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Alstrom syndrome is a rare autosomal recessive
disorder characterized by pigmentary retinal
degeneration, sensorineural hearing loss, childhood
obesity, non-insulin-dependent diabetes mellitus,
hyperlipidemia and chronic nephropathy. Features
occasionally observed include acanthosis nigricans,

hypogonadism, hypothyroidism, alopecia, short stature

and cardiomyopathy. We report here the results of a
linkage study in a large French Acadian kindred, as a
first step in identifying the molecular basis of Alstrém

syndrome. Evidence of a founder effect made it feasible
to use a homozygosity mapping strategy to identify the
chromosomal location of the Alstrom gene. In a
genome-wide screen, haplotype sharing for a region
on chromosome 2 was observed in all affected

individuals. Two point linkage an alysis resulted in a
maximum lod score of 3.84 (  6=0.00) for marker D25292.

By testing additional markers, the disease gene was
localized to a 14.9 cM region on chromosome 2p.

INTRODUCTION

and the high degree of consanguinity in this kindred (average
kinship coefficient = 0.01) allowed us to use the homozygosity
mapping strategy to identify the chromosomal location of
Alstrém syndromel(2). Assuming that the chromosomal region
flanking the Alstrom gene was likely to be
homozygous-by-descent, we performed a candidate gene and
genome-wide search and identified a 14.9 cM interval on
chromosome 2p segregating with Alstréom syndrome.

RESULTS
Candidate gene evaluation

Individuals with Alstrdom syndrome and the mouse mutant tubby
share marked phenotypic similarities including obesity, insulin
resistance and retinal and cochlear degeneration. We
hypothesized that tubby was a homolog of Alstrém and initially
tested for linkage of Alstrdm to human chromosome 11p15, the
homologous human region to mouse chromosome 7 widiere
maps (3). Additionally, linkage to homologous chromosomal
regions of other mouse obesity genesfateoh AY anddb) and

to growth-associated candidate genes [i.e. growth hormone (GH),
GH receptor and GH-releasing factor] were tested. No linkage
was observed at any of the loci examined.

Homozygosity mapping of Alstrdm to chromosome 2p

Alstréom syndrome is an autosomal recessive disorder in which
the earliest manifestations are pigmentary retinal degenerati@gnsequently, we performed a genome-wide scan using the
sensorineural hearing loss and childhood obesi®y. (Chronic  homozygosity mapping strategy with 226 polymorphic markers
nephritis, non-insulin-dependent diabetes mellitus (NIDDM) andistributed at 15-25 cM intervals throughout the gendr)&).
hepatic dysfunction occur in the final stages of the diseasgp screen the genome rapidly, five affected individuals and one
between the second and fourth decade of life. Other featuralsligate heterozygote (carrier) were genotyped. A bias for
observed in some, but not all, affected individuals includeomozygous alleles among the affected individuals was observed
acanthosis nigricans, male hypogonadism, hypothyroidisrfgr seven markers on six chromosomes (EigSubsequently,
alopecia, short stature and infantile cardiomyopah§)(With  DNAs from parents and unaffected siblings were tested for each
the exception of studies showing normal chromosomailfthese and nearby flanking marker loci. The only haplotype that
karyotypes in Alstrom patient8,0), no attempt has been made co-segregated with the disease phenotype was a region on
to genetically define this syndrome. chromosome 2. To investigate further this apparent linkage to
A number of diseases with founder effects have been identifiddstrdom syndrome, additional flanking markers were evaluated
in the French Acadian populatiohQ§. This is due in part to the on all available DNAs from this kindred and haplotypes of family
small number of individuals that were sent to colonize Frenamembers were constructed (F2). Homozygosity for common
Canada and the rapid expansion of the population therédjter ( alleles at marker£2S136 D2S292 D2S2113 D2S327 and
As a first step in determining the molecular basis for AlstrénD2S145wvas observed in all affected individuals. The conserved
syndrome, we began a linkage study in a large kindred of Frenidunder haplotype for marke®2S393 D2S136 D2S5292
Acadian ancestry. The identification of a common founder paip2S2113 D2S327 D2S145 and D2S286 appears to be
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6-5-5-1-4-1-5, respectively. Ancestral recombination events ianalysis was only done on those generations where most, if not
subjects 353 and 373 place the disease gene dif2@I3286  all, genealogical relationships were established #Fig.

while an ancestral recombination event in subject 500 places th&he use of incorrect marker allele frequencies in linkage
disease gene proximal ©©2S393 Additionally, a maternal analysis may result in erroneous lod score calculatibis (
meiotic event betwedd2S145andD2S286subject 372) further Ideally, marker allele frequencies should be obtained from the
defines the proximal boundary of the Alstrém region. Altogethegsame genetic population as the diseased individuals. In this study,
these informative recombinational events delineate the Alstropairwise analysis was completed using marker allele frequencies
region to a 14.9 cM interval flanked by mark&2S393and from unrelated individuals in the general population (GDB) and

D2S286(Fig. 3). in the French Acadian population (Talle Although some
variation in the frequencies of alleles was observed among the
Statistical analysis two populations, there was no significant effect on the calculated

lod scores. All data included in this report, therefore, are based on
Pairwise linkage analysis between the Alstrom locus and thilee estimated French Acadian marker allele frequencies. Two
seven chromosome 2p markers was performed using the MLIN#¢int analysis indicated linkage of Alstrom syndrome to the
program of the LINKAGE 5.1 computer packaf)g)(Although  chromosome 2 loci tested, with a maximum lod score of 8.84 (
a founder effect is indicated by examination of >1600 individuats 0.00) with markeD2S292(Table 2). We expect that the
in this pedigree, inclusion of all relationships would havealculated lod scores are underestimated since two point and
exceeded the capacity of the LINKAGE program. Additionallymultipoint linkage analyses could not be performed with all
identification of all consanguineous loops, especially in thgenealogical relationships linking affected individuals to a
earlier generations, may be incomplete. Therefore, linkag@mmon ancestor.

Table 1.Marker allele frequencies in French Acadians

Marker Allele Size (bp) Frequency Marker Allele Size (bp) Frequency
D2S136 1 91 0.06 D2S327 1 115 0.02
2 95 0.36 2 121 0.23
3 97 0.06 3 123 0.19
4 105 0.02 4 125 0.23
5 107 0.40 5 127 0.27
6 109 0.10 6 129 0.04
7 131 0.02
D2S145 1 248 0.69
2 262 0.02 D2S393 1 86 0.02
3 264 0.02 2 88 0.06
4 266 0.10 3 92 0.25
5 268 0.00 4 94 0.19
6 270 0.13 5 95 0.06
7 274 0.04 6 96 0.38
7 98 0.02
D2S286 1 136 0.38 8 100 0.00
2 138 0.02 9 102 0.02
3 140 0.17
4 142 0.04 D2S2113 1 166 0.11
5 144 0.29 2 178 0.00
6 146 0.06 3 184 0.04
7 152 0.02 4 188 0.02
8 156 0.02 5 192 0.32
6 194 0.13
D2S292 1 180 0.33 7 196 0.08
2 184 0.23 8 198 0.04
3 186 0.06 9 200 0.08
4 188 0.15 10 202 0.08
5 190 0.17 11 204 0.06
6 194 0.02 12 206 0.04
7 196 0.04
8 202 0.00

2Allele frequencies were estimated from 24 French Acadians.
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Figure 1. Allele sharing observed in a genome-wide scan among five individuals affected with Alstrém syndr@2@ harkers). *(% shared alleles = maximum
number of shared alleles/total number of aIIef@EI)e chromosomal region was examined further for linkage.
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Figure 2. Three cohortsA, B andC) of a large French Acadian kindred segregating for Alstrém syndrome. Filled symbols represent affected individuals and ope
symbols represent unaffected individuals. Slashed symbols indicate that an individual is deceased. Conserved haplotypes segregating with the Alstrém locus are
All affected individuals are homozygous for a common haplotype defined by mB2&t86 D2S292 D2S2113D2S327and D2S145 Ages of the affected
individuals are indicated in parentheses. Clinical manifestations of subjects 236 and 237 and subjects 289 and 353 have been described previously in refs 4
respectively. Subjects 711 and 712 are not of French Acadian descent.
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Table 2. Two point lod scores between Alstrom syndrome and chromosome 2 rarkers

Marker Recombination fraction 2] Zimax
0.00 0.01 0.05 0.10 0.20 0.30 0.40

D2S393 -2.21 1.33 1.68 1.57 1.14 0.70 0.31 0.05 1.68
D2S136 2.49 2.43 2.19 1.91 1.39 0.91 0.45 0.00 2.49
D2S292 3.84 3.72 3.24 2.68 1.74 1.03 0.48 0.00 3.84
D2S2113 3.66 3.53 3.04 2.44 1.40 0.68 0.24 0.00 3.66
D2S327 3.25 3.14 2.73 2.25 1.46 0.90 0.44 0.00 3.25
D2S145 1.02 0.96 0.75 0.54 0.29 0.17 0.09 0.00 1.02
D2S286 2.23 2.22 2.06 1.78 1.21 0.73 0.34 0.00 2.23

3 od scores were calculated using allele frequencies from the French Acadian population.

Table 3.Linkage disequilibrium
Marker Allele N(T) N(U) X2 P Bobs Bcontrol
D2S393 6 (96) 9/10 3/10 7.50 0.02 0.30 0.18
D2S136 5 (107) 10/10 0/10 20.00 <0.0001 0 0
D2S292 5 (190) 10/10 1/10 16.36 0.0001 0 0
D2S2113 1 (166) 10/10 2/10 13.33 0.001 0 0
D2S327 4 (125) 10/10 3/10 10.77 0.003 0 0
D2S145 1 (248) 10/10 6/10 5.00 0.09 0 0
D2S286 5 (144) 9/10 2/10 9.90 0.005 0.13 0.15

Frequency of transmitted (T) and untransmitted (U) chromosomes in affected individuals. Associated alleles and their sizes (bp) are presented, as well as es
of the number of ancestral recombinants using unaffected frequencies from the observed untransmitted chré@gsanteghé control sampl8doniro). Prob-
ability values for thex? statistics are derived from Fisher's exact test to accommodate the small sample sizes.

The region homozygous-by-descent on chromosome 2 weesistance could explain the obesity, acanthosis nigricans and
evaluated further for linkage disequilibrium. Simple contingenciyperlipidemia. Membrane-related candidate genes mapping to
tables were used to compare the frequencies of associated alleles2—13 includeADD2 (adducin-2) andANX4 (annexin V)
on parental transmitted (T) chromosomes and untransmitted ({2)5,26). Non-structural genes that lead to deafness and blindness
chromosomes. Fisher’'s exact test demonstrated a significantvarious human syndromes have also been identified recently.
association between the alleles shared by Alstrdm subjects d@fal example, mutations in the DNA-binding protein, HuP2 and
the transmitted parental chromosome at several markers testsd mouse homologPax3 which is expressed in early

(Table3). neurogenesis and necessary for normal neural development, have
been identified as the cause of some forms of Waardenburg
DISCUSSION syndrome 7). Possible candidates for neural/endocrine and

growth factors which map to the Alstrém minimal region include

The characteristics of obesity, blindness and deafness have b&&PT(glutamine-fructose-6-phosphate transaminase) GRE
observed in a number of childhood syndromes including Alstroigiransforming growth factar) (28,29). As we refine the Alstrom
and Bardet—Biedl syndromel§-20). Previous studies have interval and assemble a physical contig to facilitate the positional
demonstrated linkage of Bardet—Bied| to four independent lodiloning of the disease locus, candidate genes mapping within the
30, 119, 15qg and 1681-24). The mapping of Alstrom syndrome minimal region will be examined. In addition, the physical contig
to chromosome 2p demonstrates that the two syndromes &l be screened for tubby-like sequences, as the possibility still
genetically distinct. However, the overlapping phenotypesxists that a member of the tubby gene family may be responsible
observed in Alstrom and Bardet-Biedl subjects suggests that floe the phenotypically similar Alstrom syndrome.
mutations may have arisen in common developmental pathwaysAlthough Alstrom syndrome is a rare genetic disorder, the

Goldstein and Fialkow2] suggested that the molecular defectcharacteristics of obesity, NIDDM and/or retinal and cochlear
for Alstrém may be in a gene encoding a protein necessary for cédigeneration are commonly observed in the general population.
membrane integrity that is expressed in all affected end orgahke identification of the Alstrom disease gene may provide useful
including the retina, neural elements of the ear, kidney, skin, tesitisight into the pathophysiology of these common diseases. In
and adipose. A defect in the architecture of the cell might expla@ldition, characterization of the Alstrdom gene and genes
the retinal, aural, renal, hepatic and cardiac muscle dysfuncticesponsible for similar syndromes such as Bardet-Biedl should
and the resistance of tissue to recognize various hormones (é&egd to a better understanding of the pathways necessary for
insulin, vasopressin, gonadotrophin). The resulting insulinormal development.
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previously describe(). PCR products were separated on a 6%
cM denaturing  polyacrylamide gel and Vvisualized by
autoradiography. A total of 226 CHLC (Cooperative Human
D25393 Linkage Center) and Genethon markers (Research Genetics),
heterozygosity >70%, were used in the genome scgh5j.
4.0 Amplification of short tandem repeat polymorphisms (STRPS)
was performed initially on one obligate heterozygote (carrier) and
five affected individuals. Whenever an excess of homozygous

12 D2S136 T

12 - alleles (>70% shared alleles) was observed in the affected
n 47 -590 individuals for a particular marker, the chromosomal region was
12 o examined further for linkage. Affected individuals, parents and
- D25292 —+ .g unaffected siblings were genotyped with the marker and nearby
132 0.1 = flanking markers.

! D2S2113, D28327 -} ﬁ

213 ‘g .

- o8 Statistical analysis

3 D25145 + Pairwise lod score analysis was performed on all family members
242 using the MLINK program of the LINKAGE 5.1 computer

a1 package 16). Because of the complexity in depth and inbreeding
321 : in this population{(BO consanguinity and marriage loops), linkage
%2 D25286 + analysis could not be conducted using all familial relationships.

Linkage analysis assumed an autosomal recessive mode of
inheritance, full penetrance and a gene frequency &fllibkage
analysis assuming a gene frequency of h&d negligible effects

on the calculated lod score. Marker allele frequencies in the general
population were obtained from Genome Data Base (GDB) and
marker allele frequencies in the French Acadian population were
Figure 3. Genetic map of the chromosome 2p markers linked to Alstrém calculated frc.)m 24 unrelated individua_ls_. DNAs from unrelatt_ed
syndrome (15). Recombination distances are given in centimorgans (cM)FrenCh Acadians were isolated fro_m |nd|V|_duaIs of French Acadian
*ldeogram obtained from GDB. descent from the same geographical region.

As an alternative to classical linkage analysis, linkage
disequilibrium tests were conducted to compare the frequencies
of associated alleles on transmitted and untransmitted

MATERIALS AND METHODS chromosomes as describedd,82). Simple contingency tables
(2x2) were employed to test the null hypothesis of no difference
in allele frequencies between transmitted and untransmitted
The study was carried out in a large French Acadian kindredfiromosomes. Fisher’s exact test was used as a test of associatiol
whose ancestry has been traced back to the mid-1600s in westaran attempt to provide a more valid test with the small size of
Nova Scotia (J.D. Marshadt al, in preparation). Extensive available affected individuals.
genealogical data were obtained for this kindred (>1600 A further attempt was made to estimate the average number of
individuals recorded). Thus far, we have identified one commaancestral recombinant8) (between the putative chromosome 2
ancestral pair for all parents of affected individuals. For parentsutation and each associated allele. Using the appro&ss),of (
of affected individuals, the average kinship coefficient is 0.016; x + (1 —X)e®, wherey andx represent the allele frequencies on
ranging from 0.00001 to 0.03125. Thus, while some parents aa#iected and normal chromosomes, respectively. Estimats of
as related as first cousins (once removed), on average, parents@fe derived using sample frequenciey ahdx. We note that
affecteds are more distantly related than second cousins.  these estimates 6fare likely to be poor due to the small number
Five living subjects were clinically evaluated by a medicabf chromosomes available for estimatiory@ndx. To partially
geneticist at the 1zaak Walton Killam Hospital for Children (IWK),alleviate the expected high degree of variability, estimateserk
Halifax, N.S., Canada. All subjects were obese (BMI >95tigalculated from two sources: the untransmitted chromosomes
percentile for age and gender) and displayed early retinopatins and the sample of 24 unrelated French Acadian controls
sensorineural hearing loss and hyperinsulinemia. None of tfiontro). We have no other source for estimates dfierefore,
subjects exhibited digital abnormalites or mental retardatiothe correspondingd values should be interpreted as only
Limited medical records from three deceased subjects (#365, 368ggestive.
369) were obtained from IWK and Yarmouth Regional Hospital,
Yarmouth, N.S., Canada. In addition to the clinical featureaACKNOWLEDGMENTS

described above, these deceased subjects developed NIDDM in their . .
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