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Abstract. Two important questions that must be answered whenever a
Markov chain Monte Carlo (MCMC) algorithm is used are (Q1) What is
an appropriate burn-in? and (Q2) How long should the sampling continue
after burn-in? Developing rigorous answers to these questions presently
requires a detailed study of the convergence properties of the underlying
Markov chain. Consequently, in most practical applications of MCMC,
exact answers to (Q1) and (Q2) are not sought. The goal of this paper is
to demystify the analysis that leads to honest answers to (Q1) and (Q2).
The authors hope that this article will serve as a bridge between those
developing Markov chain theory and practitioners using MCMC to solve
practical problems.
The ability to address (Q1) and (Q2) formally comes from establishing a

drift condition and an associated minorization condition, which together
imply that the underlying Markov chain is geometrically ergodic. In this
article, we explain exactly what drift and minorization are as well as
how and why these conditions can be used to form rigorous answers
to (Q1) and (Q2). The basic ideas are as follows. The results of Rosen-
thal (1995) and Roberts and Tweedie (1999) allow one to use drift and
minorization conditions to construct a formula giving an analytic upper
bound on the distance to stationarity. A rigorous answer to (Q1) can be
calculated using this formula. The desired characteristics of the target
distribution are typically estimated using ergodic averages. Geometric
ergodicity of the underlying Markov chain implies that there are central
limit theorems available for ergodic averages (Chan and Geyer 1994).
The regenerative simulation technique (Mykland, Tierney and Yu, 1995;
Robert, 1995) can be used to get a consistent estimate of the variance of
the asymptotic normal distribution. Hence, an asymptotic standard error
can be calculated, which provides an answer to (Q2) in the sense that an
appropriate time to stop sampling can be determined. The methods are
illustrated using a Gibbs sampler for a Bayesian version of the one-way
random effects model and a data set concerning styrene exposure.
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1. INTRODUCTION

1.1 The Questions

During the decade or so since the appearance of
the seminal article by Gelfand and Smith (1990),
Markov chain Monte Carlo (MCMC) methods have
revolutionized statistical computing. While the
Bayesians have certainly made the most use of
MCMC, applications have popped up in many dif-
ferent areas of statistics. For example, MCMC
techniques can be used to calculate p-values in
exact conditional inference (Diaconis and Sturm-
fels, 1998) and to maximize intractable likelihood
functions associated with generalized linear mixed
models (McCulloch, 1997). Furthermore, the popu-
larity of the BUGS (Bayesian inference Using Gibbs
Sampling) software package (Spiegelhalter, Thomas
and Best, 1999) indicates that MCMC is used rou-
tinely in applied work. An excellent introduction to
MCMC is the book edited by Gilks, Richardson and
Spiegelhalter (1996).
MCMC methods allow us to circumvent many

of the difficulties associated with drawing random
samples from complex, high-dimensional proba-
bility distributions. Unfortunately, using a Markov
chain instead of a random sample creates new prob-
lems that must be solved before we can use MCMC
methodology with the same level of confidence that
we have in classical Monte Carlo methods. Our goal
in this article is to spell out exactly what these
new problems are and to explain how they can be
solved.
We begin with classical Monte Carlo integration.

Suppose we want to know the value of Eπg �=∫
g�x�π�x�dx, where π is a probability density and

g is some real-valued function, but this integral can-
not be evaluated analytically. Classical Monte Carlo
integration requires an independent and identically
distributed (iid) sample X1�X2� � � � from π. By the
strong law of large numbers, with probability 1,

ḡn �= 1
n

n∑
i=1

g�Xi� → Eπg as n → ∞�(1)

Moreover, if we know that Eπg
2 is finite, there is a

central limit theorem (CLT) for ḡn; that is,
√
n�ḡn−

Eπg� d→ N�0� σ2� and, of course, the usual sample
variance of the g�Xi�’s is a consistent estimate of
σ2. Hence, it is simple to construct a Monte Carlo
standard error for ḡn and this can be used to decide
upon a reasonable value of n.
The fundamental idea underlying MCMC is

that even when obtaining iid draws from π is
prohibitively difficult, it may still be feasible to
simulate a Markov chain X∗

0�X
∗
1�X

∗
2� � � � that has

stationary density π. Let fn denote the density
of X∗

n. Under a few simple regularity conditions
(described in Section 2) X∗

n converges in total varia-
tion to a random variable from π; that is,

1
2

∫
�fn�x� − π�x� � dx ↓ 0 as n → ∞�

(This is much stronger than convergence in distri-
bution.) More importantly for us, these same reg-
ularity conditions imply that the ergodic theorem
holds and hence, with probability 1,

ḡ∗
n �= 1

n

n−1∑
i=0

g�X∗
i � → Eπg as n → ∞�(2)

Unfortunately, Eπg
2 < ∞ is no longer enough to

guarantee a CLT (Meyn and Tweedie, 1993, Chapter
17). Indeed, sufficient conditions for a CLT involve
the convergence rate (or mixing properties) of the
Markov chain and, as we will see, these conditions
can be quite difficult to verify in practice.
Whenever the MCMC method is employed, the

user should give serious thought to the following
two questions.

(Q1) When should sampling begin? That is, how
long does it take the Markov chain to get suf-
ficiently close to the stationary distribution;
that is, what is an appropriate burn-in?

(Q2) How long should the sampling continue
after burn-in? That is, how do we know
when the estimates based on the output
are sufficiently accurate or, put another
way, what are the standard errors of the
estimates?

Observe that having to deal with (Q1) and (Q2) is
a “new” problem in the sense that, when it is possi-
ble to make iid draws from π, (Q1) is moot and (Q2)
is easy. (Actually, there is an ongoing debate in the
MCMC community over the usefulness of burn-in;
see Section 2.1 for some discussion.) In most practi-
cal applications of MCMC, (Q1) and (Q2) are not rig-
orously addressed. Instead, a mixture of intuition,
experience, and ad hoc methods are used to deter-
mine the amount of burn-in and the accuracy of the
resulting estimates. One has to wonder how this
affects the quality of any subsequent inferences. In
this article, we will explain how to develop rigorous
answers to (Q1) and (Q2).

1.2 Honest Answers

In this article we consider (what is currently) the
most straightforward method of developing rigor-
ous answers to (Q1) and (Q2) for Markov chains
on general state spaces. This method is applica-
ble only when the underlying chain converges to
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its stationary distribution at a geometric rate; that
is, when the chain is geometrically ergodic (Meyn
and Tweedie, 1993, Chapter 15). Generally speak-
ing, geometrically ergodic chains are “good” in the
sense that they can be expected to quickly pro-
duce output that is similar to what one would
get by sampling directly from the target distribu-
tion. The following example, introduced by Roberts
and Rosenthal (1998a), is intended to illustrate
the potential difference between geometric and
subgeometric (slower than geometric) convergence.

Example 1. Suppose the target distribution is
Exp�1�; that is, π�x� = e−xI�x > 0�. Consider
an independence Metropolis sampler with an
Exp�θ� proposal; that is, the proposal density is
p�x� = θe−θxI�x > 0�. The chain evolves as follows:
Let the current state be Xn = x. Draw y ∼ Exp�θ�
and set Xn+1 = y with probability

min
{
π�y�p�x�
π�x�p�y� �1

}
= exp��x− y��1− θ�� ∧ 1�

otherwise, set Xn+1 = x. A more algorithmic way
to think of this is as follows: Draw y ∼ Exp�θ�
and independently draw u ∼ Uniform�0�1�. If u <
exp��x−y��1−θ�� then setXn+1 = y, otherwise set
Xn+1 = x. (See Chib and Greenberg, 1995 for a nice
introduction to the Metropolis–Hastings algorithm
and Billera and Diaconis, 2001 for an interesting
geometric interpretation of the algorithm.)

Note that if θ = 1, this algorithm provides iid
draws from the target distribution. Results in
Mengersen and Tweedie (1996) can be used to show
that the chain is geometrically ergodic if 0 < θ < 1
and subgeometric if θ > 1. (See Section 3.2 for more
details.) The problem in the θ > 1 case is that the
tails of the proposal density are too light relative
to the target density. This makes it difficult for
the chain to reach larger values in the state space
and, when it does, it tends to “get stuck” there
for long periods. See J. S. Rosenthal’s web page at
markov.utstat.toronto.edu/jeff/java/exp.html
for a graphical illustration of this Markov chain for
several different values of θ.
Let X0�X1�X2� � � � denote this independence

Metropolis sampler with θ = 0�5 and starting value
X0 = 1. We ran 10,000 independent copies of this
chain for 15 iterations in order to see how close
the distribution of X15 is to Exp(1). (It is actually
easy to get an upper bound on the total varia-
tion distance between X15 and Exp(1); see Section
3.2.) The top plot in Figure 1 is a histogram of the
10,000 iid copies of X15 along with (an appropri-
ately scaled version of) the Exp(1) density. This plot

suggests (and theory confirms) that the distribu-
tion of X15 is very close to Exp(1) and hence this
Markov chain converges quickly. We performed the
same experiment for the subgeometric chain cor-
responding to θ = 4, and the results are shown in
the middle plot of Figure 1. Judging from this his-
togram, this Markov chain is still quite far from
stationarity after 15 iterations. The spike in the
histogram at the value 1 is because in many of the
10,000 runs, the chain was stuck at the starting
value for all 15 iterations. In the third and last
performance of the experiment, we ran the subge-
ometric chain for 1,000 iterations instead of just
15. The results are shown in the bottom plot of
Figure 1. While it appears that there is reasonable
agreement between the histogram and the invari-
ant density, the distribution of X1000 is actually
still quite far from Exp(1). In particular, there are
serious discrepancies near 0 and in the tail. For
example, only 2 of the 10,000 X1000’s were larger
than 4. In a random sample of size 10,000 from
the Exp(1) distribution, we expect to see about 180
observations larger than 4.
Of course, not all geometrically ergodic chains

converge as quickly as the θ = 0�5 chain, and not all
subgeometric chains behave as badly as the θ = 4
chain. Indeed, when θ is just a little larger than 1,
this independence Metropolis sampler works pretty
well. However, in practical applications of MCMC,
the user does not have the luxury of comparing
the distribution of Xn to the stationary distribu-
tion for various values of n. Establishing geometric
ergodicity provides the user with “peace of mind”
concerning the mixing rate of the Markov chain,
and, as we will see, allows the user to formally
answer (Q1) and (Q2).

The method described herein for developing exact
answers to (Q1) and (Q2) requires that one estab-
lish a drift condition and an associated minorization
condition for the underlying Markov chain, which
together imply geometric ergodicity (Meyn and
Tweedie, 1993, Chapters 15, 16). It is difficult to
discuss drift and minorization before describing
some basic ideas and notation from Markov chain
theory (see Section 2.1), but we can describe how
they are used to give rigorous answers to (Q1) and
(Q2).
Once drift and minorization have been estab-

lished, the results of Rosenthal (1995) or Roberts
and Tweedie (1999) can be employed to calculate
a bound on exactly how many iterations are nec-
essary to get within a prespecified (total variation)
distance of the target distribution. In other words,
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Fig. 1. The independence Metropolis algorithm with θ = 0�5 was run for 15 iterations 10,000 times. In each case, the starting value was
X0 = 1. The histogram at the top shows the 10,000 iid copies of X15. The experiment was repeated with θ = 4 and the middle histogram
again shows the 10,000 iid copies of X15. Finally, the independence Metropolis algorithm with θ = 4 was run for 1,000 iterations 10,000
times. The bottom histogram shows the 10,000 iid copies of X1000. In each plot, the solid line is an appropriately scaled version of the
stationary density.

we can find an n′ such that

1
2

∫
� fn′ �x� − π�x� � dx < 0�01 say�

The value n′ is an “honest” answer to (Q1).
Typically, the characteristics of the target distri-

bution that we desire are estimated using ergodic
averages like (2). As mentioned above, a finite sec-
ond moment guarantees a CLT in the iid case, but is
not sufficient when using a Markov chain. Chan and
Geyer (1994) have shown, however, that geometric
ergodicity of the Markov chain together with (a bit
more than) a finite second moment guarantees the
following CLT:

√
n�ḡ∗

n −Eπg� d→ N�0� σ2
∗ ��(3)

where σ2
∗ is an appropriate if complex variance.

It is important to recognize that ḡn and ḡ∗
n are

quite different estimates of Eπg and hence typi-
cally σ2

∗ �= σ2. Moreover, the usual sample variance
of the g�X∗

i �’s will not generally be a consistent
estimate of σ2

∗ . Fortunately, a consistent estimate of
σ2

∗ can be formed using the regenerative simulation
technique, which requires a minorization condition
(Mykland, Tierney and Yu, 1995; Robert, 1995).
Hence, we are able to calculate asymptotic stan-
dard errors for the estimates based on, say, the first
n iterations, and then continue to run the chain
if these standard errors are unacceptably large.
Thus, we are able to provide an “honest” answer
to (Q2).
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1.3 An Example

In Section 6 we provide an example of a realistic
application of the methods described in this paper
by conducting a detailed study of a Gibbs sampler
for a Bayesian hierarchical model. We now describe
this model and give the reader a taste of what can
be accomplished using these methods.
The model, which we refer to as (� ), is a Bayesian

version of the standard, normal theory one-way ran-
dom effects model with conjugate priors. It has three
levels. First, conditional on � = �θ1� � � � � θK�T and
λe, the data values, Yij, are independent with

Yij � θi� λe ∼ N�θi� λ−1
e ��

where i = 1� � � � �K and j = 1� � � � �m. At the second
stage, conditional on µ and λθ�� and λe are inde-
pendent with

��µ�λθ ∼ N�µ1� λ−1
θ I� and λe ∼ Gamma�a2� b2��

where 1 is aK×1 column vector of ones, I is aK×K
identity matrix, and a2 and b2 are known positive
constants. [We say W ∼ Gamma�α�β� if its density
is proportional to wα−1e−wβI�w > 0�.] Finally, at the
third stage, µ and λθ are assumed independent with

µ ∼ N�µ0� λ
−1
0 � and λθ ∼ Gamma�a1� b1��

where µ0� λ0� a1 and b1 are known constants; all
but µ0 are assumed to be strictly positive so that
all of the distributions are proper. Also, we assume
that K ≥ 3 and that m ≥ 2. Note that the stan-
dard, normal theory one-way random effects model
(Searle, Casella and McCulloch, 1992, Chapter 3)
corresponds to viewing µ�λe and λθ as fixed and
unknown. Let ȳi = m−1�m

i=1 yij where the yij are
the observed values of the Yij.
The posterior density corresponding to model �� �

is characterized by

π��� µ� λe� λθ�y�
∝ f�y��� λe�f���µ�λθ�f�λe�f�µ�f�λθ��

(4)

where y is a vector containing all of the data and f
denotes a generic density. The integrals required for
inferences through this posterior are not available
in closed form. Thus, we might resort to MCMC
techniques like the Gibbs sampler. Indeed, vari-
ance component models have been advocated as an
ideal application for the Gibbs sampler (Gelfand
and Smith, 1990; Gelfand, Hills, Racine-Poon and
Smith, 1990).
The data in Table 1 were simulated according to

model �� � with K = 6�m = 8� a1 = a2 = b1 = b2 =
λ0 = 1 and µ = 0. We now pretend that the origin of
the data is unknown and that we desire the poste-
rior expectations of λθ and λe under three different

priors; that is, under three different hyperparame-
ter settings. The three settings are given in Table 2.
Note that setting #1 agrees exactly with the values
used to simulate the data; that is, it is the “correct”
prior. Setting #2 is a “diffuse” prior and setting #3 is
the result of some experimentation to find a setting
that yields a particularly short burn-in.
Consider using the block Gibbs sampler (described

in Section 6) to estimate the six posterior expecta-
tions. For starting values, we will use θi = ȳi and
µ = ȳ. Due to the structure of the block Gibbs sam-
pler, starting values for λθ and λe are not required.
We first address (Q1) by finding an n′ such that

1
2

∫ � fn′ −π �< 0�01, where fn denotes the marginal
density of the nth iterate of the block Gibbs sam-
pler and π denotes the posterior density in (4). The
results are given in Table 3. For example, under the
first prior, after 4300 iterations of the block Gibbs
sampler, the total variation distance to stationarity
is at most 0.0092. (The formula used to find n′ is
given in Section 4.) These burn-ins are quite man-
ageable considering that it takes only about two
minutes to run one million iterations on a standard
PC. Unfortunately, as we show in Section 6, things
do not always work out this nicely. Now on to (Q2).
Table 4 contains point estimates and asymptotic

95% confidence intervals for the posterior expec-
tations of λθ and λe. These were obtained via the
regenerative method, which requires no burn-in.
Authors of standard textbooks on simulation (e.g.,
Bratley, Fox and Schrage 1987) view regenerative
simulation as the preferred method for obtaining
confidence intervals from simulation output. (A
detailed explanation of the regenerative simula-
tion method is given in Section 5.) Also reported
in Table 4 are the σ̂2

∗ ’s, the number of regenera-
tions upon which the variance estimates are based
and the mean number of iterations per regenera-
tion. Roughly speaking, the more often a Markov
chain regenerates, the faster it converges. Hence, it
appears that the chain corresponding to setting #3
mixes the fastest and the chain associated with set-
ting #2 mixes the slowest. Note that this is exactly
what we would have guessed based on Table 3.
The remainder of this article is organized as fol-

lows. Section 2 contains some basic Markov chain
background which is illustrated using a toy Gibbs
sampler. In Section 3, drift and minorization are
defined and we demonstrate the type of calculations
required to establish these conditions using our toy
Gibbs sampler. Section 3 also contains an heuristic
explanation of the theoretical connection between
geometric ergodicity and drift and minorization.
During this development, we derive the coupling
inequality, which is the key result for deriving
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Table 1
Simulated data

Cell 1 2 3 4 5 6

ȳi −0�22795 −1�1913 0�030547 0�48428 0�036639 −0�026581
MT = mK = 48

ȳ = M−1
T

�6
i=1

�8
j=1 yij = −0�14906

SSE = �6
i=1

�8
j=1�yij − ȳi�2 = 23�251

convergence rate bounds for Markov chains on gen-
eral state spaces. A theorem of Rosenthal (1995)
that allows one to use drift and minorization to
get exact upper bounds on the distance to station-
arity is stated in Section 4. Rosenthal’s result is
applied to our toy Gibbs sampler for illustration. In
Section 5, we explain how to use regenerative sim-
ulation to calculate Monte Carlo standard errors.
Section 6 contains another analysis like the one in
Section 1.3. However, in this case, real data are
used and all the details are given. The data used
in Section 6 concern styrene exposure of laminators
at a boat manufacturing plant (Lyles, Kupper and
Rappaport 1997). Some final comments are given
in Section 7.

2. MARKOV CHAIN BACKGROUND

This section consists of two subsections. In
Section 2.1, we develop some necessary notation,
briefly describe the basic convergence results for
ergodic Markov chains, and introduce a toy example
that will be used for illustration throughout the
paper. Geometric ergodicity and its consequences
are described in Section 2.2. More general accounts
of the material in this section can be found in Num-
melin (1984), Meyn and Tweedie (1993), Tierney
(1994), or Robert and Casella (1999).

2.1 Basics

Let � ⊆ �p for p ≥ 1 and let � denote the asso-
ciated Borel σ-algebra. Suppose that

$ = �X0�X1�X2� � � ��
is a discrete time Markov chain with state space �
and Markov transition kernel P; that is, for x ∈ �

Table 2
Three different prior specifications

Hyperparameter
setting a1 b1 a2 b2 �0 �0

1 1 1 1 1 0 1
2 0.1 0.1 0.1 0.1 0 0.1
3 3 7 6 3 0 1

and A ∈ �,

P�x�A� = Pr�Xi+1 ∈ A�Xi = x��
In order to simplify the exposition, we will often
assume that the probability measure P�x� ·� has
a (conditional) density, k�·�x�, with respect to
Lebesgue measure. That is,

P�x�A� =
∫
A
k�u�x�du�

We call k the Markov transition density. (All the
Gibbs samplers that we discuss in this article
have Markov transition densities.) For n ∈ � �=
�1�2�3� � � ��, let Pn denote the n-step transition
kernel; that is, Pn�x�A� = Pr�Xi+n ∈ A�Xi = x�
so, in particular, P ≡ P1. Note that Pn�x� ·� is the
probability measure corresponding to the random
variable Xn, conditional on starting the chain at
X0 = x.
If π is a density such that

π�x� =
∫
�
k�x�x′�π�x′�dx′�(5)

then π is called an invariant (or stationary) den-
sity for the Markov chain $. Consider the signifi-
cance of (5). Imagine drawing x′ from π and then
making a single transition x′ → x according to the
Markov chain. The joint density of �x′�x� induced
by this recipe is exactly the integrand in (5). Hence,
(5) implies that if the current state of the chain was
drawn from π, then the marginal density of the next
state is also π. Consequently, if the Markov chain
$ is started by taking X0 ∼ π (which is usually
impossible in the MCMC context), then $ is sim-
ply a sequence of dependent observations from π. In
other words, the Markov chain is stationary.
Abusing notation slightly, let π also denote the

probability measure associated with the density

Table 3
Total variation bounds for the simulated data

Hyperparameter
setting Iterations (n′) Bound

1 4300 0.0092
2 150000 0.0093
3 900 0.0086
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Table 4
Point estimates and asymptotic 95% confidence intervals for E�λθ�y� and E�λe�y�

Number of Mean number
Setting Parameter Estimate �̂2

∗ 95% CI regenerations of iter/regen

1 λθ 2.065 0.378 (2.052, 2.078) 9000 4.7
λe 1.754 0.038 (1.749, 1.759)

2 λθ 4.229 4.543 (4.210, 4.248) 50000 7.4
λe 1.790 0.027 (1.789, 1.791)

3 λθ 0.711 0.026 (0.708, 1.714) 14000 3.8
λe 1.856 0.040 (1.853, 1.859)

π so π�A� = ∫
A π�x�dx. The Markov chain $ is

called π-irreducible if for every x ∈ � and every
A with π�A� > 0, there exists an n ∈ � such that
Pn�x�A� > 0. In words, $ is π-irreducible if any
set with positive π-measure is accessible from any
point in the state space. We now describe a toy
Gibbs sampler that will be used for illustration
several times throughout the paper.

Example 2. Let Y1� � � � �Ym be iid N�µ� θ� and let
the prior for �µ� θ� be proportional to 1/√θ. The pos-
terior density is characterized by

π�µ� θ�y� ∝ θ−�m+1�/2 exp
{

− 1
2θ

m∑
j=1

�yj − µ�2
}
�(6)

where y = �y1� � � � � ym�T. It is easy to check that
this posterior is proper as long as m ≥ 3 and we
assume this throughout. Using the Gibbs sampler
to make draws from (6) requires the full conditional
densities, f�µ�θ�y� and f�θ�µ�y�, which are as fol-
lows:

µ�θ�y ∼ N�ȳ� θ/m��

θ�µ�y ∼ IG
(
m− 1
2

�
s2 +m�ȳ− µ�2

2

)
�

where ȳ is the sample mean and s2 = ��yi − ȳ�2.
[We say W ∼ IG�α�β� if its density is proportional
to w−�α+1�e−β/wI�w > 0��] Consider the Gibbs sam-
pler (or data augmentation algorithm) that updates
θ then µ; that is, if we let �θ′� µ′� denote the current
state and �θ�µ� denote the future state, the transi-
tion looks like �θ′� µ′� → �θ�µ′� → �θ�µ�. The state
space in this case is � = �+ × � and the Markov
transition density is

k�θ�µ�θ′� µ′� = f�θ�µ′�y�f�µ�θ�y��(7)

In other words, the density of the new value �θ�µ�
given the current state �θ′� µ′� is k�θ�µ�θ′� µ′�. Sim-
ulating a random variable from this density can
be done sequentially by first taking θ ∼ f�θ�µ′�y�
followed by µ ∼ f�µ�θ�y� (the usual Gibbs updat-
ing strategy). Note that, as is almost always the
case, Pn does not have a closed form. Obviously

(6) is not intractable in any sense, so this Gibbs
sampler would never actually be used. However, its
simplicity makes it ideal for demonstrating the cal-
culation of drift and minorization conditions (see
Section 3.1).
By construction, the posterior density is invariant

for the Gibbs Markov chain; that is,

π�µ� θ�y�

=
∫
�+

∫
�
k�θ�µ�θ′� µ′�π�µ′� θ′�y�dµ′ dθ′�

(8)

The reader is invited to verify that (8) follows
directly from (7). Now, if A ∈ � is such that
π�A� > 0, then A must have positive Lebesgue
measure. Thus, for any �θ′� µ′� ∈ � , we have

P��θ′� µ′��A� =
∫
A
k�θ�µ�θ′� µ′�d�θ�µ� > 0

since k is strictly positive on � . Thus, the proba-
bility of moving from any point in the state space
to any set with positive π-measure in one step is
positive. We conclude that this Gibbs Markov chain
is π-irreducible and aperiodic. (See Tierney, 1994,
page 1711 for a general definition of aperiodicity.)
We will return to this example later.

Under simple regularity conditions, a Markov
chain will “converge” to its invariant distribution
no matter how it is started. We will say that $
satisfies assumption �� � if it:

(i) possesses an invariant density (or probability
measure), π;

(ii) is π-irreducible;
(iii) is aperiodic;
(iv) is Harris recurrent.

Harris recurrence (Meyn and Tweedie 1993, Chap-
ter 9) is a technical condition that is usually easy
to verify when (i), (ii) and (iii) are satisfied. Specific
results concerning the Harris recurrence of Gibbs
samplers and Metropolis–Hastings chains can be
found in Tierney, 1994, Corollaries 1 and 2. From
a practical point of view, assumption �� � implies
that the starting value is irrelevant and that the
chain will thoroughly explore the state space as the
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number of iterations grows large. Under assumption
�� �, for every x ∈ � we have

�Pn�x� ·� − π�·�� ↓ 0 as n → ∞�(9)

where

�Pn�x� ·� − π�·�� �= sup
A∈�

�Pn�x�A� − π�A��

is the total variation distance between the proba-
bility measures Pn�x� ·� and π�·�. (When the prob-
ability measures have densities, the total variation
distance can be expressed as one-half the integrated
absolute difference between the densities.) In words,
(9) says that no matter what the starting value, the
random variables in the Markov chain look more
and more like a random variable from π as n gets
large. (See Rosenthal, 2001, for an accessible proof
of this result.)
Assumption �� � also guarantees that the

ergodic theorem holds. Specifically, if Eπ �h� �=∫ �h�x��π�dx� < ∞, then for any starting value,

1
n

n−1∑
i=0

h�Xi� → Eπh as n → ∞

with probability 1. Thus, letting B ∈ �0�1� � � ��
denote the burn-in,

h̄n�B �= 1
n

B+n−1∑
i=B

h�Xi�(10)

is a strongly consistent estimator of Eπh. In this
notation, our original two questions become: (Q1)
How large should we take B? and (Q2) How large
an n is required?
It is important to recognize that burn-in is not

strictly necessary; that is, using B = 0 in (10) still
results in a strongly consistent estimator of Eπh.
However, most variance estimation techniques (e.g.,
batch means and spectral analysis) are more effec-
tive when the Markov chain is stationary (Bratley,
Fox and Schrage, 1987, page 94). Hence, if one of
these techniques is to be employed, then it may
be necessary to use a nonzero burn-in. In contrast,
the regenerative simulation method of estimating
variance (discussed in Section 5) does not require a
stationary chain. In fact, X0 is drawn from a pre-
scribed distribution not equal to π! (For more on
the burn-in debate, see C. J. Geyer’s Web page at
www.stat.umn.edu/˜charlie/.)

2.2 Geometric Convergence to � and Its
Connection to (Q1) and (Q2)

Assumption (� ) gets us the convergence in (9),
but does not tell us anything about the rate of con-
vergence. In fact, rigorous answers to (Q1) and (Q2)
can be developed if it can be established that the

convergence in (9) takes place at a geometric rate.
More specifically, the Markov chain $ satisfying
assumption (� ) is said to be geometrically ergodic
if there exists a constant 0 < t < 1 and a function
M� � �→ �+ such that for any x ∈ � ,

�Pn�x� ·� − π�·�� ≤ M�x�tn(11)

for n = 1�2� � � �. [If there exists a bounded M sat-
isfying (11), then $ is called uniformly ergodic, and
if � has a finite number of elements, then M is
necessarily bounded.]
Obviously, if (11) holds and we have (or can

bound) M�·� and t, then for a given starting value,
X0 = x, we can calculate exactly how many iter-
ations are necessary to get the total variation
distance below some prespecified value. As we will
see later, establishing a drift condition and an asso-
ciated minorization condition allows us to use the
results of Rosenthal (1995) or Roberts and Tweedie
(1999) to form an upper bound on the right-hand
side of (11). This takes care of (Q1).
We should point out that several techniques for

bounding the right-hand side of (11) have been
developed specifically for cases where � is finite
(but very large) (see, e.g., Diaconis and Stroock,
1991). Applications of such techniques in MCMC
contexts include Frigessi, di Stefano, Hwang and
Sheu (1993) and Ingrassia (1994). Unfortunately,
these methods are not directly applicable to chains
on general state spaces (but see Yuen, 2000).
We know that for any fixed B ∈ �0�1� � � ��� h̄n�B is

a strongly consistent estimator ofEπh. We now seek
a reliable measure of its accuracy. Suppose that the
following CLT holds:

√
n�h̄n�B −Eπh� d→ N�0� σ2

h��(12)

Then given a consistent estimate of σ2
h, we could get

an asymptotic standard error for h̄n�B. Indeed, Chan
and Geyer (1994) show that if $ satisfies assump-
tion (� ), is geometrically ergodic and Eπ �h�2+ε < ∞
for some ε > 0, then (12) holds with

σ2
h = Varπ�h�X0�� + 2

∞∑
i=1

Covπ�h�X0�� h�Xi���

The subscript “π” means that the variance and
covariances are calculated under stationarity; that
is, assuming that X0 ∼ π.
Mykland, Tierney and Yu (1995) and Robert

(1995) show that when the CLT holds it is possible
to obtain a consistent estimate of σ2

h by uncover-
ing regeneration times; that is, times at which the
Markov chain stochastically restarts itself. This
technique is called regenerative simulation (RS)
and is closely related to the regenerative method
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that has been discussed extensively in the oper-
ations research literature (see, e.g., Glynn and
Iglehart, 1987). In contrast to other variance esti-
mation methods (see, e.g., Geyer, 1992), RS does
not require $ to be stationary or reversible. [While
standard, fixed scan Gibbs samplers like the ones
we analyze in this article are not reversible, some
flavors of the Gibbs sampler are reversible (Besag,
Green, Higdon and Mengersen, 1995).] The use of
RS for the purpose of constructing Monte Carlo
standard errors is described in Section 5 and illus-
trated in Section 6.4.
Geometric ergodicity is not necessary for CLTs

(see, e.g., Jarner and Roberts, 2001), but a CLT
may fail to hold even in very simple applications of
subgeometric MCMC. For example, Roberts (1999)
shows that for the independence Metropolis algo-
rithm of Example 1, a CLT (for all functions h that
are bounded away from zero at ∞) will not hold
if θ > 2. In the next section, we define drift and
minorization and describe how they can be used
to establish (11), and to formally address (Q1) and
(Q2).

3. GEOMETRIC ERGODICITY VIA
DRIFT AND MINORIZATION

This section is broken up into three subsections.
In Section 3.1, we define drift and minorization and
illustrate the required calculations with our toy
Gibbs sampler. Section 3.2 begins with a descrip-
tion of how a minorization condition can be used to
split the Markov transition density into a mixture
of two densities. This is an important concept for
understanding both convergence rate bounds and
regenerative simulation. Section 3.2 also contains a
recipe for using this mixture representation to con-
struct two copies of $ that eventually couple; that
is, become the same chain. This construction leads
to the coupling inequality which is the key result for
deriving convergence rate bounds. In Section 3.3,
the coupling inequality is used to show how drift
and minorization together imply that the Markov
chain converges at a geometric rate.

3.1 Definitions and Examples

Throughout this section we assume that the
Markov chain $ satisfies assumption (� ). We
say a drift condition holds if for some function
V� � �→  0�∞�, some 0 < λ < 1, and some b < ∞,

E V�Xi+1��Xi = x! ≤ λV�x� + b ∀ x ∈ � �(13)

Note that this expectation is with respect to the
Markov transition kernel and not π. It is useful
to think of V as a potential energy surface. When

(13) holds, the chain tends to “drift” toward states
of lower energy in expectation. In this context, V
is called an energy function. Here is an example of
establishing (13).

Example 2 (Continued). Assume that m ≥ 5. We
shall establish a drift condition using the function
V�µ� θ� = �µ − ȳ�2. The form of the Markov tran-
sition density (7) implies that (i) given µ′, �µ� θ� is
conditionally independent of θ′; and (ii) given θ, µ
is conditionally independent of µ′. It follows that

E V�µ� θ��θ′� µ′! = E V�µ� θ��µ′!
= E�E V�µ� θ��θ!�µ′��

Since µ�θ�y ∼ N�ȳ� θ/m�, the innermost expecta-
tion yields

E V�µ� θ��θ! = E �µ− ȳ�2�θ! = Var�µ�θ� = θ

m
�

Similarly,

E�θ�µ′� = s2 +m�µ′ − ȳ�2
m− 3

�

Therefore,

E V�µ� θ��θ′� µ′! = 1
m− 3

�µ′ − ȳ�2 + s2

m�m− 3�
≤ λV�µ′� θ′� + b

for b = s2/ m�m− 3�! and any λ ≥ 1
m−3 . This estab-

lishes (13) since m ≥ 5.

A minorization condition holds if for some proba-
bility measureQ on�, some set C for which π�C� >
0, and some ε > 0

P�x�A� ≥ εQ�A� ∀x ∈ C�A ∈ ��(14)

The set C is called a small set. Note that plugging
� into (14) shows that ε ≤ 1.
One way to verify that $ is geometrically ergodic

is to show that $ satisfies both a drift condition
and an associated minorization condition. Specifi-
cally, the chain is geometrically ergodic if it satis-
fies (13) and (14) with C = �x ∈ � � V�x� ≤ d� and
any d larger than 2b/�1 − λ� (Rosenthal 1995). We
now demonstrate how to establish a minorization
condition, again using our toy Gibbs sampler.

Example 2 (Continued). We use a technique that
is based on Rosenthal’s (1995) Lemma 6b. Let C =
��θ�µ�� �µ− ȳ�2 < d� where d > 0. Suppose that we
can find a density q�θ�µ� on � = �+ × � and an
ε > 0 such that whenever �θ′� µ′� ∈ C,

f�θ�µ′�y�f�µ�θ�y� ≥ εq�θ�µ�
∀ �θ�µ� ∈ � �

(15)
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Let Q�·� be the probability measure associated with
the density q. Then for any set A and any �θ′� µ′� ∈
C we have

P��θ′� µ′��A� =
∫
A
f�θ�µ′�y�f�µ�θ�y� d�θ�µ�

≥ ε
∫
A
q�θ�µ� d�θ�µ� = εQ�A��

and hence (14) is established. We now construct a
q�θ�µ� and an ε > 0 that satisfy (15).
Let Cµ = �µ� �µ− ȳ�2 < d� and note that for any

µ′ ∈ Cµ we have

f�θ�µ′�y�f�µ�θ�y� ≥ f�µ�θ�y� inf
µ∈Cµ

f�θ�µ�y��

Recall that f�θ�µ�y� is just an IG density. In fact,
g�θ� �= infµ∈Cµ

f�θ�µ�y� can be written in closed
form. (The infimum does actually depend on the
data and this is being suppressed in the notation.)
Let IG�α�β�w� denote the value of the IG�α�β� den-
sity evaluated at the point w > 0. A calculation sim-
ilar to one done in Rosenthal (1996) yields

g�θ� = inf
µ∈Cµ

IG
(
m− 1
2

�
s2

2
+ m

2
�µ− ȳ�2� θ

)

=



IG

(m− 1
2

�
s2

2
+ md

2
� θ
)
� θ < θ∗�

IG
(m− 1

2
�
s2

2
� θ
)
� θ ≥ θ∗�

where θ∗ = md �m−1� log�1+md/s2�!−1. (See Jones
and Hobert, 2001, for more details about this.) Fig-
ure 2 shows g�θ� for the case where m = 5� s2 = 10,
and d = 22/5. Now put

ε =
∫
�+

∫
�
g�θ�f�µ�θ�y� dµ dθ =

∫
�+
g�θ� dθ�

Then (15) is satisfied with this ε and the density
q�θ�µ� = ε−1g�θ�f�µ�θ�y�. Note that ε can be calcu-
lated with two evaluations of the incomplete gamma
function. Since our minorization holds for any d > 0,
we may conclude that this Gibbs sampler is geomet-
rically ergodic as long as m ≥ 5. We will return to
this example in Section 4.

Of course, (13) and (14) may be difficult (if
not impossible) to establish in realistic settings.
Indeed, there is no guarantee that convergence
occurs at a geometric rate even in simple appli-
cations of MCMC (recall Example 1). Examples
of the use of drift or minorization for analyzing
MCMC algorithms include Robert (1995), Rosen-
thal (1995, 1996), Roberts and Rosenthal (1998b),
Hobert and Geyer (1998), Jones and Hobert (2001)
and Hobert (2001), who considered Gibbs samplers;
Meyn and Tweedie (1994), Mengersen and Tweedie
(1996), Roberts and Tweedie (1996) and Jarner

and Hansen (2000), who worked on Metropolis–
Hastings algorithms; and Roberts and Rosenthal
(1999), Mira and Tierney (2001), who examined
slice sampler Markov chains. In the remainder
of this section, we explain the theoretical connec-
tion between geometric ergodicity and drift and
minorization.

3.2 Minorization and Coupling

The concepts of splitting and coupling are
explained in this subsection. We begin with split-
ting. Recall that P�x�A� = ∫

A k�u�x� du. For the
time being, we require only a minorization condi-
tion. Hence, assume that we have established (14)
by finding a set C, a density q�·� on � , and an
ε > 0 such that whenever x ∈ C,

k�u�x� ≥ εq�u� ∀ u ∈ � �(16)

Note that for each fixed x ∈ C,

r�u�x� �= k�u�x� − εq�u�
1− ε

is a density in u and is called the residual density.
It follows that, whenever x ∈ C, we can split k�u�x�
into a mixture of two densities as follows:

k�u�x� = εq�u� + �1− ε� r�u�x��(17)

Whenever Xi ∈ C, (17) can be used to generate Xi+1
sequentially as follows. Given Xi ∈ C, generate δi ∼
Bernoulli�ε�. If δi = 1, then draw Xi+1 ∼ q�·�, else
draw Xi+1 ∼ r�·�Xi�.
This mixture representation of k�u�x� allows

for the (joint) construction of two Markov chains,
$x = �X0�X1�X2� � � �� and $y = �Y0�Y1�Y2� � � ��,
that, marginally, are copies of $ which are not inde-
pendent. In fact, $x and $y are constructed in such
a way that they eventually become the same Markov
chain; that is, they eventually couple. What makes
this possible is the fact that the density q in (17)
does not depend on x. Here are the details.
Let X0 = x0 be an arbitrary, fixed starting value

and draw Y0 from the invariant probability distribu-
tion; that is, Y0 ∼ π. (Note that we will not actually
have to simulate from π). The construction involves
two different methods of simulating �Xi+1�Yi+1�
conditional on �Xi�Yi�, and which of the two is used
depends on whether or not �Xi�Yi� ∈ C × C. First,
if �Xi�Yi� �∈ C × C, then we draw Xi+1 ∼ k�·�Xi�
and independently draw Yi+1 ∼ k�·�Yi�. If, on the
other hand, �Xi�Yi� ∈ C × C, then we use (17)
as follows. We draw δi ∼ Bernoulli�ε�. If δi = 0,
then we draw Xi+1 ∼ r�·�Xi� and independently
draw Yi+1 ∼ r�·�Yi�. But if δi = 1, then we draw
Xi+1 = Yi+1 ∼ q�·� and all future draws are made
in such a way that the two chains remain equal.
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Fig. 2. Consider the family of densities IG �m−1
2 � s

2

2 + m
2 �µ− ȳ�2� as µ ranges over the set Cµ; that is, as �µ− ȳ�2 ranges between 0 and

d. Suppose, for example, that m = 5, s2 = 10 and d = 22/5. Then the shape parameter is 2 and the scale parameter ranges between 5
and 16. Five of these densities, including the extremes, are pictured above. The point of intersection of the two extremes is θ∗ = 4�73. It
is clear that one of the extremes is always the minimum. Specifically, when θ ∈ �0� θ∗�, IG(2, 16) is below all the others, while for values
above θ∗, IG(2, 5) is the smallest.

The coupling time, T, is defined to be the (ran-
dom) time at which coupling occurs; that is, the
time at which the two chains become the same.
The key result that is used to bound convergence
rates of (general state space) Markov chains is the
so-called coupling inequality which is now derived.
Recall that the total variation distance between the
probability measures Pn�x0� ·� and π�·� is defined
as

�Pn�x0� ·� − π�·�� �= sup
A∈�

�Pn�x0�A� − π�A���

Consider the right-hand side and note that, using
the construction above, we have

�Pn�x0�A�−π�A��
=�Pr�Xn∈A�−Pr�Yn∈A��
=�Pr�Xn∈A� Xn=Yn�+Pr�Xn∈A� Xn �=Yn�

−Pr�Yn∈A� Xn=Yn�−Pr�Yn∈A� Xn �=Yn��
=�Pr�Xn∈A� Xn �=Yn�−Pr�Yn∈A� Xn �=Yn��
≤max�Pr�Xn∈A� Xn �=Yn��

Pr�Yn∈A� Xn �=Yn��
≤Pr�Xn �=Yn�≤Pr�T>n��

Hence, the coupling inequality,

�Pn�x0� ·� − π�·�� ≤ Pr�T > n��
In the case where the entire state space is small;

that is, when C = � , the coupling inequality imme-
diately yields a bound on the total variation dis-
tance to stationarity. To see this, note that when
C = � , �Xi�Yi� is always in C × C, which means
that a Bernoulli�ε� is drawn at every step. Thus,
T ∼ Geometric�ε�; that is, Pr�T = n� = ε�1 − ε�n−1

for n ∈ �. It follows that Pr�T > n� = �1− ε�n, and
hence we have the following result.

Theorem 1 (Meyn and Tweedie, 1993, page 392).
Suppose the Markov chain $ satisfies assumption
(� ) as well as the minorization condition (14) with
C = � . Then

�Pn�x0� ·� − π�·�� ≤ �1− ε�n�
Observe that the bound does not depend on

the starting value, x0, and hence $ is uniformly
ergodic. Uniform ergodicity is not common in
MCMC, but there are a few instances (Robert and
Casella, 1999, Chapter 9). One is the independence
Metropolis algorithm with fat tail proposals which
we now discuss.
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Example 1 (Continued). Consider a general
independence Metropolis sampler with target den-
sity π�x� and proposal density p�x�. Suppose that
both of these densities are continuous and strictly
positive on � . In this case, the Markov tran-
sition kernel, P, does not have a density with
respect to Lebesgue measure (Tierney, 1998), but
the chain does satisfy assumption (� ). Mengersen
and Tweedie (1996) show that if there exists a κ > 0
such that

π�x�
p�x� ≤ κ ∀ x ∈ � �(18)

then (14) holds with C = � and ε = κ−1. Thus, by
Theorem 1 the Markov chain is uniformly ergodic
and

�Pn�x� ·� − π�·�� ≤
(
1− 1

κ

)n

�

Mengersen and Tweedie (1996) also show that if
for every κ > 0 there is a set of positive measure
where (18) fails to hold, then the chain converges
at a subgeometric rate. Thus, there is an “all or
nothing” aspect to the independence sampler. For
the independence sampler of Example 1 we have
π�x�/p�x� = θ−1 exp�x�θ−1��. Consequently, when
θ ∈ �0�1� the chain is uniformly ergodic and if θ > 1,
it is subgeometric.
Note that the existence of κ satisfying (18) is

exactly what is required to implement rejection
sampling with proposal density p (Robert and
Casella, 1999, page 49). However, unlike the rejec-
tion sampler, the independence sampler can be
implemented without knowing the value of κ. (See
Tierney, 1994, Caffo, Booth and Davison, 2001, for
more on this.)

Unfortunately, even when the hypotheses of
Theorem 1 hold, it is often the case that the value
of ε is too small for Theorem 1 to be of any practical
value. Indeed, there is typically a trade-off between
the size of the small set and the magnitude of ε.
When C is a proper subset of � , the distribution
of T is quite complicated. This case is addressed in
the next subsection.

3.3 Connecting Drift and Minorization to
Geometric Convergence

We now explain how drift and minorization can
be used to establish geometric convergence to the
invariant distribution when the set C in (14) is not
the entire state space. We do not intend this argu-
ment to be rigorous. We are striving only to convey
the nature of the connection. For a completely rig-
orous approach, the reader should consult Lindvall

(1992), Meyn and Tweedie (1993), Rosenthal (1995)
and Roberts and Tweedie (1999).
We have seen that if the whole space is small,

then the number of steps until we successfully cou-
ple has a geometric distribution. Suppose now that
(14) holds for some set C that is a proper subset
of � . Then each time we reach C, we can draw a
Bernoulli(ε) and if we get a “success” we couple and
we can apply the coupling inequality.
Thus, the next thing to consider is how long it

takes between visits to C. Let τC denote the (ran-
dom) number of steps it takes the chain to return
to the set C; that is, τC = min�n ≥ 1� Xn ∈ C�.
Obviously, the distribution of τC will depend on the
starting value, x0. Suppose we could show that, for
every x0 ∈ C, τC has a moment generating function.
It would then follow that the time to a successful
coupling, T, is a geometric sum of (random) excur-
sion times each of which has a “thin tailed” distri-
bution; so overall T itself would have a thin tail
and hence a moment generating function (Roberts
and Tweedie, 1999, Theorem 2.1). Thus, there would
exist a β > 1 such that E�βT� < ∞ and from the
coupling inequality we would have

βn�Pn�x� ·� − π�·��≤βn Pr�T > n�
≤E βTI�T > n�! → 0

(19)

as n → ∞ by dominated convergence. Therefore, we
would be able to conclude that �Pn�x� ·� − π�·�� =
o�β−n�; that is, the convergence to stationarity
occurs at a geometric rate. (Some might refer to
this as exponential convergence, but see Lindvall,
1992, page 30.)
The role of the drift condition is to ensure that

the return time, τC, has the required tail behavior.
To see this, we need to introduce a second sufficient
condition for geometric convergence that involves a
slight variation on (13). Specifically, suppose that
for some function V� � �→  1�∞�, some 0 < λ < 1
and some b < ∞, the Markov chain $ satisfies

E V�Xi+1��Xi = x!
(20)

≤ λV�x� + bIC�x� ∀x ∈ � �

where C = �x ∈ � � V�x� ≤ d� and d is any number
larger than b

2�1−λ� − 1. If (20) holds and a minoriza-
tion condition is satisfied on C, then $ is geometri-
cally ergodic (Roberts and Tweedie, 1999). Suppose
now that (20) holds and note that we may rewrite
it as

8V�x� �= E V�Xi+1��Xi = x! −V�x�
≤ −�1− λ�V�x� + bIC�x��

Therefore, the expected change in the value of V
is negative when x is not in C; and indeed, not
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only does V�x� “drift” in to the set where V is
small in this sense, but it does so in such a way
that from points x with larger V values, the drift
is faster. Conceptually, this suggests that once the
chain leaves C it should return quickly.
Mathematically, it turns out that V gives the

required tail behavior in a very explicit sense.
Indeed, it can be shown that (20) implies that for
any x0 ∈ C,

E λ−τC! ≤ d+ b

λ

(Meyn and Tweedie, 1994; Lund and Tweedie,
1996). So overall, drift covers the tail behavior of
the return times to C and minorization ensures
that only a geometric number of those times are
needed; together they lead to the existence of a
β > 1 satisfying (19). In the next section, we state
a theorem of Rosenthal (1995) that gives explicit
upper bounds on the distance to stationarity in
terms of the drift and minorization conditions.

4. HOW MUCH BURN-IN?

Suppose that the Markov chain $ satisfies
assumption �� �. Here is a slightly simplified ver-
sion of Rosenthal’s (1995) result:

Theorem 2 (Rosenthal, 1995). Suppose that $
satisfies the drift condition (13). Further suppose
that $ satisfies the minorization condition (14)
on C = �x� V�x� ≤ d� where d is any number
larger than 2b/�1 − λ�. Let X0 = x0 and define two
constants as follows:

α = 1+ d

1+ 2b+ λd
and U = 1+ 2�λd+ b��

Then for any 0 < r < 1,

�Pn�x0� ·� − π�·��

≤ �1− ε�rn +
(
Ur

α1−r

)n(
1+ b

1− λ
+V�x0�

)
�

In applying this result, the user must specify
the values of d and r. It makes sense to do so in
such a way that Ur

α1−r < 1; otherwise the bound may
not decrease in n. Furthermore, in our experience,
slight changes in d and r can lead to wildly dif-
ferent results, so it pays to experiment. We use
Theorem 2 in a realistic application in Section 6.
Here is a simpler example of its use.

Example 2 (Continued). Suppose thatm = 5 and
s2 = 10. Then the drift condition established in
Section 3.1 holds with b = 1 and any λ ≥ 1/2. If
we take λ = 1/2, then d can be any number larger
than 2b/�1−λ� = 4. If we take d = 6, then ε ≈ 0�35.

Then taking r = 0�05 and starting the chain with
µ0 = ȳ, we have

�Pn��θ0� µ0�� ·� − π�·�� ≤ �0�9785�n + 3�0�9641�n�
Hence, after 220 iterations, the total variation dis-
tance is less than 0.01. (Of course, the total varia-
tion distance could be less than 0.01 much sooner;
for an extreme example of this, see the Rejoinder of
van Dyk and Meng, 2001.)

An alternative to Rosenthal’s bound is given in
Roberts and Tweedie (1999, 2001). These authors
prove that their bound is better than Rosenthal’s
as the number of iterations tends to infinity, but
some of their examples show little practical differ-
ence between the two bounds. The main difference
between the hypotheses of Theorem 2 and those of
Roberts and Tweedie is the form of the drift con-
dition. Specifically, Theorem 2 requires (13) while
Roberts and Tweedie require (20). In our experi-
ence, (13) is easier to establish than (20). There is a
“conversion” formula that can be used to construct
a drift condition of the form (20) given one of the
form (13). See Jones and Hobert (2001) for more on
this. In the next section, a rigorous answer to (Q2)
is formulated.

5. MONTE CARLO STANDARD ERRORS

In this section, we discuss the use of regen-
erative simulation (RS) for calculating standard
errors of ergodic averages. Basically, the regener-
ative method involves breaking simulation output
up into iid pieces that can be analyzed using stan-
dard results for iid data. A complete development
of this subject can be found in Ripley (1987, Chap-
ter 6) or Bratley, Fox and Schrage (1987, Chapter
3). Mykland, Tierney and Yu (1995), Robert (1995)
and Robert and Casella (1999, Chapter 8) discuss
RS in the MCMC context. Regenerative methods of
analyzing simulation-based output have a rich his-
tory in the operations research literature (see, e.g.,
Crane and Iglehart, 1975; Glynn, 1985; Glynn and
Iglehart, 1987, 1990).
This section consists of three subsections. A gen-

eralization of (14) is introduced in Section 5.1. This
more general minorization condition can be used in
the same manner as (14) to represent the Markov
transition density as a mixture of two densities. It
is this mixture that is used to break the output up
into iid pieces. The details are given in Section 5.2.
In Section 5.3, we explain exactly how RS is used to
calculate Monte Carlo standard errors. The method
of batch means, which is an alternative to RS, is also
briefly discussed.
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5.1 A More General Minorization Condition

A generalization of (14) is as follows. For some
function s� � �→  0�∞� such that Eπs > 0 and some
probability measure Q on �,

P�x�A� ≥ s�x�Q�A� ∀x ∈ � �A ∈ ��(21)

Clearly, (14) is the special case of (21) where
s�x� = εI�x ∈ C�. Note that plugging � into
(21) shows that s�x� ≤ 1. Mykland, Tierney and
Yu (1995) show that it is often easy to establish
(21) for Gibbs samplers and Metropolis–Hastings
algorithms. (Our reasons for introducing this gen-
eralization will be spelled out later in this section.)
Recall that P�x�A� = ∫

A k�u�x�du. We can estab-
lish (21) by finding a nonnegative function s�·� and
a density q�·� on � such that

k�u�x� ≥ s�x�q�u� ∀x�u ∈ � �(22)

We now establish (22) for our toy Gibbs sampler
using a technique described in Mykland, Tierney
and Yu (1995).

Example 2 (Continued). We will construct a den-
sity q�θ�µ� on � = �+ × � and a function s�θ′� µ′�
such that

k�θ�µ�θ′� µ′� ≥ s�θ′� µ′�q�θ�µ�

for all �θ�µ�, �θ′� µ′� ∈ � . To this end, let �θ̃� µ̃� be
a “distinguished point” in � and let D be a set in
� . Note that

k�θ�µ�θ′� µ′� = f�θ�µ′�y�f�µ�θ�y�

=
[
f�θ�µ′�y�
f�θ�µ̃�y�

]
f�θ�µ̃�y�f�µ�θ�y�

≥
[

inf
�θ�µ�∈D

f�θ�µ′�y�
f�θ�µ̃�y�

]
f�θ�µ̃�y�

×f�µ�θ�y�I �θ�µ� ∈ D!
for all �θ�µ�, �θ′� µ′� ∈ � . Let

ε =
∫
D
f�θ�µ̃�y�f�µ�θ�y�d�θ�µ��

Now simply take q�θ�µ� = ε−1f�θ�µ̃�y�f�µ�θ�y�×
I �θ�µ� ∈ D! and take

s�θ′� µ′� = ε inf
�θ�µ�∈D

f�θ�µ′�y�
f�θ�µ̃�y� �

As a specific example, take the distinguished point
to be �θ̃� µ̃� = �1� ȳ� and D =  d1� d2! × � where

0 < d1 < d2 < ∞. Then

inf
�θ�µ�∈D

f�θ�µ′�y�
f�θ�µ̃�y� =

[
1+ m�ȳ− µ′�2

s2

]�m−1�/2

× exp
{
−m�ȳ− µ′�2

2d1

}
and calculating ε again boils down to evaluating the
incomplete gamma function. In practice, the distin-
guished point is often set at a preliminary estimate
of the mean of the stationary distribution and D is
centered about that point; see Section 6.4.

5.2 The Split Chain

The analogue of (17) for our new minorization con-
dition is

k�u�x� = s�x�q�u� + �1− s�x��r�u�x��(23)

where the residual density r�u�x� is now defined as

r�u�x� �= k�u�x� − s�x�q�u�
1− s�x�

if s�x� < 1 and 0 otherwise. The mixture (23) can be
used to generate Xi+1 sequentially as follows. Given
Xi = x, generate δi ∼ Bernoulli�s�x��. If δi = 1, then
draw Xi+1 ∼ q�·�, else draw Xi+1 ∼ r�·�x�. What we
are actually doing here is simulating the so-called
split chain,

$′ = ��X0� δ0�� �X1� δ1�� �X2� δ2�� � � ���
which has state space � ×�0�1� (Athreya and Ney,
1978; Nummelin, 1978, 1984). The times at which
δi = 1 are regeneration times when $′ probabilis-
tically restarts itself. More specifically, suppose we
start $′ with X0 ∼ q�·�. Then each time that δi = 1,
Xi+1 ∼ q�·� and we are, in effect, starting over again.
Moreover, the tours in between regeneration times
are iid. Observe that as we make s�x� larger, we
expect the average tour length to decrease.
In order to use RS to get standard errors, we must

be able to simulate $′. The most straightforward
way to do this is as described above. This is prob-
lematic, however, because drawing from r�·�x� can
be quite difficult in practice (see, e.g., Robert, 1995).
(Note that (17) was used only for the theoretical
argument leading to the coupling inequality, and
hence the issue of drawing from r never came up
in Section 3.2.)
Fortunately, Mykland, Tierney and Yu (1995) pro-

vide a simple and clever way of avoiding r alto-
gether. If we write the transition as Xi → δi → Xi+1,
we need to generate from �δi�Xi+1��Xi. Above, we
suggested doing this by first drawing from δi�Xi

and then drawing from Xi+1�δi�Xi, which, if δi =
0, entails simulation from r�·�Xi�. Mykland et al.
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(1995) note that simulating from the residual den-
sity can be avoided by first drawing from Xi+1�Xi (in
the usual way) and then drawing from δi�Xi�Xi+1.
A straightforward calculation shows that

Pr�δi = 1�Xi�Xi+1� = s�Xi�q�Xi+1�
k�Xi+1�Xi�

�(24)

which is often easy to calculate.
There is actually another important advantage

to drawing from �δi�Xi+1��Xi in this way. Mykland,
Tierney and Yu’s (1995) method of establishing
(22) (for Gibbs samplers) entails first showing
that k�u�x� ≥ s′�x�q′�u�, where q′ is an unnor-
malized density, and then letting q = q′/

∫
q′

and s = s′ ∫ q′. Note, however, that drawing from
δi�Xi�Xi+1 requires only the product s�Xi�q�Xi+1�.
Consequently, there is no need to calculate the
normalizing constant!
It is possible to use the original minorization

condition (14) for RS. However, in our experience,
minorization conditions of the form (21) typically
lead to many more regenerations than those of the
form (14). This is important because if regener-
ations happen very infrequently, it may take an
inordinate amount of time to observe enough regen-
erations so that the approximations (described
below) are reasonable. We now explain how the
ideas in Sections 5.1 and 5.2 are applied in RS.

5.3 Regenerative Simulation

Assume that the Markov chain $ satisfies
assumption �� �. We know that Eπ �h� < ∞ implies
that h̄n �= h̄n�0 = n−1�n−1

i=0 h�Xi� is a strongly
consistent estimator of Eπh regardless of the start-
ing value. Assume further that $ is geometrically
ergodic and that Eπ �h�2+ε < ∞ for some ε > 0, so
that we have the following CLT:

√
n�h̄n −Eπh� d→N�0� σ2

h��(25)

Estimation of σ2
h is difficult because the Xi’s consti-

tuting h̄n are not independent. By using the split
chain, we can rewrite h̄n as a function of iid bivari-
ate random vectors. This trick allows us to use stan-
dard techniques from iid theory to calculate a valid
Monte Carlo standard error. Here are the details.
Suppose that we have established (22) so we can

simulate $′ using Mykland, Tierney and Yu’s (1995)
technique. Let τ0 < τ1 < · · · be the (random) regen-
eration times; that is, τt+1 = min�i > τt,: δi−1 = 1�.
Assume that τ0 = 0 so the chain is started with a
regeneration; that is, X0 ∼ q�·�. (Mykland, Tierney
and Yu, 1995, show that starting with a regenera-
tion is quite easy for standard MCMC algorithms.)
Also assume that $ is run for a fixed number, R,
of tours; that is, the simulation is stopped the Rth

time that a δi = 1. Thus, the total length of the sim-
ulation, N, is random. Let Nt be the length of the
tth tour; that is, Nt = τt − τt−1 and define

St =
τt−1∑
j=τt−1

h�Xj�

for t = 1� � � � �R. The �Nt�St� pairs are iid since
each is based on a different tour. Assume that Nt

and St have finite second moments. Let %N be the
average tour length; that is, %N = R−1�R

t=1Nt and,
analogously, let %S = R−1�R

t=1St. By the strong law
of large numbers,

h̄R =
�R

t=1St�R
t=1Nt

=
%S
%N = 1

N

N−1∑
j=0

h�Xj� → Eπh(26)

with probability 1 as R → ∞. Furthermore, by the
CLT,

√
R�h̄R −Eπh� d→ N�0� γ2h��(27)

Moreover, γ2h may be consistently estimated with

γ̂2h =
�R

t=1�St − h̄RNt�
2

R %N2
�(28)

For rigorous proofs of all these results, see Hobert,
Jones, Presnell and Rosenthal (2001). Given this
estimate, we can form an asymptotic confidence
interval for Eπh using the formula

h̄R ± z

(
γ̂2h
R

)1/2

�

where z denotes the appropriate standard normal
quantile. Mykland, Tierney and Yu (1995) recom-
mend using (28) only when the estimated coefficient
of variation (CV) of %N is less than 0�01. We illustrate
the use of the RS method in a realistic situation in
Section 6.
There is little discussion in the literature about

how to actually establish thatNt and St have finite
second moments. However, Hobert, Jones, Presnell
and Rosenthal (2001) have recently shown that geo-
metric ergodicity of $ combined with Eπ �h�2+ε < ∞
implies that these moments are finite. Furthermore,
the variances in (25) and (27) are not necessarily the
same, which is why we used two different symbols.
Despite its attractive theoretical properties, there

seem to be few substantive applications of RS in
the MCMC literature. Four examples are Geyer and
Thompson (1995), who use regeneration to calcu-
late Monte Carlo standard errors in the context of
their simulated tempering algorithm, Gilks, Roberts
and Sahu (1998), who employ regeneration to create
adaptive MCMC algorithms, Guihenneuc-Jouyaux
and Robert (1998), who use renewal theory as an
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approach to assessing convergence and Levine and
Casella (2001) who employ RS in the context of the
Markov chain Monte Carlo EM algorithm.
We now briefly describe the method of batch

means, which is an alternative method of calculat-
ing Monte Carlo standard errors. This technique is
a special case of a methodology called standardized
time series, and is the method used by the popu-
lar software package BUGS. (For more details, see
Ripley, 1987, Chapter 6; Bratley, Fox and Schrage,
1987, Chapter 3 or Geyer, 1992.)
Consider estimating Eπh with h̄n and suppose it

is known that a CLT of the form (25) holds. The run
of the sampler is broken up into batches of equal size
that are assumed to be approximately independent.
Specifically, suppose the algorithm is run for a total
of n = ab iterations where b is large enough so that
the quantities

Sk = 1
b

kb−1∑
i=�k−1�b

h�Xi�

are approximately independently N�Eπh�
σ2
h

b
� for

k = 1� � � � � a. The batchmeans estimate of σ2
h is

σ̂2
h = b

a− 1

a∑
k=1

�Sk − h̄n�2�(29)

Bratley, Fox and Schrage (1987, Chapter 3) recom-
mend forming an approximate confidence interval
for Eπh using

h̄n ± ta−1

(
σ̂2
h

ab

)1/2

�

where ta−1 is the appropriate quantile from the
t-distribution with a − 1 degrees of freedom.
The estimator (29) is not a consistent estimator
of σ2

h (Glynn and Iglehart, 1990). Furthermore,
Geyer (1992) points out that the batch means
method will be effective only if the size of the
batches, b, is much larger than the mixing time
for the chain. In most practical applications, the

Table 5
Styrene exposure data

Worker 1 2 4 5 6 7

ȳi 3.302 4.587 5.052 5.089 4.498 5.186 4.915

Worker 8 9 10 11 12 13

ȳi 4.876 5.262 5.009 5.602 4.336 4.813

MT = Km = 39

ȳ = M−1
T

�13
i=1

�3
j=1 yij = 4�809

SSTR = 3
�13
i=1�ȳi − ȳ�2 = 11�430

SSE = �13
i=1

�3
j=1�yij − ȳi�2 = 14�711

only way to get a handle on the mixing time is by
analyzing empirical autocorrelations.
We view the batch means method as an ad hoc

version of the RS method. In particular, both meth-
ods break the run of the sampler up into pieces. The
difference is that in the RS method, this is done in a
way that guarantees that the pieces are truly inde-
pendent. Consequently, it is not necessary to ana-
lyze empirical autocorrelations before applying RS.
(Of course, constructing a useful minorization condi-
tion is usually much harder than examining empiri-
cal autocorrelation plots.) Standard errors produced
using RS are compared with those produced using
batch means in the next section, which contains a
realistic application of all the techniques described
so far in this article.

6. A REALISTIC APPLICATION

The methods described in Sections 3, 4 and 5 are
now used to develop rigorous answers to (Q1) and
(Q2) for the block Gibbs sampler for model (� ). This
section has four subsections. In Section 6.1 we dis-
cuss the data set that will be analyzed, the priors
that will be considered, and the “posterior quanti-
ties of interest” that will be estimated. A detailed
description of the block Gibbs sampler is given in
Section 6.2. Honest answers to (Q1) and (Q2) are
provided in Sections 6.3 and 6.4, respectively.

6.1 The Data, the Priors and the Posterior
Quantities of Interest

Lyles, Kupper and Rappaport (1997) described an
experiment in which laminators working at a boat
manufacturing plant were measured for styrene
exposure. Specifically, 13 workers were randomly
selected from a group within the plant and each
one’s styrene exposure was measured on three
seperate occasions. The data are summarized in
Table 5.
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Lyles, Kupper and Rappaport (1997) performed
a frequentist analysis of these data using a ran-
dom effects model. We consider a Bayesian analysis
using model (� ) from Section 1.3. Specifying the
prior is tantamount to choosing values for the six
hyperparameters: a1, b1, a2, b2, µ0 and λ0. While
we are actually interested in the performance of the
block Gibbs sampler for all possible choices of the
hyperparameters, we will settle for studying six dif-
ferent hyperparameter settings that are shown in
Table 6.
The first two settings in Table 6 represent priors

that are consistent with the data. They are based
on the ANOVA estimates of µ, λ−1

e and λ−1
θ as we

now describe. Define MSE = SSE/�MT − K� and
MSTR = SSTR/�K− 1�. The ANOVA estimates of
µ, λ−1

e and λ−1
θ are ȳ, MSE and (MSTR – MSE)/m,

respectively (Searle, Casella and McCulloch, 1992,
Chapter 3). We set the prior expectations for λθ and
λe equal to the obvious values

E�λθ� = a1
b1

= m

MSTR −MSE
= 7�76

and
E�λe� = a2

b2
= 1
MSE

= 1�77

and then solved for a1, b1, a2 and b2 by setting the
prior variances both equal to c ∈ �0�1�1�. As for µ,
the prior mean was set equal to ȳ and we considered
a couple of different prior variances. Setting #3 is a
so-called “diffuse” prior; that is, all of the prior vari-
ances are large. As we will see below, settings #4–#6
were selected to illustrate certain points about how
our answer to (Q1) depends upon the hyperparam-
eters. We now describe the posterior quantities of
interest.
Recall from (4) that the posterior density is char-

acterized by

π��� µ� λe� λθ�y� ∝ f�y��� λe�
×f���µ�λθ�f�λe�f�µ�f�λθ��

Table 6
Hyperparameter settings

Setting a1 b1 a2 b2 �0 �0 c

1 60.176 7.7573 3.1237 1.7674 4.809 1 1
2 601.76 77.573 31.237 17.674 4.809 0.1 0.1
3 0.1 0.1 0.1 0.1 4.809 0.1 —
4 1 5 1 1 3.6 1 —
5 0.6 1 120 16 4.809 1 —
6 4 80 40 100 4 1 —

Due to the conjugacy in model (� ),

g�λθ� λe� �=
∫
�

∫
�K

f�y��� λe�
×f���µ�λθ�f�λe�f�µ�f�λθ�d�dµ

has a closed form. However, the normalizing con-
stant for π��� µ� λe� λθ�y� given by

cπ �=
∫
�+

∫
�+
g�λθ� λe�dλe dλθ

does not have an analytic solution. We will take the
posterior quantities of interest to be the posterior
expectations of λθ and λe; that is,

E�λθ�y� =
∫ ∫

λθg�λθ� λe�dλe dλθ
cπ

and

E�λe�y� =
∫ ∫

λeg�λθ� λe�dλe dλθ
cπ

�

Each of these is a ratio of intractable two-
dimensional integrals and can be computed (more
or less exactly) using numerical integration. On the
other hand, if we were interested in the posterior
expectation of a complex function of ��� µ� λe� λθ�,
then the dimension of one of the intractable inte-
grals would likely be much higher than two and
could be as high as K + 3 = 16. Fortunately, the
RS procedure that we develop and apply here can
be used to get a standard error for any posterior
expectation (as long as the appropriate CLT holds).
Thus, there is really no loss of generality in looking
at such simple posterior expectations. In the next
section, we describe the block Gibbs sampler that
will be applied.

6.2 The Block Gibbs Sampler

The two obvious fixed scan Gibbs samplers that
could be employed to sample from the posterior π
in (4) are (i) the ordinary “one-at-a-time” version
that updates each component sequentially, and (ii)
a block version in which all of the normal compo-
nents �θ1� � � � � θK�µ� are updated simultaneously.
Given the work of Liu, Wong and Kong (1994) and
Roberts and Sahu (1997), it seems likely that the
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block Gibbs sampler will mix faster than the ordi-
nary Gibbs sampler. Generally speaking, blocking
is effective when the constituent parts of the block
are highly correlated. Also, programming the block
Gibbs sampler is only slightly more difficult than
programming the ordinary Gibbs sampler. Hence-
forth, we confine our attention to the block Gibbs
sampler that is now formally defined.
Let � = �θ1� � � � � θK�µ�T and � = �λθ� λe�T and

define

V1��� =
K∑
i=1

�θi − µ�2 and V2��� = m
K∑
i=1

�θi − ȳi�2�

The full conditionals for the variance components
are

λθ���λe�y ∼ Gamma
(
K

2
+a1�

V1���
2

+b1

)
and
λe���λθ�y ∼ Gamma

(
MT

2
+a2�

V2���+SSE
2

+b2

)
�

Hobert andGeyer (1998) show that ����y ∼ N�� ∗���
and give the specific forms of � ∗ = � ∗���y� and � =
����y�.
One cycle of the block Gibbs sampler consists

of updating λθ, λe and � in some order. Note that
λθ and λe are conditionally independent given �,
and hence the order in which they are updated is
irrelevant. Thus, in effect, the block Gibbs sam-
pler is a data augmentation algorithm (Tanner and
Wong, 1987), the two components being � and �. If
we update � first, a one-step transition looks like
��′� �′� → ��� �′� → ��� ��, and the corresponding
Markov transition density is

k��� ���′� �′� = f�λθ��′�y�f�λe��′�y�f�����y��(30)

It is easy to show that this Markov chain sat-
isfies assumption �� �. Jones and Hobert (2001)
established drift and minorization conditions for
this block Gibbs sampler and these are stated in
Appendix A.

Table 7
Total variation bounds for the styrene exposure data

Setting � b d r � Iterations Bound

1 0.4810 2.9872 12.311 0.0107 4�00× 10−12 3× 108 0.00429
2 0.2112 3.5925 10.708 0.0426 2�74× 10−6 10,000 0.00997
3 0.0504 2.5097 11.212 0.0158 5�39× 10−14 2× 1012 0.00324
4 0.4265 25.380 93.20 0.0059 1�06× 10−15 7× 1017 0.00638
5 0.1279 1.6620 4.8113 0.08550 4�48× 10−3 4,600 0.00921
6 0.1450 22.737 61.283 0.0275 1�11× 10−4 95,000 0.00515

6.3 Honest Burn-in

For each of the six hyperparameter settings in
Table 6, we used Theorem 2 in conjunction with the
drift and minorization conditions in Appendix A to
find a value of n such that

��Pn���0� �0�� ·� − π�·��� ≤ 0�01�(31)

where ��0� �0� is the starting value. In each case,
we used �0 = �ȳ1� � � � � ȳK� ȳ�T. As is clear from (30),
a starting value for � is not required. (This con-
vergence criterion (≤0�01) has become fairly stan-
dard: Rosenthal 1996; Cowles and Rosenthal, 1998;
Roberts and Rosenthal, 1999.)
Table 7 contains the results. For example, under

the first hyperparameter setting, after 3× 108 iter-
ations of the block Gibbs sampler, the total varia-
tion distance to stationarity is at most 0�00429. It
takes about 2 minutes to run 1 million iterations
of our block Gibbs sampler on a standard PC. Con-
sequently, the only settings that result in unman-
ageable burn-ins are settings #3 and #4. Recall that
setting #3 is the diffuse prior. The result for set-
ting #4 is typical of those settings in which µ0 is
far from ȳ and we included setting #4 specifically to
demonstrate this problem. Settings #5 and #6 are
the result of “playing around” with the hyperparam-
eters. Indeed, with #5 we were trying to find a set-
ting that would give a very short burn-in. With #6,
we were trying to see if it was possible to find a set-
ting in which �µ0 − ȳ� is not small, but the resulting
burn-in is still manageable. It is interesting to note
that the value of λ0 does not appear in the drift con-
dition or in the minorization condition and hence its
value has no bearing on the results in Table 7.
There are two possible reasons why our results

suggest that such a long burn-in is necessary for
settings #3 and #4: (i) The results merely reflect
the fact that the block Gibbs sampler mixes very
slowly under these hyperparameter settings, or
(ii) For these particular hyperparameter settings,
Theorem 2 (combined with the drift and minoriza-
tion from Jones and Hobert, 2001) results in very
conservative bounds. The results in the next sub-
section suggest that the real reason is probably (ii).
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6.4 Honest Standard Errors

The drift and minorization conditions established
by Jones and Hobert (2001) show that our block
Gibbs sampler is geometrically ergodic (see also
Hobert and Geyer, 1998). Furthermore, it is easy to
show that Eπ�λpθ �y� and Eπ�λpe �y� are both finite
for any p > 0. Thus, as discussed above, there
are CLTs for the Monte Carlo estimators of our
posterior quantities of interest.
A minorization condition of the form (22) is con-

structed for our block Gibbs sampler in Appendix
B. In order to use this minorization condition
for RS, we had to choose the distinguished point
�̃ = �θ̃1� � � � � θ̃K� µ̃�T ∈ �K+1 and the di’s that deter-
mine the set D =  d1� d2! ×  d3� d4! ⊆ �+ × �+.
These choices were made as follows. The block
Gibbs sampler was run for an initial 10,000 itera-
tions from the starting value �0 = �ȳ1� � � � � ȳK� ȳ�T.
Let θ�b�

1 � � � � θ
�b�
K �µ�b�� λ�b�

e and λ
�b�
θ denote the esti-

mates of the posterior expectations of the corre-
sponding parameters based on these initial 10,000
iterations. For the distinguished point, we set
�̃ = �θ�b�

1 � � � � � θ
�b�
K �µ�b��T. As for D, we set  d1� d2! =

λ
�b�
θ ± 1�1s where s is the (usual) sample standard

deviation of the 10,000 values of λθ, and the inter-
val  d3� d4! was constructed similarly. (We used 1.1
as it seems to result in a reasonable regeneration
rate.)
For each of the six hyperparameter settings, we

performed RS as described in Section 5. Specif-
ically, we started with a regeneration; that is,
��0� �0� ∼ q��� ��, and then ran the chain for as
many regenerations as we needed to get the Monte
Carlo error down to a reasonable level. Table 8
contains the results. For example, we are (approxi-
mately) 95% confident that the true value ofE�λθ�y�
under the first prior is in the interval (7.753, 7.765).

Table 8
Point estimates and asymptotic 95% confidence intervals for E�λθ�y� and E�λe�y�

Number of Mean number
Setting Parameter Estimate �̂2h 95% CI regenerations of iter/regen

1 λθ 7.759 0.2003 (7.753, 7.765) 25000 5.68
λe 1.779 0.0435 (1.776, 1.782)

2 λθ 7.758 0.0305 (7.755, 7.761) 12000 3.39
λe 1.769 0.0227 (1.766, 1.772)

3 λθ 7.363 7.9731 (7.349, 7.377) 150000 24.4
λe 1.793 0.0161 (1.792, 1.794)

4 λθ 0.958 0.0251 (0.955, 0.961) 10000 7.43
λe 1.756 0.0453 (1.752, 1.760)

5 λθ 2.438 0.3036 (2.427, 2.449) 10000 5.04
λe 5.699 0.0537 (5.694, 5.704)

6 λθ 0.118 0.0003 (0.1176, 0.1184) 6000 4.55
λe 0.498 0.0012 (0.497, 0.499)

(In each case, the estimated CV of %N was less than
0.01.) Aside from point estimates and confidence
intervals, Table 8 also contains the estimates of the
asymptotic variances calculated via (28), the total
number of regenerations (R) for which the chain
was run and the mean number of iterations per
regeneration.
It is important to recognize that we did not use

any burn-in to obtain the results in Table 8. Indeed,
as noted by Ripley (1987, Chapter 6), Bratley, Fox
and Schrage (1987, Chapter 3) and Mykland, Tier-
ney and Yu (1995), one of the best features of the RS
method is that burn-in is simply not an issue. On
the other hand, you could consider the initial 10,000
iterations used to construct the distinguished point
and the set D as a form of burn-in.
Recall the results of Theorem 2 given in Table 7:

In order to be certain that the total variation dis-
tance to stationarity is less than 0.01, the chains
corresponding to settings #3 and #4 need to be run
for 2×1012 iterations and 7×1017 iterations, respec-
tively. On the other hand, we see from Table 8 that
chains #3 and #4 needed to be run for only about
3.7 million iterations and 75,000 iterations, respec-
tively, in order to get the Monte Carlo error down
to a reasonable level. This suggests that, in these
two cases, Theorem 2 (combined with the drift
and minorization from Jones and Hobert, 2001) is
extremely conservative.
Based on Table 8, it seems that the chain associ-

ated with setting #3 is by far the slowest mixing of
the 6. Recall that setting #3 is the diffuse prior. This
is consistent with the findings of Natarajan and
McCulloch (1998) whose empirical results suggest
that the mixing rate of the Gibbs sampler becomes
slower as the priors become more diffuse (but see
van Dyk and Meng, 2001).
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Table 9
Batch means estimates and asymptotic confidence intervals

Setting Parameter Estimate �̂2
h 95% CI Batch size Iterations

1 λθ 7.756 0.9959 (7.751, 7.761) 4733 141990
λe 1.778 0.1920 (1.776, 7.780)

2 λθ 7.757 0.0966 (7.754, 7.760) 1359 40770
λe 1.770 0.0659 (1.767, 1.773)

3 λθ 7.352 179.07 (7.338, 7.367) 122000 3660000
λe 1.793 0.3817 (1.792, 1.794)

4 λθ 0.957 0.2027 (0.954, 0.960) 2476 74280
λe 1.760 0.2808 (1.756, 1.764)

5 λθ 2.435 1.4942 (2.424, 2.446) 1680 50400
λe 5.702 0.1850 (5.698, 5.706)

6 λθ 0.118 0.0015 (0.1175, 0.1185) 911 27330
λe 0.498 0.0045 (0.497, 0.499)

For the sake of comparison, we also calculated
approximate confidence intervals for the posterior
quantities of interest using the method of batch
means. To make the comparison with RS fair, we
used a burn-in of 10,000 iterations and ran the block
Gibbs sampler for roughly the same overall number
of iterations. An examination of the empirical auto-
correlation function indicated that, in each case,
using 30 batches results in sufficiently large batch
sizes. This is consistent with the recommendations
of Schmeiser (1982). Table 9 contains the results.
The variance estimate reported in Table 9 is (29).
The confidence intervals in Tables 8 and 9 are quite
similar.

7. CONCLUDING REMARKS

Our hope is that this article will serve as a bridge
between those developing theoretical Markov chain
theory and practitioners who would like exact
answers to (Q1) and (Q2) for their particular
MCMC algorithms. Obviously, the MCMC sam-
plers that we have considered in this paper are
relatively simple compared to most of those being
used in realistic settings. For example, if one (or
more) of the full conditionals in a Gibbs sampler is
a nonstandard density, then establishing drift and
minorization conditions is sure to be much harder
than it was for the Gibbs samplers studied here.
Furthermore, replacing the Gibbs update of the
nonstandard conditional by a Metropolis–Hastings
update will usually further complicate the calcula-
tions. There is clearly a great deal of work to be
done before rigorously addressing (Q1) and (Q2)
becomes standard practice when applying MCMC.
If nothing else, the results in this article show

that forming honest answers to (Q1) and (Q2) can
be hard work. Moreover, recall that when using
classical Monte Carlo methods based on indepen-
dent samples, (Q1) is moot and (Q2) is easy. Thus,

before resorting to MCMC, one should try the
Monte Carlo methods based on independent sam-
ples, for example, rejection sampling or importance
sampling. In other words, MCMC should not be the
default approach when one is confronted with ana-
lytically difficult integrals. This may sound obvious,
but so does wearing a seat belt.

APPENDIX A

Drift and Minorization from Jones
and Hobert (2001)

Jones and Hobert (2001) established drift and
minorization conditions for the block Gibbs sampler
for model (� ) which we now state. We begin with
the drift condition. Define two constants as follows:

δ1 = 1
2a1 +K− 2

and δ2 = 1
2a2 +MT − 2

�

Also, let δ3 = Kδ2 and δ4 = �K + 1�δ2. It follows
from our assumptions aboutK andm that δ1, δ2, δ3
and δ4 are all in (0�1). Let δ = max�δ1� δ4�. Choose
λ ∈ �δ�1� and then choose φ > 0 such that φδ3+δ <
λ. Define

V��� = φV1��� +m−1V2����
where V1 and V2 are defined in Section 6.2. Jones
and Hobert (2001) show that

E V�����′� �′! ≤ λV��′� + b�(32)

where

b = 2φb1δ1 + δ2

[
φK+K+ 1

m

]
�2b2 + SSE�

+K�φ+ 1��ȳ− µ0�2�
We now state the minorization condition.
Let d > 2b

1−λ and recall that, in order to apply
Theorem 2, we must have a minorization condition
that holds on C = ���� ��� V��� ≤ d�. Jones and
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Hobert (2001) establish that the Markov transition
density for the block Gibbs sampler satisfies

k��� ���′� �′� ≥ εq��� ��
for all ��′� �′� ∈ C where q��� �� is a density on ��+×
�+� × �K+1 defined by

q��� �� =
[

h1�λθ�∫
�+ h1�λθ�dλθ

][
h2�λe�∫

�+ h2�λe�dλe

]
f�����y�

and ε =  ∫�+ h1�λθ�dλθ! 
∫
�+ h2�λe�dλe!. The

functions h1 and h2 are defined as follows. Let
Gamma�α�β�w� denote a Gamma�α�β� density
evaluated at w > 0. Then

h1�λθ�=

Gamma

(
K

2
+a1�b1�λθ

)
� λθ<λ

∗
θ�

Gamma
(
K

2
+a1�

d

2φ
+b1�λθ

)
� λθ≥λ∗

θ

for

λ∗
θ = φ�K+ 2a1�

d
log

(
1+ d

2b1φ

)
and

h2�λe�=

Gamma

(
MT

2
+a2�

SSE
2

+b2�λe
)
� λe<λ

∗
e�

Gamma
(
MT

2
+a2�

SSE+d

2
+b2�λe

)
� λe≥λ∗

e�

for

λ∗
e = MT + 2a2

d
log

(
1+ d

2b2 + SSE

)
�

Note that ε can be computed with four calls to the
incomplete gamma function.

APPENDIX B

Minorization for the Block Gibbs Sampler

In this Appendix, we construct a minorization
condition of the form (22) for the block Gibbs sam-
pler introduced in Section 6.2. We will use the same
technique that was used in the example of Section
5.1.
Fix a distinguished point �̃ = �θ̃1� � � � � θ̃K� µ̃�T ∈

�K+1. Now let 0 < d1 < d2 < ∞ and 0 < d3 < d4 <
∞ and define D =  d1� d2! ×  d3� d4! ⊆ �+ ×�+. For
notational convenience, let V′

i = Vi��′� and Ṽi =
Vi�̃�� for i = 1�2. (Note that V1 and V2 are defined
in Section 6.2.) Then we have

f����′�y�f�����y� ≥ s��′�q��� ���
where q is a density on D× �K+1 given by

q��� �� = 1
c
f����̃�y�f�����y�I�� ∈ D�

for c = ∫
D f����̃�y�d� and

s��′� = c inf
�∈D

[
f����′�y�
f����̃�y�

]

= c inf
�∈D

[
Gamma

(
K

2
+a1�b1+ 1

2V
′
1�λθ

)

×Gamma
(
MT

2
+a2�b

′
2+ 1

2V
′
2�λe

)
/
Gamma

(
K

2
+a1�b1+ 1

2Ṽ1�λθ
)

×Gamma
(
MT

2
+a2�b

′
2+ 1

2Ṽ2�λe
)]
�

where b′
2 = b2 + SSE/2. Now straightforward calcu-

lations reveal that

s��′� = c

[
2b1 +V′

1

2b1 + Ṽ1

]�K/2�+a1[2b′
2 +V′

2

2b′
2 + Ṽ2

]�MT/2�+a2

× exp
{
gθ
2

�Ṽ1 −V′
1� + ge

2
�Ṽ2 −V′

2�
}
�

where

gθ =
{
d1� if Ṽ1 > V′

1�
d2� if Ṽ1 < V′

1�

and

ge =
{
d3� if Ṽ2 > V′

2�
d4� if Ṽ2 < V′

2�

Finally, for the transition ��′� �′� → δ → ��� ��, we
have

Pr δ = 1���′� �′�� ��� ��!

= I�� ∈ D� exp
{
1
2�gθ − λθ��Ṽ1 −V′

1�

+ 1
2�ge − λe��Ṽ2 −V′

2�
}
�

Observe that the value of the normalizing constant
c was not required for this calculation.
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