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Abstract: Confidence bands are confidence sets for an unknown func-
tion f, containing all functions within some sup-norm distance of an es-
timator. In the density estimation, regression, and white noise models,
we consider the problem of constructing adaptive confidence bands, whose
width contracts at an optimal rate over a range of Holder classes.

While adaptive estimators exist, in general adaptive confidence bands
do not, and to proceed we must place further conditions on f. We discuss
previous approaches to this issue, and show it is necessary to restrict f to
fundamentally smaller classes of functions.

‘We then consider the self-similar functions, whose Hélder norm is similar
at large and small scales. We show that such functions may be considered
typical functions of a given Holder class, and that the assumption of self-
similarity is both necessary and sufficient for the construction of adaptive
bands.

AMS 2000 subject classifications: Primary 62G15; secondary 62G07,
62G08, 62G20.

Keywords and phrases: Nonparametric statistics, adaptation, confidence
sets, supremum norm, self-similar functions.

Received April 2012.

1. Introduction

Suppose we have an unknown function f : [0,1] — R we wish to estimate. Our
data may come from:
(i) density estimation, where f is a density on [0, 1], and we observe
Xp,oo, X, R g
(ii) fixed design regression, where we observe
Y, = f(x;) + &, € ES N(0,0?),

for z; =i/n,i=1,...,n; or
(iii) white noise, where we observe the process

t
Y, = / f(s)ds+n"1?B,,
0
for a standard Brownian motion B.
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The performance of an estimator fn depends on the smoothness of the func-
tion f. In the following, we will measure performance by the L loss, || fn — [l oo
where || f||, = sup,epo,1)| f(x)]. L> loss is the hardest of the LP loss functions
to estimate under, but provides intuitive risk bounds, simultaneously describing
local and global performance. If the function f is known to lie in the smoothness
class C*(M) of functions with s-Holder norm at most M,

C*(M) = {f € C([0,1]) : f has k == [s] — 1 derivatives,

(k) _ f(k)
s [F PN < M, sup @) {_k(y”SM},
z,y€[0,1] |z — y]

then the L°° minimax rate of estimation,

inf sup  Efl|fu = flloo,
fn FEC* (M)

decays like (n/logn)=s/(2st1) [24].

The simplest estimators attaining this rate depend on the quantities s and
M, which in practice we will not know in advance. However, it is possible to
estimate f adaptively: to choose an estimator fn, not depending on s or M,
which nevertheless obtains the minimax rate over a range of classes C*(M),

sup  Efl|fn = fllo = O ((n/ 1ogn)—s/<2s+1>) _
fecs(M)

Such estimators can be constructed, for example, using Lepski’s method [19],
wavelet thresholding [9], or model selection [1].

Of course, to make full use of an adaptive estimator fn, we must also quantify
the uncertainty in our estimate. We would like to have a risk bound R,,, de-
pending only on the data, which satisfies || f — fn||OO < R,, with high probability.
Equivalently, we would like a confidence band,

S i={f € C(10, 1)) : | = fallo < Ra}, (1.1)

containing f with high probability. To benefit from the adaptive nature of fn,
we would also like the radius R,, to be adaptive, decaying like (n/ log n)_s/(25+1)
over any class C*(M).

Unfortunately, this is impossible in general [21, 5]. The size of an adaptive
confidence band must depend on the parameters s and M, which we cannot
estimate from the data: the function f may be deceptive, superficially appearing
to belong to one smoothness class C*(M ), while instead belonging to a different,
rougher class. If we wish to proceed, we must place further conditions on f.

Different conditions have been counsidered by several authors [22, 11, 13, 16].
Of note, Giné and Nickl place a self-similarity condition on f, requiring its regu-
larity to be similar at large and small scales; they then obtain confidence bands
which contract adaptively over classes C*(M), where M > 0 is fixed. Hoffmann
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and Nickl consider a weaker separation condition, which allows adaptation to
finitely many classes C** (M), ..., C®(M).

The conditions in these two papers are qualitatively different. Hoffmann and
Nickl consider a family of functions f which asymptotically contains the full
model,

k
fZ:UOSi(M), 0<s1 < <8k, M>0. (1.2)
i=1

The confidence bands constructed are thus eventually valid for all functions
f € F, although the time n after which a band is valid depends on the unknown
f. The penalty for this generality comes in the nature of the adaptive result:
the bands contract at rates n~%/(%+1) for any f € C* (M), but they do not
attain the minimax rate n=5/st1 for f € C*(M), s & {s1,..., 5k }.

Conversely, Giné and Nickl provide bands attaining n~*/(s*1) for any f €
C*(M), 8 € [Smin, Smax)- However, the family of functions considered does not,
even in the limit, contain the full model,

‘F = U C’S(]\4)7 O < Smin < Smax; M > O (13)

$=Smin

Instead, some functions f must be permanently excluded from consideration.
We can describe this difference in terms of dishonest confidence sets. We say
a confidence set S, for f is honest, at level 1 — =, if it satisfies

limsup sup Py (f & S,) <7, (1.4)
n fer

where F is the entire family of functions f we wish to adapt to [20]. Honesty is
necessary to produce practical confidence sets; it ensures that there is a known
time n, not depending on f, after which the level of the confidence set is not much
smaller than 1 — . In contrast, a dishonest set satisfies the weaker condition

sup limsup P (f & Sp) < 7.
feF n

While dishonest confidence sets are not useful for inference, they can provide a
useful benchmark of nonparametric procedures. Hoffman and Nickl’s bands are
dishonest confidence sets for the full model (1.2); Giné and Nickl’s are not, for
the model (1.3).

In the following, we will show that this distinction is intrinsic: that the prob-
lem of adapting to finitely many s; is fundamentally different from adapting
to continuous s. We will construct confidence bands which are adaptive in the
model (1.3), under a weaker self-similarity condition than Giné and Nick!’s;
functions satisfying this condition may be considered typical members of any
class C*(M). We will then show that our condition is as weak as possible for
adaptation over (1.3), and that no adaptive confidence band can be valid, even
dishonestly, for all of (1.3).
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We also provide further improvements on past results. Firstly, past construc-
tions of adaptive confidence sets under self-similarity have required sample split-
ting: splitting the data into two groups, one for estimating the function f, and
the other for estimating its smoothness. In the construction of our bands, we
will show that this procedure can be avoided, leading to smaller constants in
the rate of contraction.

We also show that our bands, at no further cost, adapt honestly to the un-
known norm M they are valid even for the model

o Smax

F=) U (M),  0< smin < Smax.

M=0 $=Smin

This is in contrast to previous results, where M is either assumed known, or
adapted to only dishonestly.

As our bands make fundamental use of the self-similarity condition, their
construction differs significantly from those given previously in the literature.
We likewise describe new approaches to undersmoothing, and to linking the
white noise model with density estimation and regression, which in this context
are valid even for functions of unbounded norm M.

Our bands thus depend on self-similarity parameters € and p, which deter-
mine the functions f to be excluded. In a practical setting, suitable values of
these parameters might be found via preliminary experiments on a suite of ex-
ample functions; any choice of parameters will give a confidence band which is
maximally adaptive for this problem.

Alternatively, if maximal adaptation is not required, we might view our re-
sults as a vindication of the self-similarity approach described by previous au-
thors. We could then, for example, use the simpler method of Giné and Nickl
[13], assured that the assumptions demanded are not unreasonable.

In either case, using such methods in practice requires us to interpret the
meaning of a self-similarity assumption. In some settings, we may believe such
assumptions to be true; for example, in finance, turbulence, or other fractal
systems, where some notion of self-similarity is often assumed.

In other settings, we may not believe such assumptions explicitly, but may
still be willing to use them as a working model. We will show that functions not
satisfying a self-similarity condition form a negligible subset of any Holder class;
our assumptions are therefore not too onerous. This is, of course, no guarantee:
it is possible that some structure of the problem will cause our unknown func-
tion to lie in such a negligible set. Nevertheless, any method of nonparametric
inference must make some assumptions; our results show that, in the context of
adaptation, self-similarity is a natural assumption to make.

In Section 2, we describe our self-similarity condition, and in Section 3, we
state our main results. We describe the construction of our confidence bands in
Section 4, and provide proofs in Section 5.
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2. Self-similar functions

To state our results, we must first define our self-similarity condition, using a
wavelet basis of L%(]0,1]) [15]. We begin with ¢ and ), the scaling function
and wavelet of an orthonormal multiresolution analysis on L?(R). We make
the following assumptions on ¢ and ¥, which are satisfied, for example, by
Daubechies wavelets and symlets, with N > 6 vanishing moments [8, 23].

Assumption 2.1.

(i) For K € N, ¢ and ¢ are supported on the interval [1 — K, K].
(i) For N € N, v has N wvanishing moments:

(iii) @ is twice continuously differentiable.

Using the construction of Cohen, Daubechies and Vial [7, 6], we can then
generate an orthonormal wavelet basis of L?([0, 1]), with basis functions

PLio k> ke [072j0)7 and wj,ku j 2 j07 ke [072])7

for some suitable lower resolution level jo > 0. For k € [N,29 — N), the basis
functions are given by scalings of ¢ and 1,

pjk(x) =22p(20x — k), Vi =2 2(20x — k).

For other values of k, the basis functions are specially constructed, so as to form
an orthonormal basis of L2([0, 1]) with desired smoothness properties.

Using this wavelet basis, we may proceed to define the spaces C* over which
we wish to adapt. Given a function f € L?([0,1]),

270 —1 oo 29-1
f= E Oéjo,k%‘o,k+§ E Bj ks ks
k=0 j=jo k=0

for s € (0, N), define the C* norm of f by

[fllgs = max (szp o, 1], sup 2j(5+1/2)|ﬂj,k|> :
s

Define the spaces
C* = {f e L*([0,1]) : | fllcs < o0},
and for M > 0,

C(M) = {f € L*([0,1]) : [|fllcs < M}
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For s ¢ N, these spaces are equivalent to the classical Holder spaces; for
s € N, they are equivalent to the Zygmund spaces, which continuously extend
the Holder spaces [7]. In either case, we may therefore take this to be our
definition of C** in the following.

We are now ready to state our self-similarity condition. Denote the wavelet
series of f, for resolution levels ¢ to j, jo < i < j, by

j—12t—1

Fii =Y Biatbin-

=i k=0

Fix some spax € (0, N); for any s € (0, Smax), M >0, e € (0,1), and p > 1, we
will say a function f € C*(M) is self-similar, if

[ firoillos 2 €MV j = jo. (2.1)

If $ = Smax, we will instead require (2.1) only for j = jo. Denote the set of
self-similar f € C*(M) by C§(M,e, p); for fixed e, p, we will denote this set
simply as C§(M).

The above condition ensures that the regularity of f is similar at small and
large scales, and will be shown to be necessary to perform adaptive inference. To
bound the bias of an adaptive estimator fn, we need to know the regularity of f
at small scales, which we cannot observe. If f is self-similar, however, we can infer
this regularity from the behaviour of f at large scales, which we can observe.

Similar conditions have been considered by previous authors, in the context
of turbulence [10, 18], and more recently in statistical applications [22, 13]. We
note that Picard and Tribouley’s condition can be thought of as a stronger,
pointwise version of Giné and Nickl’s: if Picard and Tribouley’s condition holds
at some xg € [0, 1], with their p,, a constant and I; = 1, this implies the condition
of Giné and Nickl.

We now show that our condition (2.1) is weaker than the condition of Giné
and Nickl; we will see in Section 3 that it is, in a sense, as weak as possible.

Proposition 2.2. Given $min € (0, Smax|, b > 0, 0 < by < by, and J1 > jo,
there exist M > 0, € € (0,1), and p > 1 such that, for any s € [Smin, Smax], the
condition

f € C*nCin(b), b1277% < || fioollay < 022775V 5 > 4, (2.2)

implies f € C§(M, e, p). Conversely, given s € (0, Smax], M >0, € € (0,1), and
p > 1, there exist f € C§(M, e, p) which do not satisfy the above condition, for
any Smin € (0,8], b >0, 0 < by < ba, and J1 > jo.

In fact, we can show that self-similarity is a generic property: that the set D
of self-dissimilar functions, which for some s never satisfy (2.1), is in more than
one sense negligible. Firstly, we can show that D is nowhere dense: the self-
dissimilar functions cannot approximate any open set in C*(M). In particular,
this means that D is meagre. Secondly, we can show that D is a null set, for
a natural probability measure m on C*(M). We thus have that mw-almost-every
function in C*(M) is self-similar.
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Proposition 2.3. For s € (0, $Smax] and M > 0, define

D:=C*(M)\ U C5(M,e,p).
e€(0,1), p>1

Further define a probability measure m on f € C*(M), with f having indepen-
dently distributed wavelet coefficients,

o ks ~ M2*jo(s+1/2)U([_17 1)), Bk ~ M2*j(s+1/2)U([_17 1]).

Then:

(i) D is nowhere dense in the norm topology of C*(M); and
(it) ©(D) = 0.

These results are already known for Giné and Nickl’s condition (2.2) [13, 16];
as a consequence of Proposition 2.2, they also hold for our condition (2.1). We
conclude that the self-similar functions may be considered typical members of
any class C*(M).

For smoother functions, we note that when s = $pax, our condition (2.1)
is weaker, and no longer requires a specific smoothness of f. Indeed, in this
case, the smoother f is, the easier it becomes to satisfy our condition. We may
therefore expect the condition to likewise often hold for smoother functions.

We further note that Proposition 2.3 shows, for a particular Bayesian prior
on functions f, that self-similarity is implicitly assumed. In fact, this result is
more general, applying to many priors which can be written as series expan-
sions, including Gaussian processes with a Karhunen-Loeéve expansion. As these
results will often involve different bases or scaling laws, we do not pursue this
further, except to comment that self-similarity is thus also a common modelling
assumption in Bayesian nonparametrics.

3. Self-similarity and adaptation

We are now ready to state our main results. First, however, we will require an
additional assumption on our wavelet basis, allowing us to precisely control the
variance of our estimators. This assumption has been verified analytically for
Battle-Lemarié wavelets [12]; for compactly supported wavelets, it can be tested
with provably good numerical approximations. The assumption is known to hold
for Daubechies wavelets and symlets, with N = 6,...,20 vanishing moments.
Larger values of N, and other wavelet bases, can be easily checked, and the
assumption is conjectured to hold also in those cases [3].

Assumption 3.1. The I-periodic function

ol(t) =Y lt — k)?

keZ

attains its mazimum o, at a unique point to € [0,1), and (o2)" (to) < 0.
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We may now begin with the construction of an exact confidence band, which
has exact asymptotic level 1 — . Exact confidence bands are often preferred in
the literature, being simpler to compute, and offering more reliable control over
coverage [14].

To obtain exact coverage, our bands are centred at an undersmoothed esti-
mate of f: an estimate slightly rougher than optimal, chosen so that the known
variance dominates the unknown bias. The larger variance does mean, however,
that our bands adapt to s and M only up to a logarithmic rate penalty. We
state our results for the white noise model, which serves as an idealisation of
density estimation and regression; we will return later to consequences for the
other models.

Theorem 3.2. In the white noise model, fix 0 < v < 1, $min € (0, Smax], and

set
—3/(2s+ ) Jogn, F = U C§(M).

S€[Smin,Smax], M >0

rn(s) = (n/logn)

There exists a confidence band CE* = C (7Y, Smin, Smax; €, ) as in (1.1), with
radius RE®, satisfying:

n 9

(i) supser|P(f & C5F) — ] — 0; and
(i) for a fized constant L > 0, and any s € [Smin, Smax), M > 0,

sup Py (Rff > LMl/(QSH)Tn(s)) — 0.
fecs(M)

In asymptotic terms, we can do better by dropping the requirement of exact-
ness. Intuitively, we may feel that an exact band should always be preferable:
given an inexact band, surely we can modify it to produce something more ac-
curate? In fact, this is not necessarily the case. Consider a simplified statistical
model, where we wish to identify a parameter § € R, and have the luxury of
observing data X = 6. The optimal confidence set for 6 is thus {X}, but this
set is not exact at the 95% level. We can produce an exact set by adding noise:
if Z ~ N(0,1), the confidence set

{zeR:|X+Z—z|<d10.975)}

is exact at the 95% level. However, the perfect, inexact set is more accurate
than the imperfect, exact one.

The situation is similar in nonparametrics: we can obtain better asymptotic
results using an inexact band, whose asymptotic level is unknown, but is guar-
anteed to be at least 1 — . We now construct inexact bands, centred at an
adaptive Lepski-type estimator, which are exact rate-adaptive with respect to
s and M.

Theorem 3.3. In the white noise model, fir 0 < v < 1, and set

ra(s) = (n/logn) /@0 Fe= ) C5(M).
s$€(0,8max]|,M>0
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There exists a confidence band C2% := C (v, spax, €, p) as in (1.1), with radius
R satisfying:

m

(i) limsup,, sup sz P(f ¢ C3¥) < ; and
(i1) for a fized constant L > 0, and any s € (0, Smax], M > 0,

LMI/(Qerl)
sup ]P)f (de > ﬁ

fecs(M)

Tn(s)) — 0.

The constant in the above rate contains an extra 1/(2° — 1) term, which
is present to allow for s tending to 0. Note that if, as before, we restrict to
S > Smin > 0, we may then fold this term into the constant L, producing a rate
of the same form as in Theorem 3.2.

As is standard, the rates adapt only to smoothnesses s < spax; if f is
smoother than our wavelet basis, we cannot reliably detect this from the wavelet
coefficients. As noted in Section 2, however, our self-similarity condition (2.1) is
weaker when s = smax, and the class Cj™* (M) contains many smoother func-
tions f; in this case we obtain the rate of contraction optimal for C®max(M).

Theorem 3.3 is, in more than one sense, maximal. Firstly, we can verify that
the minimax rate of estimation over C§(M) is the same as over C*(M). Since
any adaptive confidence band must be centred at an adaptive estimator, we may
conclude that the above results are indeed optimal.

Theorem 3.4. In the white noise model, fit 0 < v < %, s € (0, smax], M > 0.

An estimator fn cannot satisfy

limsup sup Py (an — fll = Tn> <,
n feC§(M)

for any rate r, = o((n/logn)~/(2s+1),

Secondly, we can show that the self-similarity condition (2.1) is, in a sense, as
weak as possible. In (2.1), the function f is required to have significant wavelet
coefficients on resolution levels j growing at most geometrically. If we relax this
assumption even slightly, allowing the significant coefficients to occur less often,
then adaptive inference is impossible.

For s € (0, Smax), M > 0, denote by C;j (M) the set of f € C*(M) satisfying
the slightly weaker self-similarity condition,

||fj,"pjj—‘||cs Z eM V.] ZjOa

for fixed € > 0, and p; > 1, p; — oo. Even allowing dishonesty, and with known
bound M on the Hélder norm, we cannot construct a confidence band which
adapts to classes C§(M).

Theorem 3.5. In the white noise model, fir 0 < v < %, 0 < Smin < Smax, and
M > 0. Set

ra(s) = (n/logn)~*/tV F= | ] Ci(M).

S€(Smin;Smax)
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A confidence band S, with radius R,, cannot satisfy:

(1) limsup, Ps(f & Sp) <7, for all f € F; and
(i1) Ryp = Op(rn(s)) under Py, for all f € C5(M), s € (Smin, Smax)-

As a consequence, we firstly cannot adapt to the full classes C¥(M). More
importantly, we cannot obtain adaptation merely by removing elements of the
classes C*(M) which are asymptotically negligible, as Hoffmann and Nickl do
for the model (1.2). In order to construct adaptive bands, we must fully exclude
some functions f from consideration, as Giné and Nickl do for the model (1.3).

The difference between these problems lies in the accuracy to which we must
estimate s. To distinguish between finitely many classes, we need to know s
only up to a constant; to adapt to a continuum of smoothness, we must know it
with error shrinking like 1/logn. The finite-class problem is in this sense more
like the L? adaptation problem [4]; the distinctive nature of the L® adaptation
problem is revealed only when requiring adaptation to continuous s.

While the above theorems are stated for the white noise model, we can prove
similar results for density estimation and regression. The following theorem gives
a construction of adaptive bands in these models; other results can be proved
similarly to previous results in the literature [13, 4].

Theorem 3.6. In the density estimation model, let Smin € (0, Smax], or in the
regression model, Smin € [%, Smax]- In either model, the statement of Theorem 3.3
remains true, for the family

F = U Cs (M),

Se[sminxsmax]; M>0

and with constants L, L' depending on s and M.

4. Constructing adaptive bands

To construct confidence bands satisfying the conditions in Section 3, we will use
estimators f, given by truncated empirical wavelet expansions,

270 —1 Jn—127-1
FGn) =" Gjorion+ Y > Bixthin,
k=0 Jj=jo k=0

for the empirical wavelet coefficients
ok 52/9%,1@(0 dY, B 3=/¢j,k(f) dYy.

The resolution levels j,, will also depend on the data Y, and will be chosen to
produce adaptive estimators f(j,).

We will consider several different choices of resolution level, corresponding to
different properties of the function f, and the class C*(M) to which it belongs.
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We first consider the adaptive resolution choice j2¢, chosen in terms of the

function f. Pick sequences‘]mm,j,‘fax €N, jo < jmin < gmax g5 that 2/n
(n/logn)Y/ N+ "and 2= ~ n/logn. Further define

Cnge = (nf (logn)*) "2,

and for kK > 0, p > 1, let

3ot (i, p) = inf ({23 U {5 € [, 50™) « supy, [B) k] < Kenpu}) -

While 72 is unknown, we can estimate it by a Lepski-type resolution choice,
G, ) o= inf ({GEF U {5 € [, )  sup |;.6] < ke

which depends only on the data. Fix A\ > v/2, v > 1, and for convenience set
j2d = jad()\ 1), If v = 1, we will see f(j24) is then an adaptive estimator of f;
if v > 1, it is near-adaptive.

While the above statements are true for general f, they do not provide us
with an estimate of the error in fn To produce confidence bands, we must
estimate the smoothness of f, and this is where self-similarity is required. We
will consider values of the truncated Hélder norm,

M ;= |fisllgs

which measures the smoothness of f at resolution levels ¢ to j. We may bound
M;; by the quantities

M, = dupsup 24D (1B, 4| — V2e, 1)t
=i k

—]

;5 = dupsup 2072 (1B, 4| + V2en1),
=i k
where 2t := max(z,0), and we will show in Section 5.2 that for j < jm®,
M€ [M; M, ; - ;] with high probability.

Set Jo = jo, J1 = [pJo], Jo = [J2%/p], J3 = j2¢, and suppose n is large
enough that ™" > p.Jy, s0 Jo < J1 < Jo < J3. If f € C5(M) for s < Smax, then
with high probability,

SJ J: j J.;

._ 2,J3 2,J3

R(s) = — > — >e
==Jo,J1 14(]07‘]1

Assuming further s > sy, for some syin > 0, we can lower bound s by
Sp = Inf({Smax} U {$ € [Smin, Smax) : R(s) > €}).

Since L
MS]2 Js 9—J1 (s+1/2)

s J127,]1(s+1/2)

R(s) =

is increasing in s, §, can be found efficiently using binary search.



Honest adaptive confidence bands 1501

Likewise, set
1S
M(s)=e My, 5.

and M,, = M (3,). With high probability,
M(5)2= 1+ > g =1pgs | o= N(s41/2) > pro=Ti(s+1/2)
- 05J1 —_ )

and as the LHS is decreasing in s, also

Mn2—J1(§n+1/2) > M2—J1(S+1/2) )

Using these bounds, we can control the error in f , producing adaptive confidence
bands for f.

To construct the bands, we will introduce some more resolution choices J,,.
Firstly, we consider the class resolution choice j!, chosen in terms of the class
C*(M). For k > 0, p > 1, define

g () o= nf {G > gt s M27ICHD) < ey, )

= max (j;"", [logy(M/ken,n)/(s +3)1) (4.1)

which we can estimate by

jzl(l%, /14) ‘— max (j;ni“, ’—logg(Mn/ﬁcn,u)/(gn —+ %)]) . (4.2)

Secondly, to produce exact confidence bands, we will need the undersmoothed
resolution choice j>*. Fix u, € N, 2" ~ logn, and set

Gr (ks ) = i (m 1) + [logg iy (8, 1) + tn,
defining iff similarly, in terms of iff Let X :== A+ v/2, and )\ == \ — /2; for

convenience, write j¢ = j/(X, 1), jo* == j¢*(), 1), and likewise j¢, j¢°.

We may now proceed to define our bands. Let

a(j) = v/2log(2)j,

) . log(mlog?2) +logj — log(1+ v,)
b(j) = alj) - : .

2a(j) ’
c(j) = Ewn_l/22j/2,
z(y) = —log (—log(1l — 7)),
R = ) (200 +000) )
1(j) = max(j, min(jg', j*)),
Ra(j) = X202 —21/%)e,,  /(V2 - 1),
T M. 2~ Mi)sn —9-5n) 3
Ra(i) :{ SN2 J(1—27%) 3, >0,

o0, S$n =0,
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where 7, is given by Assumption 3.1,
T = sup 2792 g, i (1)),
t€[0,1] kez

and )
e #lto— k)
Ty O'Z (to)

Uy =

If we set smin > 0, v > 1, the undersmoothed resolution choice jgz, with
confidence radius R
R = Ra(55",7),

will be shown to give a band C;* satisfying Theorem 3.2. If instead we set
Smin = 0, ¥ = 1, and define

o = 7/ (G = 4 1),
then the adaptive resolution choice j’zd, with confidence radius
R = Ry (2%, ) + Ra(35%) + Ra(j3%),

will be shown to give a band C2? satisfying Theorem 3.3.

5. Proofs
5.1. Results on self-similarity

We begin by establishing that our self-similarity condition (2.1) is weaker than
Giné and Nickl’s condition (2.2).

Proof of Proposition 2.2. We first consider the case s < Smax. Given (2.2), for
j>Ji, k€[N,2/ — N), we obtain

1Bkl = [{fi00, i) | < Il fjso0lloo Wkl < ballplly279F1/2),

and similar bounds for k € [0, N) U [2/ — N, 27). We thus conclude f € C*(M),
for a constant M > 0.
We will choose € € (0,1) small, p > 1 large, so that pjo > Jy, and

C = M(e + 2~ (Pio=T1)s)
is small. If f & C§(M), we have Jo > jo such that
1Bi.x] < eM2~i(s+1/2)
for all j € [J2, [pJa]), k € [0,27). Let J3 :== max(.J1, Jo). Then

[pJ2]-1 oo
[ frpoollog SM | Y- 27954 H° 2770
j:Ja j:erz-‘

S M (27735 4 270028) < 02705,
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contradicting (2.2) for C' small. Thus, given (2.2), we have M, ¢, and p for which
feCy(M).

Conversely, given s € (0, Smax], M > 0, ¢ € (0,1), and p > 1, for i € N set
Ji == [pji—1], and consider the function

fo= M2 Dy o
=0

in C§(M). We have

oo
ntlooll S M 2778 L 9TIni1s = o(27nS
Jnt+1, 0o~ ~
i=n+1

as n — oo, so f does not satisfy (2.2) for any Smin, b, b1, b2, and Ji. As our
self-similarity condition is weaker for s = Spax, the same is true also in that
case. O

5.2. Constructive results

We now prove our results on the existence of adaptive confidence bands. To
proceed, we will decompose the error in estimates f(j) into variance and bias
terms,

1FG) = Flloe < 1FG) = FD e + 1FG) = flloos

where

FG) =Ef[f()] = Fjog-
To control the variance, we will need the following result, which is a rephrasing
of a Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets [3].

Lemma 5.1. Let 0 < 7y, <7 < 1, and v, * = o(n™%), for all « > 0. Then as
n — oo, uniformly in f € L?([0,1]),

sup — 0.

J2gpin

To bound the bias, we must control the estimators i'n, S, and Mn We will
show that, on events F,, with probability tending to 1, these estimators are close
to the quantities they bound.

Lemma 5.2. Set izd = 79\, v), jzd = 2\, v). For s € [Smin, Smax], M >0,
and f € C§(M), we have events E,, with P(E,) — 1 uniformly, on which:

(i) jot < God < Gut;
(i1) 3, < s, and Mlﬂ_‘h(é“"’l/z) > M2~ N1(s+1/2): gnd
(i) Sp > sy, and M, < M,;
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for sequences M, s, satisfying
M, /M — 7!, log,(n)(s — s,) — S,

uniformly over f € C§(M), with constant S > 0 depending on N, €, p, and A.
Also on B, for any 0 < K <A +v2, 1< pu<wv:

(iv) Jst(ry 1) > jo;

(v) g5 (5 ) < 35t (5, ) < 5t (6, ) + T3 (i, ) and

(vi) Gy (ks ) < 37 (s ) < 5" (s o) + 37 (s )
for sequences JS (K, 1), JE% (k, i) — 2(1 + logy(e™1) + 5), uniformly over f €
C§(M).

Proof. For n such that j™ < p[pjo], set E, := (. Otherwise, let E,, be the
event that

) o A
max (Sgp |Gjg ke — Qo k|, SUD sup 1Bjk — Bml) < V2. (5.1)

J=Jo

Now, for n large enough that E,, # (), we have

P(ES) < 277" &(—\2ncp 1)

~max

< (mlogn)~ /220" 1
=0 ((logn) /%) = o(1),

using the bound that ®(—=z) < ¢(x)/z for x > 0.

(i) If iid = ™" then trivially j2¢ > i,a,d' Otherwise, for j = l'zd — 1, we have
some k such that |3; x| > ch,l,. Thus, on E,,

1Bkl = 1Bjk] = V2en1 > Acn v,
and again jzd > l'zd. Similarly, for all jzd < j < jmex f

|Bj,k| < |ﬂj,k| + ﬁcn,l < >\Cn,1/;

s0 jat < T
(ii) On E,, we have

S

M;; € [M?;, M, ],

_z,j7
smax

for any i < j < j»
then obtain

. If s < Spmax, by the argument given in Section 4, we

Sn < s, M, 291 Gnt1/2) > pro—in(s+1/2)

If s = Smax, the results follow similarly, noting that §, < spax by defini-
tion.
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(ifi) On By, Js = 724 < 7" < je(\,v), and for n large j'(\, v) > 5™, so
dp =cn 12J3(s+1/2) <cp V2J3(S+1/2) < Méila

and also
en = cp 12712 0,
We then obtain
M? 2v/2d,
R(s) < :S,Q,JS+ V2 - M +2v/2d, -
My, 5, —2V2e, ~ eM —2V2e,

s

for a sequence
R, —» e *(1+2V227) = R.

On E,, 8, < 8 < Smax by (ii), so if 8, = Smax, we are done. If not, then
R(5,) > €, and

Sn

9(J2=J1)(s=8n) < MJ2,J:5/M~A]27J3 _ R(s) < &
M3, 5 /M, R(3.) T e
Since .
Jo = Jv = [gn"/p] = J1 =t 6n,
we have

3, > 5 —logy (e Ry)/0n =t 5p,
and since §, ~ logy(n)/p(2N + 1),
logy(n)(s — 5,) — p(2N + 1) logy (e 'R) = S.
Likewise,
M, < M(s) < e MM, 5, +2V2e,) < e7HM +2V2e,) < My,
for a sequence M,, > 0, with M, /M — ¢~ 1.

(iv) If 724 = jmin_then trivially 5% (k, 1) > 72%. If not, for j = 724 — 1, we have
some k such that |3; x| > Acp,,. Hence, on E,,

Mn2—j(§n+1/2) > 5—1()\ + \/ﬁ)cn,,, > K,

and again ji! (x, 1) > ji’.
(v) On E,, by the above we have

e

M2 D) < N 9Bl () Gat /D) < e,

and so j(k, u) > j%(k, ). Equally, from (4.1), (4.2) and the above, we
obtain

gk, ) — 35 (k1) < 2+ 21ogy (M, /M) + 4[logy (VM /K)] (s — 8n)
< Tk, ),

for a sequence J¢ (k, ) — 2(1 +logy (™) + 5).
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(vi) From (v), we also have
.Eff('%u /1’) - jzw(ﬁa M) < Jvelm('%u /1’)7
for a sequence J% (k, 1) — 2(1 + logy(e71) + 9). O

We may now bound the bias of f with the estimators j,, §, and Mn, which
bound the true parameters by the above lemma.

Lemma 5.3. Let j, > j’ﬁd. On events Ep as in Lemma 5.2, for any s €
[Smins Smax)s M > 0, and f € C§(M),
1F () = Flloo < Ra(in) + Rs(jn).

Proof. If 5, = 0, this is trivial. If not, then by the construction of the wavelet
basis,

T =sup sup 2~ ]/2Z|¢3)
Jj=Jjo t€[0,1] ke

Further, by Lemma 5.2, on E, we have j, > 72 > Zida and for j > jn,
M2-3(s+1/2) < yp 9-i(3n+1/2) Thys

1£Gn) = Flloo = 155, sollae S 7o Y sup27/2(3; 1]
J=in F
1(jn)—1
<7, Z 27/ Xen, + Z M, 275

J=in 3=1(Gn)
< Ry(jn) + Rs(jn)- O
We are now ready to prove our theorems. First, we consider the exact band C5*.
Proof of Theorem 3.2.
(i) Let d(j,z) == a(j) (c(j)~*z — b(j)) , and define the terms

F(5) = d(, |1 f(5) = fllo),
G(j) = dG, 1f(G) — F()lls)s (5.2)

H(j) = d (5, | £ 000 o = Fide | ) -

We will show that uniformly in j, F, G and H are close, and H is inde-
pendent of}' so we may bound F( ) by Lemma 5 1

By definition, §,, > smin > 0, and j5* Cl (A1) > 7%, so on the events
E,, by Lemma 5.3,

njgr M2 773
c(je*) 2isr 20 —1

F(j5) - GG < =

—Smin
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since j&!(A, 1) > jmi, and

IR 1o A1)+, logy ™ + un

sl - sel - ymin — 0.
(A1) JHA 1) n
Similarly, for j, > j*, on E,,
7&(171
a(jn) [20-1 N 20025
S5 Sup |6y & — o k| + Y Sup 272185 x — B ]
c(jn) \ x=0 iz, k=0

S (G575, 1))22 U D=7/
< o= AN —in (Aw)) /2 _ o(1),

since

. e v—1
JSA 1) =GN v) > s+ 1 logy(log(n)) — oc.

On E,, 7% depends only on 3 for j < 734 < jzd, and H(j) depends only

on Bj,k for j > jid, so H(j) is independent of jff Hence, given x,c > 0,
for n large, and any j > jo*,

P(F(j) < @ | By, js* = j) 2 P(G(j) <z — ¢ | By, jo* = j)
>P(H(j) < o — 2 | Bn, jS = j)
=P(H(j) < — 2 | E,)
>P(G(j) <z —3¢| En)
> P(G(j) <z —3e) — P(EY)

Likewise,

P(F() 2 @ | Ba,j5" = ) < exp (—e™ @) +0(1).

smin

As these results are uniform in j > j*™, and true for any € > 0, we have

P (F(]) > x| En,iff =j> — exp (—e_””) — 0.

sup
J2J5"

On E,,, we have 7% > j*, so

P(F(j*) <a | En) = Y P(F(j) <@ | En,ji" = PGS =4 | En)

J=is
= (exp (—efm) + 0(1)) Z ]P(jff =7j| En)
i=35

=exp (—e ") +o(1).
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Since P(E,) — 1, we obtain P(F(55*) < ) — exp (—e~*), and rearrang-
ing,
P(f ¢ C5F) = -
As the limits are all uniform in f, the result follows.
(i) Let J&* :== Jg¥(A, 1), s0 on E,,, j&° < j&* + J* by Lemma 5.2. For n large,
scl smin
Job > g so

;C M 1/(2S+1) sexr ;C
P /2 <—> . 2/ xlog(n)2n /2, (5.3)
Cn,1
and
Ry 5 /TR a2 A (),
As P(E,,) — 1 uniformly, and the limits are uniform over f € C§(M), the
result follows. O

We now move on to the adaptive band C2¢. As the variance term is no longer
independent of j,,, we must use a different method to establish the validity of
our band. We will instead consider j#* — jmin 41 confidence bands, one for each
possible choice of j,, and show that the effect of this change is asymptotically
negligible.

Proof of Theorem 3.3.
(i) Let G(j) be given by (5.2). From Lemma 5.1, we have

P(G(G") > () <P (35 € ™ 5™ G() > 2(m))
< > P(G() > x(wm))

= (™ =g+ DL+ o(1))m

Rearranging, we get

P (IFG2 = FG2Ne > Ra(Gat ) ) <7+ o(1).
By Lemma 5.3, on the events F,,
1FGA") = fllao < RaG®) + Rs(G)
and by Lemma 5.2, P(E,) — 1. Since
1f = FGEDN o < IFGRD = FGRDN oo + IFGRD) = Flls
we obtain

P(f ¢ Ca%) <~ +o(1).

As the limits are uniform in f, the result follows.
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(ii) Since j2¢ > jgﬁnl and z(v,) = O(loglogn), we have that R; (j’zd,'yn) is
dominated by b(52%)c(529). Let J = J(\ 1), so on E,, j24 < jo <

7 + J by Lemma 5.2. For n large, j&! > j™" so by (5.3), we obtain

n = Jn

Ri (3%, ) S 4t + Jl2Un t70 2 =102 < gt/ @st )y (),

rmax

Likewise on E,,, for n large jo' 4+ J¢ < jmax 5o [(724) = 59, and

Ry(j24) < QU+ 2¢ < MY sty (g),
Also for n large, §, > s, >0, so

. M, . Ml/(2s+1)
Rs(53") S g tq27 0 S

T S —ge =g "n(s)-

As P(E,) — 1 uniformly, and the limits are uniform over f € C§(M), the
result follows. O

Finally, we prove our result on confidence bands in density estimation and
regression.

Proof of Theorem 3.6. We can prove the result analogously to Theorem 3.3.
To bound the bias term, we will sketch a version of Lemma 5.2 for the density
estimation and regression models. It is possible to also adapt the variance bound
in Lemma 5.1 [3]; however, we will provide a weaker bound, as a consequence
of our lemma.

Consider the empirical wavelet coefficents

) 1« . 1
Qo .k = — > (X, Bk = - > k(X0
i=1 =1
in density estimation, or
1 — 1 «
Qo k = - z; ©jo.k () Y5, Bjk = - ;1/13‘,1@(1131')5@,
1= 1=

in regression. To prove the lemma, we must find an event E,, on which, with
high probability, these estimates are close to the true wavelet coefficients «;, 1,
Bi k- .
In density estimation, we note that, for j > jo, k € [N,2? — N), the empirical
wavelet coefficients satisfy
e g w1 Ml oo
[B.6] = Bjiks ar[fBjx] < v Bkl <27l

n

Using Bernstein’s inequality, we then obtain that, for a constant A = A(]|f|| ).
uniformly for n large,

P(|8.k — Bjn| > Acn1) <n7h,
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with similar bounds for the other coefficients. Thus, on an event F,,, with prob-
ability tending uniformly to 1 as n — oo,

max <Sup |&j0,k - ajo,k|a Jnsup ' sup |Bj,k - ﬂj,k|> < Acn,l- (54)
k Jj=jo k

The regression model is often identified with the white noise model, for f in
classes C*(M), s > 3 [2]. In this case, however, we wish to consider functions
with unbounded Hoélder norm, so we must discuss regression explicitly. To con-
trol the empirical wavelet coefficients, we use a Gaussian tail bound, noting that
for j, k as before,

N 1 — 0? &
Bijk ~ N (ﬁ > (i) fw), 3 > (@) |
i=1 i=1
For j < jm®*, as n — oo, the mean and variance are thus

Bin+O0m 2 fllgr2)  and  o®nTH(L+o(1)),

uniformly. We obtain that, for a constant A = A(]| f||-1/2), uniformly for n large,

P(|Bj% — Bjx| > Acn1) <nt,

again with similar bounds for the other coeflicients, leading to an event E,, as
above.

In both cases, we therefore have events F,, comparable to those in Lemma 5.2,
but with constant A now depending on || |, or || f||o1/2. To proceed, we require
an estimator A of A, which satisfies

sup Pp(A < A) — 0,
fer

and for any s € [Smin, Smax), M > 0, and constants B = B(s, M) > 0,

sup Pp(A > B) = 0.
feCs (M)

We will describe such an estimator A, and plug it into our bounds (5.4). We
may then obtain a bound on the bias term, as in Theorem 3.3. To bound the
variance term, we note that on the event F,,,

1F () = FUn)lloo S A2 eny,

uniformly in all j, < j®*; as this bound is of the same order as the one arising

from Lemma 5.1, we may then proceed as before.

It remains to construct the estimator A. We note that, in density estimation
and regression respectively, the quantities || f||, and | f||;1/2 are bounded by a
constant times T := || f|| 5o, - We may therefore consider A as a function of T';
it can be checked that in each case A < CT + D, for constants C, D > 0. We
deduce that the estimator A := C’||f(j1)||emsn + D’ satisfies our conditions, for
large enough constants C’, D’ > 0. O
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5.3. Negative results

We now prove our negative results. First, we will need a testing inequality
for normal means experiments, proved using standard arguments [17]. We will
prove a modified result, which controls the performance of tests also under small
perturbations of the means.

Lemma 5.4. Suppose we have observations X1, ..., X, Y1,Ys, ..., and we wish
to test the hypothesis

Ho: X;,Y; "% N(0,1),
against alternatives
Hy(v): X; ~ N(udir, 1), Yi ~ N(v;,1), independently,
fork=1,...,n, and u,v; € R, HUH2 < €2 Let T =0 if we accept Hy, or T =1

if we reject. There is a choice of k, not depending on v, for which the sum of
the Type I and Type II errors satisfies

Pu,(T=1)+ inf Py

— 2 2
Bl Pin (T =0) = 1= (e = D2 — (8 1),

K
Proof. Consider first the case v = 0. The density of Py, (o) w.r.t. Pg, is
7y = e“X’“_”2/2.
Let Z =n"'Y}_, Zy. Then By, Z = 1, and Eg, 22 = 1+ n~1(e” — 1), s0
Ex,(Z —1)? = Vary, Z = n71(6“2 —1).

We thus have

P, (T = 1) + maxPy, o) (T = 0) = Py, (T = 1) + 0~ ZW:PH,C(O)(T =0)

k=1

=14+ Ex,[(Z - D)UT =0)]
> 1— Varg, (2)Y/?

=1- n_1/2(e”2 -2

Fix k maximizing the above expression, and consider a hypothesis Hy(v) with
|v||* < €2. The density of Py, ) wrt. Py, (o) is

ARSI ViYi*IIVHQ/Q,
and similarly we have

En, 0)(2' —1)% = Varg, 2’ = el’I” —1.
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Thus

Py, (T =1)+ ]P’Hk(,,)(T =0)
=P, (T =1) + Py, 0)(T = 0) + Ep () (2" = DT = 0)]
> P (T = 1) + Pp, o) (T = 0) — Varg, o) [2']"/?
>1- n_1/2(e“2 —1)¥2 - (652 —1)Y/2,

As this is true for all ||v]|> < €2, the result follows. O

We may now prove our result on minimax rates in C§(M). For f € C*(M),
the argument is standard [24], but we must check that we can construct suitable
alternative hypotheses lying within the restricted class C§(M).

Proof of Theorem 3.4. Suppose such an estimator fn exists. For 7 € N| set j; :
= [pji—1], and consider functions

fo = Zﬂjﬂ/’ji,o, fe = fo+ Bivjk,

=0

where 83, == M277(+1/2) | j > 44 is to be determined, and k € [N,2/ — N). By
definition, these functions are in C§(M). By standard arguments, fn must be
able to distinguish the hypothesis Hy : f = fo from alternatives Hy : f = f,
contradicting Lemma 5.4. O

Finally, we will show that the self-similarity condition (2.1) is as weak as
possible.

Proof of Theorem 3.5. We argue in a similar fashion to Theorem 3.4, taking
care to account for the dishonesty of S,. Suppose such a band S, exists. For
m=1,2,...,00, we will construct functions f,, which serve as hypotheses for
the function f. We will choose these functions so that f,, € C{™ (M), for a
sequence Sy, € (Smins Smax) With limit soo € (Smin, Smax). We will then find a
subsequence n,, such that, for ¢ :== 1(1 —2v),

o0
inf Py (foo & Sn,.) =7+,
m=2
contradicting our assumptions on S, .

Taking infimums if necessary, we may assume p; increasing; for ¢ € N, set
Ji = [pji_1Ji—1|. Then for m =1,2,..., 00, set

f =) bimti + by,
=0 =1

where

i = ¢ji,2ji*17 '@[12 = wjiz ks
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and b; ,,b) € R, i, € N, and k; € [N,2% — N) \ {27171} are to be determined.
We will set —1 =ig<i1 < ...,

b M23i+1/2) g < < gy for some | < m,
P\ M2 R e D) s
and
b) = Mo du(s14+1/2)
Set
50 = Smax, Sm = Sm_1 — (j;n1 —ji:nlﬂ)logz(s_l), m > 0,
to = Smin, tm = Sm —ji;l_H 10g2(5_1), m > 0,

and choose i1 large enough that:

(1) t1 > to;
(ii) for i > 41, the v; are interior wavelets, supported inside (0, 1); and
(iii) the set of choices for k; is non-empty.

By definition, s, is decreasing, t,, increasing, and s, — t,, \, 0. For m > 1,
both sequences thus lie in (Smin, Smax), and tend to a limit $oo € (Smin, Smax)-
Forallm=1,2,...,00,l € N, and i <7 < ij41,

M2_ji(51+1/2) > €M2_ji(tl+l+l/2) > EM2_ji(5m+1/2),
so indeed f,, € C7™(M).
We have thus defined f1, making an arbitrary choice of k1; for convenience,

set n1 = 1. Inductively, suppose we have defined f,,—1 and n,,_1, and set
Tn = Tn(Sm—1). For ny, > n,—1 and D > 0 both large, we have:

1) P, (fr—1 & Sn.,.) < v+ 9; and
(i) Py, _, (ISn,,| = Dry,,) < 6.

Setting T, =1 (3 f € Sp : |f — fm—1lloc = 2Dry), we then have

P.fm—l(Tnm =1)< me—l(fmfl & Sn,,) + me71(|snm| > Dry,,)
<7+ 26. (5.5)

We claim it is possible to choose f,,, and n,, so that also, for any further choice
of functions fi,
[ foo = fmn—1llog > 2D, (5.6)

and
P; (Th, =0)>1—~v—35=v+0. (5.7)

We may then conclude that

as required.
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It remains to verify the claim. Letting ¢,, — 0o, choose n,, so that
T, ~ D'279imsm, (5.8)
for D' > 0 to be determined. Now,

oo U41
D”(im) — Z <2jil+1sl+1 + Z 2—jisl>

l=m =1 +1

00 G41
< 2*jil+15min+ Z 9~ JiSmin

l=m i=1;+1

<2 i 9= JSmin

I=Jim+1

21 =Jim+15min

71— 2 Smin
so, for i,, large,
1= foolloo = ¥l = || D Biti+ D (bio —bim—1) i
l=m+1 =i 41 o

> M|l (277 = D" (im))

217jim+15min )

> M 27 imm
> Ml e

> 5 M|[]| 277
We have thus satisfied (5.6), for a suitable choice of D’.
To satisfy (5.7), we will apply Lemma 5.4, testing Hy : f = f,—1 against

Hi : f = foo. The observations X; will correspond to [ ¢/, (¢) dY;, for all possible
choices of k;,,, and the Y; to the other empirical wavelet coefficients. From (5.8),

Ny, = [0) (jimzjim (2+S:n1—1)5m) ,

so the quantity

I
S

2 = (8,2 = i M2 o4
(]’L 2ji7n(57n/sm71_1)>

O
O (]z clim /jim—l—l)/sm—l)

= O(jinl )7
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and likewise

& =nm sup (Z bp)®+ Y (bimo1 — bi,oo)2>

oo =% +1

L1
< an <2 Jipyq (28141+1) + Z 9—Ji 251+1)>
1=1;+1

=0 (n 9 Jim+1(2sm+1 )
-0 (jim 9Jim Sm/sm—lfjimﬂ)
= o(1).
Thus, for i, large,
(20im — (2N 4+ 1)) = 1)V + (e —1)V/2 <.

Hence by Lemma 5.4, if we take i,, large enough also that (5.5) holds, then (5.7)
holds for a suitable choice of k,,, and our claim is proved. O
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