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HONEST CONFIDENCE REGIONS FOR
NONPARAMETRIC REGRESSION?

By KER-CHAU L1
University of California, Los Angeles

The problem of constructing honest confidence regions for nonparametric
regression is considered. A lower rate of convergence, n~'/4, for the size of
the confidence region is established. The achievability of this rate is demon-
strated using Stein’s estimates and the associated unbiased risk estimates.
Practical implications are discussed.

1. Introduction. In spite of the growing interest.in the research and the
application of nonparametric regression, the problem of setting a confidence
region is not often addressed. The mathematical complexity may be one reason
that discourages the development. Beyond that, however, there lies the more
fundamental question of whether it is possible to have any useful honest
confidence region or not. Here the word “honest” refers to the requirement that
the minimum coverage probability over a rich class of (nonparametric) regression
functions should be no less than the nominal confidence level.

Specifically, suppose we have n independent observations, y,,..., ¥,, taken at
sites x,,..., x,,, in some compact region C in R”. Assume that

(1.1) yi=f(x;)+¢, i=1,...,n,

where f is the unknown smooth function and ¢; are normal with mean 0 and
variance o2, There are many ways to quantify the degree of smoothness. For
instance, when p = 1, it can be measured by the L, (or L. ) norm of the second
(or the kth) derivative of f. But it is not easy to appropriately estimate this
quantity or to give it a reasonable upper bound: One approach may be to
estimate the derivative by, say, some kernel method. But the validity of this
estimation in turn depends on the knowledge of some higher order derivatives.
On the other hand, particularly for the purpose of choosing the smoothing
parameter, we may use cross validation or other sample reuse techniques to
bypass this difficulty without estimating any smoothness measure. In any case
throughout this paper we shall not assume any specific bound for the smooth-
ness measure a priori (so that we have an “honest” nonparametric setting).

To fix the idea, take p = 1, C = [0,1] and let the space of f be F = {f: f is
twice continuously differentiable in C}. An ambitious goal may be to construct a
confidence region for the entire function f on C. But this requires interpolation
or extrapolation and is easily seen to be impossible without a specified upper
bound on a smoothness measure. Hence we shall only consider the problem of
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setting confidence regions for the vector f, = (f(x,),..., f(x,)). We also assume
that o2 is given and that all x, are distinct.

With these assumptions, it is clear that the space of f, is equal to the entire
R". An obvious confidence region for f, is the n-dimensional ball with the center
Y. = (¥,---, ¥,) and the squared radius equal to o times the (1 — a)-quantile
of the x? distribution with n degrees of freedom. But this confidence region is
almost useless for at least two obvious reasons: (i) the choice of the center
implies that no smoothing is needed in estimating the smooth function and (ii)
the radius is too large to extract any interesting features about f.

It seems easier to discuss (ii) in terms of the large sample theory. Let || - || be
the Euclidean norm and || - ||, be n~'/?|| - ||. Consider any confidence region of
the form
(12) {fn: ”f:;_fnllnssn}’

where the center f; and the (normalized) radius s, depend only on y,. For a large
sample, we naturally expect to have a small radius s,. Thus a basic requirement
on the size of any useful confidence region is that, for a smooth function f, s,
should converge to zero in probability as the sample size tends to the infinity and
the sites x; get dense in C. However, the confidence region constructed before
does not satisfy this requirement; s, always converges to o for any f. So the
question of interest is whether or not there exists any honest confidence proce-
dure satisfying this requirement. If yes, how fast can the convergence rate be?

In Section 2, we shall show that the best convergence rate for s, cannot be
faster than n~'/“ This result depends neither on the dimension p nor on any
smoothness measure of f. The only requirement is that the confidence region be
asymptotically honest in the sense that

(1.3) lim inf P(||f, = f,ll, <s,} =1 - a,

n—o feF
where F' can be any class of functions such that the set {f,: f € F} equals the
entire R". The crucial point here is the ordering of lim and inf, which admits an
honest (1 — a -- &) confidence region when the sample size is large. In Section 3,
we shall demonstrate the achievability of the rate n~'/4, using Stein’s estimate
and the associated unbiased risk estimate.

In view of the slowness of this convergence rate, one may doubt the wisdom of
being fully honest in constructing a confidence region. This touches the philo-
sophical issue about the practical application of confidence procedures. Even in
the simple case of estimating the population mean, the usual confidence interval,
sample mean +2z, , - sample standard deviation, is not asymptotically honest.
In fact, Bahadur and Savage (1956) showed that if the class of error distributions
is rich enough (say it contains all distributions with finite second moments), then
the inf of the coverage probabilities is always zero, no matter how large the
sample size is [see also Donoho (1984) for related results].

Before closing this section, we shall briefly review some related work. Knafl,
Sacks and Ylvisaker (1982) introduced a method for finding model-robust confi-
dence sets. The idea is to specify an upper bound on some smoothness measure of
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f. Based on the given bound, a minimax linear estimate for f(x;) is used as the
center for constructing confidence interval for each f(x). Finally, they multiply
the width for each interval by a suitable constant to ensure the probability of
coverage for the entire function. This was carried out explicitly in the case that
p=1and f is twice differentiable with the supremum norm of the second
derivative being bounded by a constant. Wahba (1983) constructed a pseudo
Bayes confidence band for f,, without specifying any bound for the smoothness
measure. A novel notion about the coverage probability was introduced there.
Instead of computing the probability that f, falls in the confidence band, she
was more concerned about what percentage of intervals fail to capture their own
target values f(x;). Eubank (1985) considered the jackknife method for con-
structing confidence intervals. During the revision of this paper, it was communi-
cated to me by the Associate Editor that Hall and Titterington (1986) proposed
another method for constructing confidence bands in nonparametric density and
regression problems. Their method also depends on the bound of some smooth-
ness measure of the unknown function to be estimated. A faster rate (depending
on the smoothness condition) of convergence is obtained as expected. An implica-
tion of our result (see Remark 2.1), however, provides a warning to the unre-
strained use of such procedures, since the minimum coverage probability is zero
provided that the bound of smoothness measure is unknown and is estimated
from the data.

2. Lower rate of convergence. It will be easier to present our results in
the general framework of constructing confidence regions for a multivariate

normal mean. Thus assume that y,..., y, are independent normal random
variables with means p,,..:, 1, and a common variance o2 Consider the confi-
dence region for p, = (#3,..., it,,) of the form

(Bt 1823) = Bl < 80(3) )

where fi (y,) is a point estimate of p, and s,(-) is a measurable real function on
R™. When such a confidence region is honest asymptotically, we have

(2.1) liminf inf P{[|f,(v.) = #all, < 8a(¥,)} 21 - .
n—o p,eR"

The following main theorem for this section provides the lower rate of
convergence for the size of the confidence region as measured by s,. The
subscript of P indicates the true mean of y,.

THEOREM 2.1. Assume that (2.1) holds. Then for any sequence of p} and for
any sequence of positive numbers c, that converges to 0, we have
(2.2) limsup P« {s,(y,) < c,n 4} < a.
n—oo ’
An immediate consequence of this theorem is that the size of any honest
confidence region cannot converge to zero faster than the rate of n~'/%, no
matter how smooth the underlying function f is. To see this, we simply take p}

as ( f(tl)’ ey f(tn))l'
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REMARK 2.1. It is now well-known that the optimum rate of convergence for
estimating a nonparametric function can be made as close to the rate of root n
(the rate for parametric problems) as possible by simply assuming higher and
higher order of differentiability about the unknown function f. See Stone (1982)
and Speckman (1985) for the exact relationship between the smoothness assump-
tion and the optimal rate of convergence. It seems therefore feasible to try some
adaptive procedures to construct a confidence region with the optimal conver-
gence rate. For instance, if we assume f has a second derivative, we may try to
construct a confidence region based on a cubic smoothing spline estimator and
the corresponding mean squared error. Using Chebyshev’s inequality, it is not
hard to find a confidence region provided that an upper bound of the square root
of the mean squared error is known. Such a bound is available [see Wahba
(1978), for instance], which has rate of convergence. n~%/%, faster than n~'/% But
this bound depends on the L, norm of the second derivative of f and hence
should be estimated. Fortunately a consistent estimate of the second derivative
can be easily obtained and hence can be adapted to the construction of a
confidence region. The resulting “confidence region” now enjoys a convergence
rate n~%5 faster than n~'/% It satisfies (1.3) but with the “limit” and “inf”
being interchanged. Now, applying Theorem 2.1, we see that the left side of (1.3)
should be equal to 0. In other words, although these kinds of adaptive procedures
may yield a smaller confidence region, the minimum probability of coverage can
be very small as well. On the other hand, if one decides to ignore the asymptotic
honesty, then the results of Nussbaum (1985), which give a sharp bound for the
mean squared error, may help improve this adaptive procedure.

The rest of this section will be devoted to the proof of this theorem. Basic
ideas come from testing the hypothesis and the standard prior-posterior argu-
ment. We first give an outline of the proof.

1. Assume that the conclusion (2.2) is false. Thus for some & > 0, there exists
some subsequence such that for large n,

(2.3) P.{s,(y,) <c,n7V*} 2 a + 2e.

2. Put a suitable normal prior «, on p.,, so that from (2.3) it can be inferred that
for large n,

(2.4) 4 P, {s,(y,) <c,n '} 2 a +e.
3. From (2.1) we get
. e
P {l8:03) = pall, < s,(3)} 21— a— 5.
This together with (2.4) implies
€
' (2'5) Pvr,,{ ”ﬁ'n(yn) - p’n"n = cnn_1/4} 2 _2—'

4. Show that even for the best choice of {i,(y,), (2.5) cannot hold. This leads to a
contradiction and hence completes the proof.
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The major steps are 2 and 4, which will be described in detail below.

2.1. Step 2. Consider a normal prior for p, with mean p* and covariance
b,I,, where I, is the identity matrix and b, > 0. Suppose we want to test H,,:
b, = 0 against H,,: b, = a,n""%?, where {a,} is a sequence of fixed positive
numbers converging to 0.

Clearly under H,,, y;’s are independent normal random variables with means
p¥ and a common variance 0%(1 + a2n~/2?). Hence the best test based on the
Neyman-Pearson lemma is to reject H,,, when T, = 07 2X"_ (y, — p¥)? is large.
Under H,,, T, is a x? with n degrees of freedom, implying that

(2.6) (T, — n)/V2n - N(0,1).

Likewise, under H,,,, .
(T,(1 + a,n=172) ™" = n)/Van - N(0,1),

which also implies (2.6) because of Slutsky’s theorem. Thus H,, and H,, are
asymptotically indistinguishable. Using the Neyman—Pearson lemma, we see
that for any event A, in particular A{s(y,) < c,n~ 74},

(2'7) IP{AlHOn} - P{AlHln}l < Suglp{Tn < tlHOn} - P{Tn < tIHln} |
te

With (2.6) satisfied under both H,, and H,,, we see that the right-hand side of
(2.7) converges to 0 due to a theorem of Polya [see Bickel and Doksum (1977),
page 462]. Now (2.4) follows immediately from (2.3) when we take our prior 7,
according to H,,,.

2.2. Step 4. We shall use the standard prior-posterior argument. First,
the posterior distribution of p,, given y,, is easily seen to be normal with
mean p,(y,) = (p* + a,n %y,)/(1 + a,n""/?) and covariance a,n” %2/

(1 + a,n”?)I,. Clearly, j,(y,) is the Bayes estimate of p* under squared error
loss. Now, the left side in (2.5) equals

E, P{|i(y,) — pall, < can™4ly,)

(2.8) < Eﬂ,,P{ [B(y,) — poll, < Cnn_1/4|y,,}

1 n
= P{— Y e?<claylo?(1 + ann‘l/z)},
n
i=1

where e;’s denote i.i.d. standard normal random variables. The above inequality
is based on the spherical symmetry and the unimodality properties of the normal
distribution. Finally, choose a, suitably so that a, — 0 and c2a,! — 0. Then it
is clear that the last expression in (2.7) should converge to 0, leading to a
contradiction with (2.5) as desired. .

3. Stein estimates. We shall demonstrate that using the Stein estimate and
Stein’s unbiased estimate (SURE), it is easy to construct a confidence region
that achieves the lower rate of convergence.
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For any nonidentity n X n matrix M,, Li (1985) considered the following
simplified version of the Stein estimate and SURE:

. o? trAnA
bn=Yn— T — 24nYn
(A
(3.1) ,
o'(trA,)
SURE, = o2 — —— "
- ALYl

where A, =1 — M,. It was shown that SURE, is a uniformly consistent
estimate of the true loss n™ Y|, — p,||%, regardless of what sequence M, is
embedded in, although it may sometimes fail to estimate what it is supposed to
estimate (namely, the expected value of the true loss). This result can be
strengthened as follows. The proof will be given in the Appendix.

THEOREM 3.1. For any a, 0 < a < 1, there exists some constant c(a) > 0,
such that

lim sup P{|SURE, - n Ui, = p,l*| = c(a)n"?} <a

n—oo l-lneR"

for any sequence of M,,.

REMARK 3.1. The normality assumption on the error distribution can be
replaced by the conditions (A.1) and (A.2) in Li (1985), page 1358.

To apply this theorem in nonparametric regression, simply take p, as f, and
take M, as the matrix which will be used to form a good linear estlmate,
i,= Mnyn, of p,. Then use i, as the center f, and ¢(a)n~'/2 + SURE, as s>
the square of the normalized radius. We see that Theorem 3.1 1mp11es the
asymptotic honesty (1.3). It remains to show that SURE,, converges to 0 at rate
no slower than n~1/2, By Theorem 3.1 again, it suffices to find M, so that the
rate of convergence for n~ Y|, — w,||> is no slower than n~'/% On the other
hand, the result of Li and Hwang (1984) shows that in most cases, Stein
estimates and the associated linear estimates have the same rate of convergence.
This means that we can use any linear estimate to begin with, provided that it
converges to f at rate no slower than n~/4, Such estimates are very easy to find,
e.g., kernel estimates, nearest neighbor estimates, smoothing splines, etc., with
the smoothing parameters appropriately chosen. Let us summarize this result by
the following theorem. See Li and Hwang (1984) for examples and for more

discussion of the conditions on M,,.

THEOREM 3.2. For any sequence of linear estimators M A of f,, the confi-
dence region (1.2) with f, = fin and s? = c(a)n"'/2 + SURE,, is asymptotically
honest in the sense that (1.3) is satzsﬁed for any class F. In addztzon if

tr M,M, - oo, (n'ltrMn)Z/n'1 tr M,M, - 0,
N(M, M)/ te M, M, — 0,
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where N(-) denotes the maximal eigenvalue and n‘1||p,n — I = O (n™1%),
then the size of the confidence region s, converges to 0 in probabzlzty at rate
n~Y4 ie., s, = O(n~'/*).

APPENDIX

PrOOF OF THEOREM 3.1. We shall assume A(A’A) = 1, in view of the scale
invariance property for i, and SURE, . By the same argument as that given in
the beginning paragraph of Section 7. 1 of Li (1985), we need only to find some
large c¢(«) such that
(3.2) lim sup P{|o® — n—1||e,,||2| > te(a)n™V?} < a/3,

n—oo
(3.3) limsupP{n"YtrA,|-[{e,, Apn)| - 14, ¥.lI"2 = tc(a)n™ 2} < a/3,
n—oo

and

limsupP{n_1|trAn| |(ens Apeny — 02 tr A, |- |4, ¥,ll"2
(834) n—e
> éc(a)n‘l/z} <a/3.

The central limit theorem guarantees (3.2). So we shall verify (3.3) only; (3.4)
follows by a similar argument.

Consider an arbitrary sequence {p,}, p, € R" Let @, = E||A,y,l|*>=
|A,p,lI%2 + a2tr A, A’. It suffices to consider two cases: (i) lim, _, , @, < oo and
(ii) lim, , @, = oo. For the first case (3.3) can be derived from
(3.5)  limsupP{n7YtrA,| -|(e,, Aup,)| = te(a)n™%8(a)} < a/6,

n— oo
where §(a) is a positive number such that P{x? > §(a)} > 1 — a/6; x? denotes
the x2 random variable with one degree of freedom. To see this, simply observe
that due to our assumption that the maximum eigenvalue of A ' A, is 1, we have
lA,¥]% > (X2 ,a,;y,)? for some (a,,..., a,) such that ¥* ,a? = 1.

Now by Chebyshev’s inequality and the condition (i) [in a way similar to the
proof of (7.1.5) in Li (1985)], it is easy to check that (3.5) holds for some large
c(a).

Next we consider the case (ii). By Chebyshev’s inequality again, we can verify
that
(3.6) limsup P{||A,y,l* < 1Q,} < a/6.

[The inequality Var|A4,y,||?> < c(o?trA,A, + ||A,y,l|?) for some ¢ may be
used, which can be derived from Theorem 2 of Whittle (1960).] Thus to obtain
(3.3), we need only to prove .

limsup P{n~{tr A,| - (e, Apn)| = 5Quc(a)n %) < a/6,
which in turn follows easily from Chebyshev’s inequality again. The proof is now
complete. O
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