≤ m, let Ii = [m]\{i}.

Then K is minimally non-Golod if every full subcomplex KIi is Golod.

An important family of examples of minimally non-Golod simplicial complexes is given by vertex

cutting operations on simple polytopes. A (convex) polytope is the convex hull of a finite set of

points in Rn. Its dimension is the dimension of its affine hull. Let P be a d-dimensional polytope.

A facet of P is a (d − 1)-dimensional face. The polytope P is simple if each vertex lies in exactly

d facets of P . A partial ordering may be defined on the faces of P by inclusion. This determines

a poset called the face poset of P . The opposite poset, given by reversing the order, determines

another polytope P ∗ called the dual of P . If P is simple then P ∗ is a simplicial complex. Let ∂P

be the boundary of P .

Definition 7.2. Let P be a simple polytope of dimension d and let V (P ) be its vertex set. A

hyperplane H in Rd cuts a vertex x of P if x and V (P )/{x} lie in different open half-spaces of H.

Let Q be the intersection of P with the closed half-space of H containing V (P )/{x}. We say that Q

is obtained from P by a vertex cut operation.
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Diagrammatically, this is pictured as follows:

P Q

In particular, starting from ∆2, iteratively cutting off n vertices gives an (n+ 3)-gon. Berglund and

Jöllenbeck [BJ] showed that if P is a simple polytope that has been obtained from the d-simplex

by iteratively cutting off vertices then, regardless of the order in which the vertices were cut, the

simplicial complex ∂P ∗ is minimally non-Golod.

Turning to topology (and geometry), again assume that P is a simple polytope that has been

obtained from ∆d by iteratively cutting off `− 1 vertices. Bosio and Meersseman [BM], crediting an

earlier construction of MacGavran [M], showed that there is a diffeomorphism

(16) Z∂P∗ ∼= #`+1
k=3(Sk × S`+2d−k)#(k−2)( `

k−1)

where (Sk × S`+2d−k)#n is the n-fold connected sum of Sk × S`+2d−k with itself. Gitler and Lopez

de Medrano [GL] generalized this to show that for such polytopes P , if K = ∂P ∗ then for any

sequence J = (j1, . . . , jm) the simplicial multiwedge K(J) has the property that it is diffeomorphic

to a connected sum of products of two spheres.

This suggests there is a correspondence analogous to that for K being Golod and ZK being

homotopy equivalent to a wedge of spheres:

• K is minimally non-Golod;

• ZK is diffeomorphic to a connected sum of products of two spheres.

Some initial results on this problem have been obtained but much remains to be done. We give a

brief outline of some of what has been done.

Since Golod and minimally non-Golod properties are expressed in homotopy theoretical properties

of ZK , one might look at connected sums from a homotopy theoretical point of view as a space where

only one top cell is attached. Let X and Y be topological spaces with one top n-dimensional cell

attached by αX and αY respectively. Then the connected sum X#Y of X and Y is the cofibre of

the map

Sn−1 αX+αY−→ X̄ ∨ Ȳ ,

where X̄ and Ȳ are (n− 1)-skeletons of X and Y , respectively.

Then more general correspondence between combinatorics and topology could be stated in the

following way.
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• K is minimally non-Golod;

• ZK is homotopic to a connected sum of X and Y , where X̄ and Ȳ are Golod spaces.

When K is a flag complex an exact correspondence holds [GPTW].

Theorem 7.3. Assume that K is flag and k is a field. The following conditions are equivalent:

(a) K is minimally non-Golod;

(b) ZK is homeomorphic to a connected sum of products of two spheres.

In fact, if K is flag and minimally non-Golod then it is the boundary of an n-gon with n ≥ 4.

Bosio and Meersseman [BM], or MacGavran [M], then say that ZK is diffeomorphic to a connected

sum of products of two spheres.

In [T] a connection is made between the homotopy type of ZK when K is ` disjoint points and

the diffeomorphism type of ZK when K = ∂P ∗ for P a simple polytope that has been obtained from

∆d by `− 1 vertex cuts. When K is ` disjoint points, by (13) we obtain

(17) ZK '
`+1∨
k=3

(Sk)∧(k−2)( `
k−1)

where (Sk)∧n is the n-fold smash product of Sk with itself. Comparing the formulas in (16) and (17)

we see that the dimensions of the spheres correspond and the binomial coefficients match. This is not

a coincidence. The order of the vertex cuts in producing the simple polytope P does not influence

the diffeomorphism type [BM], so one may choose a preferred order of the vertex cuts. The dual of

a vertex cut polytope is a stacked polytope, which starts with ∆d and iteratively glues on another

copy of ∆d along a common facet. In [T] a specific stacking order is chosen, producing a stacked

polytope L of dimension d, satisfying the following.

Theorem 7.4. The stacked polytope L has the following properties:

(a) there is a homotopy equivalence Z∂L−{1} ' ZK` where K` is ` disjoint points;

(b) the inclusion ∂L − {1} −→ ∂L induces a map Z∂L−{1} −→ Z∂L, which up to

homotopy equivalences, is a map

f :

`+1∨
k=3

(Sk)∧(k−2)( `
k−1) −→ #`+1

k=3(Sk × S`+2d−k)#(k−2)( `
k−1);

(c) f has a left homotopy inverse g;

(d) when restricted to a factor H∗(Sk×S`+2d−k) in the cohomology of the connected

sum, f∗ is zero on precisely one of the ring generators.

�

Recently, Limonchenko [Li] showed that if K = ∂P ∗ for P a simple polytope and K is minimally

non-Golod then the simplicial multiwedge K(J) is also minimally non-Golod for any sequence J .
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This is the combinatorial counterpart to Gitler-Lopez de Medrano’s result on the diffeomorphism

type of ZK(J) being a connected sum of products of two spheres.

We close the survey by making some remarks on the subtlety of the connection between the

statements:

(i) K is Golod (that is, k[K] is Golod over every field k);

(ii) ZK is homotopy equivalent to a wedge of spheres,

and

(iii) K is minimally non-Golod;

(iv) ZK is diffeomorphic to a connected sum of products of two spheres.

In [GPTW] it was shown that if K is the minimal 6-vertex triangulation of RP 2 then K is Golod

but ZK is not homotopy equivalent to a wedge of spheres. In fact, ZK is homotopy equivalent

to a wedge of spheres and a copy of Σ7RP 2. So a condition additional to Golodness is needed

on the Stanley-Reisner face ring Z[K] to ensure that ZK is homotopy equivalent to a wedge of

spheres. However, even a torsion-free condition is not enough. Limonchenko [Li] showed that if L

is the minimal 9-vertex triangulation of CP 2 then L is Golod and has no torsion in the integral

cohomology of any full subcomplex but ZK is not homotopy equivalent to a wedge of spheres. In

fact, ZL is homotopy equivalent to a wedge of spheres and a copy of Σ10CP 2. Limonchenko goes

on to show that this sort of problem persists in the minimally non-Golod case. If L′ is L with one

stack along a maximal 4-simplex then L′ is minimally non-Golod, has no torsion in the integral

cohomology of any of its full subcomplexes, but ZL′ is not homotopy equivalent to a connected sum

of products of two spheres because of the existence of a non-trivial triple Massey product.

Part 2. Higher Whitehead Products in Toric Topology

In the second part of the paper we consider the map w̃ in the homotopy fibration ZK
w̃−→ DJK −→∏m

i=1 CP∞ and identify it as a sum of higher and iterated Whitehead products for a certain family

of simplicial complexes K.

8. Statement of results

As seen in Part 1, there has been considerable success in studying the homotopy type of ZK or its

suspension. However, no attempt has been made to study the map ZK −→ DJK . This means that

the interesting information that is known about the moment-angle complex ZK cannot be related

to the Davis-Januszkiewicz space DJK . The purpose of this paper is to remedy this deficiency. We

show that for a certain family of simplicial complexes K, ZK is homotopy equivalent to a wedge of

spheres and the homotopy equivalence may be chosen so that the map ZK −→ DJK consists of a

specified collection of higher Whitehead products and iterated Whitehead products. In particular,
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each missing face of K corresponds to the existence of a non-trivial higher Whitehead product whose

adjoint has a nonzero Hurewicz image in H∗(ΩDJK ;Q).

The focus in this part will be onDJK and ZK but some of the results will be valid in a more general

setting. To make the notation reflect this, we make the following definitions. Let X1, . . . , Xm be

path-connected pointed CW -complexes and let X = {X1, . . . , Xm}. Let K be a simplicial complex

on the vertex set [m]. Define

DJK(X) = (X, ∗)K and ZK(X) = (CΩX,ΩX)K .

By Theorem 5.5 there is a homotopy fibration

(18) ZK(X) −→ DJK(X) −→
m∏
i=1

Xi.

If X1, . . . , Xm all equal a common space X, we instead write ZK(X) and DJK(X). When Xi = CP∞

for each 1 ≤ i ≤ m, the homotopy fibration (18) specializes to the case of primary interest in toric

topology, that is, to the homotopy fibration ZK −→ DJK −→
∏m
i=1 CP∞.

The homology of ΩDJK(X) with various coefficients has been calculated for different families

of simplicial complexes. Some simple but important examples of the homology of ΩDJK(X) were

calculated by Lemaire [Le] in 1974 before the notion of ZK(X) and DJK(X) were introduced. Panov

and Ray [PR] introduced categorical formalism to study the homology of ΩDJK(X) and gave explicit

calculations when K is a flag complex. Dobrinskaya [D] has a general approach for calculating the

homology of ΩDJK(X) for an arbitrary simplicial complex K in terms of the homology of Ω(X) and

some special relations coming from the homology of ΩDJK(S2). However, the homology of ΩZK(X)

remains a mystery.

In this paper we first consider the case when each Xi is a sphere, writing S = (Sn1+1, . . . , Snm+1).

As an intermediate goal towards understanding the map ZK −→ DJK we need to calculate the

rational homology of ΩDJK(S) and ΩDJK . However, it is important to emphasize that we do this

in such a way as to remember the geometry of the space, that is, in such a way as to keep track

of specific Hurewicz images. The existing models for rational loop homology are not known to do

this, so we have to produce our own model which does. The methods we use lend themselves well

to concrete calculations, and we include some examples to illustrate this.

In what follows K will be a simplicial complex on the vertex set [m]. A simplex σ ∈ K corresponds

to a sequence (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ m and the integers ij are the vertices of K

which are in σ. Let dim(σ) = k−1 be the dimension of σ. We concentrate on the collection MF (K)

of missing faces. To be precise, a sequence (i1, . . . , ik) is in MF (K) if: (i) (i1, . . . , ik) /∈ K, and (ii)

every proper subsequence of (i1, . . . , ik) is in K. For example, let K be the simplicial complex on 4
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vertices

(19)

1

3

2

4

Then MF (K) = {(3, 4), (1, 2, 3), (1, 2, 4)}.

Definition 8.1. Let K be a simplicial complex the vertex set [m]. We say that K is an MF -complex

if

|K| =
⋃

σ∈MF (K)

|∂σ|

where |K| and |∂σ| denote the geometrical realisations of K and ∂σ, respectively.

A simple example of a non-MF -complex is the boundary of a square.

The class of MF -complexes is larger than we want for producing wedge decompositions of ZK(S)

and ZK . We will give an example in Section 9 of an MF -complex K with the property that ZK has

non-trivial cup-products. We wish to avoid this, so we add another condition which restricts how

the faces of K can be assembled.

Definition 8.2. Let K be an MF -complex on the vertex set [m]. We say that K is a directed

MF -complex if there is a sequence of subcomplexes ∅ ⊆ K1 ⊆ · · · ⊆ Kl = K for some l, where

Ki = Ki−1 ∪ ∂σi for σi ∈MF (K) and Ki−1 ∩ σi is a face common to Ki−1 and σi.

Observe that the simplicial complex (19) is a directed MF -complex, but if the edge (3, 4) is

also added (giving the 1-skeleton of a tetrahedron) then the resulting simplicial complex is an MF -

complex but not a directed MF -complex. More examples are given in Section 9.

Directed MF -complexes have the property that ZK decomposes as a wedge of spheres. In partic-

ular, all cup products and higher Massey products in H∗(ZK) are zero. We obtain this as a special

case of a property for more general spaces.

Theorem 8.3. Let K be a directed MF -complex on the vertex set [m]. Let X = {X1, . . . , Xm}

where each Xi is a path-connected topological space. Then ZK(X) is homotopy equivalent to a wedge

of spaces of the form ΣtΩXi1 ∧ · · · ∧ ΩXik for various 1 ≤ t < m and sequences (i1, . . . , ik) where

1 ≤ i1 < · · · < ik ≤ m.

Corollary 8.4. Let K be a directed MF -complex on the vertex set [m]. Then each of ZK(S) and ZK
is homotopy equivalent to a wedge of simply-connected spheres.
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Next, as an intermediate step, we calculate H∗(ΩDJK(S);Q) and H∗(ΩDJK ;Q) using an Adams-

Hilton model, with the emphasis on detecting Hurewicz images. To state this we introduce some

notation. If V is a graded Q-vector space, let L〈V 〉 be the free graded Lie algebra generated by V ,

and let UL〈V 〉 be its universal enveloping algebra. If V has basis {v1, . . . , vm} let Lds〈v1, . . . , vm〉

be the direct sum ⊕mi=1L〈vi〉. In particular, in Lds〈v1, . . . , vm〉 we have [vi, vj ] = 0 if i 6= j. Notice

that if vi is of even degree then [vi, vi] = 0 but this is not the case if vi is of odd degree. On the other

hand, if vi is of odd degree then in UL〈vi〉 we have [vi, vi] = 2v2
i , so for vi of any parity we have

UL〈vi〉 ∼= Q[vi]. Thus ULds〈v1, . . . , vm〉 ∼= ⊗mi=1UL〈vi〉. If L is a Lie algebra and x1, . . . , xk ∈ L, let

[[x1, x2], . . . , xk] denote the iterated bracket [. . . [[x1, x2], x3], . . . , xk].

Let bi be the Hurewicz image of the adjoint of the coordinate inclusion Sni+1 −→ DJK(S).

Abusing notation, let bi also be the Hurewicz image of the adjoint of the composite S2 −→ CP∞ −→

DJK , where the left map is the inclusion of the bottom cell and the right map is the inclusion of

the ith-coordinate. By uσ we denote the Hurewicz image of the adjoint of the Whitehead product

corresponding to a missing face σ ∈ MF (K). We will phrase H∗(ΩDJK(S);Q) and H∗(ΩDJK ;Q)

as quotients of U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈ MF (K)〉). A distinction needs to be made between

the elements uσ where |σ| = 2 and |σ| > 2. The latter elements are independent from b1, . . . , bm.

On the other hand, if |σ| = 2 then σ = (i1, i2) and uσ = [bi1 , bi2 ], which is not independent from

b1, . . . , bm. This leads to additional relations determined by the graded Jacobi identity and face

relations. Specifically, we have [uσ, bj ] = [[bi1 , bi2 ], bj ] = [bi1 , [bi2 , bj ]] − (−1)|bi1 ||bi2 |[bi2 , [bi1 , bj ]] and

if (i1, j) ∈ K or (i2, j) ∈ K then [bi1 , bj ] = 0 or [bi2 , bj ] = 0 repsectively. The collection of such

relations forms an ideal in U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉) which we label as J . Note that

if every missing face σ ∈MF (K) is of dimension greater than 1, then J is trivial.

Theorem 8.5. Let K be a directed MF -complex. There is an algebra isomorphism

H∗(ΩDJK(S);Q) ∼= U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/J

where each uσ is the Hurewicz image of the adjoint of a higher Whitehead product. Further, the loop

map ΩDJK(S) −→
∏m
i=1 ΩSni+1 is modelled by the map

U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/J U(π)−→ ULds〈b1, . . . , bm〉

where π is the projection.

Let ı : S2 −→ CP∞ be the inclusion of the bottom cell. For any simplicial complex K, this

induces a map DJk(ι) : DJK(S2) −→ DJK .

Theorem 8.6. Let K be a directed MF -complex. There is an algebra isomorphism

H∗(ΩDJK ;Q) ∼= U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/(I + J)
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where uσ is the Hurewicz image of the adjoint of a higher Whitehead product and I is the ideal

I = (b2i , [uσ, bjσ ] | 1 ≤ i ≤ m,σ = (i1, . . . , ik) ∈MF (K), jσ ∈ {i1, . . . , ik}).

Further, there is a commutative diagram of algebras

H∗(ΩDJK(S2);Q)
∼= //

(ΩDJK(ı))∗

��

U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/J

q

��
H∗(ΩDJK ;Q)

∼= // U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/(I + J)

where q is the quotient map.

Notice that the relation b2i in I lets us replace Lds〈b1, . . . , bm〉 in the statement of Theorem 8.6

by Lab〈b1, . . . , bm〉, where Lab is the free abelian Lie algebra generated by the indicated elements,

which is characterized by having its bracket identically zero.

Our main theorems are homotopy theoretic. For 1 ≤ i ≤ m, let ai : S
ni+1 −→ DJK(S) be the

inclusion of the ith-coordinate. The analogue of the algebraic ideal J occurs when σ = (i1, i2),

in which case there is a Whitehead product wσ = [ai1 , ai2 ]; as in the algebraic case, this imposes

relations determined by the Jacobi identity and face relations in cases of the form [wσ, aj ] when

(i1, j) ∈ K or (i2, j) ∈ K. For |σ| = 2, let Wσ be the collection of all independent Whitehead

products of the form [[wσ, aj1 ] . . . , ajl ], where 1 ≤ j1 ≤ · · · ≤ jl ≤ l and 1 ≤ l <∞.

Theorem 8.7. Let K be a directed MF -complex on the vertex set [m], so that there is a homotopy

equivalence ZK(S) '
∨
α∈I S

tα . The equivalence can be chosen so that the composite∨
α∈I

Stα −→ ZK(S) −→ DJK(S)

is a wedge sum of the following maps:

(a) a higher Whitehead product wσ : Stσ −→ DJK(S) for each missing face σ =

(i1, . . . , ik) ∈MF (K), where tσ = k − 1 + (Σkj=1nij );

(b) an iterated Whitehead product

[[wσ, aj1 ] . . . , ajl ] : S
tα −→ DJK(S)

for each σ ∈MF (K) of dimension greater than 1 and each list 1 ≤ j1 ≤ · · · ≤ jl ≤ l,

where 1 ≤ l <∞ and tα = tσ + Σlt=1njt ;

(c) the collection of independent iterated Whitehead products Wσ for each σ ∈MF (K)

of dimension 1.

Let ãi be the composite ãi : S
2 ı−→ CP∞ −→ DJK where the right map is the inclusion of the

ith-coordinate. If σ = (i1, i2), let w̃σ be the Whitehead product [ãi1 , ãi2 ]. As above, for |σ| = 2,

let W̃σ be the collection of all independent Whitehead products of the form [[w̃σ, ãj1 ] . . . , ãjl ] where

1 ≤ j1 ≤ · · · ≤ jl ≤ l and 1 ≤ l <∞. Given σ = (i1, . . . , ik), let Jσ = {1, . . . , n} − {i1, . . . , ik}.
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Theorem 8.8. Let K be a directed MF -complex on the vertex set [m], so that there is a homotopy

equivalence ZK '
∨
α̃∈Ĩ S

tα̃ . The equivalence can be chosen so that the composite

∨
α̃∈Ĩ

Stα̃ −→ ZK −→ DJK

is a wedge sum of the following maps:

(a) a higher Whitehead product w̃σ : S2|σ|−1 −→ DJK for each missing face σ ∈

MF (K);

(b) an iterated Whitehead product

[[w̃σ, ãj1 ] . . . , ãjl ] : S
2|σ|+l−1 −→ DJK

for each σ ∈MF (K) of dimension greater than 1 and each list j1 < · · · < jl in Jσ,

where 1 ≤ l ≤ m;

(c) the collection of independent iterated Whitehead products W̃σ for each σ ∈MF (K)

of dimension 1.

Although in this paper our goal is to identify the map ZK −→ DJK for K a directed MF -

complex, we expect this can be generalized first to a much larger family of simplicial complexes and

second to the map between polyhedral products ZK(X) −→ DJK(X).

9. The objects of study

This section gives an initial analysis of directed MF -complexes. First, we compare directed MF -

complexes to another family of simplicial complexes that has received considerable attention for

its role in producing wedge decompositions of ZK . Then we prove the wedge decompositions in

Theorem 8.3 and Corollary 8.4.

Recall that a simplicial complex K on n vertices is shifted if there is an ordering on the vertex set

such that whenever σ is a simplex of K and v′ < v, then (σ − v) ∪ v′ is a simplex of K. In [GT2] it

was shown that if K is a shifted complex then ZK is homotopy equivalent to a wedge of spheres. In

fact, in [GT2] it was shown that if K is shifted then the polyhedral product (CΩX,ΩX) is homotopy

equivalent to a wedge of suspensions. This was generalised to any polyhedral product (CX,X)K

in [GT3, IK1].
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We show that directed MF -complexes and shifted complexes form distinct families, with non-

trivial intersection. Consider the three examples:

1

3

2

4

K1

1

3

2

4

K2

1

3

2

4

5

K3

Observe that K1 and K2 are shifted but K3 is not. The list of minimal missing faces in each case is:

MF (K1) = {(3, 4), (1, 2, 3), (1, 2, 4)};

MF (K2) = {(2, 4), (3, 4), (1, 2, 3)};

MF (K3) = {(2, 5), (3, 4), (4, 5), (1, 2, 3), (1, 2, 4), (1, 3, 5)}.

Observe that |K1| =
⋃
σ∈MF (K1) |∂σ| and |K3| =

⋃
σ∈MF (K3) |∂σ|, but in contrast,

⋃
σ∈MF (K2) |∂σ| =

|K2 − (1, 4)|. As well, K1 can be formed by gluing the boundary of (1, 2, 3) to the boundary of (1, 2, 4)

along the common face (1, 2), and K3 can be formed by gluing the boundary of (1, 3, 5) to K1 along

the common face (1, 3). Thus K1 is a shifted complex which is also a directed MF -complex, while

K2 is a shifted complex which is not a directed MF -complex, and K3 is a directed MF -complex

which is not shifted.

As noted in Section 8, a simple example of an MF -complex which is not a directed MF -complex

is the 1-skeleton of a tetrahedron. However, by [GT2], in this case the conclusions of Theorem 8.3

and Corollary 8.4 nevertheless hold; in particular, ZK is homotopy equivalent to a wedge of spheres.

It is useful to also give an example of an MF -complex which is not a directed MF -complex and for

which Theorem 8.3 and Corollary 8.4 fail. Let K be the simplicial complex on 8 vertices given by

1

2

3

4

56

7 8

Notice that K is the union of the boundaries of the faces {(1, 5, 6), (2, 6, 7), (3, 7, 8), (4, 5, 8)}. This

implies that |K| =
⋃
σ∈MF (K) |∂σ|, so K is an MF -complex. However, K is not a directed MF -

complex. For, thinking of |K| as the union of the boundaries of four triangles, it is possible to glue

the second triangle to the first and the third to the first two along a common vertex, but the fourth

triangle is glued to the first three along two vertices, which is not a common face. In this case the
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existence of the boundary of the square in K leads to non-trivial cup products in the cohomology

of ZK , implying that ZK cannot be a wedge of spheres.

Now we turn to the homotopy types of ZK(X) and ZK when K is a directed MF -complex. For

clarity, we restate Theorem 8.3 and Corollary 8.4.

Theorem 9.1. Let K be a directed MF -complex on the vertex set [m]. Let X = {X1, . . . , Xm}

where each Xi is a path-connected, pointed CW -complex. Then ZK(X) is homotopy equivalent to a

wedge of spaces of the form ΣtΩXi1 ∧ · · · ∧ ΩXik for various 1 ≤ t < m and sequences (i1, . . . , ik)

where 1 ≤ i1 < · · · < ik ≤ m.

Proof. Write Y ∈ W if Y is a space that is homotopy equivalent to a wedge of spaces of the form

ΣtΩXi1 ∧ · · · ∧ ΩXik for various 1 ≤ t < m and sequences (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ m.

For any such sequence, let FW (i1, . . . , ik) be the fat wedge of the product
∏k
j=1Xij . By definition,

the homotopy fibre of the inclusion FW (i1, . . . , ik) −→
∏k
j=1Xij is ZK for K = (∆k)k−1 = ∂σ. On

the other hand, by [Po2], this homotopy fibre is homotopy equivalent to Σk−1ΩXi1 ∧ · · · ∧ΩXik . In

particular, in an MF -complex |K| =
⋃
σ∈MF (K) |∂σ|, we have Z∂σ ∈ W for every σ ∈MF (K).

By definition, since K is a directed MF -complex, there is a sequence of subcomplexes ∅ ⊆ K1 ⊆

· · · ⊆ Kl = K for some l, where Ki = Ki−1 ∪ ∂σi for σi ∈ MF (K) and Ki−1 ∩ σi is a face

common to Ki−1 and σi. We proceed with the proof by induction. Since K1 = ∂σ1, the previous

paragraph shows that ZK1
∈ W. Now suppose that ZKi−1

∈ W. We have Ki constructed by

gluing ∂σi and Ki−1 along a common face, Z∂σi ∈ W by the preceding paragraph, and ZKi−1 ∈ W

by assumption. Under these circumstances, [GT2, Theorem 1.3] implies that ZKi ∈ W. (Actually,

[GT2, Theorem 1.3] is stated for the special case when Xi = CP∞ for 1 ≤ i ≤ n, but the proof goes

through without change in the general case.) Hence, by induction, ZK(X) = ZKl is in W. �

Corollary 9.2. Let K be a directed MF -complex on the vertex set [m]. Then ZK(S) is homotopy

equivalent to an infinite wedge of simply-connected spheres, and ZK is homotopy equivalent to a

finite wedge of simply-connected spheres.

Proof. In Theorem 8.3, suppose that Xi = Sni+1 for each 1 ≤ i ≤ m. Then ZK(S) is homotopy

equivalent to a wedge of spaces of the form ΣtΩSni1+1 ∧ · · · ∧ ΩSnik+1 for various 1 ≤ t < m

and sequences (i1, . . . , ik). By [J], there is a homotopy equivalence ΣΩSni+1 '
∨∞
j=1 S

jni+1.

Since Sjni+1 is a suspension, iterating this homotopy equivalence shows that each wedge sum-

mand ΣtΩSni1+1 ∧ · · · ∧ ΩSnik+1 is homotopy equivalent to an infinite wedge of simply-connected

spheres. Thus ZK(S) is homotopy equivalent to an infinite wedge of simply-connected spheres.

Next, in Theorem 8.3, suppose that Xi = CP∞ for each 1 ≤ i ≤ m. Then ZK is homotopy

equivalent to a wedge of spaces of the form ΣtΩCP∞i1 ∧ · · · ∧ ΩCP∞ik for various 1 ≤ t < m and

sequences (i1, . . . , ik). Since ΩCP∞ ' S1, each wedge summand ΣtΩCP∞i1 ∧· · ·∧ΩCP∞ik is homotopy
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equivalent to Sk+t. Thus ZK is homotopy equivalent to a finite wedge of simply-connected spheres.

�

10. Higher Whitehead products and Fat wedges

In this section we define a higher Whitehead product by means of a fat wedge, and relate the

existence of a missing face in K to the existence of a non-trivial higher Whitehead in DJK(X). Let

X1, . . . , Xm be path-connected spaces and let X = {X1, . . . , Xm}. The fat wedge is the space

FW (X) = {(x1, . . . , xm) ∈ X1 × · · · ×Xm | at least one xi = ∗}.

Consider the homotopy fibration obtained by including FW (X) into the product X1 × · · · × Xm.

The homotopy type of the fibre was first identified by Porter [Po2], who showed that there is a

homotopy fibration

Σm−1ΩX1 ∧ · · · ∧ ΩXm −→ FW (X) −→ X1 × · · · ×Xm.

There is a reformulation of this in terms of the polyhedral product. LetK = ∂∆m−1, the boundary

of the (m − 1)-simplex. Let CY be the reduced cone on Y , parameterised as CY = [0, 1] × Y/ ∼

for (0, y) ∼ ∗ and (t, ∗) ∼ ∗. Note that the cone point is at 0. Observe that there is a map of pairs

(CΩXi,ΩXi) −→ (Xi, ∗) given by sending (s, ω) ∈ CΩXi to ω(s). Then, essentially by [Po2], the

map Σn−1ΩX1 ∧ · · · ∧ΩXm −→ FW (X) can be identified with the map (CΩX,ΩX)K −→ (X, ∗)K .

If each Xi is a suspension, Xi = ΣYi, then the suspension map E : Y −→ ΩΣY induces a

composite

φm : Σm−1Y1 ∧ · · · ∧ Ym −→ Σm−1ΩΣY1 ∧ · · · ∧ ΩΣYm −→ FW (ΣY ).

The map φm is the attaching map that yields the product. That is, there is a homotopy cofibration

Σm−1Y1 ∧ · · · ∧ Ym
φm−→ FW (ΣY ) −→ ΣY1 × · · · × ΣYm.

In the case m = 2, we have FW (ΣY ) = ΣY1 ∨ ΣY2 and φ2 is the Whitehead product [i1, i2],

where i1 and i2 are the inclusions of ΣY1 and ΣY2 respectively into ΣY1 ∨ΣY2. This is the universal

example for Whitehead products. Given a space Z and maps f : ΣY1 −→ Z and g : ΣY2 −→ Z,

the Whitehead product [f, g] of f and g is the composite ΣY1 ∧ Y2
φ2−→ ΣY1 ∨ ΣY2

f⊥g−→ Z, where ⊥

denotes the wedge sum. Porter [Po1] used the maps φm for m > 2 as universal examples to define

higher Whitehead products.

Definition 10.1. For m ≥ 2, let Y1, . . . , Ym and Z be path-connected spaces, and let fi : ΣYi −→

Z be maps. Suppose that the wedge sum
∨m
i=1 ΣYi −→ Z of the maps fi extends to a map

f : FW (ΣY ) −→ Z. The mth-higher Whitehead product of the maps f1, . . . , fm is the composite

[f1, . . . , fm] : Σm−1Y1 ∧ · · · ∧ Ym
φm−→ FW (ΣY )

f−→ Z.
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If m = 2, the Whitehead product of two maps f1 and f2 is always defined, and the homotopy

class of [f1, f2] is uniquely determined by the homotopy classes of f1 and f2. If m > 2, it may

not be the case that the higher Whitehead product of m maps f1, . . . , fm exists, as there may be

non-trivial obstructions to extending the given map
∨m
i=1 ΣYi −→ Z to the fat wedge FW (ΣY ).

Even if such an extension exists, there may be many inequivalent choices of an extension, implying

that the homotopy class of [f1, . . . , fm] need not be uniquely determined by the homotopy classes

of f1, . . . , fm.

When m = 2, the adjoint of the Whitehead product [f1, f2] is homotopic to a Samelson product.

Its image in homology is given by commutators. We wish to have analogous information about

higher Whitehead products. The universal example is given by the adjoint of φm, which is a map

Σm−2Y1 ∧ · · · ∧Ym −→ ΩFW (ΣY ). We want to know the Hurewicz image of this map. To do so we

need a good model for H∗(ΩFW (ΣY )) which sees this Hurewicz image. Producing such a model in

the case when each Yi is a sphere is the subject of Section 11.

Before getting to this, we give a general result which identifies non-trivial higher Whitehead

products in DJK(ΣY ) for any simplicial complex K. In short, there is a non-trivial higher Whitehead

product for each missing face of K which, moreover, lifts to ZK(ΣY ). In what follows we will consider

sub-products
∏k
j=1 ΣYij of

∏m
i=1 ΣY . If σ = (i1, . . . , ik), let FW (ΣY , σ) be the fat wedge of the

sub-product
∏k
j=1 ΣYij .

Lemma 10.2. Let K be a simplicial complex on the vertex set [m]. If σ = (i1, . . . , ik) ∈ MF (K)

then there exists maps fσ : FW (ΣY , σ) −→ DJK(ΣY ) and gσ : Σk−1Yi1 ∧ · · · ∧ Yik −→ ZK(ΣY )

which both have left homotopy inverses, and which fit into a homotopy commutative diagram

Σk−1Yi1 ∧ · · · ∧ Yik
φk //

gσ

��

FW (ΣY )

fσ

��
ZK(ΣY ) // DJK(ΣY ).

Proof. Since σ ∈ MF (K), it is the full subcomplex of K on the vertex set {i1, . . . , ik}. Therefore,

if (X,A) is any n pairs of CW -complexes (Xi, Ai) then the polyhedral product (X,A)σ is a natural

retract of (X,A)K . Applying this to the map (CΩΣY ,ΩΣY ) −→ (ΣY , ∗) obtained from the maps

of pairs (CΩΣYi,ΩΣYi) −→ (ΣYi, ∗), we obtain a homotopy commutative diagram

Σk−1ΩΣYi1 ∧ · · · ∧ ΩΣYik
//

g′σ
��

FW (ΣY )

fσ

��
ZK(ΣY ) // DJK(ΣY )

where fσ and g′σ have left homotopy inverses. Precompose the diagram with the map

ε : Σk−1Yi1 ∧ · · · ∧ Yik −→ Σk−1ΩΣYi1 ∧ · · · ∧ ΩΣYik
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induced by the suspension maps Yi
E−→ ΩΣYi. By definition, φk is ε composed with the upper hori-

zontal map in the preceding diagram, so if let gσ = g′σ ◦ ε then we obtain the homotopy commutative

diagram asserted by the lemma.

It remains to show that gσ has a left homotopy inverse. But as ΣE has a left homotopy inverse,

so does ε, and therefore as g′σ has a left homotopy inverse, so does gσ. �

11. Adams-Hilton models

Let X be a simply-connected CW -complex of finite type and R a commutative ring. The Adams-

Hilton model [AH] is a means of calculating H∗(ΩX;R). One advantage it has over other models

for H∗(ΩX;R) is its relative simplicity, which allows for concrete calculations in certain cases. Its

presentation is stated in Theorem 11.1.

Let V be a graded R-module, and let T (V ) be the free tensor algebra on V . For a space X,

let CU∗(X) be the cubical singular chain complex on X with coefficients in R. Note that CU∗(X)

is naturally chain equivalent to the simplicial singular chain complex on X. If X is a homotopy

associative H-space then the multiplication on X induces a multiplication on CU∗(X), giving it

the structure of a differential graded algebra. A map A −→ B of differential graded algebras is a

quasi-isomorphism if it induces an isomorphism in homology.

Theorem 11.1. Let R be a commutative ring and let X be a simply-connected CW -complex of finite

type. The Adams-Hilton model for X is a differential graded R-algebra AH(X) satisfying:

(a) if X = pt ∪ (
⋃
α∈S eα) is a CW -decomposition of X then AH(X) = T (V ; dV )

where V = {bα}α∈S and |bα| = |eα| − 1;

(b) the differential dV depends on the attaching maps of the CW -complex X;

(c) there is a map of differential graded algebras θX : AH(X) −→ CU∗(ΩX) which

induces an isomorphism H∗(AH(X)) ∼= H∗(ΩX;R).

�

Notice that the generators of AH(X) are in one-to-one correspondence with the cells of X, shifted

down by one dimension. However, the differential dV and the quasi-isomorphism θX are not uniquely

determined by the CW -structure of X. There may be many inequivalent choices of both dV and θX

which result in an isomorphism H∗(AH(X)) ∼= H∗(ΩX;R). In that sense, there may be many

Adams-Hilton models for H∗(ΩX;R). One would hope to choose a model which is particularly

advantageous. This is what we aim to do for X = DJK(S) or DJK and R = Q by choosing a model

which keeps track of the Hurewicz images of adjointed higher Whitehead products.

We start with some general constructions in the case of DJK(S2) and DJK , producing Adams-

Hilton models for both which are compatible with the inclusion S2 ı−→ CP∞ of the bottom cell.

The model will then be generalized to DJK(S), but without the need for an accompanying map.
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By definition, for σ = (i1, . . . , ik), let Sσ =
∏k
j=1 S

2
ij

, with the lower index recording coordinate

position, and letDJK(S2) =
⋃
σ∈K S

σ. Similarly, regarding CP∞ as BT where T = S1, by definition

DJK =
⋃
σ∈K BT

σ, where BT σ = BTi1×· · ·×BTik , again with the lower index recording coordinate

position. Let ıσ : Sσ −→ BT σ be the product map
∏k
j=1 ı. Then the map DJK(S)

DJK(ı)−→ DJK is,

by definition,
⋃
σ∈K ı

σ.

Many useful properties of Adams-Hilton models were proved in [AH]; a nice summary can be found

in [An, 8.1]. First, an Adams-Hilton model of a CW -subspace can be extended to one for the whole

space. Start with the inclusion of the bottom cell S2 ı−→ CP∞. Then an Adams-Hilton model for S2

can be extended to one for CP∞. Second, an Adams-Hilton model for a product AH(X×Y ) can be

chosen so that it is quasi-isomorphic to A(X)⊗A(Y ), and this respects the quasi-isomorphisms θX×Y

and θX⊗θY to the respective cubical singular chain complexes. In our case, this lets us take the given

model AH(S2) for S2 and its extension AH(CP∞) for CP∞ and produce a model for Sσ mapping to

BT σ which, up to quasi-isomorphisms, is AH(S2)⊗σ mapping factor-wise to AH(CP∞)⊗σ. Third,

Adams-Hilton models preserve colimits, given coherency conditions. That is, if {Xα} is a family of

CW -subcomplexes of X and X =
⋃
αXα, and there are models AH(Xα) satisfying the coherency

conditions dVα |AH(Xα∩Xβ) = dVβ |AH(Xα∩Xβ) and θXα |AH(Xα∩Xβ) = θXβ |AH(Xα∩Xβ) for all pairs

(α, β), then colimαAH(Xα) is an Adams-Hilton model for X. In our case, we have DJK(S)
DJK(ı)−−−−→

DJK equalling, by definition,
⋃
σ∈K S

σ

⋃
σ∈K ıσ

−−−−−−→
⋃
σ∈K BT

σ. Notice that the intersection Sσ1 ∩Sσ2

is again a sub-product, namely Sσ1∩σ2 . Similarly, BT σ1 ∩BT σ2 = BT σ1∩σ2 . Thus the compatibility

of Adams-Hilton models with products implies that the coherency conditions will be satisfied for⋃
σ∈K S

σ and
⋃
σ∈K BT

σ, and for the map
⋃
σ∈K i

σ. Hence there is a commutative diagram

(20)

AH(DJK(S))
= //

AH(DJK(ı))

��

colimσ∈KAH(Sσ)

colimσ∈KAH(ıσ)

��
AH(DJK)

= // colimσ∈KAH(BT σ).

At this point one would like to say that homology commutes with colimits in order to describe

H∗(ΩDJK(S2);Q), say, as colimσ∈KH∗(ΩS
σ;Q). But there is a problem: AH(DJK(S)) is a non-

commutative differential graded algebra and in general, colimits of such objects do not commute

with homology. The point is that the colimit does not see higher bracket terms that may arise from

the interaction of the differential and noncommutativity. Instead, one needs to take an appropri-

ate homotopy colimit. However, in the case of directed MF -complexes, we are able to avoid this

problem.

To see this, consider an analogue of (20) with respect to directed MF -complexes and fat wedges.

To distinguish fat wedges, given σ = (i1, . . . , ik), let FW (S2, σ) be the fat wedge of
∏k
j=1 S

2
ij

,

where the lower index refers to coordinate position. Let FW (σ) be the fat wedge of
∏k
j=1 CP∞ij .

Let ıσ : FW (S2, σ) −→ FW (σ) be the map of fat wedges induced by ı. Note that FW (S2, σ) =
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τ∈(∆k)k−1

Sτ and FW (σ) =
⋃
τ∈(∆k)k−1

BT τ . Suppose K is a directed MF -complex on n vertices.

The fact that K is an MF -complex (missing face complex) implies that

DJK(S) =
⋃

σ∈MF (K)

FW (S2, σ) =
⋃

σ∈MF (K)

⋃
τ∈(∆k)k−1

Sτ .

Since K is a directed MF -complex, then in addition there is a sequence of subcomplexes ∅ ⊆ K1 ⊆

· · · ⊆ Kl = K where Ki = Ki−1 ∪ ∂σi and Ki−1 ∩ ∂σi is a face common to Ki−1 and ∂σi. Suppose

this common face is (t1, . . . , tl). Then topologically there is a (strict) pushout

∏l
j=1 S

2
tj

//

��

DJKi−1(S2)

��
FW (S2, σi) // DJKi(S

2).

That is, DJKi−1
(S2) and FW (S2, σi) have been glued together over the sub-product

∏t
j=1 S

2
tj of∏n

i=1 S
2. This pushout satisfies the coherency conditions for the Adams-Hilton model. The same

is true for DJK and the map DJK(ι). Thus, in the case of directed MF -complexes, (20) can be

reformulated as a commutative diagram

(21)

AH(DJK(S))
= //

AH(DJK(ı))

��

colimσ∈MF (K)AH(FW (S2, σ))

colimσ∈MF (K)AH(ıσ)

��
AH(DJK)

= // colimσ∈MF (K)AH(FW (σ)).

Since K is a directed MF -complex, Ki is obtained by gluing Ki−1 and ∂σi along a common

face. Thus the Adams-Hilton model AH(DJKi) is a free extension of the differential graded

algebras AH(DJKi−1
) and AH(FW (σi)) and consequently, the diagram (21) is Reedy cofibrant

(see [PR, Sections 3,4] for a discussion). Therefore, by [PR, Proposition 4.8] the colimits in (21)

are naturally weakly equivalent to homotopy colimits. As homotopy colimits of differential graded

algebras commute with homology, we immediately obtain the following.

Proposition 11.2. Let K be a directed MF -complex. There is a commutative diagram of algebras

H∗(ΩDJK(S2);Q)
∼= //

(ΩDJK(ı))∗

��

colimσ∈MF (K)H∗(ΩFW (S2, σ);Q)

colimσ∈MF (K)(Ωı
σ)∗

��
H∗(ΩDJK ;Q)

∼= // colimσ∈MF (K)H∗(ΩFW (σ);Q)

�

Proposition 11.2 reduces the problem of calculating H∗(ΩDJK(S2);Q) and H∗(ΩDJK ;Q) to that

of calculating the rational homology of looped fat wedges – with the proviso that the underlying

model for the fat wedges must be compatible with the inclusion of sub-products. In our case we
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want more, that the homology of the looped fat wedges also keeps track of the Hurewicz images of

adjointed higher Whitehead products. We will discuss this further in the next section.

Observe that the arguments above are equally valid for DJK(X), where X = {X1, . . . , Xm}. The

cases we particularly care about are S = {Sn1+1, . . . , Snm+1}, with the special case of DJK(S2), and

the case of DJK . The focus is on these cases as they give models which can be explicitly calculated.

We do so for DJK(S) in Section 13 and DJK in Section 14. For future reference, we state the case

for S.

Proposition 11.3. Let K be a directed MF -complex. An Adams-Hilton model for DJK(S) is

AH(DJK(S)) = colimσ∈MF (K)AH(FW (σ))

and there is an isomorphism

H∗(ΩDJK(S);Q) ∼= colimσ∈MF (K)H∗(ΩFW (σ);Q). �

12. An Adams-Hilton model for FW (S)

We are aiming for an Adams-Hilton model for FW (S) over Q which is compatible with the

inclusion of sub-products, and which keeps track of the Hurewicz images of adjointed higher White-

head products. We will obtain one by using Allday’s construction of a minimal Quillen model for

π∗(ΩFW (S))⊗Q and then using this to produce an Adams-Hilton model for H∗(ΩFW (S);Q).

We begin with some general statements which hold for any path-connected space X. Assume from

now on that the ground ring R is Q. Observe that π∗(X) can be given the structure of a graded Lie

algebra by using the Whitehead product to define the bracket. Equivalently, by adjointing, π∗(ΩX)

may be given the structure of a graded Lie algebra by using the Samelson product. Quillen [Q]

associated to X a free differential graded Lie algebra λ(X) over Q with the property that there is

an isomorphism H∗(λ(X)) −→ π∗(ΩX)⊗Q. The free property of λ(X) lets us write it as L〈V ; dV 〉

for some graded Q-module V and differential dV on V . A Quillen model MQ(X) is minimal if the

differential has the property that d(L〈V 〉) ⊆ [L〈V 〉, L〈V 〉].

Allday [Al] gave an explicit construction of a minimal Quillen model for π∗(ΩFW (S))⊗Q. This

is stated in Theorem 12.1 once some notation has been introduced. The cells of FW (S) are in

one-to-one correspondence with sequences (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ m and k < m. The

sequence (i1, . . . , ik) corresponds to the top cell of the coordinate subspace Sni1+1 × · · · × Snik+1

within FW (S). This cell has dimension Σks=1(nis + 1). Note that the condition k < m excludes

only one sequence, (1, 2, . . . ,m), corresponding to the top cell of the product Sn1+1 × · · · × Snm+1.

Allday’s minimal Quillen model for π∗(ΩFW (S))⊗Q is of the form

MQ(FW (S)) = L〈V ; dV 〉
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where V has one generator bI for each sequence I = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ m

and k < m, and the degree of bI is (Σks=1(nis + 1)) − 1. Similarly, his minimal Quillen model for

π∗(Ω
∏m
i=1 S

ni+1)⊗Q is of the form

MQ(

m∏
i=1

Sni+1) = L〈W ; dW 〉

where W has one generator bI for each sequence I = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ m, and

the degree of bI is (Σks=1(nis + 1))− 1.

To describe the differentials dV and dW , fix a sequence I = (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤

m and k ≥ 2. If k < m this corresponds to a generator bI of V , and if k ≤ m this corresponds to a

generator bI of W . In either case, the degree of bI is |bI | = (Σks=1nis +1)−1. Let SI be the collection

of all shuffles (J, J ′) of {i1, . . . , ik} with the property that j1 = 1 (known as a type II shuffle relative

to 1). If (J, J ′) is an (r, s)-shuffle of {1, . . . , k}, let ε(J, J ′) ∈ {0, 1} be the number determined

by the equation zi1 · · · zik = (−1)ε(J,J
′)zj1 · · · zjrzj′1 · · · zj′s in the graded rational symmetric algebra

generated by zi1 , . . . , zik with |zit | = nit + 1 for 1 ≤ t ≤ k. Let

aI = −Σ(J,J ′)∈SI (−1)|bI |+ε(J,J
′)[bJ , bJ′ ].

As special cases, let b = b(1,...,m) and a = a(1,...,m).

Theorem 12.1. With V and W as defined above, minimal Quillen models L〈V ; dV 〉 and L〈W ; dW 〉

for π∗(ΩFW (S))⊗Q and π∗(
∏n
i=1 ΩSmi+1)⊗Q can be chosen to satisfy the following properties:

(a) W = V ⊕ {b};

(b) dV (bI) = 0 if I = (i) for 1 ≤ i ≤ m;

(c) dV (bI) = aI for I = (i1, . . . , ik) with 2 ≤ k < m;

(d) dW restricted to V is dV ;

(e) dW (b) = a;

(f) the adjoint of the higher order Whitehead product S|b|−1 φm−→ FW (S) which at-

taches the top cell to the product
∏m
i=1 S

ni+1 is homotopic to a.

�

There is an explicit map α : L〈V 〉 −→ π∗(ΩFW (S)). Let bI ∈ V for I = (i1, . . . , ik). This

corresponds to the top cell of the coordinate subspace Sni1+1 × · · · × Snik+1 in FW (S). Let

FW (i1, . . . , ik) be the fat wedge in Sni1+1 × · · · × Snik+1. Let α(bI) be the adjoint of the com-

posite S|bI |−1 φk−→ FW (i1, . . . , ik) −→
∏k
j=1 S

nij+1 −→ FW (S), where the latter two maps are

the inclusions. Now extend α to L〈V 〉 by using the fact that π∗(ΩFW (S)) ⊗ Q is a Lie algebra

under the Samelson product. Allday’s statement that L〈V ; dV 〉 is a minimal Quillen model for

π∗(ΩFW (S)) ⊗ Q says two things: first, that α can be upgraded from a map of Lie algebras to

a map of differential graded Lie algebras, where the differential on π∗(ΩFW (S)) ⊗ Q is zero, and
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second, that this upgraded map induces an isomorphism in homology. A similar construction can

be made with respect to
∏m
i=1 S

ni+1.

We now pass from a minimal Quillen model to an Adams-Hilton model. In general, observe that

the Hurewicz homomorphism π∗(ΩX)⊗Q −→ H∗(ΩX;Q) factors as the composite π∗(ΩX)⊗Q c−→

CU∗(ΩX)
h−→ H∗(ΩX;Q), where CU∗(ΩX) is the cubical singular chain complex with coefficients

in Q, c is the canonical map to the cubical singular chains, and h is the quotient map to the homology

of the chain complex. Note that h is an algebra map. Let MQ(X) be a minimal Quillen model for

π∗(ΩX)⊗Q, and suppose there is an associated map of differential graded Lie algebras α : MQ(X) =

L〈VX ; dVX 〉 −→ π∗(ΩX) ⊗ Q which induces an isomorphism in homology. Since CU∗(ΩX) is a

differential graded algebra, the composite c ◦ α extends to a map θX : UL〈VX ; dVX 〉 −→ CU∗(ΩX)

of differential graded algebras. Thus there is a commutative diagram

(22)

L〈VX ; dVX 〉
i //

α

��

UL〈VX ; dVX 〉

θX

��
π∗(ΩX)⊗Q

c // CU∗(ΩX)
h // H∗(ΩX;Q)

where i is the inclusion. By Milnor-Moore [MM], regarding π∗(ΩX) ⊗ Q as a Lie algebra, we have

H∗(ΩX;Q) ∼= U(π∗(ΩX) ⊗ Q), with the isomorphism induced by the Hurewicz homomorphism.

On the other hand, h is a map of differential graded algebras once H∗(ΩX;Q) has been given

the zero differential. Thus h ◦ θX is a map of differential graded algebras, and therefore it is

determined by its restriction to the generating set V . The commutativity of the diagram implies

that h◦θX |V = h◦c◦α|V =: q. Thus h◦θX = U(q), implying that h◦θX induces an isomorphism in

rational homology. Hence UL〈VX ; dVX 〉 together with the quasi-isomorphism θX is an Adams-Hilton

model for X.

In our case, we obtain Adams-Hilton models (UL〈V ; dV 〉, θFW ) and (UL〈W ; dW 〉, θ∏) for FW (S)

and
∏m
i=1 S

ni+1, respectively. Theorem 12.1 therefore implies the following.

Theorem 12.2. The Adams-Hilton models AH(FW (S)) = (UL〈V ; dV 〉, θFW ) and AH(
∏m
i=1 S

ni+1) =

(UL〈W ; dW 〉, θ∏) have the following properties:

(a) W = V ⊕ {b};

(b) dV (bI) = 0 if I = (i) for 1 ≤ i ≤ m;

(c) dV (bI) = aI for I = (i1, . . . , ik) with 2 ≤ k < m;

(d) dW restricted to AH(FW (S)) is dV ;

(e) dW (b) = a;

(f) the adjoint of the higher order Whitehead product S|b|−1 φm−→ FW (S) which at-

taches the top cell to the product
∏m
i=1 S

ni+1 has “Hurewicz” image a.

�
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Remark 12.3. The inductive definition of the differential dV in the minimal Quillen model L〈V ; dV 〉

for FW (S) in Theorem 12.2 implies that the differential is compatible with the inclusion of sub-

products. The same is therefore true in UL〈V ; dV 〉. Moreover, the differential dV is what turns

the map α into a map of differential graded Lie algebras, and so both α and its extension to the

quasi-isomorphism θFW are compatible with the inclusion of sub-products.

As well as the inductive nature of the Adams-Hilton model, Theorem 12.2 also explicitly identifies

the “Hurewicz” image of the adjoint of the higher order Whitehead product φm. We put Hurewicz

in quotes as this image is an element in an Adams-Hilton model, whereas the honest Hurewicz im-

age is obtained after taking homology. That is, a is a cycle in AH(FW (S)), which could also be

a boundary. This turns out not to be the case. Observe that there is a sequence of isomorphisms

H∗(AH(FW (S))) ∼= H∗(UL〈V ; dV 〉) ∼= U(H∗(L〈V ; dV 〉)), since homology commutes with the uni-

versal enveloping algebra functor. To calculate H∗(L〈V ; dV 〉) we proceed exactly as in [B], where

Bubenik used separated Lie models to elegantly obtain the answer. This is stated in Theorem 12.4

in terms of the universal enveloping algebra rather than the Lie algebra as we are ultimately after

H∗(ΩFW (S);Q). To state the result we need to introduce more notation. For 1 ≤ i ≤ m, let bi

be the generator in V (or W ) corresponding to the sequence I = (i). That is, bi corresponds to

the cell Sni+1 in Sn1+1 × · · · × Snm+1. Let N = (Σki=1ni + 1) − 2. Recall from Section (8) that,

Lds〈b1, . . . , bm〉 = ⊕mi=1L〈bi〉. Observe that H∗(AH(
∏k
j=1 S

nj+1)) ∼= ULds〈b1, . . . , bm〉.

Theorem 12.4. For m ≥ 3, there are algebra isomorphisms

H∗(ΩFW (S);Q) ∼= H∗(AH(FW (S))) ∼= U(Lds〈b1, . . . , bm〉
∐
L〈u〉)

where u, of degree N , is the Hurewicz image of the adjoint of the higher Whitehead product φm.

Further, the looped inclusion ΩFW (S) −→
∏m
i=1 ΩSni+1 is modelled by the map

U(Lds〈b1, . . . , bm〉
∐
L〈u〉) U(π)−→ ULds〈b1, . . . , bm〉

where π is the projection. �

Note that the calculation of H∗(ΩFW (S);Q) is not new, it was originally done by Lemaire [Le].

What is new and important to keep in mind about Theorem 12.4 is that the calculation also keeps

track of the Hurewicz image of the adjointed higher Whitehead product φm.

Remark 12.5. When m = 2, we have FW (S) = Sn1+1 ∨ Sn2+1 and then it is well known that

H∗(ΩFW (S);Q) ∼= H∗(Ω(Sn1+1∨Sn2+1);Q) ∼= UL〈b1, b2〉. In this case φ2 is the ordinary Whitehead

product and its adjoint has Hurewicz image u = [b1, b2]. In this case we can regard L〈b1, b2〉 as

Lds〈b1, b2〉
∐
L〈u〉, modulo Jacobi identities on brackets of the form [u,−] = [[b1, b2],−].
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13. Properties of ΩDJK(S) and ΩZK(S) for directed MF -complexes

In this section we explicitly calculate H∗(ΩDJK(S);Q) when K is a directed MF -complex,

proving Theorem 8.5. This is then used in tandem with the loops on the homotopy fibration

ZK(S)
f−→ DJK(S)

g−→
∏m
i=1 S

ni+1 to calculate H∗(ΩZK(S);Q). We then give a homotopy de-

composition of ZK(S) as a wedge of spheres and describe the map ZK(S) −→ DJK(S) in terms of

higher Whitehead products and iterated Whitehead products, proving Theorem 8.7.

Remark 13.1. To simplify the presentation, for the remainder of Sections 13 and 14 we will assume

that the given directed MF -complex K has the property that |σ| > 2 for every σ ∈MF (K). This is

to appeal directly to Theorem 12.4. If |σ| = 2 for some σ = (i1, i2) ∈MF (K), then the calculations

can be modified by regarding L〈bi1 , bi2〉 as Lds〈bi1 , bi2〉
∐
L〈u〉 for u = [bi1 , bi2 ] as in Remark 12.5,

and by introducing the ideal J discussed in Section 8.

We begin by calculating H∗(ΩDJK(S);Q) using the Adams-Hilton model

AH(DJK(S)) = colimσ∈MF (K)AH(FW (σ))

in Proposition 11.3. Let b1, . . . , bm be the generators in AH(DJK(S)) corresponding to the cells

Sn1+1, . . . , Snm+1 respectively. For σ = (i1, . . . , ik) ∈ K, observe that {bi1 , . . . , bik} corresponds to

the cells Sni+1 which are in FW (σ). Let Nσ = (Σkj=1nij + 1) − 2. By Theorem 12.4, we have

H∗(AH(FW (σ))) ∼= U(Lds〈bi1 , . . . , bik〉
∐
L〈uσ〉) where uσ is the Hurewicz image of the adjoint of

a higher Whitehead product SNσ+1 −→ FW (σ).

We now prove Theorem 8.5, restated below to match the simplifying assumption in Remark 13.1.

Theorem 13.2. Let K be a directed MF -complex such that |σ| > 2 for every σ ∈ MF (K). There

is an algebra isomorphism

H∗(ΩDJK(S);Q) ∼= U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)

where each uσ is the Hurewicz image of the adjoint of a higher Whitehead product. Further, the loop

map ΩDJK(S) −→
∏m
i=1 ΩSni+1 is modelled by the map

U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/J U(π)−→ ULds〈b1, . . . , bm〉

where π is the projection.

Proof. Consider the string of isomorphisms

H∗(ΩDJK(S);Q) ∼= H∗(AH(DJK(S))

∼= colimσ∈MF (K)H∗(AH(FW (σ)))

∼= colimσ∈MF (K)U(Lds〈bi1 , . . . , bik〉
∐
L〈uσ〉)

∼= U(colimσ∈MF (K)Lds〈bi1 , . . . , bik〉
∐
L〈uσ〉)

∼= U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉).
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The first isomorphism holds because AH(DJK(S)) is an Adams-Hilton model. The second isomor-

phism holds because by Proposition 11.3. The third isomorphism holds by Theorem 12.4. For the

fourth isomorphism, Remark 12.3 implies that in the case of directed MF -complexes (when the miss-

ing faces are glued along common faces, which topologically correspond to sub-products in DJK(S))

the calculation of H∗(AH(FW (σ))) ∼= U(Lds〈bi1 , . . . , bik〉) is compatible with the inclusion of sub-

products. Therefore both the underlying Lie algebra and its universal enveloping algebra respect the

colimit over MF (K), and so the fourth isomorphism holds. Provided the fifth isomorphism holds,

the string of isomorphisms establishes the isomorphism asserted by the theorem. The statement

regarding Hurewicz images now follows from that in Theorem 12.4. The statement regarding the

model for the looped map ΩDJK(S) −→
∏m
i=1 ΩSni+1 follows again from Remark 12.3 regarding

the compatibility of the colimit with the inclusion of sub-products.

It remains to establish the fifth isomorphism in the string of isomorphisms above. This is really

a statement about Lie algebras, so we will show that

colimσ∈MF (K)Lds〈bi1 , . . . , bik〉
∐

L〈uσ〉 ∼= Lds〈b1, . . . , bm〉
∐

L〈uσ|σ ∈MF (K)〉.

Since the set MF (K) of minimal missing faces of K is finite, the colimit can be rewritten as a free co-

product modulo relations. To indicate the dependence on σ = (i1, . . . , ik), write Lds〈bi1 , . . . , bik〉
∐
L〈uσ〉

as Lds〈bσi1 , . . . , b
σ
ik
〉
∐
L〈uσ〉. Rearranging terms, there is an isomorphism of free coproducts

∐
σ∈MF (K)

(
Lds〈bσi1 , . . . , b

σ
ik
〉
∐

L〈uσ〉
)
∼=

 ∐
σ∈MF (K)

Lds〈bσi1 , . . . , b
σ
ik
〉

∐L〈uσ|σ ∈MF (K)〉.

Thus there is an isomorphism

(23) colimσ∈MF (K)Lds〈bσi1 , . . . , b
σ
ik
〉
∐

L〈uσ〉 ∼= ∐
σ∈MF (K)

Lds〈bσi1 , . . . , b
σ
ik
〉

∐L〈uσ|σ ∈MF (K)〉

 / ∼

where the relations ∼ are as follows. By definition of a directed MF -complex, two minimal missing

faces σ, σ′ ∈ MF (K) intersect along a common proper face, which we label as τ . If τ = ∅, then

as subspaces of DJK(S), FW (σ) and FW (σ′) intersect only at the basepoint. The Adams-Hilton

model of FW (σ)∨FW (σ′) is therefore the coproduct of the Adams-Hilton models for each individual

space, so after taking homology no relation is introduced on the underlying Lie algebras in (23). If

τ 6= ∅, suppose that τ = (r1, . . . , rs). Topologically, this intersection corresponds to the inclusion

of the proper subproduct
∏s
t=1 S

2 into DJK(S). The Adams-Hilton model for the loop space of

this subproduct has homology isomorphic to UL〈bτr1 , . . . , b
τ
rs〉, and by Remark 12.3 the inclusion

of this subproduct is compatible with the Adams-Hilton models for both ΩFW (σ) and ΩFW (σ′).

Therefore, upon taking homology, in U(Lds〈bσi1 , . . . , b
σ
ik
〉
∐
L〈uσ〉) and U(Lds〈bσ

′

i1
, . . . , bσ

′

ik′
〉
∐
L〈uσ′〉)

we have bσrt = bσ
′

rt for every r1, . . . , rt. This relation holds equally well on the underlying Lie algebras.



50 J. GRBIĆ AND S. THERIAULT

Hence the relation ∼ in (23) is given by identifying bσr` and bσ
′

r`
whenever r` ∈ σ ∩ σ′. Consequently,

considering all the minimal missing faces of K, we obtain ∐
σ∈MF (K)

Lds〈bσi1 , . . . , b
σ
ik
〉

∐L〈uσ|σ ∈MF (K)〉

 / ∼ ∼=

Lds〈b1, . . . , bm〉
∐

L〈uσ|σ ∈MF (K)〉.

�

Theorem 13.2 is the crucial algebraic result. We first use it to determine H∗(ΩZK(S);Q), and

then to determine a more detailed description of the Hurewicz homomorphism.

Since Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈ MF (K)〉 is a coproduct, there is a short exact sequence of

graded Lie algebras

(24) L〈R〉 i−→ Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉 π−→ Lds〈b1, . . . , bm〉

where i is the inclusion, π is the projection, and

(25) R = {[[uσ, bj1 ], . . . , bjl ] | σ ∈MF (K), 1 ≤ j1 ≤ · · · ≤ jl ≤ m, 0 ≤ l <∞}.

Here, when l = 0 we interpret the bracket as simply being uσ.

Proposition 13.3. There is a commutative diagram of algebras

H∗(ΩZK(S);Q)
(Ωf)∗ //

∼=
��

H∗(ΩDJK(S);Q)

∼=
��

UL〈R〉
U(i)

// U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉).

Proof. By [CMN, 3.7], a short exact sequence of graded Lie algebras induces a short exact sequence

of Hopf algebras. In our case, (24) induces a short exact sequence

UL〈R〉 U(i)−→ U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉) U(π)−→ ULds〈b1, . . . , bm〉.

Here, by a short exact sequence of Hopf algebras, we mean that there is an isomorphism

U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉) ∼= ULds〈b1, . . . , bm〉 ⊗ UL〈R〉

as right UL〈R〉-modules and left ULds〈b1, . . . , bm〉-comodules. In particular, U(i) is the algebra ker-

nel of U(π). On the other hand, Theorem 13.2 implies that U(π) is a model for the looped inclusion

ΩDJK(S)
Ωg−→

∏m
i=1 ΩSni+1. Since Ωg has a right homotopy inverse, the homotopy decomposition

ΩDJK(S) ' (
∏m
i=1 ΩSni+1)×ΩZK(S) implies that there is a short exact sequence of Hopf algebras

H∗(ΩZK(S);Q) −→ H∗(ΩDJK(S);Q)
U(π)−→ H∗(

∏m
i=1 ΩSni+1;Q). Thus H∗(ΩZK(S);Q) is also the

algebra kernel of U(π), and the proposition follows. �
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Theorem 13.2 implies that the rational homology of ΩDJK(S) is generated by Hurewicz images.

To be precise, suppose that σ = (i1, . . . , ik) ∈ MF (K). Recall that S = (Sni1+1, . . . , Snik+1), and

let Nσ = (Σkj=1nij+1)− 2. Let

wσ : SNσ+1 φk−→ FW (σ) −→ DJK(S)

be the higher Whitehead product. Let

sσ : SNσ −→ ΩDJK(S)

be the adjoint of wσ. As stated in Theorem 13.2, the element uσ ∈ H∗(ΩDJK(S);Q) is the Hurewicz

image of sσ. For 1 ≤ i ≤ m, let

ai : S
ni+1 −→ DJK(S)

be the coordinate inclusion and let

āi : S
ni −→ ΩDJK(S)

be the adjoint of ai. The Hurewicz image of āi is bi. Let I be the index set for R introduced

in (25). Then α ∈ I corresponds to a missing face σ ∈ MF (K) and a sequence (j1, . . . , jl) where

1 ≤ j1 ≤ · · · ≤ jl ≤ m and 0 ≤ l < ∞. Given such an α, let tα = (Σlt=1njt) + Nσ. Then there is a

Samelson product

[[sσ, āj1 ], . . . , ājl ] : S
tα −→ ΩDJK(S).

Since Samelson products commute with Hurewicz images, the Hurewicz image of [[sσ, āj1 ], . . . , ājl ]

is [[uσ, bj1 ], . . . , bjl ]. Adjointing, we have a Whitehead product

[[wσ, aj1 ], . . . , ajl ] : S
tα+1 −→ DJK(S).

Taking the wedge sum over all possible α, we obtain a map

W :
∨
α∈I

Stα+1 −→ DJK(S).

Corollary 13.4. The map Ω(
∨
α∈I S

tα+1)
ΩW−→ ΩDJK(S) induces in rational homology the map

UL〈R〉 U(i)−→ U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉).

Proof. Let S be the composite

S :
∨
α∈I

Stα
E−→ Ω(

∨
α∈I

Stα+1)
ΩW−→ ΩDJK(S).

Then S is homotopic to the adjoint of W . In particular, the wedge summands of S are the Samelson

products [[sσ, āj1 ], . . . , ājl ] for α ∈ I. Thus, taking Hurewicz images, S∗ is the composite

ī : R ↪→ UL〈R〉 U(i)−→ U(Lds〈b1, . . . , bm〉
∐

L〈uσ | σ ∈MF (K)〉)
∼=−→ H∗(ΩDJK(S)).
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By the Bott-Samelson theorem, H∗(Ω(
∨
α∈I S

tα+1);Q) ∼= T (H̃∗(
∨
α∈I S

tα ;Q)), and the latter alge-

bra is isomorphic to UL〈R〉. Therefore, as (ΩW )∗ is the multiplicative extension of S∗, it induces

the multiplicative extension U(i) of ī. �

Finally, we bring ZK(S) back into the picture.

Theorem 13.5. The map
∨
α∈I S

tα+1 W−→ DJK(S) lifts to ZK(S), and induces a homotopy equiv-

alence
∨
α∈I S

tα+1 −→ ZK(S).

Proof. By Lemma 10.2, each higher Whitehead product wσ lifts to ZK(S). Therefore each iterated

Whitehead product [[wσ, aj1 ], . . . , ajl ] into DJK(S) composes trivially to
∏m
i=1 S

ni+1 and so lifts to

ZK(S). Hence there is a lift

(26)

∨
α∈I S

tα+1

W

��

λ

yy
ZK(S) // DJK(S)

for some map λ.

After looping, Corollary 13.4 implies that the map Ω(
∨
α∈I S

tα+1)
Ωλ−→ ΩZK(S) induces an inclu-

sion UL〈R〉 (Ωλ)∗−→ H∗(ΩZK(S);Q). By Proposition 13.3, there is an isomorphism H∗(ΩZK(S);Q) ∼=

UL〈R〉. Therefore a counting argument implies that the inclusion (Ωλ)∗ must be an isomorphism.

Hence Ωλ is a rational homotopy equivalence. That is, Ωλ induces an isomorphism of rational

homotopy groups. Therefore, so does λ, and so λ is a rational homotopy equivalence.

To upgrade this to an integral homotopy equivalence, proceed as follows.

Step 1: Let gσ : SNσ+1 −→ ZK(S) be a lift of the higher Whitehead product wσ. By Lemma 10.2,

gσ can be chosen so that it has a left homotopy inverse. Now take the adjoint of (26) to obtain a

homotopy commutative diagram ∨
α∈I S

tα

W

��

λ

yy
ΩZK(S)

Ωϕ
// ΩDJK(S)

where W,λ are the adjoints of W,λ respectively. Let ḡσ : SNσ −→ ΩZK(S) be the adjoint of gσ.

Then ḡσ is homotopic to the composite SNσ
E−→ ΩSNσ+1 Ωgσ−→ ΩZK(S) where E is the suspension

map. Since gσ has a left homotopy inverse, so does Ωgσ. Since E∗ is the inclusion of the generator

in H∗(ΩS
Nσ+1;Z) ∼= Z[xNσ ], we have that ḡσ has nonzero Hurewicz image ūσ for some element

ūσ ∈ Ht(ΩZK(S);Z). Let w̄σ : SNσ −→ ΩDJK(S) be the adjoint of wσ. Since gσ is a lift of wσ

through ϕ, ḡσ is a lift of w̄σ through Ωϕ. Therefore, if we identify ūσ ∈ H∗(ΩZK(S);Z) with its

image in H∗(ΩDJK(S);Z), then w̄σ has Hurewicz image ūσ.
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Step 2: Observe that the homotopy fibration ΩZK(S)
Ωϕ−→ ΩDJK(S) −→

∏m
i=1 S

1 splits as

ΩDJK(S) '
m∏
i=1

S1 × ΩZK(S).

For 1 ≤ i ≤ m, the coordinate inclusion S2 ai−→ DJK(S) adjoints to a map S1 āi−→ ΩDJK(S). The

decomposition of ΩDJK(S) implies that āi has a nonzero Hurewicz image b̄i ∈ H1(ΩDJK(S);Z). As

Samelson products commute with Hurewicz images, the iterated Samelson product [[w̄σ, āj1 ], . . . , ājl ]

has Hurewicz image [[ūσ, b̄j1 ], . . . , b̄jl ].

Step 3: Now consider the rationalisation map

r : H∗(ΩDJK(S);Z) −→ H∗(ΩDJK(S);Q).

The integral splittings of spheres off ZK(S) via the maps gσ and the integral decomposition of

ΩDJK(S) induce corresponding rational splittings and a rational decomposition. Thus r(ūσ) = uσ

and r(b̄i) = bi, where uσ and bi is the notation used for the rational classes in H∗(ΩDJK(S);Q)

in Corollary 6.4. As r commutes with commutators, we therefore have r([[ūσ, b̄j1 ], . . . , b̄jl ]) =

[[uσ, bj1 ], . . . , bjl ]. In particular, since [[uσ, bj1 ], . . . , bjl ] is a generator of R (notation as in Corol-

lary 6.4), the Hurewicz image [[ūσ, b̄j1 ], . . . , b̄jl ] in H∗(ΩDJK(S);Z) is nonzero and maps by a degree

one map to [[uσ, bj1 ], . . . bjl ].

Notice that the iterated Samelson product [[w̄σ, āj1 ], . . . , ājl ] is the adjoint of the iterated White-

head product [[wσ, aj1 ], . . . , ajl ]. Therefore the collection of adjointed higher Whitehead products w̄σ

and iterated Samelson products [[w̄σ, āj1 ], . . . , ājl ] comprise the map W , and collectively lift by the

map λ to ΩZK(S). Each has an integral Hurewicz image which the rationalisation map r sends

by a degree one map to a generator in R ⊆ H∗(ΩZK(S);Q) ⊆ H∗(ΩDJK(S);Q). Moreover, these

integral Hurewicz images are linearly independent since their rationalizations are, and they are in

one-to-one correspondence with the rational classes in R.

Step 4: By Theorem 1.4, ZK(S) is homotopy equivalent to a wedge of simply-connected spheres, say

ZK(S) ' Σ(
∨
β∈J S

tβ ). Thus 〈R〉 ∼= H∗(
∨
β∈J S

tβ ;Q) and the inclusion of R into H∗(ΩZK(S);Q)

is induced by the suspension map E. Therefore, λ maps H∗(
∨
α∈I S

tα ;Z) isomorphically onto a

set R′ ⊆ H∗(
∨
β∈J S

tβ ;Z), which the rationalization r sends by degree one maps to R. But r

sends H∗(
∨
β∈J S

tβ ;Z) by degree one maps to H∗(
∨
β∈J S

tβ ;Q). Thus 〈R′〉 ∼= H∗(
∨
β∈J S

tβ ;Z).

Adjointing, we obtain that the map
∨
α∈I S

tα+1 λ−→ ZK(S) induces an isomorphism in integral

homology. Hence λ is an integral homotopy equivalence. �

Proof of Theorem 8.7. This is simply a rephrasing of Theorem 13.5. �
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14. Properties of ΩDJK and ΩZK for directed MF -complexes

Recall that ı : S2 −→ CP∞ is the inclusion of the bottom cell. By naturality, there is a homotopy

fibration diagram

ZK(S2) //

ZK(ı)

��

DJK(S2) //

DJK(ı)

��

∏r
i=1 S

2

∏r
i=1 ı

��
ZK // DJK // ∏r

i=1 CP∞.

In this section we will use the calculations of H∗(ΩDJK(S2);Q) and H∗(ΩZK(S2);Q) in Section 13

to calculate H∗(ΩDJK ;Q), proving Theorem 8.6, and H∗(ΩZK ;Q). We then give a homotopy

decomposition of ZK as a wedge of spheres and describe the map ZK −→ DJK in terms of higher

Whitehead products and iterated Whitehead products, proving Theorem 8.8.

By Proposition 11.2, H∗(ΩDJK) ∼= colimσ∈MF (K)H∗(ΩFW (σ);Q), so we first need to calculate

H∗(ΩFW (σ);Q) and then take a colimit to put the pieces together. We do this in Lemma 14.3

and Theorem 14.4 after two preliminary lemmas. In general, let X1, . . . , Xm be path-connected

pointed CW -complexes and consider the fat wedge FW (X) in
∏m
i=1Xi. Let j be the inclusion

j : FW (X) −→
∏m
i=1Xi.

Lemma 14.1. The map ΩFW (X)
Ωj−→
∏m
i=1 ΩXi has a right homotopy inverse, which can be chosen

to be natural for maps Xi −→ Yi.

Proof. The inclusion
∨m
i=1Xi −→ FW (X) is natural, as are the inclusions Xi −→

∨m
i=1Xi for

1 ≤ i ≤ m. Now loop and consider the composite

µ :

m∏
i=1

ΩXi −→
m∏
i=1

Ω(

m∨
i=1

Xi)
µ−→ Ω(

m∨
i=1

Xi) −→ ΩFW (X),

where µ is the loop multiplication. All three maps in the composite are natural, and µ is a right

homotopy inverse of Ωj. �

Let F be the homotopy fibre of j. As mentioned earlier, Porter [Po2] showed that there is a

homotopy equivalence F ' Σm−1ΩX1 ∧ · · · ∧ ΩXm. Further, in [Po1, 1.2] he showed that this

homotopy equivalence is natural for maps Xi −→ Yi. We record this as follows.

Lemma 14.2. Let fi : Xi −→ Yi be maps between simply-connected spaces. There is a homotopy

commutative diagram between fibrations

Σm−1ΩX1 ∧ · · · ∧ ΩXm
//

Σm−1Ωf1∧···∧Ωfm
��

FW (X)
j

//

FW (f1,...,fm)

��

∏m
i=1Xi

∏m
i=1 fi

��
Σm−1ΩY1 ∧ · · · ∧ ΩYm // FW (Y )

j
// ∏m

i=1 Yi.

�
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Let FW (S2) and FW (CP∞) be the fat wedges of
∏m
i=1 S

2 and
∏m
i=1 CP∞ respectively. Let

FW (ı) : FW (S2) −→ FW (CP∞) be the map induced by the inclusion S2 ı−→ CP∞.

Lemma 14.3. There is a commutative diagram of algebras

H∗(ΩFW (S2);Q)
∼= //

(ΩFW (ı))∗

��

U(Lds〈b1 . . . , bm〉
∐
L〈u〉)

q

��
H∗(ΩFW (CP∞);Q)

∼= // U(Lds〈b1, . . . , bm〉
∐
L〈u〉)/I

where u, of degree 2m− 2, is the Hurewicz image of the adjoint of a higher Whitehead product, I is

the ideal (b2i , [u, bi] | 1 ≤ i ≤ m), and q is the quotient map.

Proof. The isomorphism for H∗(ΩFW (S2);Q) holds by Theorem 12.4. To obtain the compatible

isomorphism for H∗(ΩFW (CP∞);Q) we first consider what happens on the level of spaces. For a

space X, let X(m) be the m-fold smash product of X with itself. By Lemma 14.2, the map ı induces

a homotopy commutative diagram

Σm−1(ΩS2)(m) //

Σm−1(Ωı)(m)

��

FW (S2)
j

//

FW (ı)

��

∏m
i=1 S

2

∏m
i=1 ı

��
Σm−1(ΩCP∞)(m) // FW (CP∞)

j
// ∏m

i=1 CP∞.

Note that ΩCP∞ ' S1 so Σm−1(ΩCP∞)(m) ' S2m−1. Also, since S1 E−→ ΩS2 is a right homotopy

inverse for Ωı, if we let s = Σm−1E(m) and t = Σm−1(Ωi)(m), then the composite S2m−1 s−→

Σm−1(ΩS2)(m) t−→ S2m−1 is homotopic to the identity map.

After looping we obtain a homotopy commutative diagram

(27)

Ω(Σm−1(ΩS2)(m)) //

Ωt

��

ΩFW (S2)
Ωj
//

ΩFW (ı)

��

∏m
i=1 ΩS2

∏m
i=1 Ωı

��
ΩS2m−1 // ΩFW (CP∞)

Ωj
// ∏m

i=1 S
1.

By Lemma 14.1, Ωj has a natural right homotopy inverse, so there is a homotopy commutative

diagram of sections

(28)

∏m
i=1 ΩS2

µ
//

∏m
i=1 Ωı

��

ΩFW (S2)

ΩFW (ı)

��∏m
i=1 S

1
µ
// ΩFW (CP∞).

Now we examine the effect of (28) in homology. By Theorem 13.2 and Proposition 13.3, a model

for the homology of the homotopy fibration along the top row of (27) is

(29) UL〈R〉 U(i)−→ U(Lds〈b1, . . . , bm〉
∐
L〈u〉) U(π)−→ ULds〈b1, . . . , bm〉
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where R = {[[u, bj1 ], . . . , bjl ] | 1 ≤ j1 ≤ · · · ≤ jl ≤ m, 0 ≤ l < ∞}. From (28), we obtain a right

inverse µ∗ of U(π). In particular, if H∗(
∏m
i=1 ΩS2;Q) ∼= Q[c1, . . . , cm], then µ∗(ci) = bi + γi for

some γi ∈ UL〈R〉. However, the least degree of UL〈R〉 which is non-trivial is 2m − 2, while ci has

degree 1. As m ≥ 3, for degree reasons we must have γi = 0. Thus µ∗(ci) = bi. For similar degree

reasons, we have µ∗(c
2
i ) = b2i (even though µ∗ may not be multiplicative). On the other hand, (Ωı)∗

is an isomorphism on the first homology group and the same is true after composing with µ∗, while

(Ωı)∗(c
2
i ) = 0. Thus the commutativity of (28) after taking homology implies that for 1 ≤ i ≤ m,

(ΩFW (ı))∗ is degree one on bi while (ΩFW (ı))∗(b
2
i ) = 0. The latter implies by multiplicativity that

(ΩFW (ı))∗ sends the ideal (b21, . . . , b
2
m) to 0.

Next, consider the commutator [u, bi] ∈ H∗(ΩFW (S2);Q). In terms of (29), [u, bi] composes

trivially with U(π) and so is the image of an element δi ∈ UL〈R〉. Note that δi has degree 2n− 1.

Taking homology in (27), we see that (Ωt)∗(δi) = 0 for degree reasons. Thus the commutativity of

the left square in (27) implies that (ΩFW (ı))∗([u, bi]) = 0. By multiplicativity, (ΩFW (ı))∗ therefore

sends the ideal I = (b2i , [u, bi] | 1 ≤ i ≤ m) to 0.

Thus there is a factorization

(30)

H∗(ΩFW (S2);Q)
∼= //

(ΩFW (ı))∗

��

U(Lds〈b1 . . . , bm〉
∐
L〈u〉)

q

��
H∗(ΩFW (CP∞);Q) U(Lds〈b1, . . . , bm〉

∐
L〈u〉)/I

h

oo

for some algebra map h, which is degree one on bi for each 1 ≤ i ≤ m. In addition, the fact that Ωt

has a right homotopy inverse implies that h is degree one on u.

We claim that h is an isomorphism, from which the lemma would follow. To see the isomor-

phism, let I ′ be the ideal ([u, bi] | 1 ≤ i ≤ m). Observe that U(Lds〈b1, . . . , bm〉
∐
L〈u〉)/I ′ is iso-

morphic to ULds〈b1, . . . , bm, u〉 ∼= Q[b1, . . . bm, u]. Thus U(Lds〈b1, . . . , bm〉
∐
L〈u〉)/I is isomorphic

to Λ(b1, . . . , bm) ⊗ Q[u]. On the other hand, the section µ in (28) implies that there is a homo-

topy decomposition ΩFW (CP∞) ' (
∏m
i=1 S

1) × ΩS2m−1. Thus there is a coalgebra isomorphism

H∗(ΩFW (CP∞);Q) ∼= Λ(c1, . . . , cm)⊗Q[v] where v has degree 2m− 2. From the use of µ and t in

both the homotopy decomposition of ΩFW (CP∞) and the factorisation of (ΩFW (ı))∗ through h,

we see that h(bi) = ci for 1 ≤ i ≤ m and h(u) = v. As h is an algebra map, it therefore induces an

isomorphism. �

Now we pass to a colimit of fat wedges to prove Theorem 8.6, restated below to match the

simplifying condition in Remark 13.1.

Theorem 14.4. Let K be a directed MF -complex such that |σ| > 2 for every σ ∈ MF (K). There

is an algebra isomorphism

H∗(ΩDJK ;Q) ∼= U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/I
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where uσ is the Hurewicz image of the adjoint of a higher Whitehead product and I is the ideal

I = (b2i , [uσ, bjσ ] | 1 ≤ i ≤ m,σ = (i1, . . . , ik) ∈MF (K), jσ ∈ {i1, . . . , ik}).

Further, there is a commutative diagram of algebras

H∗(ΩDJK(S2);Q)
∼= //

(ΩDJK(ı))∗

��

U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)

q

��
H∗(ΩDJK ;Q)

∼= // U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/I

where q is the quotient map.

Proof. With σ = (i1, . . . , ik), consider the diagram

H∗(ΩDJK(S2);Q)
(ΩDJK(ı))∗ //

∼=
��

H∗(ΩDJK ;Q)

∼=
��

colimσ∈MF (K)U(Lds〈bi1 , . . . , bik〉
∐
L〈uσ〉)

Q
//

∼=
��

colimσ∈MF (K)U(Lds〈bi1 , . . . , bik〉
∐
L〈uσ〉)/Iσ

∼=
��

U(Lds〈b1, . . . , bn〉
∐
L〈uσ | σ ∈MF (K)〉)

q
// U(Lds〈bi1 , . . . , bik〉

∐
L〈uσ | σ ∈MF (K)〉)/I

where Q = colimσ∈MF (K)qσ and Iσ is the ideal generated by (b2σi , [uσ, bjσ ] | jσ ∈ {i1, . . . , ik}). The

upper square commutes by combining Proposition 11.2 and Lemma 14.3. The lower square is the

result of evaluating the colimit, and so commutes. Note that both squares commute as maps of

algebras. The lower row is the epimorphism asserted by the theorem, and the outer rectangle is the

asserted commutative diagram. �

Next, we use Theorem 14.4 to calculate H∗(ΩZK ;Q) in Proposition 14.6 as the universal envelop-

ing algebra of a certain free graded Lie algebra. This will involve some explicit calculations involving

graded Lie algebra identities, which we recall now. In general, if L is a graded Lie algebra over Q

with bracket [ , ], there is a graded anti-symmetry identity [x, y] = −(−1)|x||y|[y, x] for all x, y ∈ L

and a graded Jacobi identity [[x, y], z] = [x, [y, z]]− (−1)|x||y|[y, [x, z]] for all x, y, z ∈ L.

The ideal in Theorem 14.4 involves brackets of the form [uσ, bj ] where j ∈ {i1, . . . , ik}, where

σ = (i1, . . . , ik). Thus in the quotient we need to keep track of brackets of the form [uσ, bj ] where j

is in the complement of {i1, . . . , ik}. Let Jσ = {1, . . . ,m} − {i1, . . . , ik}. Consider the free graded

Lie algebra generated by

R̃ = {[[uσ, bj1 ], . . . , bjl ] | σ ∈MF (K), {j1, . . . , jl} ⊆ Jσ, 1 ≤ j1 < · · · < jl ≤ m, 0 ≤ l ≤ m}.

Note that each jt can appear at most once in any given bracket. This should be compared to the

Q-module R, where each jt can appear arbitrarily many times in a given bracket. Let iR : R̃ −→ R

be the inclusion and πR : R −→ R̃ be the projection.
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Lemma 14.5. There is a short exact sequence of Lie algebras

L〈R̃〉 ĩ−→ (Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/Ĩ π̃−→ Lds〈b1, . . . , bm〉/Ĩ ′

where Ĩ is the ideal Ĩ = ([bi, bi], [uσ, bjσ ] | 1 ≤ i ≤ m,σ ∈ MF (K), jσ ∈ {i1, . . . , ik}), Ĩ ′ is the ideal

([bi, bi] | 1 ≤ i ≤ m), ĩ is the inclusion, and π̃ is the projection.

Proof. To simplify notation, let L = Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈ MF (K)〉. Observe from the

definitions of Ĩ and Ĩ ′ that there is a commutative diagram

L
π //

q

��

Lds〈b1, . . . , bm〉

q′

��

L/Ĩ
π̃ // Lds〈b1, . . . , bm〉/Ĩ ′

where q and q′ are the quotient maps. By (24), the kernel of π is L〈R〉. Let L̃ be the kernel of π̃.

The commutativity of the diagram implies that there is an induced map q̃ : L〈R〉 −→ L̃.

We claim that q̃ is a surjection. Let x ∈ L̃ and let x also denote its image in L/Ĩ. As q is onto

there is an element y ∈ L such that q(y) = x. Let z = π(y). If z = 0 then by exactness y lifts

to ỹ ∈ L〈R〉 and so q̃(ỹ) = x. If z 6= 0, then q′(z) = 0 by exactness. Since L is a coproduct, the

projection π has a right inverse r : Lds〈b1, . . . , bm〉 −→ L which is a map of Lie algebras. As the

generators of the ideal Ĩ ′ are all generators of the ideal Ĩ, we have (q ◦ r)(b) = 0 if and only if

q′(b) = 0 for any b ∈ Lds〈b1, . . . , bm〉. Thus r(z) has the property that (q ◦ r)(z) = 0. Therefore

ỹ = y − r(z) lifts to L〈R〉 and q(y − r(z)) = q(y) = x, so q̃(ỹ) = x. Hence q̃ is a surjection.

Now q̃ is a surjection and L̃ injects into L/Ĩ. Therefore L̃ is isomorphic to the image of L〈R〉

under q. We next show that this image is L〈R̃〉. We first perform two short calculations.

Calculation 1 : The Jacobi identity states that [[a, bi], bj ] = [a, [bi, bj ]]− (−1)|a||bi|[bi, [a, bj ]] for any

a ∈ L and any 1 ≤ i, j ≤ m. The abelian property of Lds〈b1, . . . , bm〉 implies that [bi, bj ] = 0 and so

[a, [bi, bj ]] = 0. By the anti-symmetry identity, −(−1)|a||bi|[bi, [a, bj ]] = (−1)|a||bi|+|bi||[a,bj ]|[[a, bj ], bi].

Since |bi| = 1 for 1 ≤ i ≤ m, the sign on the right side of this equation equals (−1)2|a|+1, which

is −1. Therefore [[a, bi], bj ] = −[[a, bj ], bi].

Calculation 2 : The Jacobi identity states that [[a, bi], bi] = [a, [bi, bi]]−(−1)|a||bi|[bi, [a, bi]] for any a ∈

L and 1 ≤ i ≤ m. Since [bi, bi] = 0 in L as |bi| is even, we have [a, [bi, bi]] = 0. As in Calculation 1, the

anti-symmetry identity shows that −(−1)|uσ|[bi, [a, bi]] = −[[a, bi], bi]. Thus [[a, bi], bi] = −[[a, bi], bi],

and so 2[[a, bi], bi] = 0. As L is a Lie algebra over Q, 2 is invertible and so [[a, bi], bi] = 0.

By Calculation 1, up to sign change, whenever consecutive b’s appear in a bracket of L〈R〉 or L

their order can be interchanged. By Calculation 2, the effect of taking the quotient in L〈R〉 and

L by the ideal I ′ = ([bi, bi] | 1 ≤ i ≤ n) is to annihilate all brackets in which appears a copy of

[a, [bi, bi]]. Together with Calculation 1 which lets us freely interchange consecutive b’s, any bracket
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of the form [[uσ, bj1 ], . . . , bjl ] is zero if any bjt appears more than once. Thus, the only such non-

trivial brackets must have 1 ≤ j1 < · · · < jl ≤ m, 0 ≤ l < n, as in the definition of R̃. The effect

of then taking the quotient by the ideal generated by [uσ, bjσ ] for jσ ∈ {i1, . . . , ik} is to annihilate

those brackets in {[[uσ, bj1 ], . . . , bjl ] | σ ∈ MF (K), 1 ≤ j1 < · · · < jl ≤ n, 0 ≤ l < m} which do not

have j1, . . . , jl ∈ Jσ. Thus the image of L〈R〉 under q is L〈R̃〉. �

In general, the image of a graded Lie algebra L in its universal enveloping algebra UL has the

property that [x, y] = xy−(−1)|x||y|yx, where the multiplication is taking place in UL. In particular,

the anti-symmetry identity implies that [x, x] = 2x2 if the degree of x is odd. Thus if 2 has been

inverted in the ground ring, then the ideal in UL generated by [x, x] is identical to the ideal generated

by x2. In our case, the short exact sequence of Lie algebras in Lemma 14.5 implies that there is a

short exact sequence of Hopf algebras

(31) UL〈R̃〉 −→ U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/I π−→ ULds〈b1, . . . , bm〉/I ′

where I is the ideal in Theorem 8.6 and I ′ = (b2i | 1 ≤ i ≤ m).

Proposition 14.6. There is a commutative diagram of algebras

H∗(ΩZK ;Q) //

∼=
��

H∗(ΩDJK ;Q)

∼=
��

UL〈R̃〉
U (̃i)

// U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/I.

Proof. Argue as in Proposition 13.3, replacing the short exact sequence of Hopf algebras appearing

there with that in (31), and replacing Theorem 13.2 with Theorem 14.4. �

Now we use the description of H∗(ΩDJK ;Q) in Theorem 14.4 to produce maps as was done in

the case of ΩDJK(S). For σ ∈MF (K), let

w̃σ : S2|σ|−1 φk−→ FW (S2, σ)
FW (ı)−→ FW (σ) −→ DJK

be the higher Whitehead product. By Theorem 14.4, the element uσ ∈ H∗(ΩDJK(S);Q) is the

Hurewicz image of the adjoint of w̃σ. For 1 ≤ i ≤ m, let ãi be the composite

ãi : S
2 ı−→ CP∞ −→ DJK

where the right map is the ith-coordinate inclusion. Let Ĩ be the index set for R̃. Then α̃ ∈ Ĩ

corresponds to a face σ ∈ MF (K) and a sequence (j1, . . . , jl) where 1 ≤ j1 < · · · < jl ≤ m and

0 ≤ l ≤ m. Given such an α̃, let tα̃ = Nσ+l−2. The inclusion iR induces a map ĩR :
∨
α̃∈Ĩ S

tα̃+1 −→∨
α∈I S

tα+1. Note that (ΩĩR)∗ can be identified with U(iR). Consider the composite

W̃ :
∨
α̃∈Ĩ

Stα̃+1 ĩR−→
∨
α∈I

Stα+1 W−→ DJK(S2)
DJK(ı)−→ DJK .
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If α̃ indexes σ ∈ MF (K), then the restriction of W̃ to Stα̃+1 is the higher Whitehead product w̃σ.

Otherwise, the restriction of W̃ to Stα̃+1 is an iterated Whitehead product of a single w̃σ with some

selection of the coordinate inclusions ã1, . . . , ãm, where each ãi appears at most once.

Corollary 14.7. The map Ω(
∨
α̃∈Ĩ S

tα̃+1)
ΩW̃−→ ΩDJK induces in homology the map UL〈R̃〉 U (̃i)−→

U(Lds〈b1, . . . , bm〉
∐
L〈uσ | σ ∈MF (K)〉)/I.

Proof. Let S̃ be the composite

S̃ :
∨
α̃∈Ĩ

Stα̃+1 E−→ Ω(
∨
α̃∈Ĩ

Stα̃+1)
ΩW̃−→ ΩDJK .

The definition of W̃ implies that S̃∗ induces the composite

R̃ ↪→ UL〈R̃〉 UL(iR)−−−−−−→ UL〈R〉 (ΩW )∗−−−−−−→ H∗(ΩDJK(S2))
(ΩDJK(ı))∗−−−−−−→ H∗(ΩDJK).

Now argue as in Corollary 13.4, using the description of (ΩDJK(ı))∗ in Theorem 14.4, to obtain the

asserted inclusion in homology. �

We finish by bringing ZK back into the picture.

Theorem 14.8. The map
∨
α̃∈Ĩ S

tα̃+1 W̃−→ DJK lifts to ZK , and induces a homotopy equivalence∨
α̃∈Ĩ S

tα̃+1 −→ ZK .

Proof. Argue as in Theorem 13.5, using Proposition 14.6 and Corollary 14.7 in place of Proposi-

tion 13.3 and Corollary 13.4 respectively. �

Proof of Theorem 8.8: This is simply a rephrasing of Theorem 14.8. �

15. Examples

First, we consider the example of the shifted complex (19) which appeared in Section 8.

Example 15.1. Let K be the following simplicial complex on 4 vertices

1

3

2

4

Under this ordering of the vertices, K is shifted. The missing faces of K are given by MF (K) ={
(3, 4), (1, 2, 3), (1, 2, 4)

}
. Observe that in this case |K| =

⋃
σ∈MF (K) |∂σ|. In fact, K = ∂(1, 2, 3) ∪

∂(1, 2, 4), where the boundaries of the two missing faces have been glued along the common face

(1, 2). So K is a directed MF -complex.
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By Theorem 8.5, there is an algebra isomorphism

H∗(ΩDJK(S)) ∼= U (Lds〈b1, b2, b3, b4〉
∐
L〈u1, u2, u3〉) /J

where u1 is the Hurewicz image of the adjoint of the Whitehead product corresponding to the missing

face (3, 4), and u2, u3 are the Hurewicz images of the adjoints of the higher Whitehead products

corresponding to the missing faces(1, 2, 3), (1, 2, 4), respectively. The ideal J is determined by Jacobi

identities and face relations based on the one missing face (3, 4) of dimension 1. Specifically, observe

that the Jacobi identity gives [u1, b1] = [[b3, b4], b1] = [b3, [b4, b1]] + [b4, [b3, b1]]. As both (1, 3) and

(1, 4) are faces of K, we have [b3, b1] = 0 and [b4, b1] = 0. Therefore [u1, b1] = 0. Similarly,

[u1, b2] = 0. Thus J = ([u1, b1], [u1, b2]).

By Theorem 8.7, the wedge summands of ZK(S) and the maps to DJK(S) are as follows. For

simplicity, we assume that each of the spheres in S is S2. Part (a) gives the three summands S3,

S5 and S5 with maps w1, w2 and w3 respectively. Since the missing faces (1, 2, 3) and (1, 2, 4) are

of dimension greater than 1, part (b) gives the following additional summands and maps:

(32) [[w2, aj1 ], . . . , ajl ] : S
5+l −→ DJK(S)

(33) [[w3, aj1 ], . . . , ajl ] : S
5+l −→ DJK(S)

for each list 1 ≤ j1 ≤ · · · ≤ jl ≤ l with 1 ≤ l < ∞. Note that the collection of spheres in (32) is

identical to the collection in (33). In either case, let W2 be the wedge of spheres. Since the missing

face (3, 4) is of dimension 1, part (c) gives the following additional summands:

(34) [[w1, aj1 ], . . . , ajl ] : S
3+l −→ DJK(S)

for each list 1 ≤ j1 ≤ · · · ≤ jl ≤ l with 1 ≤ l <∞ and each ji ∈ {3, 4}. Note that the restriction to

ji ∈ {3, 4} is from the fact that the Whitehead products [w1, a1], [w1, a2] correspond to elements in

the ideal J , so any iterated Whitehead product involving a1 or a2 must be excluded from the list of

independent Whitehead products W(3,4). Let W1 be the wedge of all possible spheres in (34).

Collectively, we obtain a homotopy equivalence

ZK(S) ' S3 ∨ 2S5 ∨W1 ∨ 2W2

and a map

ZK(S) ' S3 ∨ 2S5 ∨W1 ∨ 2W2 −→ DJK(S)

which is the wedge sum of w1, w2, w3 and the three lists of iterated Whitehead products in (34),

(32) and (33).

It is useful to reorganize the wedge summands of ZK(S). Recall that the join of two spaces A

and B is denoted A ∗ B; for our purposes it suffices to know that A ∗ B ' ΣA ∧ B. The right

half-smash of A and B is the quotient space Ao B = (A× B)/(∗ × B). If A is a suspension, then
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A o B ' A ∨ (A ∧ B). For 1 ≤ i ≤ 4, let S2
i be the copy of S2 associated with vertex i. Observe

that the wedge summands of S3 ∨W1 are in one-to-one correspondence with the wedge summands

of ΩS2
3 ∗ΩS2

4 , where the James splitting is used to iteratively decompose this space into a wedge of

spheres. As well, the wedge summands of S5 ∨W2 from (32) are in one-to-one correspondence with

the wedge summands of (ΩS2
1 ∗ΩS2

2 ∗ΩS3
3) o ΩS4, and the wedge summands of S5 ∨W2 from (33)

are in one-to-one correspondence with the wedge summands of (ΩS2
1 ∗ΩS2

2 ∗ΩS3
4)oΩS3. Thus the

wedge decomposition of ZK(S) above agrees with that in [GT2, Section 6].

Next, by Theorem 8.6, there is an algebra isomorphism

H∗(ΩDJK) ∼= U (Lds〈b1, b2, b3, b4〉
∐
L〈u1, u2, u3〉) /(I + J)

where u1 is the Hurewicz image of the adjoint of the Whitehead product w̃1 : S3 −→ CP∞3 ∨CP∞4 −→

DJK , while u2 and u3 are the Hurewicz images of the adjoints of the higher Whitehead products

w̃2 : S5 −→ FW (1, 2, 3) −→ DJK , and w̃3 : S5 −→ FW (1, 2, 4) −→ DJK , respectively; J is as

above, and I = (b2i , [u1, b3], [u1, b4], [u2, b1], [u2, b2], [u2, b3], [u3, b1], [u3, b2], [u3, b4]).

By Theorem 8.8, the wedge summands of ZK and the maps to DJK are as follows. Part (a) gives

the three summands S3, S5 and S5 with maps w̃1, w̃2 and w̃3 respectively. Since the missing faces

(1, 2, 3) and (1, 2, 4) are of dimension greater than 1, part (b) gives two additional summands S6

and S6 from the iterated Whitehead products

[w̃2, ã4] : S6 −→ DJK and [w̃3, ã3] : S6 −→ DJK .

For the missing face (3, 4) of dimension 1, part (c) is vacuous in this case. To see this, observe

that the Whitehead products [w̃1, ã3] and [w̃1, ã4] correspond to the algebraic elements [u1, a3] and

[u1, a4], both of which appear in the ideal I, while the Whitehead products [w̃1, ã1] and [w̃1, a2]

correspond to the algebraic elements [u1, b1] and [u1, b2], both of which appear in the ideal J . Thus

the collection of independent Whitehead products W̃(3,4) is empty.

Collectively then, we obtain a homotopy equivalence ZK ' S3 ∨ 2S5 ∨ 2S6 and a map

S3 ∨ 2S5 ∨ 2S6 −→ DJK

which is the wedge sum of w̃1, w̃2, w̃3, [w̃2, ã4] and [w̃3, ã3]. Note that the homotopy equivalence

matches that of [GT1, Example 10.2], which was calculated by different means.

The next example is similar to the previous one, but boosted up one dimension.
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Example 15.2. Let K be the following simplicial complex on 5 vertices

1

2

3

4
5

Here, K = ∂(1, 2, 3, 4)∪∂(1, 2, 3, 5) where ∂(1, 2, 3, 4) and ∂(1, 2, 3, 5) have been glued along the com-

mon face (1, 2, 3). This implies that K is a directed MF -complex. Also, under this ordering of the

vertices, K is shifted. The missing faces of K are given by MF (K) = {(4, 5), (1, 2, 3, 4), (1, 2, 3, 5)}.

This example is analogous to the previous one, so the algebraic descriptions of H∗(ΩDJK(S)) and

H∗(ΩDJK) are as before, but with a dimensional shift to account for the fact that the higher White-

head products corresponding to the missing faces (1, 2, 3, 4) and (1, 2, 3, 5) are maps wi : S
7 −→

DJK(S) and w̃i : S
7 −→ DJK for i ∈ {2, 3}. In particular, arguing as before, we obtain a homotopy

equivalence ZK ' S3 ∨ 2S7 ∨ 2S8 and a map

S3 ∨ 2S7 ∨ 2S8 −→ DJK

which is the wedge sum of w̃1, w̃2, w̃3, [w̃2, ã5] and [w̃3, ã4].
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