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Abstract: Confidence bands are confidence sets for an unknown func-
tion f , containing all functions within some sup-norm distance of an es-
timator. In the density estimation, regression, and white noise models,
we consider the problem of constructing adaptive confidence bands, whose
width contracts at an optimal rate over a range of Hölder classes.

While adaptive estimators exist, in general adaptive confidence bands
do not, and to proceed we must place further conditions on f . We discuss
previous approaches to this issue, and show it is necessary to restrict f to
fundamentally smaller classes of functions.

We then consider the self-similar functions, whose Hölder norm is similar
at large and small scales. We show that such functions may be considered
typical functions of a given Hölder class, and that the assumption of self-
similarity is both necessary and sufficient for the construction of adaptive
bands.
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1. Introduction

Suppose we have an unknown function f : [0, 1] → R we wish to estimate. Our
data may come from:

(i) density estimation, where f is a density on [0, 1], and we observe

X1, . . . , Xn
i.i.d.∼ f ;

(ii) fixed design regression, where we observe

Yi := f(xi) + εi, εi
i.i.d.∼ N(0, σ2),

for xi := i/n, i = 1, . . . , n; or
(iii) white noise, where we observe the process

Yt :=

∫ t

0

f(s) ds+ n−1/2Bt,

for a standard Brownian motion B.
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The performance of an estimator f̂n depends on the smoothness of the func-
tion f. In the following, we will measure performance by the L∞ loss, ‖f̂n−f‖∞,
where ‖f‖∞ := supx∈[0,1]|f(x)|. L∞ loss is the hardest of the Lp loss functions
to estimate under, but provides intuitive risk bounds, simultaneously describing
local and global performance. If the function f is known to lie in the smoothness
class Cs(M) of functions with s-Hölder norm at most M,

Cs(M) :=

{

f ∈ C([0, 1]) : f has k := ⌈s⌉ − 1 derivatives,

‖f‖∞, . . . , ‖f (k)‖∞ ≤M, sup
x,y∈[0,1]

|f (k)(x) − f (k)(y)|
|x− y|s−k

≤M

}

,

then the L∞ minimax rate of estimation,

inf
f̂n

sup
f∈Cs(M)

Ef‖f̂n − f‖∞,

decays like (n/ logn)−s/(2s+1) [24].
The simplest estimators attaining this rate depend on the quantities s and

M, which in practice we will not know in advance. However, it is possible to
estimate f adaptively: to choose an estimator f̂n, not depending on s or M,
which nevertheless obtains the minimax rate over a range of classes Cs(M),

sup
f∈Cs(M)

Ef‖f̂n − f‖∞ = O
(

(n/ logn)−s/(2s+1)
)

.

Such estimators can be constructed, for example, using Lepski’s method [19],
wavelet thresholding [9], or model selection [1].

Of course, to make full use of an adaptive estimator f̂n, we must also quantify
the uncertainty in our estimate. We would like to have a risk bound Rn, de-
pending only on the data, which satisfies ‖f− f̂n‖∞ ≤ Rn with high probability.
Equivalently, we would like a confidence band,

Sn := {f ∈ C([0, 1]) : ‖f − f̂n‖∞ ≤ Rn}, (1.1)

containing f with high probability. To benefit from the adaptive nature of f̂n,
we would also like the radius Rn to be adaptive, decaying like (n/ logn)−s/(2s+1)

over any class Cs(M).
Unfortunately, this is impossible in general [21, 5]. The size of an adaptive

confidence band must depend on the parameters s and M, which we cannot
estimate from the data: the function f may be deceptive, superficially appearing
to belong to one smoothness class Cs(M), while instead belonging to a different,
rougher class. If we wish to proceed, we must place further conditions on f.

Different conditions have been considered by several authors [22, 11, 13, 16].
Of note, Giné and Nickl place a self-similarity condition on f, requiring its regu-
larity to be similar at large and small scales; they then obtain confidence bands
which contract adaptively over classes Cs(M), where M > 0 is fixed. Hoffmann
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and Nickl consider a weaker separation condition, which allows adaptation to
finitely many classes Cs1(M), . . . , Csk(M).

The conditions in these two papers are qualitatively different. Hoffmann and
Nickl consider a family of functions f which asymptotically contains the full
model,

F :=
k
⋃

i=1

Csi(M), 0 < s1 < · · · < sk, M > 0. (1.2)

The confidence bands constructed are thus eventually valid for all functions
f ∈ F , although the time n after which a band is valid depends on the unknown
f. The penalty for this generality comes in the nature of the adaptive result:
the bands contract at rates n−si/(2si+1) for any f ∈ Csi(M), but they do not
attain the minimax rate n−s/(2s+1) for f ∈ Cs(M), s 6∈ {s1, . . . , sk}.

Conversely, Giné and Nickl provide bands attaining n−s/(2s+1) for any f ∈
Cs(M), s ∈ [smin, smax]. However, the family of functions considered does not,
even in the limit, contain the full model,

F :=

smax
⋃

s=smin

Cs(M), 0 < smin < smax, M > 0. (1.3)

Instead, some functions f must be permanently excluded from consideration.
We can describe this difference in terms of dishonest confidence sets. We say

a confidence set Sn for f is honest, at level 1− γ, if it satisfies

lim sup
n

sup
f∈F

Pf (f 6∈ Sn) ≤ γ, (1.4)

where F is the entire family of functions f we wish to adapt to [20]. Honesty is
necessary to produce practical confidence sets; it ensures that there is a known
time n, not depending on f, after which the level of the confidence set is not much
smaller than 1− γ. In contrast, a dishonest set satisfies the weaker condition

sup
f∈F

lim sup
n

Pf (f 6∈ Sn) ≤ γ.

While dishonest confidence sets are not useful for inference, they can provide a
useful benchmark of nonparametric procedures. Hoffman and Nickl’s bands are
dishonest confidence sets for the full model (1.2); Giné and Nickl’s are not, for
the model (1.3).

In the following, we will show that this distinction is intrinsic: that the prob-
lem of adapting to finitely many si is fundamentally different from adapting
to continuous s. We will construct confidence bands which are adaptive in the
model (1.3), under a weaker self-similarity condition than Giné and Nickl’s;
functions satisfying this condition may be considered typical members of any
class Cs(M). We will then show that our condition is as weak as possible for
adaptation over (1.3), and that no adaptive confidence band can be valid, even
dishonestly, for all of (1.3).
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We also provide further improvements on past results. Firstly, past construc-
tions of adaptive confidence sets under self-similarity have required sample split-
ting: splitting the data into two groups, one for estimating the function f, and
the other for estimating its smoothness. In the construction of our bands, we
will show that this procedure can be avoided, leading to smaller constants in
the rate of contraction.

We also show that our bands, at no further cost, adapt honestly to the un-
known norm M ; they are valid even for the model

F :=

∞
⋃

M=0

smax
⋃

s=smin

Cs(M), 0 < smin < smax.

This is in contrast to previous results, where M is either assumed known, or
adapted to only dishonestly.

As our bands make fundamental use of the self-similarity condition, their
construction differs significantly from those given previously in the literature.
We likewise describe new approaches to undersmoothing, and to linking the
white noise model with density estimation and regression, which in this context
are valid even for functions of unbounded norm M.

Our bands thus depend on self-similarity parameters ε and ρ, which deter-
mine the functions f to be excluded. In a practical setting, suitable values of
these parameters might be found via preliminary experiments on a suite of ex-
ample functions; any choice of parameters will give a confidence band which is
maximally adaptive for this problem.

Alternatively, if maximal adaptation is not required, we might view our re-
sults as a vindication of the self-similarity approach described by previous au-
thors. We could then, for example, use the simpler method of Giné and Nickl
[13], assured that the assumptions demanded are not unreasonable.

In either case, using such methods in practice requires us to interpret the
meaning of a self-similarity assumption. In some settings, we may believe such
assumptions to be true; for example, in finance, turbulence, or other fractal
systems, where some notion of self-similarity is often assumed.

In other settings, we may not believe such assumptions explicitly, but may
still be willing to use them as a working model. We will show that functions not
satisfying a self-similarity condition form a negligible subset of any Hölder class;
our assumptions are therefore not too onerous. This is, of course, no guarantee:
it is possible that some structure of the problem will cause our unknown func-
tion to lie in such a negligible set. Nevertheless, any method of nonparametric
inference must make some assumptions; our results show that, in the context of
adaptation, self-similarity is a natural assumption to make.

In Section 2, we describe our self-similarity condition, and in Section 3, we
state our main results. We describe the construction of our confidence bands in
Section 4, and provide proofs in Section 5.
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2. Self-similar functions

To state our results, we must first define our self-similarity condition, using a
wavelet basis of L2([0, 1]) [15]. We begin with ϕ and ψ, the scaling function
and wavelet of an orthonormal multiresolution analysis on L2(R). We make
the following assumptions on ϕ and ψ, which are satisfied, for example, by
Daubechies wavelets and symlets, with N ≥ 6 vanishing moments [8, 23].

Assumption 2.1.

(i) For K ∈ N, ϕ and ψ are supported on the interval [1−K,K].
(ii) For N ∈ N, ψ has N vanishing moments:

∫

R

xiψ(x) dx = 0, i = 0, . . . , N − 1.

(iii) ϕ is twice continuously differentiable.

Using the construction of Cohen, Daubechies and Vial [7, 6], we can then
generate an orthonormal wavelet basis of L2([0, 1]), with basis functions

ϕj0,k, k ∈ [0, 2j0), and ψj,k, j ≥ j0, k ∈ [0, 2j),

for some suitable lower resolution level j0 > 0. For k ∈ [N, 2j − N), the basis
functions are given by scalings of ϕ and ψ,

ϕj,k(x) := 2j/2ϕ(2jx− k), ψj,k := 2j/2ψ(2jx− k).

For other values of k, the basis functions are specially constructed, so as to form
an orthonormal basis of L2([0, 1]) with desired smoothness properties.

Using this wavelet basis, we may proceed to define the spaces Cs over which
we wish to adapt. Given a function f ∈ L2([0, 1]),

f =

2j0−1
∑

k=0

αj0,kϕj0,k +

∞
∑

j=j0

2j−1
∑

k=0

βj,kψj,k,

for s ∈ (0, N), define the Cs norm of f by

‖f‖Cs := max

(

sup
k

|αj0,k|, sup
j, k

2j(s+1/2)|βj,k|
)

.

Define the spaces

Cs := {f ∈ L2([0, 1]) : ‖f‖Cs <∞},

and for M > 0,

Cs(M) := {f ∈ L2([0, 1]) : ‖f‖Cs ≤M}.
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For s 6∈ N, these spaces are equivalent to the classical Hölder spaces; for
s ∈ N, they are equivalent to the Zygmund spaces, which continuously extend
the Hölder spaces [7]. In either case, we may therefore take this to be our
definition of Cs in the following.

We are now ready to state our self-similarity condition. Denote the wavelet
series of f, for resolution levels i to j, j0 ≤ i ≤ j, by

fi,j :=

j−1
∑

l=i

2l−1
∑

k=0

βl,kψl,k.

Fix some smax ∈ (0, N); for any s ∈ (0, smax), M > 0, ε ∈ (0, 1), and ρ > 1, we
will say a function f ∈ Cs(M) is self-similar, if

‖fj,⌈ρj⌉‖Cs ≥ εM ∀ j ≥ j0. (2.1)

If s = smax, we will instead require (2.1) only for j = j0. Denote the set of
self-similar f ∈ Cs(M) by Cs

0(M, ε, ρ); for fixed ε, ρ, we will denote this set
simply as Cs

0(M).
The above condition ensures that the regularity of f is similar at small and

large scales, and will be shown to be necessary to perform adaptive inference. To
bound the bias of an adaptive estimator f̂n, we need to know the regularity of f
at small scales, which we cannot observe. If f is self-similar, however, we can infer
this regularity from the behaviour of f at large scales, which we can observe.

Similar conditions have been considered by previous authors, in the context
of turbulence [10, 18], and more recently in statistical applications [22, 13]. We
note that Picard and Tribouley’s condition can be thought of as a stronger,
pointwise version of Giné and Nickl’s: if Picard and Tribouley’s condition holds
at some x0 ∈ [0, 1], with their ρn a constant and lj = 1, this implies the condition
of Giné and Nickl.

We now show that our condition (2.1) is weaker than the condition of Giné
and Nickl; we will see in Section 3 that it is, in a sense, as weak as possible.

Proposition 2.2. Given smin ∈ (0, smax], b > 0, 0 < b1 ≤ b2, and J1 ≥ j0,
there exist M > 0, ε ∈ (0, 1), and ρ > 1 such that, for any s ∈ [smin, smax], the
condition

f ∈ Cs ∩ Csmin(b), b12
−js ≤ ‖fj,∞‖∞ ≤ b22

−js ∀ j ≥ J1, (2.2)

implies f ∈ Cs
0(M, ε, ρ). Conversely, given s ∈ (0, smax], M > 0, ε ∈ (0, 1), and

ρ > 1, there exist f ∈ Cs
0(M, ε, ρ) which do not satisfy the above condition, for

any smin ∈ (0, s], b > 0, 0 < b1 ≤ b2, and J1 ≥ j0.

In fact, we can show that self-similarity is a generic property: that the set D
of self-dissimilar functions, which for some s never satisfy (2.1), is in more than
one sense negligible. Firstly, we can show that D is nowhere dense: the self-
dissimilar functions cannot approximate any open set in Cs(M). In particular,
this means that D is meagre. Secondly, we can show that D is a null set, for
a natural probability measure π on Cs(M). We thus have that π-almost-every
function in Cs(M) is self-similar.
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Proposition 2.3. For s ∈ (0, smax] and M > 0, define

D := Cs(M) \
⋃

ε∈(0,1), ρ>1

Cs
0(M, ε, ρ).

Further define a probability measure π on f ∈ Cs(M), with f having indepen-
dently distributed wavelet coefficients,

αj0,k ∼M2−j0(s+1/2)U([−1, 1]), βj,k ∼M2−j(s+1/2)U([−1, 1]).

Then:

(i) D is nowhere dense in the norm topology of Cs(M); and
(ii) π(D) = 0.

These results are already known for Giné and Nickl’s condition (2.2) [13, 16];
as a consequence of Proposition 2.2, they also hold for our condition (2.1). We
conclude that the self-similar functions may be considered typical members of
any class Cs(M).

For smoother functions, we note that when s = smax, our condition (2.1)
is weaker, and no longer requires a specific smoothness of f. Indeed, in this
case, the smoother f is, the easier it becomes to satisfy our condition. We may
therefore expect the condition to likewise often hold for smoother functions.

We further note that Proposition 2.3 shows, for a particular Bayesian prior
on functions f, that self-similarity is implicitly assumed. In fact, this result is
more general, applying to many priors which can be written as series expan-
sions, including Gaussian processes with a Karhunen-Loève expansion. As these
results will often involve different bases or scaling laws, we do not pursue this
further, except to comment that self-similarity is thus also a common modelling
assumption in Bayesian nonparametrics.

3. Self-similarity and adaptation

We are now ready to state our main results. First, however, we will require an
additional assumption on our wavelet basis, allowing us to precisely control the
variance of our estimators. This assumption has been verified analytically for
Battle-Lemarié wavelets [12]; for compactly supported wavelets, it can be tested
with provably good numerical approximations. The assumption is known to hold
for Daubechies wavelets and symlets, with N = 6, . . . , 20 vanishing moments.
Larger values of N, and other wavelet bases, can be easily checked, and the
assumption is conjectured to hold also in those cases [3].

Assumption 3.1. The 1-periodic function

σ2
ϕ(t) :=

∑

k∈Z

ϕ(t− k)2

attains its maximum σ2
ϕ at a unique point t0 ∈ [0, 1), and (σ2

ϕ)
′′(t0) < 0.
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We may now begin with the construction of an exact confidence band, which
has exact asymptotic level 1− γ. Exact confidence bands are often preferred in
the literature, being simpler to compute, and offering more reliable control over
coverage [14].

To obtain exact coverage, our bands are centred at an undersmoothed esti-
mate of f : an estimate slightly rougher than optimal, chosen so that the known
variance dominates the unknown bias. The larger variance does mean, however,
that our bands adapt to s and M only up to a logarithmic rate penalty. We
state our results for the white noise model, which serves as an idealisation of
density estimation and regression; we will return later to consequences for the
other models.

Theorem 3.2. In the white noise model, fix 0 < γ < 1, smin ∈ (0, smax], and
set

rn(s) := (n/ logn)−s/(2s+1) logn, F :=
⋃

s∈[smin,smax],M>0

Cs
0(M).

There exists a confidence band Cex
n := Cex

n (γ, smin, smax, ε, ρ) as in (1.1), with
radius Rex

n , satisfying:

(i) supf∈F |P(f 6∈ Cex
n )− γ| → 0; and

(ii) for a fixed constant L > 0, and any s ∈ [smin, smax], M > 0,

sup
f∈Cs

0
(M)

Pf

(

Rex
n > LM1/(2s+1)rn(s)

)

→ 0.

In asymptotic terms, we can do better by dropping the requirement of exact-
ness. Intuitively, we may feel that an exact band should always be preferable:
given an inexact band, surely we can modify it to produce something more ac-
curate? In fact, this is not necessarily the case. Consider a simplified statistical
model, where we wish to identify a parameter θ ∈ R, and have the luxury of
observing data X = θ. The optimal confidence set for θ is thus {X}, but this
set is not exact at the 95% level. We can produce an exact set by adding noise:
if Z ∼ N(0, 1), the confidence set

{x ∈ R : |X + Z − x| ≤ Φ−1(0.975)}

is exact at the 95% level. However, the perfect, inexact set is more accurate
than the imperfect, exact one.

The situation is similar in nonparametrics: we can obtain better asymptotic
results using an inexact band, whose asymptotic level is unknown, but is guar-
anteed to be at least 1 − γ. We now construct inexact bands, centred at an
adaptive Lepski-type estimator, which are exact rate-adaptive with respect to
s and M.

Theorem 3.3. In the white noise model, fix 0 < γ < 1, and set

rn(s) := (n/ logn)−s/(2s+1), F :=
⋃

s∈(0,smax],M>0

Cs
0(M).
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There exists a confidence band Cad
n := Cad

n (γ, smax, ε, ρ) as in (1.1), with radius
Rad

n , satisfying:

(i) lim supn supf∈F P(f 6∈ Cad
n ) ≤ γ; and

(ii) for a fixed constant L > 0, and any s ∈ (0, smax], M > 0,

sup
f∈Cs

0
(M)

Pf

(

Rad
n >

LM1/(2s+1)

2s − 1
rn(s)

)

→ 0.

The constant in the above rate contains an extra 1/(2s − 1) term, which
is present to allow for s tending to 0. Note that if, as before, we restrict to
s ≥ smin > 0, we may then fold this term into the constant L, producing a rate
of the same form as in Theorem 3.2.

As is standard, the rates adapt only to smoothnesses s ≤ smax; if f is
smoother than our wavelet basis, we cannot reliably detect this from the wavelet
coefficients. As noted in Section 2, however, our self-similarity condition (2.1) is
weaker when s = smax, and the class Csmax

0 (M) contains many smoother func-
tions f ; in this case we obtain the rate of contraction optimal for Csmax(M).

Theorem 3.3 is, in more than one sense, maximal. Firstly, we can verify that
the minimax rate of estimation over Cs

0(M) is the same as over Cs(M). Since
any adaptive confidence band must be centred at an adaptive estimator, we may
conclude that the above results are indeed optimal.

Theorem 3.4. In the white noise model, fix 0 < γ < 1
2 , s ∈ (0, smax], M > 0.

An estimator f̂n cannot satisfy

lim sup
n

sup
f∈Cs

0
(M)

Pf

(

‖f̂n − f‖∞ ≥ rn

)

≤ γ,

for any rate rn = o((n/ logn)−s/(2s+1)).

Secondly, we can show that the self-similarity condition (2.1) is, in a sense, as
weak as possible. In (2.1), the function f is required to have significant wavelet
coefficients on resolution levels j growing at most geometrically. If we relax this
assumption even slightly, allowing the significant coefficients to occur less often,
then adaptive inference is impossible.

For s ∈ (0, smax), M > 0, denote by Cs
1(M) the set of f ∈ Cs(M) satisfying

the slightly weaker self-similarity condition,

‖fj,⌈ρjj⌉‖Cs ≥ εM ∀ j ≥ j0,

for fixed ε > 0, and ρj > 1, ρj → ∞. Even allowing dishonesty, and with known
bound M on the Hölder norm, we cannot construct a confidence band which
adapts to classes Cs

1(M).

Theorem 3.5. In the white noise model, fix 0 < γ < 1
2 , 0 < smin < smax, and

M > 0. Set

rn(s) := (n/ logn)−s/(2s+1), F :=
⋃

s∈(smin,smax)

Cs
1(M).
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A confidence band Sn, with radius Rn, cannot satisfy:

(i) lim supn Pf (f 6∈ Sn) ≤ γ, for all f ∈ F ; and
(ii) Rn = Op(rn(s)) under Pf , for all f ∈ Cs

1(M), s ∈ (smin, smax).

As a consequence, we firstly cannot adapt to the full classes Cs(M). More
importantly, we cannot obtain adaptation merely by removing elements of the
classes Cs(M) which are asymptotically negligible, as Hoffmann and Nickl do
for the model (1.2). In order to construct adaptive bands, we must fully exclude
some functions f from consideration, as Giné and Nickl do for the model (1.3).

The difference between these problems lies in the accuracy to which we must
estimate s. To distinguish between finitely many classes, we need to know s
only up to a constant; to adapt to a continuum of smoothness, we must know it
with error shrinking like 1/ logn. The finite-class problem is in this sense more
like the L2 adaptation problem [4]; the distinctive nature of the L∞ adaptation
problem is revealed only when requiring adaptation to continuous s.

While the above theorems are stated for the white noise model, we can prove
similar results for density estimation and regression. The following theorem gives
a construction of adaptive bands in these models; other results can be proved
similarly to previous results in the literature [13, 4].

Theorem 3.6. In the density estimation model, let smin ∈ (0, smax], or in the
regression model, smin ∈ [ 12 , smax]. In either model, the statement of Theorem 3.3
remains true, for the family

F :=
⋃

s∈[smin,smax],M>0

Cs
0(M),

and with constants L, L′ depending on s and M.

4. Constructing adaptive bands

To construct confidence bands satisfying the conditions in Section 3, we will use
estimators f̂n given by truncated empirical wavelet expansions,

f̂(ĵn) :=

2j0−1
∑

k=0

α̂j0,kϕj0,k +

ĵn−1
∑

j=j0

2j−1
∑

k=0

β̂j,kψj,k,

for the empirical wavelet coefficients

α̂j0,k :=

∫

ϕj0,k(t) dYt, β̂j,k :=

∫

ψj,k(t) dYt.

The resolution levels ĵn will also depend on the data Y, and will be chosen to
produce adaptive estimators f̂(ĵn).

We will consider several different choices of resolution level, corresponding to
different properties of the function f, and the class Cs(M) to which it belongs.
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We first consider the adaptive resolution choice jadn , chosen in terms of the

function f. Pick sequences jmin
n , jmax

n ∈ N, j0 ≤ jmin
n ≤ jmax

n , so that 2j
min
n ∼

(n/ logn)1/(2N+1), and 2j
max
n ∼ n/ logn. Further define

cn,µ := (n/(logn)µ)−1/2,

and for κ > 0, µ ≥ 1, let

jadn (κ, µ) := inf
(

{jmax
n } ∪ {j ∈ [jmin

n , jmax
n ) : supk |βj,k | ≤ κcn,µ}

)

.

While jadn is unknown, we can estimate it by a Lepski-type resolution choice,

ĵadn (κ, µ) := inf
(

{jmax
n } ∪ {j ∈ [jmin

n , jmax
n ) : supk |β̂j,k | ≤ κcn,µ}

)

,

which depends only on the data. Fix λ >
√
2, ν ≥ 1, and for convenience set

ĵadn := ĵadn (λ, ν). If ν = 1, we will see f̂(ĵadn ) is then an adaptive estimator of f ;
if ν > 1, it is near-adaptive.

While the above statements are true for general f, they do not provide us
with an estimate of the error in f̂n. To produce confidence bands, we must
estimate the smoothness of f, and this is where self-similarity is required. We
will consider values of the truncated Hölder norm,

M s
i,j := ‖fi,j‖Cs ,

which measures the smoothness of f at resolution levels i to j. We may bound
M s

i,j by the quantities

M s
i,j :=

j−1
sup
l=i

sup
k

2l(s+1/2)(|β̂l,k | −
√
2cn,1)

+,

M
s

i,j :=
j−1
sup
l=i

sup
k

2l(s+1/2)(|β̂l,k |+
√
2cn,1),

where x+ := max(x, 0), and we will show in Section 5.2 that for j ≤ jmax
n ,

M s
i,j ∈ [M s

i,j ,M
s

i,j ] with high probability.

Set J0 = j0, J1 = ⌈ρJ0⌉, J2 = ⌊ĵadn /ρ⌋, J3 = ĵadn , and suppose n is large
enough that jmin

n ≥ ρJ1, so J0 < J1 ≤ J2 < J3. If f ∈ Cs
0(M) for s < smax, then

with high probability,

R(s) :=
M

s

J2,J3

M s
J0,J1

≥
M s

J2,J3

M s
J0,J1

≥ ε.

Assuming further s ≥ smin, for some smin ≥ 0, we can lower bound s by

ŝn := inf({smax} ∪ {s ∈ [smin, smax) : R(s) ≥ ε}).

Since

R(s) =
M

s

J2,J3
2−J1(s+1/2)

Ms
J0,J1

2−J1(s+1/2)

is increasing in s, ŝn can be found efficiently using binary search.
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Likewise, set
M(s) := ε−1M

s

J0,J1
,

and M̂n :=M(ŝn). With high probability,

M(s)2−J1(s+1/2) ≥ ε−1M s
J0,J1

2−J1(s+1/2) ≥M2−J1(s+1/2),

and as the LHS is decreasing in s, also

M̂n2
−J1(ŝn+1/2) ≥M2−J1(s+1/2).

Using these bounds, we can control the error in f̂ , producing adaptive confidence
bands for f.

To construct the bands, we will introduce some more resolution choices ĵn.
Firstly, we consider the class resolution choice jcln , chosen in terms of the class
Cs(M). For κ > 0, µ ≥ 1, define

jcln (κ, µ) := inf {j ≥ jmin
n :M2−j(s+1/2) ≤ κcn,µ}

= max
(

jmin
n , ⌈log2(M/κcn,µ)/(s+

1
2 )⌉
)

, (4.1)

which we can estimate by

ĵcln (κ, µ) := max
(

jmin
n , ⌈log2(M̂n/κcn,µ)/(ŝn + 1

2 )⌉
)

. (4.2)

Secondly, to produce exact confidence bands, we will need the undersmoothed
resolution choice jexn . Fix un ∈ N, 2un ∼ logn, and set

jexn (κ, µ) := jcln (κ, µ) + ⌈log2 jcln (κ, µ)⌉+ un,

defining ĵexn similarly, in terms of ĵcln . Let λ := λ +
√
2, and λ := λ −

√
2; for

convenience, write jcln := jcln (λ, 1), j
ex
n := jexn (λ, 1), and likewise ĵcln , ĵ

ex
n .

We may now proceed to define our bands. Let

a(j) :=
√

2 log(2)j,

b(j) := a(j)− log(π log 2) + log j − 1
2 log(1 + υϕ)

2a(j)
,

c(j) := σϕn
−1/22j/2,

x(γ) := − log (− log(1− γ)) ,

R1(j, γ) := c(j)

(

x(γ)

a(j)
+ b(j)

)

,

l(j) := max(j,min(ĵcln , j
max
n )),

R2(j) := τϕλ(2
l(j)/2 − 2j/2)cn,ν/(

√
2− 1),

R3(j) :=

{

τϕM̂n2
−l(j)ŝn/(1− 2−ŝn) ŝn > 0,

∞, ŝn = 0,
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where σϕ is given by Assumption 3.1,

τϕ := sup
t∈[0,1]

2−j0/2
∑

k∈Z

|ψj0,k(t)|,

and

υϕ := −
∑

k∈Z
ϕ′(t0 − k)2

σϕσ′′
ϕ(t0)

.

If we set smin > 0, ν > 1, the undersmoothed resolution choice ĵexn , with
confidence radius

Rex
n := R1(ĵ

ex
n , γ),

will be shown to give a band Cex
n satisfying Theorem 3.2. If instead we set

smin = 0, ν = 1, and define

γn := γ/(jmax
n − jmin

n + 1),

then the adaptive resolution choice ĵadn , with confidence radius

Rad
n := R1(ĵ

ad
n , γn) +R2(ĵ

ad
n ) +R3(ĵ

ad
n ),

will be shown to give a band Cad
n satisfying Theorem 3.3.

5. Proofs

5.1. Results on self-similarity

We begin by establishing that our self-similarity condition (2.1) is weaker than
Giné and Nickl’s condition (2.2).

Proof of Proposition 2.2. We first consider the case s < smax. Given (2.2), for
j ≥ J1, k ∈ [N, 2j −N), we obtain

|βj,k| = |〈fj,∞, ψj,k〉| ≤ ‖fj,∞‖∞‖ψj,k‖1 ≤ b2‖ψ‖12−j(s+1/2),

and similar bounds for k ∈ [0, N) ∪ [2j −N, 2j). We thus conclude f ∈ Cs(M),
for a constant M > 0.

We will choose ε ∈ (0, 1) small, ρ > 1 large, so that ρj0 ≥ J1, and

C :=M(ε+ 2−(ρj0−J1)s)

is small. If f 6∈ Cs
0(M), we have J2 ≥ j0 such that

|βj,k| < εM2−j(s+1/2),

for all j ∈ [J2, ⌈ρJ2⌉), k ∈ [0, 2j). Let J3 := max(J1, J2). Then

‖fJ3,∞‖∞ .M





⌈ρJ2⌉−1
∑

j=J3

ε2−js +

∞
∑

j=⌈ρJ2⌉

2−js





.M
(

ε2−J3s + 2−ρJ2s
)

. C2−J3s,
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contradicting (2.2) for C small. Thus, given (2.2), we haveM, ε, and ρ for which
f ∈ Cs

0(M).
Conversely, given s ∈ (0, smax], M > 0, ε ∈ (0, 1), and ρ > 1, for i ∈ N set

ji := ⌈ρji−1⌉, and consider the function

f :=

∞
∑

i=0

M2−ji(s+1/2)ψji,2ji−1

in Cs
0(M). We have

‖fjn+1,∞‖∞ .M

∞
∑

i=n+1

2−jis . 2−jn+1s = o(2−jns)

as n → ∞, so f does not satisfy (2.2) for any smin, b, b1, b2, and J1. As our
self-similarity condition is weaker for s = smax, the same is true also in that
case.

5.2. Constructive results

We now prove our results on the existence of adaptive confidence bands. To
proceed, we will decompose the error in estimates f̂(j) into variance and bias
terms,

‖f̂(j)− f‖∞ ≤ ‖f̂(j)− f̄(j)‖∞ + ‖f̄(j)− f‖∞,
where

f̄(j) := Ef [f̂(j)] = fj0,j .

To control the variance, we will need the following result, which is a rephrasing
of a Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets [3].

Lemma 5.1. Let 0 < γn ≤ γ0 < 1, and γ−1
n = o(n−α), for all α > 0. Then as

n→ ∞, uniformly in f ∈ L2([0, 1]),

sup
j≥jmin

n

∣

∣

∣

∣

∣

γ−1
n P

(

a(j)

(

‖f̂(j)− f̄(j)‖∞
c(j)

− b(j)

)

> x(γn)

)

− 1

∣

∣

∣

∣

∣

→ 0.

To bound the bias, we must control the estimators ĵn, ŝn and M̂n. We will
show that, on events En with probability tending to 1, these estimators are close
to the quantities they bound.

Lemma 5.2. Set jad
n

:= jadn (λ, ν), j
ad
n := jadn (λ, ν). For s ∈ [smin, smax], M > 0,

and f ∈ Cs
0(M), we have events En, with P(En) → 1 uniformly, on which:

(i) jad
n

≤ ĵadn ≤ j
ad
n ;

(ii) ŝn ≤ s, and M̂n2
−J1(ŝn+1/2) ≥M2−J1(s+1/2); and

(iii) ŝn ≥ sn, and M̂n ≤Mn;
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for sequences Mn, sn satisfying

Mn/M → ε−1, log2(n)(s− sn) → S,

uniformly over f ∈ Cs
0(M), with constant S > 0 depending on N, ε, ρ, and λ.

Also on En, for any 0 < κ ≤ λ+
√
2, 1 ≤ µ ≤ ν:

(iv) ĵcln (κ, µ) ≥ ĵadn ;
(v) jcln (κ, µ) ≤ ĵcln (κ, µ) ≤ jcln (κ, µ) + Jcl

n (κ, µ); and
(vi) jexn (κ, µ) ≤ ĵexn (κ, µ) ≤ jexn (κ, µ) + Jex

n (κ, µ);

for sequences Jcl
n (κ, µ), Jex

n (κ, µ) → 2(1 + log2(ε
−1) + S), uniformly over f ∈

Cs
0(M).

Proof. For n such that jmin
n < ρ⌈ρj0⌉, set En := ∅. Otherwise, let En be the

event that

max

(

sup
k

|α̂j0,k − αj0,k|,
jmax
n −1
sup
j=j0

sup
k

|β̂j,k − βj,k |
)

≤
√
2cn,1. (5.1)

Now, for n large enough that En 6= ∅, we have

P(Ec
n) ≤ 2j

max
n Φ(−

√
2ncn,1)

≤ (π log n)−1/22j
max
n n−1

= O
(

(logn)−3/2
)

= o(1),

using the bound that Φ(−x) ≤ φ(x)/x for x > 0.

(i) If jad
n

= jmin
n , then trivially ĵadn ≥ jad

n
. Otherwise, for j = jad

n
− 1, we have

some k such that |βj,k| > λcn,ν . Thus, on En,

|β̂j,k | ≥ |βj,k | −
√
2cn,1 > λcn,ν ,

and again ĵadn ≥ jad
n
. Similarly, for all j

ad
n ≤ j < jmax

n , k,

|β̂j,k | ≤ |βj,k |+
√
2cn,1 < λcn,ν ,

so ĵadn ≤ j
ad
n .

(ii) On En, we have
M s

i,j ∈ [M s
i,j ,M

s

i,j ],

for any i ≤ j ≤ jmax
n . If s < smax, by the argument given in Section 4, we

then obtain

ŝn ≤ s, M̂n2
−j1(ŝn+1/2) ≥M2−j1(s+1/2).

If s = smax, the results follow similarly, noting that ŝn ≤ smax by defini-
tion.
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(iii) On En, J3 = ĵadn ≤ j
ad
n ≤ jcln (λ, ν), and for n large jcln (λ, ν) > jmin

n , so

dn := cn,12
J3(s+1/2) ≤ cn,ν2

J3(s+1/2) ≤Mλ−1,

and also
en := cn,12

J1(s+1/2) → 0.

We then obtain

R(s) ≤ M s
J2,J3

+ 2
√
2dn

M
s

J0,J1
− 2

√
2en

≤ M + 2
√
2dn

εM − 2
√
2en

≤ Rn,

for a sequence
Rn → ε−1(1 + 2

√
2λ−1) =: R.

On En, ŝn ≤ s ≤ smax by (ii), so if ŝn = smax, we are done. If not, then
R(ŝn) ≥ ε, and

2(J2−J1)(s−ŝn) ≤ M
s

J2,J3
/M

ŝn
J2,J3

M s
J0,J1

/M ŝn
J0,J1

=
R(s)

R(ŝn)
≤ Rn

ε
.

Since
J2 − J1 ≥ ⌊jmin

n /ρ⌋ − J1 =: δn,

we have
ŝn ≥ s− log2(ε

−1Rn)/δn =: sn,

and since δn ∼ log2(n)/ρ(2N + 1),

log2(n)(s− sn) → ρ(2N + 1) log2(ε
−1R) =: S.

Likewise,

M̂n ≤M(s) ≤ ε−1(M s
J0,J1

+ 2
√
2en) ≤ ε−1(M + 2

√
2en) ≤Mn,

for a sequence Mn > 0, with Mn/M → ε−1.
(iv) If ĵadn = jmin

n , then trivially ĵcln (κ, µ) ≥ ĵadn . If not, for j = ĵadn − 1, we have

some k such that |β̂j,k | > λcn,ν . Hence, on En,

M̂n2
−j(ŝn+1/2) > ε−1(λ +

√
2)cn,ν ≥ κcn,µ,

and again ĵcln (κ, µ) ≥ ĵadn .
(v) On En, by the above we have

M2−ĵcln (κ,µ)(s+1/2) ≤ M̂n2
−ĵcln (κ,µ)(ŝn+1/2) ≤ κcn,µ,

and so ĵcln (κ, µ) ≥ jcln (κ, µ). Equally, from (4.1), (4.2) and the above, we
obtain

ĵcln (κ, µ)− jcln (κ, µ) ≤ 2 + 2 log2(M̂n/M) + 4⌈log2(
√
nM/κ)⌉(s− ŝn)

≤ Jcl
n (κ, µ),

for a sequence Jcl
n (κ, µ) → 2(1 + log2(ε

−1) + S).
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(vi) From (v), we also have

ĵexn (κ, µ)− jexn (κ, µ) ≤ Jex
n (κ, µ),

for a sequence Jex
n (κ, µ) → 2(1 + log2(ε

−1) + S).

We may now bound the bias of f̂ with the estimators ĵn, ŝn and M̂n, which
bound the true parameters by the above lemma.

Lemma 5.3. Let ĵn ≥ ĵadn . On events En as in Lemma 5.2, for any s ∈
[smin, smax], M > 0, and f ∈ Cs

0(M),

‖f̄(ĵn)− f‖∞ ≤ R2(ĵn) +R3(ĵn).

Proof. If ŝn = 0, this is trivial. If not, then by the construction of the wavelet
basis,

τ =
∞
sup
j=j0

sup
t∈[0,1]

2−j/2
∑

k∈Z

|ψj,k(t)|.

Further, by Lemma 5.2, on En we have ĵn ≥ ĵadn ≥ jad
n
, and for j ≥ ĵn,

M2−j(s+1/2) ≤ M̂n2
−j(ŝn+1/2). Thus

‖f̄(ĵn)− f‖∞ = ‖fĵn,∞‖∞ ≤ τϕ

∞
∑

j=ĵn

sup
k

2j/2|βj,k |

≤ τϕ





l(ĵn)−1
∑

j=ĵn

2j/2λcn,ν +
∞
∑

j=l(ĵn)

M̂n2
−jŝn





≤ R2(ĵn) +R3(ĵn).

We are now ready to prove our theorems. First, we consider the exact band Cex
n .

Proof of Theorem 3.2.

(i) Let d(j, x) := a(j)
(

c(j)−1x− b(j)
)

, and define the terms

F (j) := d(j, ‖f̂(j)− f‖∞),

G(j) := d(j, ‖f̂(j)− f̄(j)‖∞), (5.2)

H(j) := d
(

j,
∥

∥

∥
f̂(j)

j
ad
n ,∞

− f̄(j)
j
ad
n ,∞

∥

∥

∥

∞

)

.

We will show that uniformly in j, F, G and H are close, and H is inde-
pendent of ĵexn , so we may bound F (ĵexn ) by Lemma 5.1.
By definition, ŝn ≥ smin > 0, and ĵexn ≥ ĵcln (λ, 1) ≥ ĵcln , so on the events
En, by Lemma 5.3,

|F (ĵexn )−G(ĵexn )| ≤ a(ĵexn )

c(ĵexn )
R3(ĵ

ex
n ) .

√

nĵexn

2ĵ
ex
n

M̂n2
−ĵexn ŝn

2ŝn − 1

.

√

ĵexn
ĵcln (λ, 1)

(

ĵcln (λ, 1) log(n)
)−smin

= o(1),
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since ĵcln (λ, 1) ≥ jmin
n , and

ĵexn
ĵcln (λ, 1)

− 1 =
log2 ĵ

cl
n (λ, 1) + un

ĵcln (λ, 1)
≤ log2 j

min
n + un
jmin
n

→ 0.

Similarly, for jn ≥ jexn , on En,

|G(jn)−H(jn)|

.
a(jn)

c(jn)





2j0−1
sup
k=0

|α̂j0,k − αj0,k|+
j
ad
n −1
∑

j=j0

2j−1
sup
k=0

2j/2|β̂j,k − βj,k |





. (jexn /jcln (λ, 1))1/22−(jcln (λ,1)−j
ad
n )/2

. 2−(jcln (λ,1)−jcln (λ,ν))/2 = o(1),

since

jcln (λ, 1)− jcln (λ, ν) ≥ ν − 1

2smax + 1
log2(log(n)) → ∞.

On En, ĵ
ex
n depends only on β̂j,k for j ≤ ĵadn < j

ad
n , and H(j) depends only

on β̂j,k for j ≥ j
ad
n , so H(j) is independent of ĵexn . Hence, given x, ε > 0,

for n large, and any j ≥ jexn ,

P(F (j) ≤ x | En, ĵ
ex
n = j) ≥ P(G(j) ≤ x− ε | En, ĵ

ex
n = j)

≥ P(H(j) ≤ x− 2ε | En, ĵ
ex
n = j)

= P(H(j) ≤ x− 2ε | En)

≥ P(G(j) ≤ x− 3ε | En)

≥ P(G(j) ≤ x− 3ε)− P(Ec
n)

≥ exp
(

−e−(x−3ε)
)

− o(1).

Likewise,

P(F (j) ≥ x | En, ĵ
ex
n = j) ≤ exp

(

−e−(x+3ε)
)

+ o(1).

As these results are uniform in j ≥ jmin
n , and true for any ε > 0, we have

sup
j≥jexn

∣

∣

∣P

(

F (j) ≥ x | En, ĵ
ex
n = j

)

− exp
(

−e−x
)

∣

∣

∣→ 0.

On En, we have ĵexn ≥ jexn , so

P(F (ĵexn ) ≤ x | En) =

∞
∑

j=jexn

P(F (j) ≤ x | En, ĵ
ex
n = j)P(ĵexn = j | En)

=
(

exp
(

−e−x
)

+ o(1)
)

∞
∑

j=jexn

P(ĵexn = j | En)

= exp
(

−e−x
)

+ o(1).
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Since P(En) → 1, we obtain P(F (ĵexn ) ≤ x) → exp (−e−x) , and rearrang-
ing,

P(f 6∈ Cex
n ) → γ.

As the limits are all uniform in f, the result follows.
(ii) Let Jex

n := Jex
n (λ, 1), so on En, ĵ

ex
n ≤ jexn +Jex

n by Lemma 5.2. For n large,
jcln > jmin

n , so

2j
cl
n /2 ≈

(

M

cn,1

)1/(2s+1)

, 2j
ex
n /2 ≈ log(n)2j

cl
n /2, (5.3)

and

Rex
n .

√

jexn + Jex
n 2(j

ex
n +Jex

n )/2n−1/2 .M1/(2s+1)rn(s).

As P(En) → 1 uniformly, and the limits are uniform over f ∈ Cs
0(M), the

result follows.

We now move on to the adaptive band Cad
n . As the variance term is no longer

independent of ĵn, we must use a different method to establish the validity of
our band. We will instead consider jmax

n −jmin
n +1 confidence bands, one for each

possible choice of ĵn, and show that the effect of this change is asymptotically
negligible.

Proof of Theorem 3.3.

(i) Let G(j) be given by (5.2). From Lemma 5.1, we have

P(G(ĵadn ) > x(γn)) ≤ P
(

∃ j ∈ [jmin
n , jmax

n ] : G(j) > x(γn)
)

≤
jmax
n
∑

j=jmin
n

P (G(j) > x(γn))

= (jmax
n − jmin

n + 1)(1 + o(1))γn

= γ + o(1).

Rearranging, we get

P

(

‖f̂(ĵadn )− f̄(ĵadn )‖∞ > R1(ĵ
ad
n , γn)

)

≤ γ + o(1).

By Lemma 5.3, on the events En,

‖f̄(ĵadn )− f‖∞ ≤ R2(ĵ
ad
n ) +R3(ĵ

ad
n )

and by Lemma 5.2, P(En) → 1. Since

‖f − f̂(ĵadn )‖∞ ≤ ‖f̂(ĵadn )− f̄(ĵadn )‖∞ + ‖f̄(ĵadn )− f‖∞,

we obtain
P(f 6∈ Cad

n ) ≤ γ + o(1).

As the limits are uniform in f, the result follows.
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(ii) Since ĵadn ≥ jmin
n , and x(γn) = O(log logn), we have that R1(ĵ

ad
n , γn) is

dominated by b(ĵadn )c(ĵadn ). Let Jcl
n := Jcl

n (λ, 1), so on En, ĵ
ad
n ≤ ĵcln ≤

jcln + Jcl
n by Lemma 5.2. For n large, jcln > jmin

n , so by (5.3), we obtain

R1(ĵ
ad
n , γn) .

√

jcln + Jcl
n 2(j

cl
n +Jcl

n )/2n−1/2 .M1/(2s+1)rn(s).

Likewise on En, for n large jcln + Jcl
n ≤ jmax

n , so l(ĵadn ) = ĵcln , and

R2(ĵ
ad
n ) . 2(j

cl
n +Jcl

n )/2cn,1 .M1/(2s+1)rn(s).

Also for n large, ŝn ≥ sn > 0, so

R3(ĵ
ad
n ) .

Mn

2sn − 1
2−jcln sn .

M1/(2s+1)

2s − 1
rn(s).

As P(En) → 1 uniformly, and the limits are uniform over f ∈ Cs
0(M), the

result follows.

Finally, we prove our result on confidence bands in density estimation and
regression.

Proof of Theorem 3.6. We can prove the result analogously to Theorem 3.3.
To bound the bias term, we will sketch a version of Lemma 5.2 for the density
estimation and regression models. It is possible to also adapt the variance bound
in Lemma 5.1 [3]; however, we will provide a weaker bound, as a consequence
of our lemma.

Consider the empirical wavelet coefficents

α̂j0,k :=
1

n

n
∑

i=1

ϕj0,k(Xi), β̂j,k :=
1

n

n
∑

i=1

ψj,k(Xi),

in density estimation, or

α̂j0,k :=
1

n

n
∑

i=1

ϕj0,k(xi)Yi, β̂j,k :=
1

n

n
∑

i=1

ψj,k(xi)Yi,

in regression. To prove the lemma, we must find an event En on which, with
high probability, these estimates are close to the true wavelet coefficients αj0,k,
βj,k.

In density estimation, we note that, for j ≥ j0, k ∈ [N, 2j−N), the empirical
wavelet coefficients satisfy

E[β̂j,k] = βj,k, Var[β̂j,k] ≤
‖f‖∞
n

, |β̂j,k| ≤ 2j/2‖ψ‖∞.

Using Bernstein’s inequality, we then obtain that, for a constant A = A(‖f‖∞),
uniformly for n large,

P(|β̂j,k − βj,k | > Acn,1) ≤ n−1,
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with similar bounds for the other coefficients. Thus, on an event En, with prob-
ability tending uniformly to 1 as n→ ∞,

max

(

sup
k

|α̂j0,k − αj0,k|,
jmax
n −1
sup
j=j0

sup
k

|β̂j,k − βj,k |
)

≤ Acn,1. (5.4)

The regression model is often identified with the white noise model, for f in
classes Cs(M), s ≥ 1

2 [2]. In this case, however, we wish to consider functions
with unbounded Hölder norm, so we must discuss regression explicitly. To con-
trol the empirical wavelet coefficients, we use a Gaussian tail bound, noting that
for j, k as before,

β̂j,k ∼ N

(

1

n

n
∑

i=1

ψj,k(xi)f(xi),
σ2

n2

n
∑

i=1

ψj,k(xi)
2

)

.

For j ≤ jmax
n , as n→ ∞, the mean and variance are thus

βj,k +O(n−1/2‖f‖C1/2) and σ2n−1(1 + o(1)),

uniformly. We obtain that, for a constant A = A(‖f‖C1/2), uniformly for n large,

P(|β̂j,k − βj,k | > Acn,1) ≤ n−1,

again with similar bounds for the other coefficients, leading to an event En as
above.

In both cases, we therefore have eventsEn comparable to those in Lemma 5.2,
but with constant A now depending on ‖f‖∞ or ‖f‖C1/2 . To proceed, we require

an estimator Â of A, which satisfies

sup
f∈F

Pf (Â < A) → 0,

and for any s ∈ [smin, smax], M > 0, and constants B = B(s,M) > 0,

sup
f∈Cs

0
(M)

Pf (Â > B) → 0.

We will describe such an estimator Â, and plug it into our bounds (5.4). We
may then obtain a bound on the bias term, as in Theorem 3.3. To bound the
variance term, we note that on the event En,

‖f̂(jn)− f̄(jn)‖∞ . A2jn/2cn,1,

uniformly in all jn ≤ jmax
n ; as this bound is of the same order as the one arising

from Lemma 5.1, we may then proceed as before.
It remains to construct the estimator Â. We note that, in density estimation

and regression respectively, the quantities ‖f‖∞ and ‖f‖C1/2 are bounded by a
constant times T := ‖f‖Csmin

. We may therefore consider A as a function of T ;
it can be checked that in each case A ≤ CT +D, for constants C,D > 0. We
deduce that the estimator Â := C′‖f̂(j1)‖Csmin

+D′ satisfies our conditions, for
large enough constants C′, D′ > 0.
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5.3. Negative results

We now prove our negative results. First, we will need a testing inequality
for normal means experiments, proved using standard arguments [17]. We will
prove a modified result, which controls the performance of tests also under small
perturbations of the means.

Lemma 5.4. Suppose we have observations X1, . . . , Xn, Y1, Y2, . . . , and we wish
to test the hypothesis

H0 : Xi, Yi
i.i.d.∼ N(0, 1),

against alternatives

Hk(ν) : Xi ∼ N(µδik, 1), Yi ∼ N(νi, 1), independently,

for k = 1, . . . , n, and µ, νi ∈ R, ‖ν‖2 ≤ ξ2. Let T = 0 if we accept H0, or T = 1
if we reject. There is a choice of k, not depending on ν, for which the sum of
the Type I and Type II errors satisfies

PH0
(T = 1) + inf

‖ν‖2≤ξ2
PHk(ν)(T = 0) ≥ 1− n−1/2(eµ

2 − 1)1/2 − (eξ
2 − 1)1/2.

Proof. Consider first the case ν = 0. The density of PHk(0) w.r.t. PH0
is

Zk := eµXk−µ2/2.

Let Z := n−1
∑n

k=1 Zk. Then EH0
Z = 1, and EH0

Z2 = 1 + n−1(eµ
2 − 1), so

EH0
(Z − 1)2 = VarH0

Z = n−1(eµ
2 − 1).

We thus have

PH0
(T = 1) +

n
max
k=1

PHk(0)(T = 0) ≥ PH0
(T = 1) + n−1

n
∑

k=1

PHk(0)(T = 0)

= 1 + EH0
[(Z − 1)1(T = 0)]

≥ 1− VarH0
(Z)1/2

= 1− n−1/2(eµ
2 − 1)1/2.

Fix k maximizing the above expression, and consider a hypothesisHk(ν) with

‖ν‖2 ≤ ξ2. The density of PHk(ν) w.r.t. PHk(0) is

Z ′ := e
∑

i νiYi−‖ν‖2/2,

and similarly we have

EHk(0)(Z
′ − 1)2 = VarHk(0)Z

′ = e‖ν‖
2 − 1.
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Thus

PH0
(T = 1) + PHk(ν)(T = 0)

= PH0
(T = 1) + PHk(0)(T = 0) + EHk(0)[(Z

′ − 1)1(T = 0)]

≥ PH0
(T = 1) + PHk(0)(T = 0)− VarHk(0)[Z

′]1/2

≥ 1− n−1/2(eµ
2 − 1)1/2 − (eξ

2 − 1)1/2.

As this is true for all ‖ν‖2 ≤ ξ2, the result follows.

We may now prove our result on minimax rates in Cs
0(M). For f ∈ Cs(M),

the argument is standard [24], but we must check that we can construct suitable
alternative hypotheses lying within the restricted class Cs

0(M).

Proof of Theorem 3.4. Suppose such an estimator f̂n exists. For i ∈ N, set ji :
= ⌈ρji−1⌉, and consider functions

f0 :=

∞
∑

i=0

βjiψji,0, fk := f0 + βjψj,k,

where βj := M2−j(s+1/2), j ≥ j0 is to be determined, and k ∈ [N, 2j −N). By

definition, these functions are in Cs
0(M). By standard arguments, f̂n must be

able to distinguish the hypothesis H0 : f = f0 from alternatives Hk : f = fk,
contradicting Lemma 5.4.

Finally, we will show that the self-similarity condition (2.1) is as weak as
possible.

Proof of Theorem 3.5. We argue in a similar fashion to Theorem 3.4, taking
care to account for the dishonesty of Sn. Suppose such a band Sn exists. For
m = 1, 2, . . . ,∞, we will construct functions fm which serve as hypotheses for
the function f. We will choose these functions so that fm ∈ Csm

1 (M), for a
sequence sm ∈ (smin, smax) with limit s∞ ∈ (smin, smax). We will then find a
subsequence nm such that, for δ := 1

4 (1− 2γ),

∞

inf
m=2

Pf∞(f∞ 6∈ Snm) ≥ γ + δ,

contradicting our assumptions on Sn.
Taking infimums if necessary, we may assume ρj increasing; for i ∈ N, set

ji := ⌈ρji−1
ji−1⌉. Then for m = 1, 2, . . . ,∞, set

fm :=

∞
∑

i=0

bi,mψi +

m
∑

l=1

b′lψ
′
l,

where

ψi := ψji,2ji−1 , ψ′
l := ψjil ,kl

,
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and bi,m, b
′
l ∈ R, il ∈ N, and kl ∈ [N, 2ji − N) \ {2ji−1} are to be determined.

We will set −1 = i0 < i1 < . . . ,

bi,m :=

{

M2−ji(sl+1/2), il < i ≤ il+1 for some l < m,

M2−ji(sm+1/2), i > im,

and
b′l :=M2−jil (sl+1/2).

Set

s0 := smax, sm := sm−1 − (j−1
im

− j−1
im+1) log2(ε

−1), m > 0,

t0 := smin, tm := sm − j−1
im+1 log2(ε

−1), m > 0,

and choose i1 large enough that:

(i) t1 > t0;
(ii) for i ≥ i1, the ψi are interior wavelets, supported inside (0, 1); and
(iii) the set of choices for k1 is non-empty.

By definition, sm is decreasing, tm increasing, and sm − tm ց 0. For m ≥ 1,
both sequences thus lie in (smin, smax), and tend to a limit s∞ ∈ (smin, smax).
For all m = 1, 2, . . . ,∞, l ∈ N, and il ≤ i ≤ il+1,

M2−ji(sl+1/2) ≥ εM2−ji(tl+1+1/2) ≥ εM2−ji(sm+1/2),

so indeed fm ∈ Csm
1 (M).

We have thus defined f1, making an arbitrary choice of k1; for convenience,
set n1 = 1. Inductively, suppose we have defined fm−1 and nm−1, and set
rn := rn(sm−1). For nm > nm−1 and D > 0 both large, we have:

(i) Pfm−1
(fm−1 6∈ Snm) ≤ γ + δ; and

(ii) Pfm−1
(|Snm | ≥ Drnm) ≤ δ.

Setting Tn = 1 (∃ f ∈ Sn : ‖f − fm−1‖∞ ≥ 2Drn) , we then have

Pfm−1
(Tnm = 1) ≤ Pfm−1

(fm−1 6∈ Snm) + Pfm−1
(|Snm | ≥ Drnm)

≤ γ + 2δ. (5.5)

We claim it is possible to choose fm and nm so that also, for any further choice
of functions fl,

‖f∞ − fm−1‖∞ ≥ 2Drnm , (5.6)

and
Pf∞(Tnm = 0) ≥ 1− γ − 3δ = γ + δ. (5.7)

We may then conclude that

Pf∞(f∞ 6∈ Snm) ≥ Pf∞(Tnm = 0) ≥ γ + δ,

as required.
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It remains to verify the claim. Letting im → ∞, choose nm so that

rnm ∼ D′2−jimsm , (5.8)

for D′ > 0 to be determined. Now,

D′′(im) :=

∞
∑

l=m

(

2−jil+1
sl+1 +

il+1
∑

i=il+1

2−jisl

)

≤
∞
∑

l=m

(

2−jil+1
smin +

il+1
∑

i=il+1

2−jismin

)

≤ 2
∞
∑

j=jim+1

2−jsmin

=
21−jim+1smin

1− 2−smin
,

so, for im large,

‖fm−1 − f∞‖∞ ≥ ‖b′mψ′
m‖∞ −

∥

∥

∥

∥

∥

∞
∑

l=m+1

b′lψ
′
l +

∞
∑

i=im+1

(bi,∞ − bi,m−1)ψi

∥

∥

∥

∥

∥

∞

≥M‖ψ‖∞
(

2−jimsm −D′′(im)
)

≥M‖ψ‖∞
(

2−jimsm − 21−jim+1smin

1− 2−smin

)

≥ 1
2M‖ψ‖∞2−jimsm .

We have thus satisfied (5.6), for a suitable choice of D′.

To satisfy (5.7), we will apply Lemma 5.4, testing H0 : f = fm−1 against
H1 : f = f∞. The observationsXi will correspond to

∫

ψ′
m(t) dYt, for all possible

choices of km, and the Yi to the other empirical wavelet coefficients. From (5.8),

nm = O
(

jim2jim (2+s−1

m−1
)sm
)

,

so the quantity

µ2 = nm(b′m)2 = nmM
22−jim (2sm+1)

= O
(

jim2jim (sm/sm−1−1)
)

= O
(

jimε
(jim/jim−1−1)/sm−1

)

= o(jim ),
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and likewise

ξ2 = nm sup
f∞

(

∞
∑

l=m

(b′l+1)
2 +

∞
∑

i=im+1

(bi,m−1 − bi,∞)2

)

≤ nmM
2

∞
∑

l=m

(

2−jil+1
(2sl+1+1) +

il+1
∑

i=il+1

2−ji(2sl+1)

)

= O
(

nm2−jim+1(2sm+1)
)

= O
(

jim2jimsm/sm−1−jim+1

)

= o(1).

Thus, for im large,

(2jim − (2N + 1))−1/2(eµ
2 − 1)1/2 + (eξ

2 − 1)1/2 ≤ δ.

Hence by Lemma 5.4, if we take im large enough also that (5.5) holds, then (5.7)
holds for a suitable choice of km, and our claim is proved.
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