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The Werner syndrome (WS) is a rare autosomal
recessive progeroid disorder. The Werner syndrome
gene (WRN) has recently been identified as a member
of the helicase family. Four distinct mutations were
previously reported in three Japanese and one Syrian
WS pedigrees. The latter mutation was originally
described as a 4 bp deletion spanning a spliced junction.
It is now shown that this mutation results in a 4 bp
deletion at the beginning of an exon. Nine new WRN
mutations in 10 additional WS patients, both Japanese
and Caucasian, are described. These include three
compound heterozygotes (one Japanese and two
Caucasian). The new mutations are located all across
the coding region.

INTRODUCTION

Werner syndrome (WS) is a rare autosomal recessive segmental
progeroid syndrome (2). Patients exhibit not only an appearance
of accelerated aging (premature graying, thinning of hair, skin
atrophy and atrophy of subcutaneous fat), but also several
disorders commonly associated with aging. These include
bilateral cataracts, diabetes mellitus, osteoporosis, several forms
of arteriosclerosis and a variety of benign and malignant
neoplasms (3,4).

WS fibroblasts have very limited proliferative capacities as
compared with age-matched controls (5–7). A prolongation of
the S phase has been demonstrated both in WS fibroblasts and
lymphoblastoid cell lines (8). Cultured cells exhibit a propensity

for chromosomal and intragenic mutations (9–12). The rate of
repair of X-ray- or UV-damaged DNA appears to be normal in
WS fibroblasts (13).

WRN was initially mapped to chromosome 8p (14,15).
Physical and genetic maps of the region were constructed
(16–19). WRN has recently been identified (GenBank accession
number L76937) and four distinct WRN mutations were de-
scribed (1). The WRN gene encodes a 1432 amino acid protein
partially homologous to RecQ helicases (20). The WRN protein
contains seven helicase motifs; two of them have been identified
in all ATP-binding proteins (21).

DNA helicases have been implicated in a number of molecular
processes. One of the most important functions of DNA helicases
is the unwinding of DNA during DNA replication as a component
in a replication complex (22–24). Another function of helicase
involves DNA repair. It has been hypothesized that some forms
of nucleotide excision repair are coupled with transcription;
mutant helicases responsible for the DNA instability syndromes
may impair lesion recognition and/or lesion removal of the
damaged nucleotides during transcription (25–27). Examples
include: ERCC2 helicase, which complements xeroderma pig-
mentosum B and its yeast homologue RAD3 (28,29); ERCC3,
which complements xeroderma pigmentosum D and its yeast
homologue RAD25 (30–34); ERCC3 and ERCC6, which com-
plement a Cockayne syndrome mutation (35,36). In Escherichia
coli, the RecQ helicase is involved in the initial step of DNA
repair by recombination (37).

Helicases are required for accurate chromosomal segregation.
In yeast, precise chromosome segregation requires Sgs1, a
eukaryotic homologue of RecQ (38).
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Figure 1. Locations of the WRN mutations. The rectangular box indicates the predicted WRN protein. The light shadowed segment indicates the highly acidic repeat
region; dark shadows indicate the locations of the helicase consensus motifs. The locations of the WRN mutations are grouped based upon the type of mutation and are
shown underneath the WRN protein along with Registry codes. Parentheses indicate the heterozygous mutations. ZM and MH mutations were previously described (1).

Given the several potential roles of the WRN protein, a careful
delineation of spontaneous mutations at this locus could facilitate
the characterizations of its functions. We report nine WRN gene
mutations from 10 WS patients, three of which were compound
heterozygotes. Two other mutations found in three patients have
been previously reported (1). These various mutations involve
sequences throughout the coding region.

RESULTS

Four Japanese and eight non-Japanese WS patients were selected
from our International Registry. Six of them (AUS, KO, MIM3,
SEP, TUR, UH) were classified as ‘definite WS’ and three (LGS,
OW, SUG) as ‘probable WS’. Clinical and laboratory data for
members of BLS, KUN and SYR remain incomplete, but the
affected subjects had been diagnosed as WS by the submitting
physicians.

Three new mutations were found in regions N-terminal with
respect to the helicase consensus motifs. The point mutation at nt
1336, CGA (Arg) to TGA (Stp), was found as a homozygous
mutation in one Caucasian (LGS) and two consanguineous
Japanese (OW, KO) WS subjects and as a heterozygous mutation
in one Japanese WS subject (KUN). LGS denied consanguinity;
non-consanguinity was supported by haplotype data (19). A
single nucleotide deletion at 1194–1196, AAA to AA, was seen
as a heterozygous mutation in AUS. This mutation would create
a frameshift which ends at 1406–1408 TGA (Stp). A four
nucleotide insertion (ATCT) between 1509 and 1520 was
homozygous in MIM3. This frameshift mutation would terminate
at 1535–1537 TGA (Stp).

Three mutations were found within or just 3′ to the helicase
motifs in two Caucasian patients. One (SEP) mutation was a 105
bp insertion between 2319 and 2320. The insertion results in a
termination codon, creating a truncated protein that excludes
helicase domains III and the subsequent C terminus of the WRN
protein. A second mutation was a deletion of nucleotide
2320–3056 seen in SUG as a heterozygous mutation, terminating
at nt 3081–3083 TGA (Stp). The third mutation was a heterozy-
gous termination mutation found in SUG, located 30 amino acids
after the last helicase motif.

Three new mutations were found in regions C-terminal to the
helicase motifs. A Japanese patient, IB, was homozygous for an
A deletion at nt 3677. The mutated protein stops at nt 3713–3715
TAG (Stp). BLS (French) and TUR (Turkish) patients shared the
same mutation at nt 3724, CGA (Gln) to TGA (Stp), which was

previously found in the Japanese SY family (1). A 74 bp deletion
of nt 3541–3614 was seen as a heterozygous mutation in a
Japanese WS, KUN. This deletion results in a termination at
3720–3722 TAG (Stp). A 113 bp deletion of nt 3691–3803, which
would result in a termination at nt 3816–3818 TGA (Stp), was
found as a heterozygous deletion in the Caucasian WS, AUS.

These mutations were confirmed by sequencing of genomic
PCR products, using the primers from the intron sequences of
WRN (39). A summary of the newly discovered mutations is
given in Figure 1.

The mutation in the SYR pedigree was previously reported as
a 4 bp deletion at the intron–exon boundary, 2 bp from the
putative intron and 2 bp from the contiguous exon (gtagACA-
GACC at the DNA level). This was expected to cause an in-frame
deletion of the exon. Our RT–PCR protocol, however, showed a
deletion of 4 bp, ACAG, from the beginning of this exon. The
ACAG deletion would result in a termination at nt 3971–3973
TAG (Stp).

DISCUSSION

In our original report of the positional cloning of the WRN locus,
four distinct homozygous mutations in the 3′ region of the WRN
gene were described (1). Using the present RT–PCR strategy
mutations were readily found in various locations within the gene.
The biochemical consequences of these mutations are not known.

All of the WRN mutations we have found to date either create
a stop codon mutation or cause frameshifts that lead to premature
terminations. We have not yet found an amino acid substitution
in WRN that seems to be responsible for the pathogenesis of WS.
It is quite possible that the various truncated WRN proteins may
be rapidly degraded, resulting in comparable null mutations and
comparable phenotypes. Such altered mRNAs are thought to be
degraded via a specific pathway (40). In preliminary experi-
ments, we do observe evidence for reduced levels of WRN mRNA
expression in WS LCLs with four different mutations.

Identical mutations were found across a variety of ethnic
groups, raising the question of potential mutationally susceptible
sequences. Although the total number of mutations so far found
in the WRN protein is not extensive, candidate sequences for such
susceptibility would include nt 3677–3920, nt 1336–1395 and nt
2319–2320.

Three instances of compound heterozygous mutations were
found: KUN (Japanese), AUS (Caucasian) and SUG (Caucasian).
There have been numerous reports of compound heterozygotic
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mutations in ‘disease genes’ (41,42). However, comparatively
few compound heterozygotes have been reported in the genomic
instability syndromes. Given the comparatively low prevalence
of consanguinity in the USA, clinicians should therefore be alert
to the diagnosis of WS in the absence of a history of
consanguinity. Our experience suggests that WS is underdiag-
nosed in the USA.

MATERIALS AND METHODS

Samples

WS patients were from an International Registry of Werner
Syndrome (George M. Martin, MD, Junko Oshima, MD, PhD,
Amy Jarzebowicz, BS). Diagnostic criteria were previously
described (18). This study was approved by the University of
Washington Institutional Review Board.

RT–PCR

Five µg of poly(A) RNA, isolated from total RNA, using Oligotex
(Qiagen Inc.) was reverse-transcribed with random hexamers in
100 µl reaction volume with GeneAmp RNA PCR kit (Perkin
Elmer Cetus). Two µl of the RT product were amplified in a 50 µl
PCR reaction buffer containing 5 units Taq DNA polymerase,
10 mM Tris–HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 50 µM
each of dGTP, dATP, dTTP and dCTP. The cycle program was
typically: 94�C for 5 min, then 94�C for 45 s, 55�C for 45 s, 72�C
for 3.5 min with 2 s increase per cycle for 35 cycles, followed by
72�C for 10 min. Five µl aliquots of the first amplification products
were subjected to a nested second amplification in 100 µl reaction
volumes. The primer sequences for RT–PCR are listed in Table 1.
The secondary PCR products were separated on 1% aga-
rose/1×TBE (100 mM Tris–HCl pH 8.0, 90 mM boric acid and
1 mM ethylenediaminetetraacetic acid) to estimate the concentra-
tions of DNA before sequencing.

Table 1. Primer sequences for the RT–PCR sequencing template

Size of
Region of the amplification 1st amplification primers (5′ to 3′) 2nd amplification primers (5′ to 3′) PCR product

5′ end GTGGTGGCGCTCCACAGTCATCC AAGACCTGTTGGACTGGATCTTCTC 838

CTTTATGAAGCCAATTTCTACCC TACTCCAAAATCTCTAAATTTCGG

Translation start site GTGGTGGCGCTCCACAGTCATCC TAGGACTTTCAAAGATGAGTG 1936

to helicase region CTTTATGAAGCCAATTTCTACCC CGTATACAATCCGGTATTTACC

Helicase region GTGGTGGCGCTCCACAGTCATCC AGATGTACTTTGGCCATTCCAG 1218

CTTTATGAAGCCAATTTCTACCC GCAATGATCCAATCTGGACC

3′ region GCATTAATAAAGCTGACATTCGCC CATTACGGTGCTCCTAAGGACATG 1946

CGGAAGGCTGATTTAAGATGCC CGGAAGGCTGATTTAAGATGCC

Table 2. WRN mutations in Japanese and Caucasian WS patients

Registry no. Country Ethnicity M/F Location Mutation Predicted protein

LGS90610 USA Caucasian F 1336 CGA–TGA 368

Arg Stp

OW90650 Japan Japanese M 1336 CGA–TGA 368

Arg Stp

KO90375 Japan Japanese M 1336 CGA–TGA 368

Arg Stp

KUN9001 Japan Japanese M 1336 CGA–TGA 368

Arg Stp

3541–3614 Deletion 1138

AUS40025 Austria Caucasian M 1395 A deletion 391

3691–3803 Deletion 1157

MIM37100 Brazil Caucasian F 1509 ATCT insertion 429

SEP9000 Sardinia Caucasian F 2319–2320 105 bp insertion 708

SUG17802 USA Caucasian M 2320–3056 Deletion 704

2896 CGA–TGA 888

Arg Stp

IB90550 Japan Japanese F 3677 A deletion 1160

BLS60010 France Caucasian M 3724 CAG–TAG 1164

Gln Stp

TUR90010 Turkey Caucasian M 3724 CAG–TAG 1164

Gln Stp

SYR10006 Syria Syrian M 3919–3922 ACAG deletion 1245
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Direct sequencing of PCR products

RT–PCR products were sequenced using a T7 sequence PCR
product sequencing kit (UBS, Amersham Life Science, Inc.).
Seven µl of PCR product was pretreated with 15 U of exonuclease
I and 1.5 U of shrimp alkaline phosphatase at 37�C for 15 min
followed by inactivation of the enzymes at 80�C for 15 min, then
mixed with 100 ng of sequencing primers. The sequencing
reaction followed the manufacturer’s instructions.

The sequencing gel contained 6.6% LongRanger polyacrylamide
(J. T. Baker Inc.), 6 M urea and 1.2× TBE. The running buffer
contained 0.6× TBE. The gel was run at 55 W, dried and exposed
overnight to Biomax MR film (Eastman Kodak Co.).
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WS, Werner syndrome; WRN, Werner syndrome gene; UV,
ultraviolet; ERCC, excision repair–cross-complementing; LCL,
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