
Homotopy Types of Subspace Arrangements
via Diagrams of Spaces

Günter M. Ziegler & Rade T. Živaljević
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Abstract. We prove combinatorial formulas for the homotopy type of the union
of the subspaces in an (affine, compactified affine, spherical or projective) subspace
arrangement. From these formulas we derive results of Goresky & MacPherson on the
homology of the arrangement and the cohomology of its complement.
The union of an arrangement can be interpreted as the direct limit of a diagram
of spaces over the intersection poset. A closely related space is obtained by taking
the homotopy direct limit of this diagram. Our method consists in constructing a
combinatorial model diagram over the same poset, whose homotopy limit can be
compared to the original one by usual homotopy comparison results for diagrams of
spaces.

0. Introduction.

In this paper we describe a general method to construct the homotopy type of an arrange-
ment in terms of its combinatorial data. We demonstrate its use in the cases of linear,
affine, spherical and projective subspace arrangements.

The key lemmas for our approach are standard tools in algebraic topology, used for
example to define localizations of spaces in the setting of semisimplicial theory [BK]. It
seems, however, that they have not previously been applied in a combinatorial setting.
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To make them more easily accessible for other possible applications (e.g., arrangements of
quadrics in projective spaces, of trains in Grassmannians, etc.), we give a summary of the
set-up in Section 1. Simple proofs are given in the appendix to this paper. The following
is an outline of our approach.
0. Arrangement
An arrangement is a finite set of subspaces A = {A1, . . . , Am} in a topological ambient
space U . We assume that the arrangement is closed under intersection. By the union of
the arrangement we mean the space D :=

⋃
A =

⋃m
i=1 Ai, by the complement we mean

M := U\D.
1. Combinatorial data
The intersection poset P is a partially ordered set that is isomorphic to the set of all
subspaces in A, ordered by reversed inclusion. Thus for every element p ∈ P there is
a corresponding subspace Ap ∈ A, and q ≤ p means Aq ⊇ Ap. The combinatorial data
specify for every p ∈ P the homotopy type of Ap, and for every q ≤ p the homotopy class
of the inclusion map Ap ↪→ Aq.
2. Diagram of spaces
A diagram of spaces D = D(A) is a functor D : P −→ CW-Top, which associates a
topological space Ap to every p ∈ P and the inclusion map Ap ↪→ Aq to every order relation
q ≤ p in P . The union of an arrangement is the (direct) limit of its diagram of spaces.
Assuming that the inclusion maps are cofibrations, this limit is homotopy equivalent to
the homotopy (direct) limit ∥D∥ [Projection Lemma 1.6].
3. Normalization
From the combinatorial data, one can construct a diagram D′ of spaces over the same
poset P . The homotopy limit of this model diagram serves as a combinatorial model
for the union D(A). If there is a homomorphism of diagrams D −→ D′ which induces
a homotopy equivalence Di −→ D′

i for all i, then the homotopy limits are homotopy
equivalent [Homotopy Lemma 1.7], which yields a combinatorial formula D(A) ≃ ∥D∥ ≃
∥D′∥ for the homotopy type of the union.
4. Simplification
Often the homotopy type of the model diagram can be further simplified. For example, if
all the maps are homotopically trivial, the homotopy limit has a wedge decomposition over
the poset P [Wedge Lemma 1.8]. If the homotopy types of the spaces and the embedding
maps are (up to homotopy) determined by dimensions, then one can sometimes get a wedge
decomposition over the rank levels of the poset P .
5. Duality
If the arrangement determines a relative (homology) manifold (U, D), then Lefschetz du-
ality yields information about the compactified complement. If the ambient space is a
(homology) sphere, then Alexander duality can be used to deduce the cohomology of the
complement.

Let us give one example for the formulas derived by this approach.
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For this, denote by A = {A1, . . . , Am} a set of affine subspaces (not necessarily con-
taining the origin) in U = IRn. Assume (without affecting the topology) that the arrange-
ment A is closed under intersection, let P be an abstract poset that is isomorphic to the
set of all non-empty intersections of subspaces in A, ordered by reversed inclusion, and let
d : P −→ IN0 be the dimension function. Then D :=

⋃
A is homotopy equivalent to the

order complex ∆(P ) – this follows from the nerve theorem.

Theorem (2.2). The one-point compactification D̂ = D ( {∞} is homotopy equivalent
to

D̂ ≃
∨

p∈P

∆(P<p) ∗ Sd(p),

From this, it is easy to see that

H̃i(D̂; ZZ) ∼=
⊕

p∈P

H̃i−1−d(p)(∆(P<p); ZZ)

and thus by Alexander duality in ÎRn ∼= Sn one gets Corollary 2.3 [GM, III.1.5 “Theo-
rem A”]:

H̃i(IRn\D; ZZ) ∼=
⊕

p∈P

H̃n−2−i−d(p)(∆(P<p); ZZ)

for all i ∈ ZZ.
This result is best possible in several respects. First, neither the homeomorphism type

of the union nor the homotopy type of the complement are determined by the combinatorial
data. In fact, the algebra structure of the cohomology of the complement is not determined
by the combinatorial data. These observations even apply in the special case where A is
an “even” arrangement (as considered by Goresky & McPherson [GM, p. 257]), that is, if
the subspaces in A have codimension 2 and all intersections have even codimensions, see
[Z1].

Our approach does not utilize any differentiable structure. Thus it carries over verba-
tim to arrangements of flats in an oriented matroid [BLSWZ] and their affine and projective
versions.

1. Diagrams of Spaces.

A functor D : S −→ A from a small category S to an arbitrary category A will be called
an S-diagram of objects in A. All S-diagrams of objects in A form a category, where
morphisms are natural transformations of functors.

A finite partially ordered set (P,≤) is here seen as a small category with arrows
pointing downwards, i.e., p → q is equivalent to p ≥ q. We will be solely interested in
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(P,≤)-diagrams of topological spaces, usually spheres and projective spaces and almost
always CW-complexes, so for us a P -diagram of spaces is a functor

D : (P,≤) −→ CW-Top

to the category of spaces having the homotopy type of a finite CW-complex. If D is a
P -diagram of spaces then the space associated with the element p ∈ P is denoted by Dp,
and the morphism corresponding to p ≥ q is denoted by dpq := D(p → q).

Example 1.1. Let A be a finite collection of subspaces of a topological space M . Then
P := (A,⊇) is a finite partially ordered set and the identity map I : P −→ A defines a
P -diagram of spaces with inclusion maps as morphisms. Diagrams of this type are very
frequent and will be referred to as subset diagrams.

Definition 1.2. An arrangement is a finite collection A = {A1, . . . , Am} of closed
subspaces of a topological space U such that
(i) A is closed under intersection, that is, A, B ∈ A implies A∩B ∈ A, and
(ii) for A, B ∈ A and A ⊆ B the inclusion map A ↪→ B is a cofibration.
The union of the arrangement A in U is D :=

⋃
A, the complement is M := U\D.

Thus every arrangement gives rise to an associated P -diagram D = D(A), where P is
the intersection poset of A: a finite join semi-lattice whose maximal element 1̂ corresponds
to A1̂ =

⋂
A, which may be empty.

The key to our treatment of arrangements is the replacement of the limit of its subset
diagram, which is

⋃
A, by the homotopy direct limit [a. k. a. “the classifying space of

the corresponding small category of spaces”], which we will now define. This construction
belongs to the general class of “geometric realization of semisimplicial sets” constructions,
essentially started by Milnor [Mi] and widely used in topology, see for example [Se], [BK],
[GZ], [Vo] etc.

The primitives for the construction are the order complex ∆(P ), i.e., the geometric
realization of the simplicial complex of chains in P , and the mapping cylinder Z(f) of a
map f : A −→ B, obtained from A×[0, 1] ∪ B by identification of (a, 1) with f(a) for all
a ∈ A. The subspace A×{0} of Z(f) is referred to as the top of the cylinder, the image of
B as its base.

Definition 1.3. Let D be a diagram over the finite poset P . The homotopy direct limit
∥D∥ := holim

−→
D is obtained from the disjoint union X :=

∐
p∈P ∆(P≤p)×Dp by “making

the obvious identifications”, as follows.
Let Y be defined by Y :=

∐
p>q ∆(P≤q) × Dp. There exist two obvious maps α, β :

Y −→ X , where α consists of the maps ∆(P≤q) × Dp −→ ∆(P≤p) × Dp, induced by
inclusions ∆(P≤q) −→ ∆(P≤p) for p > q, and β consists of the maps ∆(P≤q) × Dp −→
∆(P≤q) × Dq , induced by the maps dpq : Dp −→ Dq . Now ∥D∥ is the difference cokernel
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of these two maps, i.e., ∥D∥ is the space obtained from X by identifying (x, u) and (x′, u′)
whenever α(x, u) = β(x′, u′).

A less formal and more geometric description of this construction is the following.
One starts with the disjoint union of all spaces Dp, p ∈ P . Then one attaches to this, for
every map dpq : Dp −→ Dq, a copy of the mapping cylinder Z(dpq) by identifying the top
with Dp and the base with Dq. The process is continued by attaching, for every p > q > r,
a copy of Xp × ∆({p, q, r}), where ∆({p, q, r}) is a two dimensional simplex spanned by
{p, q, r}, for example the order complex of the poset p > q > r. This space is attached
along the sides of the triangle ∆({p, q, r}) to the mapping cylinders of maps dpq, dqr and
dpr. This construction is continued inductively for the chains in P of all lengths.

Let α : D −→ E be a morphism of P -diagrams, i.e., a collection α = (αp)p∈P of contin-
uous maps αp : Dp −→ Ep that satisfy the usual commutation relations epq ◦αp = αq ◦dpq.
Then α uniquely determines a continuous map α : ∥D∥ −→ ∥E∥ of the corresponding
homotopy limits.

There are other approaches to the definition of ∥D∥, and some of them, including
the two mentioned above, can be found in [BK, Sect. XII.2]. There exists an even more
general approach which deals with the case of diagrams of spaces which commute only up
to coherent homotopies, see [Vo].

Examples 1.4.
(a) A map f : A −→ B can be seen as a diagram D over a poset of two elements {p > q}.

In this case ∥D∥ is the mapping cylinder of f .
(b) The mapping cone of f : A −→ B is obtained as ∥D∥ for the diagram over the poset

q < p > r where Dp = A, Dq = B, Dr is a one point space, and dpq = f .
(c) The poset P can be seen as a diagram P over itself having a one point space {p}

associated to each p ∈ P . In this case ∥P∥ is the order complex ∆(P ).
(d) In case of the diagram I : P −→ A of subspaces of a given space M , see Example 1.1,

there exists a natural “collapsing” map ξ : ∥I∥ −→ M . If A is a covering of M that
is closed under intersections, then ξ is a continuous map with contractible fibers, so
it is “usually” a homotopy equivalence (see Projection Lemma 1.6 and Example 4.3).

The map ξ defined in Example 1.4(d) can be used for comparison of the homotopy
limit of a subspace diagram with the underlying space. It can be seen as a special instance
of the map arising in the following construction.

There is one more category naturally associated with diagrams, the category of all
diagrams over all finite posets. A morphism α : D −→ E between a P -diagram D and a
Q-diagram E is a pair (ν, (αp)p∈P ), where ν : P −→ Q is an order preserving map and
αp : Dp −→ Eν(p), p ∈ P , is a family of continuous maps satisfying the usual commutativity
relations. A map α : ∥D∥ −→ ∥E∥ arises naturally and the map ξ from Example 1.4(d) is
seen as a special case of α.

5



Examples 1.5.
(a) If D is a P -diagram and P ′ ⊆ P is a subposet, then there is a natural restriction

of D to a P ′-diagram D′ = D|P ′, the inclusion map P ′ ⊆ P induces a morphism of
diagrams D′ −→ D. The corresponding map of homotopy limits embeds ∥D′∥ as a
subspace of ∥D∥.

(b) Assume that P contains a maximal element 1̂ and that D is a P -diagram for which
D1̂ = ∅. Then for P ′ := P\1̂ and D′ := D|P ′ we get that the map ∥D′∥ ↪→ ∥D′∥ is a
homeomorphism.

(c) Let D be a P -diagram, and let p0 be a minimal element of P . Then each of the posets
P 1 := P\p0, P 2 := P≥p0 and P 12 := P>p0 = P 1 ∩ P 2 inherits a diagram structure
from D, where we write D1 = D|P 1, D2 = D|P 2 and D12 = D|P 12. In this situation
we have

∥D1∥ ∩ ∥D2∥ = ∥D12∥ and ∥D1∥ ∪ ∥D2∥ = ∥D∥.

This leads to the “deletion and contraction” approach to the construction of D. For
example, a Mayer-Vietoris sequence can be applied to compute the homology of D by
induction on the size of P .

(d) Let Q = {0̂} be a one element poset, so Q-diagrams can be identified with spaces.
Then a morphism from a P -diagram D to a space E, seen as a Q-diagram E , is just a
collection α of maps αp : Dp −→ E satisfying the condition αq ◦dpq = αp for all p ≥ q.
In this case ∥E∥ = E and α will be as in Example 1.4(d) denoted by ξ. Note that
a collection α = (αp)p∈P of maps which define a morphism from D to E , naturally
define a diagram D over P = {0̂} ∪ P where 0̂ < p for all p ∈ P . For this extended
diagram we get ∥D∥ ∼= Zξ, where Zξ is the mapping cylinder of ξ.
Conversely, whenever D is a diagram over a poset P with a unique element 0̂, then
∥D∥ is the mapping cylinder of the map ∥D∥ −→ D0̂, where D is the restriction of D
to P := P\0̂.

The following two propositions will serve as our primary tools for finding homotopy
models of arrangements. The first of them, referred to as the Projection Lemma, was
proved in [Se]. The second, called the Homotopy Lemma, is essentially proved in [tD].
Special cases of this result were of course known before; for this see the references of [tD].
A very general treatment, where it is shown that these lemmas hold under mild restrictions
for diagrams over arbitrary small categories, can be found in [BK] and [Vo]. In this paper
we are interested in the special case of diagrams over finite posets. So, we refer the reader
to the appendix, where direct and elementary proofs of these statements are outlined.

Projection Lemma 1.6. [Se] [BK, XII.3.1(iv)]
Let A be an arrangement (Definition 1.2) in U with intersection poset P , let D be the
corresponding P -diagram of spaces, and ∥D∥ its homotopy limit.

Then the natural collapsing map ξ : ∥D∥ −→ D (see Example 1.4(d)) is a homotopy
equivalence.
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Homotopy Lemma 1.7. [tD] [BK, XII.4.2] [Vo]
Let α = (αp)p∈P be a morphism of two P -diagrams D and E .

If αp : Dp −→ Ep is a homotopy equivalence for all p ∈ P , then the associated map
α : ∥D∥ −→ ∥E∥ is also a homotopy equivalence.

We note that this homotopy lemma becomes trivial if we assume the existence of a
homotopy equivalence between the diagrams D and E , that is, if we assume that the ho-
motopy equivalences between the “stalks” Dp and Ep can be chosen compatibly. However,
there is no compatibility assumption in Lemma 1.7, which makes it quite powerful.

In the following we analyze the situation when D : P −→ CW-Top is a diagram
with trivial maps. It turns out that in this case the homotopy type of ∥D∥ has a simple
description in terms of the subcomplexes ∆(P<p) of the order complex ∆(P ), and the
spaces Dp. As a consequence one obtains a direct sum decomposition of the homology
H̃∗(∥D∥; ZZ). We refer to the Appendix (Section 4) for a list of basic constructions and for
proofs.

Wedge Lemma 1.8. Let P be a poset with a unique maximal element 1̂, and let D be
a P -diagram so that there exist points cp ∈ Dp for all p < 1̂ such that dpq is the constant
map dpq : x 3→ cq ∈ Dq for all p > q. Then

∥D∥ =
∨

p∈P

(∆(P<p) ∗ Dp),

where the wedge is formed by identifying cp ∈ ∆(P<p)∗Dp with p ∈ ∆(P<1̂)∗D1̂ for every
p < 1̂.

Corollary 1.9. In the situation of the Wedge Lemma 1.8,

H̃∗(∥D∥; ZZ) ∼=
⊕

p∈P

H̃∗(∆(P<p) ∗ Dp).

2. Homotopy Types of Arrangements.

We will now demonstrate the power of the diagram technique by computing combinatorial
formulas for the homotopy types of four types of subspace arrangements:
(a) affine arrangements,
(b) compactified affine arrangements,
(c) spherical arrangements (links of central arrangements),
(d) projective arrangements.

The computation of the cohomology of a complement of a hyperplane arrangement
(subspaces of codimension 1) is a classical problem [OS] [Or] [BZ]. The cohomology of
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the complement M of an arbitrary subspace arrangement was first computed by Goresky
& MacPherson [GM, Part III], who used this example to demonstrate the power of their
newly developed “Stratified Morse Theory”. They show that the cohomology groups can
be constructed from the data given by the intersection poset of the arrangement, together
with its dimension function. (An alternative approach is due independently to Jewell,
Orlik & Shapiro [JOS] and to Vassiliev [Va, 4.2.A], see also Section 3(e).)

We obtain the cohomology of the complement by Alexander duality from case (c) for
central arrangements and from case (b) for affine subspace arrangements. The computation
in the projective case needs extra arguments, see Theorem 2.8.

2(a) Affine Arrangements.

Our first application of the diagram technique will be a description of the homotopy type
of an affine real subspace arrangement.

For this, let A = {A1, . . . , Am} be a finite set of affine subspaces in IRn, closed under
intersection. Let P be the intersection poset of A, where p ∈ P corresponds to Ap ∈ A.
We order by reversed inclusion: p ≥ q means Ap ⊆ Aq. The poset P includes a maximal
element 1̂, corresponding to A1̂ =

⋂
A, which is either empty or contractible. Since all

spaces Ap for p < 1̂ are contractible there is a unique homotopy class of maps Ap −→ Aq,
and a complete set of combinatorial invariants (in the sense of the introduction) is given
by the poset P together with the information whether A1̂ is empty.

Theorem 2.1. Let A be an affine arrangement with intersection poset P . Then

⋃
A ≃

{
∆(P\1̂), if A1̂ = ∅,
{1̂}, otherwise.

Proof. The P -diagram D of A is a subspace diagram that satisfies the conditions of the
Projection Lemma 1.6, so we conclude that ξ : ∥D∥ −→

⋃
A is a homotopy equivalence.

Now let D′ be the trivial P -diagram, with D′
1̂

= ∅ if A0̂ = ∅, and Ap = {cp} otherwise.
Then there is an obvious map of diagrams D −→ D′, to which the Homotopy Lemma 1.7
applies. Finally ∥D∥ = ∆(P\1̂) if A1̂ is empty, and ∥D∥ = ∆(P ) ≃ 1̂ otherwise.

This theorem is also proved in [GM, Chapt. III.2]. It can alternatively be derived by
two applications of the nerve theorem [Bj], as in [BLY, Prop. 4.1].

2(b) Compactified Affine Arrangements.

If A is an arrangement of affine subspaces of IRn, then another natural invariant is D̂ =⋃̂
A =

⋃
A ∪ {∞} ⊂ IRn ∪ {∞}, the one-point compactification of D =

⋃
A seen as a

subspace of the one-point compactification ÎRn = IRn ∪ {∞} ∼= Sn of the ambient space.
We interpret D̂ as the union of an arrangement Â of compactified affine subspaces Âp

with intersection poset P . We assume that the arrangement includes Â1̂ = {∞} as the
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compactification of the empty subspace. Define a dimension function d : P<1̂ −→ IN0

by d(p) := dimIR Ap. Then we get that the pair (P, d) determines the homotopy type of
Âp

∼= Sd(p), while the maps Sp −→ Sq for p > q are all pointed embedding maps of a
sphere (or a point) into a higher-dimensional sphere and thus null-homotopic. Hence we
consider (P, d) as a complete set of combinatorial data.

Theorem 2.2. The one-point compactification D̂ of the union of all flats in an affine
arrangement A has the homotopy type of the wedge

D̂ ≃ {∞} ∨
∨

p<1̂

(∆(P<p) ∗ Sd(p)).

Proof. For simplicity, let Â also denote the P -diagram of the arrangement Â. From
the Projection Lemma we know D̂ ≃ ∥Â∥. Let us show now that Â can be replaced
by a P -diagram A′, defined by A′

1̂
= {∞}, A′

p := Sd(p) for p < 1̂, and trivial maps
s′pq : Ap 3→ e1 ∈ Sd(q) = Aq for p > q.

Indeed, for every p < 1̂ choose cp ∈ Ap\
⋃

q>p Aq. Then choose homotopy equi-
valences αp : Âp −→ Sd(p) for all p < 1̂, in such a way that the map αp contracts the
complement of a small, open disc around cp ∈ Sp to a point and maps it to e1 ∈ Sd(p)−1.
From this construction we get that the following diagram is commutative.

Âp
αp−−−→ A′

p = Sd(p) resp. {∞}

spq

⏐⏐⏐⏐-

⏐⏐⏐⏐-s′pq

Âq −−−→
αq

A′
q = Sd(q)

By the Homotopy Lemma ∥Â∥ and ∥A′∥ have the same homotopy type and by the Wedge
Lemma ∥A′∥ has the homotopy type of the wedge of the associated spaces. The space
∆(P<1) ∗ A1̂, being contractible, can be omitted, so

D̂ ≃ ∥Â∥ ≃ ∥A′∥ ≃
∨

p<1̂

(∆(P ) ∗ Sd(p)).

Corollary 2.3. [GM, III.1.5 “Theorem A”] Let A be an affine subspace arrangement in
IRn with combinatorial data (P, d). Then the homology of the one-point compactification
D̂ of D =

⋃
A and the cohomology of the complement M := IRn\D are given by

H̃i(D̂; ZZ) ∼=
⊕

p∈P

H̃i−d(p)−1(∆(P<p); ZZ),

H̃i(M ; ZZ) ∼=
⊕

p∈P

H̃n−i−d(p)−2(∆(P<p); ZZ).
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2(c) Spherical Arrangements.

A subspace arrangement A is central if each of its subspaces contains the origin 0 ∈ IRn.
In this case D =

⋃
A is contractible, but the link L := D ∩ Sn−1, corresponding to the

intersection of the arrangement with the unit sphere, is interesting.
We interpret the situation as an arrangement of subspheres Sp := Ap ∩ Sn−1 (with

the same intersection poset P as A) in the ambient space U = Sn−1, whose diagram we
denote by S. Define a dimension function d : P −→ IN0 by d(p) := dimIR Ap. Again the
pair (P, d) amounts to a complete set of combinatorial data.

Theorem 2.4. Let A be a linear subspace arrangement. The homotopy type of its
link

⋃
A ∩ Sn−1 is completely determined by the intersection poset P together with the

dimension function d : P −→ IN0, p 3→ dim(p), as

L ≃
∨

p∈P

(∆(P<p) ∗ Sd(p)−1),

where the wedge is formed by identifying e1 ∈ ∆(P<p)∗Sd(p)−1 with p ∈ ∆(P<1̂)∗Sd(p)−1,
for every p < 1̂.

Note that in the case where the arrangement A is essential, with
⋂

A = A1̂ = {0},
we get d(1̂) = 0, Sd(1̂)−1 = S−1 = ∅, so that the formula can be rewritten as

⋃
A ∩ Sn−1 ≃ ∆(P\1̂) ∨

∨

p<1̂

(∆(P<p) ∗ Sd(p)−1).

Proof. The subspace diagram S satisfies ∥S∥ ≃ L, by Projection Lemma 1.6. As in the
proof for Theorem 2.2, S can be replaced by a diagram S′, defined by S′

p := Sd(p)−1 and
trivial maps s′pq : Sd(p)−1 3→ e1 ∈ Sd(q)−1 for p > q. With this, the Homotopy Lemma and
the Wedge Lemma finish the proof.

Corollary 2.5. The homology of the link, and the cohomology of the complement, of a
linear subspace arrangement in IRn can be computed from the data (P, d) and n as

H̃i(L; ZZ) ∼=
⊕

p∈P

H̃i−d(p)(∆(P<p); ZZ),

H̃i(M ; ZZ) ∼=
⊕

p∈P

H̃n−i−d(p)−2(∆(P<p); ZZ).

Note that every linear subspace arrangement is affine, so Corollary 2.5 also follows
from Corollary 2.3, where D̂ ∼= ΣL.
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2(d) Real Projective Arrangements.

Let A be, as before, a central arrangement in IRn with intersection poset P and dimension
function d : P −→ IN0, d(p) := dimIR Ap. Let PA be the projective arrangement associated
to A, i.e., PA = {Proj(Ap) : p ∈ P}, where Proj(V ) = {l ⊆ V : dimIR l = 1} denotes the
projective space associated to V . Let PL :=

⋃
PA be the “projective” link of A. Then PL

is the direct limit of a diagram R = R(A) over P defined by Rp := Proj(Ap).
The problem of describing the homotopy type of PL seems to be more difficult than

in previous examples. Nevertheless, the method of simplifying a diagram and relating it
to a combinatorially defined model diagram still applies. Let us describe a combinatorial
model diagram suitable for this purpose, which depends only on P and on d : P −→ IN0.

Definition 2.6. Let A be a central arrangement in IRn with intersection poset P
and dimension function d : P −→ IN0. Let D = D(A) = {Ap}p∈P be the corre-
sponding P -diagram of linear spaces. Similarly, for the projective arrangement PA, let
R = R(A) = {Rp}p∈P , Rp = Proj(Ap), be the corresponding P -diagram of projective
spaces. Choose a flag F = {Fi}n

i=0, {0} = F0 ⊂ F1 ⊂ . . . ⊂ Fn = IRn. Then the projective
flag diagram R[F ] associated with PA is defined by Rp[F ] := Proj(Fd(p)), where the mor-
phisms Rp[F ] −→ Rq[F ] are the obvious inclusion maps. Every two flag diagrams R[F ]
and R[F ′] are naturally isomorphic, thus the isomorphism type of R[F ] depends only on
P and d. Therefore, the associated projective flag diagram R[F ] will be simply denoted
by R′, R′

p := Rp[F ], p ∈ P .
For technical reasons, it is convenient to also introduce a linear flag diagram, de-

noted by E = E [F ], where Ep := Fd(p), p ∈ P , so the diagram R[F ] can be seen as the
projectivization of E [F ].

Remark 2.7. It will be convenient to choose the flag F in sufficiently general position
with respect to the arrangement A. This means that, given a spanning basis {e1, . . . , en}
of the flag F , we assume that all corresponding Plücker coordinates of all flats in A are
nonzero.

Unlike in the previous examples, there does not seem to exist an easy way of comparing
diagrams R = R(A) and R′ = R[F ], i.e., of constructing a morphism α : R −→ R′ such
that αp : Rp −→ R′

p is a homotopy equivalence. One way of getting around this difficulty is
to apply a stronger version of Homotopy Lemma 1.7, which says that a family α = {αp}p∈P

of homotopy equivalences, αp : Rp −→ R′
p, in some cases still gives rise to a homotopy

equivalence between ∥R∥ and ∥R′∥, even if the diagrams

Rp
αp−−−→ R′

p

rpq

⏐⏐⏐⏐-

⏐⏐⏐⏐-r′pq

Rq −−−→
αq

R′
q
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are not commutative. Instead, it is assumed that these diagrams are commutative up to
homotopy and that the homotopies can be chosen in a coherent way. A detailed treatment
and a very general form of this result can be found in [Vo, Theorem 1.4].

Theorem 2.8. Let A = {Ap}p∈P be a linear subspace arrangement and PA the associated
projective arrangement. Then the projective link PL =

⋃
PA has the homotopy type

PL ≃ ∥R′∥,

where R′ is the combinatorially defined projective flag diagram associated with the intersec-
tion poset P and the dimension function d : P −→ IN0, d(p) = dim(Ap), see Definition 2.6.

Proof. Let us assume that the flag F is chosen in general position with respect to the
arrangement A, see Remark 2.7. This assumption permits us to deform our arrangement
“in the direction” of the flag F . Namely, let Cϵ : IRn −→ IRn be the linear map defined by
Cϵ(ei) = ϵiei for ϵ > 0 and i = 1, . . . , n, and let Aϵ = {Aϵ

p : p ∈ P}, where Aϵ
p := Cϵ(Ap).

The arrangement Aϵ is linearly isomorphic to A and the corresponding projective links
PL(A) and PL(Aϵ) are homeomorphic. By assumption, all Plücker coordinates µJ (Ap),
are nonzero, where J = {i1 < . . . < ik}, k = dim(Ap). As a consequence, if I = {1, . . . , k},
one has µI(Aϵ

p) = ϵn(n−1)/2 · µI(Ap) and for J ̸= I, µJ(Aϵ
p) = o(ϵn(n−1)/2), so we observe

that if ϵ is small enough, all k-dimensional flats Aϵ
p in Aϵ will be in a small neighborhood

of Fk.
Our goal is to relate the P -diagram D(Aϵ), associated to Aϵ, to the linear flag diagram

E = E [F ], Ep = Fd(p) for p ∈ P , by linear isomorphisms αp : Aϵ
p −→ Ep which commute

up to “coherently chosen homotopies”, see [Vo, Definitions 2.3 and 2.7]. Actually, αp will
be defined as a restriction of a linear map βp : IRn −→ IRn such that ∥1I − βp∥ < 1. For a
fixed p ∈ P , let ap, bp ∈ Hom(IRn, IRn) be defined as the orthogonal projection operators
on Aϵ

p and Ep = Fd(p) respectively. Let βp := 1I − ap − bp + 2 apbp. Then it is easily
checked that apβp = βpbp, in particular βp(Aϵ

p) ⊆ Ep and αp := βp|Aϵ
p is well defined.

Since ∥1I− βp∥ = ∥(ap − bp)(1I− 2bp)∥ < 1 if ∥ap − bp∥ < 1/3, which is certainly true if ϵ is
small enough, we observe that αp and βp are linear isomorphisms. So, α = (αp)p∈P defines
a homotopy homomorphism in the sense of [Vo, Definition 2.7]. Indeed, all maps βp, p ∈ P ,
are contained in the unit open ball B := {x ∈ Hom(IRn, IRn) : ∥1I − x∥ < 1}, so the linear
homotopies between them give rise to the required family of coherently chosen homotopies.
This construction shows that there exists a homotopy homomorphism γ = (γp)p∈P , γp :
Rp(Aϵ) −→ R′

p, between the P -diagram R(Aϵ) of projective spaces associated to Aϵ and
the projective flag diagram R′ such that γp is a homotopy equivalence for all p ∈ P . By
[Vo, Theorem 1.4], ∥R(Aϵ)∥ ≃ ∥R′∥, hence PL ≃ ∥R′∥, which proves the theorem.

The problem of finding a purely combinatorial description of the projective link of an
arrangement is solved in principle by Theorem 2.8. So, the problem of studying projective
links is reduced to the problem of understanding topological properties of homotopy limits
of projective flag diagrams R′. As an example of this, we prove a direct sum decomposition
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for the ZZ/2-homology of the projective link PL which is “dual” to the corresponding
decomposition of the homology of the complement of PL, proved in [GM, III.1.7 “Theorem
C”]. The resemblance of formulas indicates that there ought to be a natural “duality” type
map between the cohomology of the complement and homology of the projective link.

Proposition 2.9. Let (P, d) be a finite poset with a dimension function d : P −→ IN0.
Let R = R[F ] be the P -diagram of projective spaces associated with the standard flag F :
{0} ⊂ IR1 ⊂ . . . ⊂ IRn, so that Rp = IRPd(p)−1 and rpq : Rp −→ Rq, p > q, is the canonical
embedding. The dimension function d determines subposets P (u) := {p ∈ P : d(p) ≥ u},
where k ≤ u ≤ m and k := min{dim(Rp) : p ∈ P}, m := max{dim(Rp) : p ∈ P}.

Then the homology of ∥R∥ with ZZ/2-coefficients has the following direct sum decom-
position:

H̃∗(∥R∥; ZZ/2) ∼= H̃∗(IRPk × ∆(P ); ZZ/2) ⊕
m⊕

u=k+1

H̃∗−u(∆(P (u)); ZZ/2).

Proof. The proof is by induction on m− k, the case m = k being trivial. We will prove a
slightly stronger statement which includes the description of naturally defined subdiagrams
of R which induce the desired decomposition. We assume ZZ/2-coefficients for all of the
following.

Let T = {Tp}p∈P be the “maximal” constant subdiagram of R, i.e., Tp = IRPk and
tpq : Tp −→ Tq is the identity map. Let T (k+1) be the restriction of T to P (k+1). Clearly,

H̃∗(∥T ∥) ∼= H̃∗(IRPk × ∆(P )) ∼= H̃∗(IRPk) ⊗ H̃∗(∆(P )).

We will prove that H̃∗(∥R∥) has the desired decomposition, where H̃∗(IRPk ×∆(P )) comes
from the subdiagram T and the rest of decomposition is determined by subdiagrams of
R(k+1). By excision, H∗(∥R∥, ∥T ∥) ∼= H∗(∥R(k+1)∥, ∥T (k+1)∥), so the long exact sequence
of the pair (∥R∥, ∥T ∥) has the form

. . . −→ H̃∗(∥T ∥) −→ H̃∗(∥R∥) π−→ H∗(∥R(k+1)∥, ∥T (k+1)∥) −→ . . . .

One observes that H̃∗(∥T (k+1)∥) is a direct summand of H̃∗(IRPk × ∆(P (k+1))) and that
the last group, by the inductive assumption, can be seen as a part of the first summand
in the direct decomposition of H̃∗(∥R(k+1)∥). This implies

H̃∗(∥R(k+1)∥, ∥T (k+1)∥) ∼=
m⊕

u=k+1

H̃∗−u(∆(P (u))).

Also, since H∗(∥R(k+1)∥, ∥T (k+1)∥) is a direct summand of H̃∗(R(k+1)) and the last group
can be naturally embedded in H̃∗(∥R∥), one observes that π is an epimorphism which has
a right inverse. So, the long exact sequence consists of short, splitting exact sequences
which immediately leads to the desired decomposition for H̃∗(∥R∥).

The following proposition shows that the homology of the projective link PL with
rational coefficients, has a different direct sum decomposition at least if all projective
spaces are odd dimensional.
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Proposition 2.10. Let us suppose that R is a P -diagram of projective spaces associated
with the standard flag. Let us assume that all projective spaces in the diagram are odd
dimensional. Then the homology of ∥R∥ with rational coefficients has the following direct
sum decomposition.

H̃i(∥R∥; Q) ∼=
⊕

p∈P

H̃i−d(p)(∆(P<p); Q).

Proof. Let D be the diagram of spheres associated with the standard flag and let α : D −→
R be the morphism of diagrams such that αp : Rp −→ Dp is the double covering. The
morphism α induces a map of corresponding spectral sequences, see Section 3(e), which
turns out to be an isomorphism at the E2-term. Knowing that the spectral sequence
of D collapses at the E2-term, one easily deduces that the same holds for the diagram
R. This, together with the fact that the decomposition of the homology of ∥D∥ given in
Corollary 2.5, coincides with the decomposition coming from the E2-term of the spectral
sequencs, leads to the desired observation.

We note that if A is a linear even subspace arrangement in IR2n, then we get the
rational homology of the projective complement IRP2n−1\PA from Alexander duality in
IRP2n−1, which is a rational homology sphere.

It would be interesting to work out complete formulas for the ZZ-homology of
⋃
PA

(which exist by Theorem 2.8) and for the ZZ-homology of the complements (where they
are known for ZZ/2-coefficients [GM, III.1.7 “Theorem C”], the dual result to our Propo-
sition 2.9).

2(e) Complex Projective Arrangements.

In the problem of describing the homotopy types of linear, affine or spherical arrangements,
one can forget the complex or quaternionic structure and deal only with the real case. In the
case of projective arrangements the distinction is necessary, although the proofs are similar
and without new ideas. So we will omit the details and restrict ourselves to formulation
of results in the case of complex projective arrangements. Let us note that Definition 2.6
can be extended by allowing scalars to be either complex numbers or quaternions.

Theorem 2.11. Let A = {Ap}p∈P be a complex linear subspace arrangement and PA
the corresponding complex projective arrangement. Then the projective link PL =

⋃
PA

has the homotopy type
PL ≃ ∥R′∥,

where R′ is the projective flag diagram associated with the intersection poset P and the
dimension function d : P −→ IN0, d(p) = dim1C(Ap), see Definition 2.6.

Proof. The proof of this theorem follows closely the proof of Theorem 2.8 and we omit
the details.
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Proposition 2.12. Let (P, d) be a finite poset with a dimension function d : P −→ IN0.
Let C be the P -diagram of complex projective spaces associated with the standard flag
F : {0} ⊂ C1 ⊂ . . . ⊂ Cn, so that Cp = CPd(p)−1 and rpq : Cp −→ Cq, p > q, is
the canonical embedding. The dimension function d determines, as before, subposets
P (u) := {p ∈ P : d(p) ≥ u}, where k ≤ u ≤ m and k := min{dim1C(Cp) : p ∈ P},
m := max{dim1C(Cp) : p ∈ P}. Then the homology of ∥C∥ with ZZ coefficients has the
following direct sum decomposition:

H̃∗(∥C∥; ZZ) ∼= H̃∗(CPk × ∆(P ); ZZ) ⊕
m⊕

u=k+1

H̃∗−u(∆(P (u)); ZZ).

Proof. The proof is very similar to the proof of Proposition 2.9.

3. Remarks.

In this section we have collected some additional remarks about the homotopy theory of
arrangements and some corollaries that follow from the results of Section 2. We concentrate
on the case of spherical arrangements, only indicating the changes that occur in other cases.

(a) Explicit Maps.

Let A denote a spherical arrangement in Sn−1 ⊂ IRn (the affine case can be treated ana-
logously). In this case, Theorem 2.4 asserts a homotopy equivalence between the geomet-
rically given space D =

⋃
A and its combinatorial model Γ(P, d) =

∨
p∈P ∆(P<p) ∗ Sd(p).

Here we observe that one can explicitly construct maps Φ : Γ(P, d) −→ D and Ψ : D −→
Γ(P, d) that induce isomorphisms in homology.

The construction of Φ is actually easy. For every p ∈ P , choose a point φ(p) ∈
Sp\

⋃
q>p Sq =: So

p , which can be interpreted as a “generic” point on Sp. To construct Φ,
we start with a homeomorphism Φp : Sd(p)−1 −→ Sp for each p ∈ P , which maps e1 to
φ(p) ∈ D. For q < p, we define Φp(q) := φ(q). For every chain q1 < . . . < qk < p we
have a chain of spheres Sq1 ⊃ . . . ⊃ Sqk ⊃ Sp. The choice of φ(qi) guarantees that the
set {φ(q1), . . . , φ(qk), p0} is linearly independent for all p0 ∈ Sp. Thus Φp and φ together
determine a geodesic embedding of the closed simplex [q1, . . . , qk, p0] into S(q1) ⊆ D, which
depends continuously on p0 and is natural with respect to the selection of subchains of
(q1 < . . . < qk). Hence we get a continuous map Φp : ∆(P<p)∗Sd(p)−1 −→ D. Furthermore,
the condition Φp(e1) = φ(p) ensures that the maps Φp fit together to give a continuous
map Φ : Γ(P, d) −→ D.

The map Φ is surjective since Sp is in the image of Φp. To see that it induces an
isomorphism in homology, one can proceed by induction on m := |P | = |A|, together with
a Mayer-Vietoris argument (using Example 1.5(c) for an argument parallel to that used
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for proofs in the appendix), and the Five-Lemma – see [Z2] for details. This yields the
simplest proof we know for the Goresky-MacPherson homology formulas (Corollaries 2.3
and 2.5).

The construction of the map Ψ is more involved, relying on a partition of unity that
defines a system of tubular neighborhoods for the sets So

p . The basic ideas can be derived
from [GM, p. 243]. Again we refer to [Z2] for further details.

There are three main disadvantages to this “explicit approach”:
– it relies more than necessary on metric/differentiable structure,
– it is easy to show that the maps are isomorphisms in homology, but it is not immediate

they are homotopy equivalences. In fact, in order to get that Φ and Ψ are homotopy
inverses, one would have to be very careful in the choice of orientations etc.,

– such explicit maps are not easily available for other cases, such as the projective ones.
All three problems do not occur in the diagram approach.

(b) Universality

For every finitely presented group G there is a connected finite simplicial complex ∆ with
fundamental group G and such that every star of a vertex is non-empty and connected.
(For this, one can take the CW complex with only one vertex associated with a presentation
of G, triangulate it, and take the product with a unit interval.)

Furthermore, for every finite simplicial complex ∆ ⊆ 2[n] there is an arrangement
of coordinate subspaces A∆ := {spanIR{ei : i ∈ A} : A ∈ ∆} in IRn whose poset of inter-
sections is the order dual of the face poset P∆. (See [Z2] for more details.) With these
observations, Theorem 2.4 implies the following universality results.

Corollary 3.1. For every finite simplicial complex ∆ there is a connected spherical
arrangement A for which the cohomology algebra H∗(∆; ZZ) is a direct summand of the
algebra H∗(D; ZZ) of the link of A. In particular, H∗(D; ZZ) can contain arbitrary amounts
of torsion.

Corollary 3.2. For every finitely presented group G there is a connected spherical
arrangement A with fundamental group π1(D) ∼= G.

We get analogous results for affine arrangements and for compactified affine arrange-
ments, the first case being trivial. The situation for projective arrangements is more subtle.

(c) Wedges of Spheres

In contrast to the universality results that we have just derived, one finds that many
arrangements that “occur in nature” have the homotopy type of a wedge of spheres.

From Theorem 2.4 we see that the crucial condition for this is that the posets P<p

all have the homotopy type of a wedge of spheres. (Note that this condition is completely
independent of the dimension function). This is satisfied in particular when P is a shellable
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poset (see [Bj]). In this case we can read off the number of spheres of various dimensions
from the Möbius function on P̂ := 0̂ ( P . This covers in particular the cases of

– all c-arrangements: arrangements of subspaces of codimension c in IRn for which
the codimension of any intersection is a multiple of c; this includes the cases of real
hyperplane arrangements for c = 1, even subspace arrangements (including all complex
hyperplane arrangements) for c = 2, and quaternionic arrangements with c = 4,

– the subspace arrangements that correspond to shellable simplicial complexes (via the
construction mentioned in Section 3(b)), and

– the arrangements of the k-equal problem, that is, the subspace arrangement given
by all points in IRn with at least k identical coordinates [BLY]. The poset of this
arrangement is quite trivial if 2k > n; for 2k ≤ n one can show that all lower intervals
of the poset are wedges of spheres [We].

In the following corollary we consider the case where the intersection poset P of a linear
arrangement A is shellable. Let r : P̂ −→ IN0 be the rank function on P̂ := 0̂ ( P , and let
µ be the Möbius function on P̂ . The case when r(1̂) ≤ 1 is trivial and can be excluded.

We use
µ∨

Sk to denote the wedge of µ copies of the k-sphere.

Corollary 3.3. Let A be a linear arrangement in IRn whose intersection poset is shellable.
Then the link L = Sn−1 ∩

⋃
A has the homotopy type of a wedge of spheres,

L ≃
∨

p∈P

|µ(0̂,p)|∨
Sd(p)+r(p)−2.

if r(1̂) > 2 or d(1̂) > 0, otherwise L is a disjoint union of spheres L ≃
⊎

p<1̂ Sd(p)−1.

In particular, homology and cohomology of the link are free, and the cohomology
algebra has trivial multiplication.

Proof. We compute

L ≃
∨

p∈P

Σd(p)∆(P<p) ≃
∨

p∈P

Σd(p)
|µ(0̂,p)|∨

Sr(p)−2 ≃
∨

p∈P

|µ(0̂,p)|∨
Sd(p)+r(p)−2,

where the first homotopy equivalence is from Theorem 2.4, the second one is from shella-
bility, and the third one follows since suspension and wedge commute.

For complex hyperplane arrangements in Cd = IR2d, Corollary 3.3 was proved in [BZ,
Theorem 6.6] for the case d ≥ 4, where L is simply connected, and independently by Orlik
& Terao. The proof given in [BZ] is equally valid for the more general situation of even
subspace arrangements (c = 2).

In the case of a c-arrangement in IRn we have d(p) = n − c·r(p), which can be used
to simplify the formula to L ≃

∨
p∈P

∨|µ(0̂,p)| Sn−(c−1)r(p)−2. In particular, if c = 1 we
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get that all spheres in the wedge have dimension n−2. Passing to homology and applying
Alexander duality we get the cohomology of the complement of a c-arrangements, which
is due to Goresky & MacPherson [GM, III.1.6 “Theorem B”].

We note that analogously we get a wedge of spheres in the affine and the compactified
affine cases. To see that this covers the case of affine c-arrangements we need the fact that
their face posets are inverted geometric semilattices and thus shellable [WW].

(d) On the Complements

The homotopy type of the complement M = IRn\
⋃

A of an affine arrangement is not
determined by the combinatorial data (P, d). For example, let A be an arrangement of a
line and two points in the plane IR2. If the points are on different sides of the line, then
the complement has the homotopy type of two disjoint circles, M ≃ S1 ( S1; if the points
are on the same side of the line, then M is homotopy equivalent to the wedge of two circles
plus an extra point, M ≃ S1 ∨ S1 ∨ S0.

In fact, although the integral cohomology of M is determined by (P, d), this is not
true for the cohomology algebra, even in the special case of even subspace arrangements
[Z1] [Z2]. (In the case of complex hyperplane arrangements the cohomology algebra is
determined by the combinatorial data by a result of Orlik & Solomon [OS]; that the
homotopy type is determined by (P, d) in this case is a notorious conjecture [Or].)

Here we note that there are combinatorial formulas available for the stable homotopy
type of the complement, as a direct consequence of Theorem 2.4 together with Spanier-
Whitehead duality [SW] [Ad, p. 9]. For simplicity, we state only the linear/spherical case.

Theorem 3.4. The stable homotopy type of the complement M = Sn−1\D of a spherical
arrangement is determined by its combinatorial data (P, d, n), as

M ∼
∨

p∈P

Σn−1−d(p) S(∆(P<p)),

where S(∆) is the Spanier-Whitehead dual [SW] [Sw, p. 321] of the simplicial complex ∆.
Here “∼” denotes stable homotopy equivalence, that is,

ΣNM ≃
∨

p∈P

ΣN+n−1−d(p) S(∆(P<p))

for large enough N .

In particular, if L is a homotopy wedge of spheres, then M has the stable homotopy
type of a wedge of spheres.

Proof. This follows by taking Spanier-Whitehead duals (“S-duals”) with respect to Sn−1

of the formula L ≃
∨

p∈P Σd(p)∆(P<p) of Theorem 2.5, using that S-duality commutes
with wedge products [SW, 4.13].

We are grateful to Boris Shapiro for the observations of this section.
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(e) Spectral Sequences

There is a natural spectral sequence “built in” for every diagram of spaces.

Proposition 3.5. Let D be a P -diagram of spaces. Then there exists a spectral sequence
abutting to H̃∗(∥D∥) with the E2-term described by

E2
m,n

∼= H̃m(Hn(D)).

Here, Hn(D) is the P -diagram [a.k.a. local system, or presheaf] of groups obtained by
applying the functor Hn : Top −→ Ab, X 3→ Hn(X), and E2

m,n is the mth homology with
the coefficients in this diagram.

This spectral sequence is a consequence of a very general construction given in [Se,
Proposition 5.1], which applies to any semi-simplicial space. A closely related spectral
sequence entered combinatorics with the paper of Quillen [Qu], see also [Ba]. It turns out
that, if applied to diagrams of spaces associated with arrangements, this spectral sequence
has often a form which is simple enough to assure that it collapses at the E2-term. For
example, in the case of an arrangement of spheres, Section 2(c), the E2-term has the
following simple form: E2

m,n
∼= H̃m(Hn) where

Hn(p) =
{

ZZ, d(p) = 0 or n,
0, otherwise.

The proof of Theorem 2.4 shows, since both diagrams S and S′ defined there induce
the same spectral sequence, that this sequence collapses at the E2-term. From here one
can easily observe that

E∞
m,n

∼= E2
m,n

∼=
⊕

d(p)−1=n

H̃m−1(∆(P<p); ZZ).

Vassiliev [Va] outlined a spectral sequence approach to the proof of the Goresky-
MacPherson formula (Corollary 2.3). Independently, Jewell, Orlik & Shapiro [JOS] gave
a complete solution of this problem using the Mayer-Vietoris spectral sequence. Both of
these approaches are direct and do not rely on the technique of diagrams of spaces.

4. Appendix: Basic Constructions.

We refer to [Mu] for definition and basic properties of the constructions of cell complexes, to
[Wh] for homotopy theory, and to [Bj] for combinatorial notions. In this appendix, we will
start with a review of some essential properties of spheres, wedges, joins, suspensions and
their homology. All spaces we construct are CW-complexes, and can easily be triangulated.
Thus path-connectivity is equivalent to connectivity, and cellular chains can be used for
homology [Mu, §39].
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The k-dimensional sphere is denoted by Sk, for k ≥ −1. This includes the cases of
k = −1, 0, where S−1 is empty and S0 consists of two points. We use the first coordinate
vector e1 = (1, 0, . . . , 0) as a standard basepoint in Sk, for k ≥ 0.

We usually compute reduced (co)homology. This implies that contractible spaces are
zero homology in all dimensions, and for k ≥ −1:

H̃i(Sk; ZZ) ∼=
{ZZ, if i = k,

0 otherwise.
The wedge X ∨ Y of two spaces X, Y is obtained by identification of one point from

each complex. The homology is given by a natural isomorphism

H̃∗(X ∨ Y, ZZ) ∼= H̃∗(X ; ZZ)⊕ H̃∗(Y, ZZ),

which follows from the Mayer-Vietoris sequence of (X, Y ).
The join X ∗ Y is obtained as a quotient of the set X ( (X×[0, 1]×Y ) ( Y , where

x ∈ X is identified with (x, 0, y) for all y ∈ Y , and
y ∈ Y is identified with (x, 1, y) for all x ∈ X .

Thus X∗Y can be written as a disjoint union of X , Y and a segment {(x, y, t) : 0<t<1}
for every x ∈ X and y ∈ Y . This differs from the usual definition of a join [Mu, p. 378]
in the case when X = ∅ or Y = ∅, where we insist that X ∗ ∅ = X and ∅ ∗ Y = Y . The
join operation is well-defined, commutative and associative up to homeomorphism. The
homology of a join can again be computed from a Mayer-Vietoris sequence [Mu, §25].

The suspension ΣX can be defined as the join with S0, that is, ΣX := X ∗ S0.
Furthermore, we have ΣSk ∼= Sk+1 for k ≥ −1, so that (using associativity of the join
operation) the k-fold suspension is given by the join with the (k−1)-sphere,

Σk(X) ∼= X ∗ Sk−1 for k ≥ −1.

Since the join X ∗ S0 can be written as a union of two cones that intersect in X , the
homology of the suspension is given by a natural isomorphism

H̃i(X ∗ Sk; ZZ) ∼= H̃i−k−1(X ; ZZ) for k ≥ −1.

Note that this reduces to a trivial statement for k = −1, with X ∗ S−1 = X ∗ ∅ = X .
We will now prove the basic lemmas about the homotopy types of diagrams. The

assumption that the underlying small category is a finite poset permits us to prove the
Projection Lemma and the Homotopy Lemma by elementary inductive arguments. A
silent assumption throughout this is that all inclusion maps i : A −→ X of all pairs of
spaces which appear in subspace diagrams are closed cofibrations, i.e., these maps possess
the homotopy lifting property. Equivalently, this property can be reformulated as the
statement that X × {0} ∪ A × I is a retract of X × I, or that (X, A) is an NDR-pair, see
[Wh, I.5].

The following lemma and its corollary are used in [tD] for a similar purpose, namely
for proving that a map f : X → Y is a homotopy equivalence if it is “locally” a homotopy
equivalence.
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Lemma 4.1. Let f : (X, A) −→ (Y, B) be a map of pairs of spaces such that both
f : X −→ Y and f ′ = f |A : A −→ B are homotopy equivalences. Let g′ : B −→ A
be a homotopy equivalence and α : A × I −→ A a homotopy with α(a, 0) = g′ ◦ f ′(a)
and α(a, 1) = a for a ∈ A. Then there exist a homotopy equivalence g : Y −→ X and a
homotopy β : X × I −→ X such that g|B = g′, β(x, 0) = g ◦ f(x), β(x, 1) = x for x ∈ X ,
and for all a ∈ A,

β(a, t) =
{

α(a, 2t), if t ≤ 1/2
a , if t ≥ 1/2 .

Corollary 4.2. Let X = A∪B and Y = C ∪D be spaces and f : X −→ Y a continuous
map with the property f(A) ⊂ C and f(B) ⊂ D.

If f |A : A −→ C, f |B : B −→ D and f |(A ∩ B) : A ∩ B −→ C ∩ D are all homotopy
equivalences, then the map f : X −→ Y is a homotopy equivalence.

Proof of the Projection Lemma. The proof will be carried out by induction on the
size of the poset (P,⊇). For |P | ≤ 1 there is nothing to show.

Choose a minimal element p0 in P . Let A1 = A\Ap0 be the arrangement obtained
by deleting Ap0 from A, and A2 := {Ap ∩ Ap0 : Ap ∈ A} the arrangement of all intersec-
tions with Ap0 . By A12 := A2\Ap0 = A1 ∩ A2 we denote the arrangement of all proper
intersections with Ap0 .

The unions of the arrangements are D =
⋃

A, D1 :=
⋃
A1, D2 :=

⋃
A2 = Ap0 and

D12 :=
⋃
A12 = D1 ∩ Ap0 . The corresponding posets are P 1 := P\p0, P 2 := P≥p0 and

P 12 := P>p0 = P 1 ∩ P 2. Each of them inherits a diagram structure from D = D[A], as in
Example 1.5(c). One has the following diagram of inclusions:

∥D12∥ −−−→ ∥D1∥⏐⏐⏐-

⏐⏐⏐-

∥D2∥ −−−→ ∥D∥

The collapsing map ξ : ∥D∥ −→ M , described in Example 1.4(d), is an extension of the
collapsing maps ξ1 : ∥D1∥ −→ D1, ξ2 : ∥D2∥ −→ Ap0 and ξ12 : ∥D12∥ −→ D1 ∩ Ap0 .

The map ξ2 is a homotopy equivalence because it coincides with the collapsing of
a mapping cylinder to its base (Example 1.5(d)). The maps ξ1 and ξ12 are homotopy
equivalences by the inductive assumption. So, by Corollary 4.2, ξ is also a homotopy
equivalence if we can prove that all pairs of spaces involved are NDR-pairs. In other words,
we need a statement which tells us that (∥D∥, ∥D′∥) is a NDR-pair for every subdiagram
D′ of D obtained by restricting D′ to a filter P ′ ⊆ P . This statement can be proved by a
parallel inductive argument, similar to the argument used above. To this end, one can use
well known properties of NDR-pairs. [Wh, I.5].
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The collapsing map ξ in the Projection Lemma 1.6 is always a map with contractible
fibers. It is worth reminding ourselves that, as the following example shows, this condition
does not guarantee that ξ is a homotopy equivalence.

Example 4.3. Let X = [0, 1]×{0, 1} ∪
⋃∞

n=0 An ⊂ [0, 1]2 , where A0 = {0}× [0, 1] and
An = {1/n}× [0, 1] for n ≥ 1. Let Y be the quotient space of X obtained by contracting
{1/n}× [0, 1] to the point {(1/n, 0)} for n ≥ 1, and A0 to the point (0, 0). One can easily
check that the projection map p : X −→ Y is not a homotopy equivalence in spite of the
fact that p has contractible fibers.

Proof of the Homotopy Lemma 1.7. Again we use induction on the size of P .
Let α = (αp)p∈P be a morphism of two P -diagrams D and E such that αp : Dp −→ Ep

is a homotopy equivalence for all p ∈ P . Let p0 be a minimal element in P , P 1 = P\p0,
P 2 = P≥p0 and P 12 = P 1 ∩ P 2. The restrictions of diagrams D and E to these posets will
be denoted by D1, E1, etc.. The restriction of the morphism α to D1, D2 and D12 will be
denoted by α1, α2 and α12, so the corresponding maps at the level of homotopy limits are
α1, α2 and α12. By Example 1.5(d), there is a commutative diagram

∥D2∥ α2

−−−→ ∥E2∥

ξ

⏐⏐⏐-

⏐⏐⏐-ξ′

Dp0 −−−→
αp0

Ep0

where the naturally defined maps ξ and ξ′ are homotopy equivalences, since they are
just collapsing maps associated with the corresponding mapping cylinders. Since αp0 is
by assumption a homotopy equivalence, so is the map α2. By the inductive assumption
α1 : ∥D1∥ −→ ∥E1∥ and α12 : ∥D12∥ −→ ∥E12∥ are homotopy equivalences. By the remark
at the end of proof of the Projection Lemma all spaces involved are NDR-pairs, so by
Corollary 4.2 the map α is also a homotopy equivalence.

Proof of the Wedge Lemma 1.8. For every p ∈ P , let C[p] be a diagram over P defined
as follows:

C[p]q =

{ Dp, if q = p,
{cq}, if q < p,
∅, otherwise.

with the connecting functions inherited from D. Then again one has an obvious map
γ[p] : C[p] −→ D which defines an embedding γ[p] : ∥C[p]∥ −→ ∥D∥.

Now observe that ∥C[p]∥ is homeomorphic to the join ∆(P<p)∗Dp and that ∆(P≤p) =
∆(P<p) ∗ {cp} ⊆ ∥C[p]∥.

The structure of ∥D∥ is easily described in terms of the “building blocks” ∥C[p]∥ ∼=
∆(P<p) ∗ Dp. One observes that ∥C[p]∥ ∩ ∆(P\1̂) = ∆(P≤p), which is a contractible set,
and that ∥C[p]∥ ∩ ∥C[q]∥ = ∆(P≤p) ∩ ∆(P≤q) ⊆ ∆(P\1̂) for q ̸= p and q, p < 1̂. Hence,
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∥D∥ is the space obtained from ∆(P\1̂) ∗ D1̂ by attaching, for every p < 1̂, the space
∆(P<p) ∗ Dp to ∆(P\1̂) ∗ D1̂, along the common copy of ∆(P≤p).

The homotopy type of this space is not changed if one replaces the attaching maps of
∥C[p]∥ to ∆(P1̂) ∗ D1̂ by wedge operations, to get

∥D∥ = ∆(P1̂) ∗ D1̂ ∨
∨

p<1̂

(∆(P<p) ∗ Dp)

as claimed.
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