
Honest-Verifier Private Disjointness Testing
without Random Oracles

Susan Hohenberger? and Stephen A. Weis??

Massachusetts Institute of Technology
Cambridge, MA, USA

{srhohen,sweis }@mit.edu

Abstract. We present an efficient construction of aprivate disjointness testingprotocol that is secure against
malicious provers and honest-but-curious (semi-honest) verifiers, without the use of random oracles. In a completely
semi-honest setting, this construction implements aprivate intersection cardinalityprotocol. We formally define
both private intersection cardinality and private disjointness testing protocols. We prove that our construction is
secure under thesubgroup decisionandsubgroup computationassumptions. A major advantage of our construction
is that it does not require bilinear groups, random oracles, or non-interactive zero knowledge proofs. Applications
of private intersection cardinality and disjointness testing protocols include privacy-preserving data mining and
anonymous login systems.

Keywords: private disjointness testing, private intersection cardinality, subgroup decision assumption,
private data mining, anonymous login

1 Introduction

Suppose two parties, Alice and Bob, each have a private database of values, respectively denotedA andB,
where the set cardinalities|A| and|B| are publicly known. Alice wishes to learn whether their two sets are
disjoint, that is, whetherA ∩ B = ∅, or how large the intersection is, that is,|A ∩ B|. In doing so, Alice
cannot reveal information about her setA to Bob, who in turn does not want to reveal information about his

setB, other than the bitA ∩B
?= ∅ or, perhaps, the size of the intersection|A ∩B|. These are respectively

theprivate disjointness testing(PDT) andprivate intersection cardinality(PIC) problems.
For example, Alice may be a law enforcement agent ensuring that no suspects under investigation pur-

chased tickets on a flight operated by Bob. Alice cannot simply reveal her list of suspects to Bob without
compromising her investigation. Nor can Bob disclose any passenger names without explicit subpoenas.
Yet, both parties have an interest in alerting Alice whether any suspects are on Bob’s flight.

As another example, suppose Bob wants to anonymously login to Alice’s system. Bob needs to prove
that one of his identities in a setB, which may be a singleton, is among the set of Alice’s valid users,
denotedA. Alice should be convinced that Bob is a legitimate user, without learning which specific user he
is. Thus, both parties wish to determine whether|A ∩B| 6= 0.

These types of private set operations may be implemented by several existing techniques. Private set
operations may be viewed as a general two-party secure computation problem, solvable by classic secure
multiparty computation techniques [12, 22]. Zero-knowledge sets due to Micali, Rabin and Kilian [16],
support private operations like disjointness testing, set union, and set intersection.

Unfortunately, these techniques have remained unused in practice due to their high computation, com-
munication, and implementation costs. Oblivious polynomial evaluation protocols, such as those due to

? Susan’s work was supported by an NDSEG Fellowship.
?? Stephen’s work was supported by NSF Grant CCR-0326277.

THE FNP PROTOCOL:

1. V chooses a random constant or irreducible polynomialG(x).
2. V computesf(x) = G(x) · (

Q
ai∈A(x− ai)) =

P
αix

i.
3. If anyαi = 0, restart the protocol.
4. V encrypts the coefficients off(x) with a homomorphic encryption scheme and sends the encryptionsci = E(αi) toP.
5. Using the homomorphic properties ofE, P obliviously evaluatesf(x) at some valueb, obtainingE(f(b)).
6. P randomizes his evaluation asc = E(Rf(b)) and sends it toV.
7. V decryptsc. If D(c) = 0, V knowsP ’s value intersects withA.

Fig. 1.An overview of the Freedman, Nissim, and Pinkas (FNP) protocol

Naor and Pinkas [17], may also be applied to private set operations. However, using generalized oblivious
polynomial evaluation for private set operations is inefficient in comparison to specialized protocols.

This paper builds on specialized private set operation protocols recently developed by Freedman, Nis-
sim, and Pinkas (FNP) [11], and Kiayias and Mitrofanova (KM) [14], and offers a new construction that
is more efficient in a malicious-prover setting. When both parties are honest-but-curious (semi-honest), the
Hohenberger and Weis (HW) construction presented in this work is aprivate intersection cardinalityproto-
col, where a verifier party (who is played by Alice in the above examples) learns|A ∩B|. The efficiency in
this setting is equivalent to both FNP and KM, but is based on a different complexity assumption.

Note that in the context of “honest-verifier”, we are using the term “honest” interchangeably with “semi-
honest”. This means the verifier is honest-but-curious about the values it receives and while abiding by the
protocol, may examine any received values further to try to learn more aboutB. The notion of semi-honest
or honest-but-curious was introduced in [12].

The HW construction improves on existing results in settings where the prover is malicious and the
verifier is honest-but-curious. In this malicious-prover setting, the HW construction implements aprivate
disjointness testingprotocol. A malicious, polynomial-time bounded prover able to send arbitrary messages
cannot convince a verifier that their sets intersect, unless they actually do. In the anonymous login example,
Bob will not be able to login unless he possesses a legitimate identity string.

The HW honest-but-curious (semi-honest) private intersection cardinality protocol presented in this pa-
peras isbecomes a private disjointness testing protocol in the malicious-prover setting. By contrast, previous
works require additional computations, such as adding zero-knowledge proofs [14] or homomorphic encryp-
tions [11], to be made secure in a malicious-prover setting. Moreover, both FNP and KM require random
oracles to be made secure in the presence of a malicious prover, whereas the HW construction does not.

1.1 The FNP Protocol Paradigm

The FNP protocol [11] is quite intuitive and simple, and is the design paradigm used in both the KM and
HW protocols. An FNP invocation where Bob has a singleton set is informally outlined in Figure 1. To pro-
vide further technical details, suppose(G, E,D) is a semantically-secure homomorphic encryption scheme.
Let V have setA = {a1, . . . , an} andP have setB = {b1, . . . , bm}.

As shown in Figure 1, the verifier (also known as Alice) first selects a random constant or irreducible
polynomialG(x) (i.e. G(x) will have no roots). The verifier than computesf(x) = G(x) · (

∏
ai∈A(x −

ai)) =
∑

αix
i. Note that the roots off are exactly the values in the setA. The verifier then encrypts theα

coefficients off under a public keypk that she chooses, and sends them to the prover. That is,V encrypts
each coefficient asci = Epk (αi) with a homomorphic cryptosystem such as Paillier’s [18, 19].

Recall that homomorphic cryptosystems like Paillier’s allow a party givenEpk (x) andEpk (y) to obliv-
iously computeEpk (x) · Epk (y) = Epk (x + y), or to computeEpk (x)z = Epk (x · z), wherez is some
constant. Note that given the encryptionsci, these homomorphic operations are sufficient to obliviously
evaluate the polynomialf . For example, the encryptionsc0 = Epk (4) andc1 = Epk (3) commit the polyno-
mial f(x) = 3x + 4. A second party may evaluate this at a particular valuex = 2, by computing

c2
1 · c0 = Epk (3 · 2) · Epk (4) = Epk (6 + 4) = Epk (10) = Epk (f(2))

Thus, given coefficients encrypted asci values, the prover (Bob) may obliviously evaluatef(bi) for
each elementbi ∈ B. Note that ifbi ∈ A, thenf(bi) = 0. The prover will now randomize all his oblivi-
ously evaluatedf(bi) values by homomorphically multiplying them by a random nonzero value. That is, he
computesEpk (f(bi))r = Epk (r · f(bi)) wherer is a random nonzero value. Thus, iff(bi) = 0, then the
encryption ofEpk (r · f(bi)) = Epk (0). Otherwise,Epk (r · f(bi)) is some random value. This hides any
information about elements in the prover’s set that arenot in the verifier’s set.

The prover now sends each of these encrypted oblivious evaluationsE(ri · f(bi)) to the verifier. The
verifier then decrypts and tests whether any of the resulting plaintexts are zero. Ifbi ∈ A, thenf(bi) = 0, so
if any decrypted values are zero, then the verifier believes there is an intersection with the prover’s set. Note
that the original FNP protocol reveals the elements in the intersection of the two sets, by having the prover
return the ciphertextEpk (r · f(bi) + bi) instead. Thus iff(bi) = 0, the verifier will get the actual elements
of the intersection – not just the cardinality.

We focus on applications where the prover explicitly does not want to reveal anything about his set,
except the size or existence of the intersection. For instance, the anonymous login application cannot have the
verifier learn the actual intersection values. This paper will only focus on the private intersection cardinality
protocol version of FNP, although finding actual intersection values will be discussed further in Section 7.7.

In the KM protocol [14], the same techniques as FNP are applied, except that it uses a new primi-
tive calledsuperposed encryptionbased on Pedersen commitments [20]. Superposed encryption is closely
related to a homomorphic ElGamal variant first used in voting schemes by Cramer, Gennaro, and Schoen-
makers [9]. In the KM protocol the prover returns to the verifier a single ciphertextEpk (r · |A∩B|), wherer
is a random value. Thus, this is specifically a PDT protocol rather than a PIC protocol. The verifier accepts
if the ciphertext decrypts to zero and rejects otherwise.

Both the FNP and KM constructions, based on Paillier’s homomorphic encryption [18, 19] and Ped-
ersen’s commitment scheme [20], suffer from a crucial flaw:malicious adversaries may simply encrypt or
commit to zero values.For instance, in the FNP case, someone can simply encrypt 0 with the public key and
convince the verifier that an intersection exists when it does not. This is a critical failure which both FNP
and KM immediately recognize and address. To cope with malicious provers, FNP proposes a fix that relies
on the random oracle model (ROM), despite its inherent problems [2, 7].

Fixing KM against malicious adversaries requires both the use of random oracles as well as universally-
composable (UC) commitments [6], which require the assumption of a common reference string. While
relatively efficient, the best known UC commitment schemes are interactive and would increase communi-
cation complexity by a quadratic factor [5, 8, 10].

The weakness of FNP and KM in the face of malicious provers begs the question: Can we implement
an efficient private disjointness testing protocol without the use of random oracles or costly sub-protocols?
This paper answers this question in the affirmative.

1.2 Overview of the HW Construction

This section provides intuition for understanding the Hohenberger and Weis (HW) construction in the con-
text of prior work. Essentially, the main difference is that in both the FNP and KM protocols, a prover
convinces a verifier to accept by returning an encryption of zero. If the prover was honest, then if the verifier
receives an encryption of a zero value, it implies some element inP ’s set is also inV ’s set. However, if
the prover is malicious, then he can easily encrypt a zero value from scratch and send it to the verifier. To
prevent this, both FNP and KM must add costly computations to check that the prover follows a specified
protocol.

To cope with malicious provers, the HW construction essentially substitutes a cryptographic primitive
dubbed “testable and homomorphic commitments” in the place of Paillier’s homomorphic encryption. In-
stead of encryptions of zero, elements belonging to the intersection of the two sets will be encoded to have
a specific order in a multiplicative group. In other words, a prover convinces a verifier that an intersection
exists by returning elements of a specific order.

The necessary complexity-theoretic assumptions are that it is hard to for a prover to decide whether
group elements belong to a particular subgroup of unknown order, and that it is hard to compute elements
in the subgroup. Under thissubgroup computation assumption, computing an element of this order is hard
for a prover, unless he correctly follows the protocol (and thereis a non-empty intersection). Thus, in the
malicious-prover setting, the HW construction is sound by default, whereas FNP and KM must augment
their protocols with costly computations in the random oracle model.

In the HW construction presented in Section 4, the verifier begins, as in FNP, by selecting a random
polynomialf(·) whose roots correspond to setA. The verifier computes atestable and homomorphic com-
mitment(THC) of each coefficient, which is essentially a BGN encryption [3] set in groupG, which has
ordern = pq wherep andq are large primes.

For each elementbi ∈ B, the prover uses THCs to compute a value that will be a random element inG
if bi 6∈ A or will be a random element of orderp if bi ∈ A. The verifier, with knowledge ofp andq, can
test the order of each element returned by the prover. In this way, the verifier learns the cardinality of the
intersection, just as in FNP.

The main benefit, however, is that a malicious prover cannot, under the subgroup computation problem,
compute an element of orderp from scratch. As will be proven in Appendix A.2, the HW construction
remains sound in the malicious-prover setting without any augmentation. As in the FNP PDT protocol, the
verifier canpotentiallylearn the cardinality of the intersection, but is notguaranteedto do so when talking
with a malicious prover. That is, if the prover happens to be honest, the verifier will learn the cardinality –
but there is no way to know whether a prover is honest. Table 1 compares the behavior of FNP, KM, and the
HW construction in different security settings.

1.3 Related Work

Kissner and Song [15] offer FNP-inspired schemes for solving several closely related privacy-preserving
set operations like set disjointness, cardinality, and set union. They offer improved efficiency compared
to FNP in the multiparty, honest-but-curious setting. Again, when translated to the malicious adversary
model, their constructions require relatively costly zero-knowledge proof of knowledge sub-protocols. In all
fairness, Kissner and Song address a richer set of problems than simple disjointness testing like set union,
set intersection, and multiplicity testing. They also work in a multiparty model, so it is not surprising that
their solutions require more computation.

Security Setting FNP KM HW

Semi-Honest Cardinality Disjointness Cardinality
Malicious Prover Cardinality Disjointness Disjointness
(Requirements) (ROM) (NIZK Proofs) (None)

(ROM)
Malicious Verifier Cardinality Disjointness See Section 7.1

(Requirements) (Multiple (UC-Commitments)
Invocations) (ROM)

Table 1. Three private set protocols compared in different security settings. ROM stands for “Random Oracle Model”, NIZK for
“Non-Interactive Zero Knowledge”, and UC for “Universally Composable”.

Constructions from both Pedersen’s commitment scheme [20] and Paillier’s homomorphic cryptosys-
tem [18, 19] are both closely related to the “testable and homomorphic commitment” primitive presented in
Section 4.2.

The Subgroup Decision Assumption (SDA) and the Subgroup Computation Assumption (SCA) de-
scribed in Section 2.2 are both crucial to proving security of the construction presented in this paper. Yama-
mura and Saito apply the SDA to the private information retrieval problem [21]. The composite residuosity
assumptions made by Paillier are also closely related.

A similar bilinear subgroup complexity assumption is made by Boneh, Goh, and Nissim for their 2DNF
ciphertext evaluation scheme [3]. Groth, Ostrovsky, and Sahai also make the same complexity assumption
to implement non-interactive zero knowledge proofs [13].

2 Preliminaries

2.1 Notation

Let Z be the integers. Letnegl(·) be anegligible function such that for all polynomialsp(·) and all suf-
ficiently largek ∈ Z, we havenegl(k) < 1/p(k). We will denote that two distributionsC andD are

perfectly indistinguishable usingC ≈ D and computationally indistinguishable usingC
c
≈ D notation.

A Mppt subscript will indicate that a interactive Turing machineM runs in probabilistic polynomial time.
The valueord(x) will be the order of an elementx. The transcriptViewM[M(x)N (y)] will represent the
view of algorithmM after interacting with algorithmN on inputsx andy, respectively.M’s view includes
its input, its randomness, and the public transcript of the protocol. We will denote a distribution of views
over random inputs as{ViewM[M(x)N (y)]}.

2.2 Complexity Assumptions

The complexity assumptions applied in the HW construction exist in various forms throughout the literature.
The formalization here is closest to that of Yamamura and Saito [21]. Recently, Boneh, Goh, and Nissim
introduced a stronger version of these assumptions forbilinear groups [3].

Definition 1 (Subgroup Decision Assumption (SDA) [3, 21]).LetS(1k) be an algorithm that produces(G,
p, q) whereG is a group of composite ordern = pq, andp < q are k-bit primes. Then, we say that the

subgroup decisionproblem is hard inG if for all probabilistic polynomial time adversariesA,

Pr
[
(G, p, q)← S(1k); n = pq; x0 ← G; x1 ← xq

0; b← {0, 1}; b′ ← A(G, n, xb) :

b = b′
]
≤ 1

2
+ negl(k).

Basically, the SDA means that given the description of a groupG, in the form of a generatorg, and its
ordern = pq, a probabilistic polynomial-time adversary cannot distinguish random elements of orderp in G
from random elements inG. Clearly, if factoring is easy, then the SDA fails to hold. Similarly, someone able
to compute discrete logarithms given(G, n, x) can decide this problem by computinggcd(logg x, n), for
some generatorg. It is not clear how the SDA relates to the Decisional Diffie-Hellman (DDH) assumption.

Additionally, the security of the HW scheme requires the following computational assumption:

Definition 2 (Subgroup Computation Assumption (SCA)).LetS(1k) be an algorithm that produces(G,
p, q) whereG is a group of composite ordern = pq, andp < q are k-bit primes. Then, we say that the
subgroup computationproblem is hard inG if for all probabilistic polynomial time adversariesA,

Pr
[
(G, p, q)← S(1k); n = pq; x← A(G, n) : ord(x) = p

]
≤ negl(k).

An example group where these assumptions may be applied is a subgroupG of ordern = pq, consisting
of the quadratic residues ofZp′ , wherep′ = 2pq +1 andp′, p, q are all primes. Of course, the HW construc-
tion can also operate over the bilinear groups where Boneh et al. [3] assume the subgroup decision problem
is hard. It is not clear that the SDA assumption implies SCA, or vice versa, although a relation between the
two seems plausible. Further exploration of both assumptions could be valuable in other schemes as well.

3 Problem Definitions

This section formally defines private intersection cardinality (PIC) and private disjointness testing (PDT)
protocols. Let1k be a security parameter in unary. LetQ be the domain of values for this protocol such
that|Q| ∈ Θ(2k). Let the universeU be the set of allpoly(k)-sized subsets ofQ. For setsA ∈ U andB ∈ U ,
define thedisjointness predicateD(A,B) = (A ∩ B = ∅), that is,D(A,B) will have value 1 if and only
if A andB are disjoint.

Let a verifierV and a proverP be two probabilistic polynomial time interactive Turing machines. Each
party takes an element ofU (i.e. apoly(k)-size subset ofQ) as input. The interaction ofP andV yields a
result toV only.

3.1 Private Disjointness Testing Definition

Definition 3 (Honest-Verifier Private Disjointness Testing).Two probabilistic polynomial time interac-
tive Turing machines(P,V) define anHonest-Verifier Private Disjointness Testingprotocol if the following
conditions hold:

1. Completeness:For honest parties, the protocol works and the verifier learns the disjointness predicate;
that is,

∀A ∈ U, ∀B ∈ U, Pr
[
P(B)V(A) = D(A,B)

]
≥ (1− negl(k))

where the probability is taken over the randomness ofP andV.

2. Soundness:For a random setA ∈ U , the probability that the prover will convince the verifier to accept
is negligible; that is,

∀P∗ppt, Pr
A∈U

[
P∗V(A) 6= 0

]
≤ negl(k)

where probability is taken over the choice ofA ∈ U and the randomness ofP∗ andV.
3. Malicious-Prover Zero Knowledge (MPZK): A malicious prover learns nothing about the verifier’s

set; that is,

∃Sppt, ∀P∗ppt, ∀A ∈ U, {ViewP∗[
P∗V(A)

]
}

c
≈ {ViewP∗[

P∗S(1|A|)
]
}

4. Honest-Verifier Perfect Zero Knowledge (HVPZK): An honest-but-curious verifier learns nothing
about the prover’s set beyond the size of the intersection; that is,

∃Sppt, ∀A ∈ U, ∀B ∈ U, {ViewV[P(B)V(A)
]
} ≈ {S(A, 1|B|, 1|A∩B|)}

Note that an honest-but-curious verifier is allowed topotentiallylearn|A∩B|, but he is notguaranteed
to learn that value. One might define a stronger definition where rather than being provided1|A∩B|, the
simulator would only be providedD(A,B).

3.2 Private Intersection Cardinality Definition

Definition 4 (Honest-Verifier Private Intersection Cardinality). An Honest-Verifier Private Intersection
Cardinalityprotocol has the same setup as in Definition 3, except for the following differences:

1. Completeness:For honest parties, the protocol works and the verifier learns the cardinality predicate;
that is,

∀A ∈ U, ∀B ∈ U, Pr
[
P(B)V(A) = |A ∩B|

]
≥ (1− negl(k))

where probability is taken over the randomness ofP andV.
2. Cardinality Soundness:A malicious prover can not convince an honest verifier that the cardinality is

larger than it really is; that is,

∀P∗ppt, ∀B ∈ U, Pr
A∈U

[
P∗(B)V(A) > |A ∩B|] ≤ negl(k)

where probability is taken over the choice ofA ∈ U and the randomness ofP andV.

3.3 Informal Explanation of the Definitions

Completeness means that a correct execution between two honest parties will return the correct value toV
with negligible chance for error. In a PDT protocol, the correct value is the disjointness predicateD(A,B)
and in a PIC protocol it is the intersection cardinality|A ∩B|.

PDT soundness implies that on a random input setA ∈ U , V has a negligible chance of obtaining a non-
zero result when interacting with any malicious probabilistic polynomial-time proverP∗. That is, unlessP∗
actually knows a value inV ’s set, or is extremely lucky, thenV will not be fooled into thinking otherwise.

Neither the FNP nor KM protocols are sound by this definition. In those schemes, a verifier will believe
that there is an intersection if it receives the value zero encrypted under a public-key. A malicious prover
could trivially violate the soundness property by encrypting a zero value itself.

PIC soundness is similar to the PDT soundness definition, except that for any setB, and random setA,
the protocol has a negligible chance of returning a value greater than|A ∩ B| to a verifierV interacting
with P∗(B). The idea is that this prevents a malicious prover from doing trivial attacks like duplicating
elements in its setB to inflate the cardinality returned to the verifier. Of course, a malicious prover can
always run the protocol on some subset ofB, which would with high probability under-report the cardinality.
This is unavoidable and is why cardinality soundness is only concerned with over-reporting the cardinality.
As it turns out, this property will be the reason why the HW construction in Section 4 isnot an Honest-
Verifier Private Intersection Cardinality protocol. Section 6 will discuss this further.

Since a verifier is allowed to potentially learn|A ∩ B| in both the PDT and PIC protocols, the zero
knowledge definitions presented in this paper are the same. This relaxation appears in FNP as well, but not
KM.

The Malicious-Prover Zero Knowledge (MPZK) property means that no probabilistic polynomial-time
potentially malicious proverP∗ can learn anything about a setA from an interaction withV that it could not
simulate on its own. In other words, the verifier’s set, for example a database of passwords, remains hidden
from even malicious provers. Here the distributions are computationally indistinguishable. Any action thatV
takes as a result of a successful protocol invocation, such as allowingP∗ to anonymously login, is considered
outside the protocol definition.

Finally, the Honest-Verifier Perfect Zero Knowledge (HVPZK) property implies that a probabilistic
polynomial-time semi-honest verifierV does not learn anything aboutB beyond the size of the set intersec-
tion. There is a subtle point here in the PDT protocol: the verifier is onlyguaranteedto learn the bitD(A,B),
but we allow an honest-but-curious verifier topotentially learn the size of the intersection. The flexibility
suits the applications mentioned in the introduction. In fact, in the semi-honest setting, the distribution an
adversary can simulate on its own is perfectly indistinguishable from a real transcript distribution.

The definitions in this paper do not explicitly consider auxiliary inputs in the zero-knowledge definitions
in this paper. To do so, one need simply quantify over all polynomial-size advice strings and provide this
string to both the party in question and the simulator.

4 HW Private Disjointness Testing

In this section, we present a construction that efficiently implements a PDT protocol. Appendix A proves
that this construction securely meets the requirements of Definition 3. Overall, this construction is very
similar to those of Freedman, Nissim, and Pinkas (FNP) [11] and Kiayias and Mitrofanova (KM) [14].

FNP and KM respectively rely on Paillier’s homomorphic encryption system [18, 19] and a Pedersen
commitment variant [20] as underlying primitives. This paper offers a newtestable and homomorphic com-
mitment(THC) primitive that will be used in a FNP-style oblivious polynomial evaluation scheme. The
THC construction presented is reminiscent of both Paillier’s and Pedersen’s schemes. It is very similar to
the encryption scheme for small messages due to Boneh, Goh, and Nissim (BGN) [3], but is used for the
full range of messages.

The advantage of the HW construction is that it offers a stronger security guarantee than the basic
FNP and KM protocols, with equivalent computation and communication costs. Although variants of both
FNP and KM can be modified to offer stronger security, they require either the use of random oracles or
significantly more computation.

4.1 Verifier System Setup

VERIFIER SYSTEM SETUP:

1. RunS(1k) to obtain(G, p, q).
2. Choose two random generatorsg andu from G.
3. Computen = pq andh = uq.
4. Publish(G, n) and keep(p, q, g, h) private.

Fig. 2.HW verifier system setup

As illustrated in Figure 2, the HW construction is initialized by a verifier that selects some group of
ordern = pq, wherep andq are secret large primes. The verifier will also select two random generatorsg
andu, and will computeh = uq. Note thath is a random generator of the subgroup of orderp.

The verifier only needs to publishG andn. The prover will not knowp, q, h or eveng. Learningh, p,
or q would allow a malicious prover to spuriously convince the verifier that an intersection exists.

4.2 Testable and Homomorphic Commitments

The public ordern and private valuesg andh may be used for atestable and homomorphic commitment
(THC) scheme. This primitive will be the basis of the HW construction. Informally, a THC scheme supports
the following operations:

– Commit:Com(m, r) a messagem with randomnessr,
– Addition: For allm, r,m′, r′, Com(m, r) · Com(m′, r′) = Com(m + m′, r + r′),
– Constant Multiplication: For allm, r, c, Com(m, r)c = Com(cm, cr)
– Equality Test:Test(Com(m, r), x), returns 1 ifm = x.

Testable and homomorphic commitments should be computationally hiding:

Definition 5 (Testable and Homomorphic Commitment Hiding Property).
Let n be an integer, and leta0, a1, r be values inZ∗n. Then, we say that a testable and homomorphic

commitmentCom set in a groupG of ordern is computationally hidingover the distribution ofr if

∀a0, a1 ∈ Z∗n, {G, n, a0, a1, Com(a0, r)}
c
≈ {G, n, a0, a1, Com(a1, r)}

The encryption scheme for small messages due to BGN is very similar to the HW construction, except
for two differences. First, we provide the adversary with even less information about the commitment; that
is, the valuesg andh remain private. Secondly, BGN allow and support bilinear map operations, whereas we
do not consider them. Similarly to their scheme, the HW testable and homomorphic commitment primitive
operates as shown in Figure 3.

Lemma 1. The testable and homomorphic commitment scheme described in Figure 3 is computationally
hiding, i.e., it satisfies definition 5.

This lemma follows, more or less, from the semantic security of the encryption scheme of Boneh, Goh,
and Nissim. For completeness, however, Appendix A.3 will prove that this construction is computationally
hiding.

TESTABLE AND HOMOMORPHICCOMMITMENTS OPERATIONS:

1. Setup: Let S(1k) be an algorithm that outputs(G, p, q) whereG is a group of composite ordern = pq, andp < q
arek-bit primes. Letg, u be random generators ofG and leth = uq. Publishn; keep all else private.

2. Commit: Givenm andr ∈ Z∗
n, compute:Com(m, r) = gmhr

3. Addition: Com(m, r) · Com(m′, r′) = gm+m′
hr+r′

= Com(m + m′, r + r′)
4. Constant Multiplication: Com(m, r)c = gcmhcr = Com(cm, cr)
5. Equality Test: If Test(Com(m, r)) = (gmhr/gx)p = (gp)m−x = 1, output 1; else, output 0.

Fig. 3.Testable and homomorphic commitment construction

4.3 Oblivious Polynomial Evaluation

Suppose a party knowingh has some polynomialf(x) =
∑

αix
i ∈ Zq[x]. This party can publish commit-

ments tof ’s coefficients asCom(αi, γi) = gαihγi , whereγi values are random. Lets = d
√

ne. Assumingp
andq are not twin primes, we have thatp < s < q. Let the groupZ∗s be the domain of set values. Due to the
homomorphic properties ofCom, anyone can obliviously evaluate a commitment tof(z) for anyz ∈ Z∗s.

The HW construction uses this ability by having a verifierV compute a polynomialf with A as its set
of roots.P can then obliviously evaluatef and return the result toV. Note, this is not a contribution due to
HW. Similar constructions were proposed by Naor and Pinkus [17] and FNP [11]. It is also the basis of the
KM scheme [14].V ’s polynomial is constructed as shown in Figure 4.

OBLIVIOUS POLYNOMIAL EVALUATION :

1. V chooses a random constant or irreducible polynomialG(x).
2. V computesf(x) = G(x) · (

Q
ai∈A(x− ai)) =

P|A|
i=0 αix

i ∈ Zq[x].
3. If anyαi = 0, restart the protocol.
4. V chooses a random polynomialr(x) =

P|A|
i=0 γix

i ∈ Zp[x].
5. V publishes commitmentsCom(αi, γi) = gαihγi , for i = 0 to |A|.

Fig. 4.HW oblivious polynomial evaluation

Given these commitments to theαi coefficients,P may use the homomorphic operations to compute a
commitment tof(z) for an arbitrary pointz ∈ Z∗s:∏

i Com(αi, γi)zi
= g

P
i αiz

i
h

P
i γiz

i
= gf(z)hr(z) = Com(f(z), r(z))

BecauseP does not want to accidentally reveal information about valuesz /∈ A to V, he can select
a randomR ∈ Z∗n and compute the valueCom(Rf(z), Rr(z)) = gRf(z)hRr(z) = Com(f(z), r(z))R.
If f(z) 6= 0 mod q, thenRf(z) will be some random value inZn, andCom(f(z), r(z))R will be some
random value inG.

However, if f(z) = 0 mod q, thengRf(z) will have orderp (or 1). Sinceh has orderp, this means
that Com(f(z), r(z))R will have orderp, which can be tested byV by checking if theTest operation
returns a 1 value. Thus, ifP returns some value with orderp, V concludes thatP obliviously evaluated the
polynomial at a root.

V(A)

Com(α0, γ0), . . . , Com(α|A|, γ|A|) -

w1, . . . , w|B|�
P(B)

Fig. 5.An illustration of HW private disjointness testing

Recall thatP does not knowp, q, or eveng or h. To erroneously convinceV that he knows a root, a
maliciousP∗ must produce some value of orderp. Finding such a value is at least as hard as the Subgroup
Computation Problem described in Definition 2.

5 HW Private Disjointness Testing

Given the oblivious polynomial evaluation protocol from the previous section, the HW construction to imple-
ment Private Disjointness Testing with a testable and homomorphic commitment primitive is quite simple.
As mentioned, the overall protocol paradigm originally proposed by FNP [11]. Figure 5 illustrates the HW
private disjointness testing protocol that is specified in Figure 6.

HW PRIVATE DISJOINTNESSTESTING:

1. V runsS(1k) to obtain(G, p, q), selects random generatorsg, u in G, and computesn = pq andh = uq.
2. V publishes(G, n).
3. V andP announce|A| and|B| for respective input setsA andB, which arepoly(k)-sized subsets ofZ∗

s .
4. V publishes commitments to polynomial coefficientsCom(αi, γi) = gαihγi ∈ G for i = 0 to |A|.
5. For eachbj ∈ B selected in random order:

(a) P obliviously evaluatesf(bj) asvj = gf(bj)hr(bj).
(b) P selects a random exponentRj ∈ Z∗

n.

(c) P sendsV the valuewj = v
Rj

j .
6. V halts if anywj = 1.
7. V tests eachwj by computingwp

j .
8. If anywp

j = 1, thenV concludes thatA ∩B 6= ∅.
9. Otherwise,V concludesA ∩B = ∅.

Fig. 6.HW private disjointness testing

Theorem 1. The HW construction is correct and secure, i.e., it satisfies Definition 3, under the Subgroup
Decision and the Subgroup Computation assumptions.

Remark: Note that when talking to an honest prover, a verifier will actually learn|A ∩ B| in this protocol
by counting the number of elements returned with orderp. We could change the protocol to obfuscate this
value, but having the prover return a random number of copies of each element in his set. This would not
be true zero-knowledge, but it would be good enough for many practical applications. After all, there is no
guarantee that the number of elements with orderp is the correct cardinality, because a malicious prover
might evaluate the same value many times. This protocol can be modified to hide|A ∩ B| at a cost of

increased communication as discussed in Section 7.3. In many PDT applications this extra information is
not a problem, but users should still be aware that cardinality is revealed when provers are honest.

5.1 Proof of Security

Theorem 1 is proven in four steps: completeness, soundness, malicious-prover zero knowledge, and honest-
verifier zero knowledge. These proofs appear in Appendix A due to space considerations.

6 Semi-Honest Private Intersection Cardinality

The construction in Section 4 isnot an Honest-Verifier Private Intersection Cardinality protocol. Unfortu-
nately, there are trivial ways a malicious-prover can manipulate the actual cardinality value obtained by the
verifier. The simplest attack would be to obliviously evaluate each element inB twice. The verifier will think
the cardinality is2 · |A∩B|. By the HVPZK property, an honest verifier cannot detect this attack, otherwise
it could distinguish different evaluations by the prover.

For this reason, the HW construction violates the Cardinality Soundness property from definition 4.
However, we may consider a weaker PIC setting by assuming that both the prover and verifier are honest-
but-curious (semi-honest). Recall that a honest-but-curious party will follow a protocol as specified, but may
further examine any received values with the intention of learning more [12].

Definition 6 (Semi-Honest Private Intersection Cardinality).An Semi-Honest Intersection Cardinality
protocol has the same setup as in Definition 3, except for the following difference:

Completeness:For semi-honest parties, the protocol works and the verifier learns the cardinality pred-
icate; that is,

∀A ∈ U, ∀B ∈ U, Pr
[
P(B)V(A) = |A ∩B|

]
≥ (1− negl(k))

where probability is taken over the randomness ofP andV.

Corollary 1. The HW construction from Section 4 implements a Semi-honest Private Intersection Cardi-
nality Protocol, under the Subgroup Decision and the Subgroup Computation assumptions.

Corollary 1 follows directly from the proof of Theorem 1.

7 Discussion

7.1 Malicious Verifiers

The HW construction is only secure against honest-but-curious verifiers. A malicious verifierV∗ can choose
arbitrary setup parameters(G, n), such asG = Zp′ wherep′ = 2n + 1, and sendP an arbitrary set of
valuesgci ∈ G, where theci values define some polynomialf(x) =

∑
cix

i. In response, a legitimateP
will send valuesw = gRf(b) for eachb ∈ B, whereR is chosen uniformly at random fromZ∗n.

If gf(b) has ordern, thenw will be a random element of ordern. However, a maliciousV∗ can design
the polynomialf(·) to have different orders for different inputs. So, ifp′ = 2pq + 1, V∗ might have two
setsS, T such that∀s ∈ S, f(s) = 0 mod p and∀t ∈ T, f(t) = 0 mod q. Thus,V∗ would be able to
distinguish how many elements ofB were in eitherS or T . In fact,V∗ could choosen to have many factors.
This would allow her to test how many elements ofB belonged to any of several different sets.

To make the HW construction secure against malicious verifiers,V could provide a zero knowledge
proof thatn was the product of two large primesp andq. V could then include a proof that each of her
commitments was the product of at least one value with orderp. Camenisch and Michels describe efficient
zero knowledge proofs which can be applicable in this setting [4]. Of course, the costs of creating and
verifying these proofs may be equivalent to the costs of the existing malicious verifier-secure protocols due
to FNP and KM.

7.2 Computation and Communication Costs

The computation and communication costs of the HW construction are equivalent to the costs of FNP’s
malicious-prover secure scheme, except the HW construction offers security against malicious provers with-
out random oracles. The costs of HW are as follows:
V Computation Costs: Computingαi coefficients naively requiresO(|A|2) modular additions and

multiplications. Committing requiresO(|A|) modular exponentiations and multiplications. Testing whether
responses have orderp requiresO(|B|) modular exponentiations.
P Computation Costs: Using Horner’s method,P can obliviously evaluate ad-degree polynomial

with O(d) modular exponentiations and multiplications. Normally,P will perform O(|A||B|) operations;
that is, one polynomial evaluation at a cost ofO(|A|) operations for each of the|B| elements inP ’s set.
However, as described in FNP, if the balanced hash-bucket scheme of Azar et al. [1] is employedP can
perform onlyO(|B| ln ln |A|) modular operations.

Communication Costs: The total exchange betweenP andV is O(k(|A| + |B|)) bits or alternatively
O(k(|A| ln ln |A|+ |B|)) if a hash-bucket optimization is used, where1k is the security parameter.

7.3 Hiding Set Sizes

In the HW construction, the size of the prover and verifier’s sets is public information. In practice, however,
the proverP with setB or the verifierV with setA might wish to mask the true size of their sets using
well-known techniques. To do this, the verifierV can compute a random polynomialf(·) with roots in setA
as normal, then multiply it by some irreducible polynomial of arbitrary degreed. Then,P (or anyone else)
will only learn thatV ’s set is of some size less or equal to|A|+d. Similarly,P can evaluatef on each value
in B an arbitrary number of times. Each copy will be randomized by the regular protocol. This will maintain
correctness of Private Disjointness Testing, but would obviously change the results of an honest-but-curious
private intersection cardinality protocol, as described in Section 6.

7.4 Small Set Domains

The HW construction requires that setsA andB are small with respect to the domain of set values. Obvi-
ously, in the HW PDT protocol, if|B| = Θ(

√
n), then a malicious adversary can factorn in time polynomial

to the size of its input. This would allow an adversary to generate values of orderp and violate the Soundness
property.

7.5 Private Information Retrieval

Recalling Private Information Retrieval (PIR), one party will have a database ofm + 1 bits x0, . . . , xm,
while a second party wishes to privately query a particular bitxi without revealingi. Putting this in the

context of the HW construction,A would be the set of indices wherex is 1 andB = {i}. Unfortunately, it
may be the case that|A| is large with respect to the domainZ∗m.

As a result, the requirement of small set domains mentioned in Section 7.4 precludes directly using the
HW construction for PIR in general. Yamamura and Saito offer a simple PIR solution based on the SDA [21].
However, their PIR solution approach is very inefficient and requiresO(km) bits of communication to
privately retrieve a single bit from am-bit database, wherek is a security parameter.

7.6 Multiparty Extensions

Another interesting variant to the 2-party PDT protocol is considering a multi-verifier, single-prover PDT
scenario. For example, suppose that law enforcement agencies from different countries, in the role of ver-
ifiers, wish to be assured by an airline, in the role of the prover, that no one onany of their watch-lists is
getting on the next flight. The law enforcement agencies neither trust each other nor the airline with their
individual databases, yet may want to corroborate their watch lists (so as to possibly work together).

Suppose there are two verifiers. The HW construction may be extended as follows. First, each verifier
computes his own valuesni = piqi and a group of known order

∏
i ni is published. Next, both verifiers

publish commitments to their own polynomials using a random generatorg from the group of ordern1n2

and, respectively,h1 of order (n1n2)/p1 = q1n2 and h2 order (n1n2)/p2 = n1q2. That is, values of
the formgαihri

1 andgβjh
rj

2 , wheref(x) =
∑

αix
i andz(x) =

∑
βjx

j . A third party can obliviously
evaluate commitments to the sum of these polynomials. If the third party’s set contains an elementci such
thatf(ci) = z(ci) = 0, then this party can output elementshr

1h
r′
2 , which have orderq1q2.

This is interesting because no single party could compute elements of orderq1q2 by themselves; this
only occurs when the airline makes an evaluation on an element contained inbothof the law enforcement
agencies’ sets. Each agency, knowingq1 andq2 respectively, could collaborate to detect this fact and take
further action. The benefit here is that the contents of the sets of the law enforcement agencies and the airline
all remain private, up to knowledge of any three-way intersections. This digression is just to illustrate that
unknown order subgroups might be applied in other interesting applications.

7.7 Finding Intersection Values with HW

As previously mentioned, basic FNP is actually a Private Intersection or Private Matching protocol. The
verifier party learns which specific values are in the set intersection. Essentially, the prover will send homo-
morphic encryptions of the formEpk (r · f(b)+ b) for valuesb ∈ B. If b ∈ A, thenf(b) = 0 and the verifier
will receive an encryption ofb. Otherwise, the verifier receives a random value.

Of course, this is still susceptible to malicious prover attacks. A malicious prover can encrypt any value
he likes or can encrypt values likeEpk (r1 ·f(b1)+ r2 ·f(b2)+ b1), which can be interpreted as “If(b1 ∈ A)
and(b2 ∈ A), then tell the verifier that(b1 ∈ A)”. FNP’s fixes the problem by using the random oracle
model to force a prover to use the encrypted coefficient values prepared by the verifier.

This begs the question of whether the HW testable and homomorphic commitment primitive could be
used in a private intersection protocol. Initially, one may consider using the exact FNP construction and
having the prover obliviously evaluategRf(b)+bhr. If f(b) = 0, raising this to the powerq will result in the
value(gq)b. The verifier can then check whether for any of its own valuesa, that(gq)a = (gq)b.

Unfortunately, like FNP, a malicious prover could also send conditional evaluations, like “if x is in A,
then reveal that y is in B”. This would violate the soundness of a private intersection protocol. Thus, a HW-
style private intersection protocol offers no advantage over FNP. They have equivalent computation costs
and the same level of security.

An open question is whether a HW testable and homomorphic commitment-based private intersection
protocol may be constructed without the use of random oracles. It may be possible to leverage groups that
have several different ordered subgroups as discussed in Section 7.6. The verifier might be able to commitA
in a polynomialf that has roots in different subgroups. Then a malicious prover would not be able simply
to mix-and-match oblivious evaluations of differentb values. This idea is not fully developed and can be the
subject of future work.

8 Conclusion and Open Questions

We presented an honest-verifier private disjointness testing protocol, which we refer to as HW. It is secure
against malicious provers without requiring multiple invocations, bilinear groups, random oracles, non-
interactive zero knowledge proofs, or universally-composable commitments. The related FNP and KM pro-
tocols require one or more of these assumptions to be made secure against malicious provers, while HW
requires only the subgroup decision and subgroup computation assumptions.

There are several open questions and problems related to HW. First, disjointness testing is a fairly limited
application. An open question is whether there are natural constructions of private set operations like union
or intersection based on the subgroup assumptions. It is likely that several of the FNP-inspired privacy-
preserving set operations due to Kissner and Song [15] may be adapted using this paper’s testable and
homomorphic commitment primitive.

The testable and homomorphic commitment based on the subgroup assumptions and described in Sec-
tion 4.2 may be useful in other applications. Essentially, this commitment scheme allows one party to obliv-
iously evaluate functions, and another party to test properties of the evaluation. In this paper there was a
single property that was tested – whether a polynomial evaluated to zero.

However, testable and homomorphic commitment may be especially useful with groups with many
subgroups of unknown order, as described in Section 7.6. This would allow a party to test several properties
of an evaluation, or even several parties to test different properties independently. As discussed at the end of
Section 7.7, groups with many subgroups of different order might be useful in developing a HW testable and
homomorphic commitment-based private intersection protocol – where the verifier learns the actual values
of the intersection.

More research must be focused on the hardness of both the subgroup decision and subgroup computation
assumptions. First, does one assumption imply the other? Second, what is the relation, if any, between these
assumptions and the Decisional or Computation Diffie-Hellman assumptions? Either subgroup assumption
implies that factoring is hard, otherwise someone could just factor a group’s order to obtain the order of its
subgroups. Does assuming that factoring is hard imply either of the subgroup decision assumptions? These
are all important questions that are relevant to both the HW construction and other works based on subgroup
decision assumptions.

References

[1] A ZAR, Y., BRODER, A. Z., KARLIN , A. R., AND UPFAL, E. Balanced allocations.SIAM Journal on Computing 29, 1
(1999), 180–200.

[2] BELLARE, M., AND ROGAWAY, P. Random oracles are practical: A paradigm for designing efficient protocols. InComputer
and Communications Security – CCS(1993), ACM Press, pp. 62–73.

[3] BONEH, D., GOH, E.-J.,AND NISSIM, K. Evaluating 2-DNF formulas on ciphertexts. InTheory of Cryptography (TCC)
(2005), J. Kilian, Ed., vol. 3378 ofLecture Notes in Computer Science, Springer, pp. 325–341.

[4] CAMENISCH, J., AND M ICHELS, M. Proving in zero-knowledge that a number is the product of two safe primes. In
Advances in Cryptology – EUROCRYPT’99(1999), J. Stern, Ed., vol. 1592 ofLecture Notes in Computer Science, Springer,
pp. 107–122.

[5] CAMENISCH, J., AND SHOUP, V. Practical verifiable encryption and decryption of discrete logarithms. InAdvances in
Cryptology – CRYPTO ’03(2003), D. Boneh, Ed., vol. 2729 ofLecture Notes in Computer Science, Springer, pp. 126–144.

[6] CANETTI , R., AND FISCHLIN, M. Universally composable commitments. InAdvances in Cryptology – CRYPTO ’01
(2001), J. Kilian, Ed., vol. 2139 ofLecture Notes in Computer Science, Springer, pp. 19–40.

[7] CANETTI , R., GOLDREICH, O., AND HALEVI , S. The random oracle methodology, revisited.Journal of the ACM 51, 4
(July 2004), 557–594.

[8] CANETTI , R., LINDELL , Y., OSTROVSKY, R., AND SAHAI , A. Universally composable two-party and multi-party secure
computation. InSymposium on Theory of Computation – STOC(2002), J. H. Reif, Ed., ACM Press, pp. 495–503.

[9] CRAMER, R., GENNARO, R., AND SCHOENMAKERS, B. A secure and optimally efficient multi- authority election scheme.
In Advances in Cryptology – EUROCRYPT ’97(1997), W. Fumy, Ed., vol. 1233 ofLecture Notes in Computer Science,
Springer, pp. 103–118.

[10] DAMGÅRD, I., AND NIELSEN, J. B. Perfect hiding and perfect binding universally composable commitment schemes with
constant expansion factor. InAdvances in Cryptology – CRYPTO ’02(2002), M. Yung, Ed., vol. 2442 ofLecture Notes in
Computer Science, Springer, pp. 581–596.

[11] FREEDMAN, M. J., NISSIM, K., AND PINKAS , B. Efficient private matching and set intersection. InAdvances in Cryptology
– EUROCRYPT ’04(May 2004), C. Cachin and J. Camenisch, Eds., vol. 3027 ofLecture Notes in Computer Science,
Springer, pp. 1–19.

[12] GOLDREICH, O., MICALI , S.,AND WIGDERSON, A. How to play any mental game. InSymposium on Theory of Compu-
tation – STOC(January 1987), ACM Press, pp. 218–229.

[13] GROTH, J., OSTROVSKY, R., AND SAHAI , A. Perfect non-interactive zero knowledge for NP. InAdvances in Cryptology
– EUROCRYPT ’06(To appear 2006), Springer.

[14] K IAYIAS , A., AND M ITROFANOVA, A. Testing disjointness of private datasets. InFinancial Cryptography(2005), A. S.
Patrick and M. Yung, Eds., vol. 3570 ofLecture Notes in Computer Science, Springer, pp. 109–124.

[15] K ISSNER, L., AND SONG, D. Privacy-preserving set operations. InAdvances in Cryptology – CRYPTO ’05(2005), V. Shoup,
Ed., vol. 3621 ofLecture Notes in Computer Science, Springer, pp. 241–257.

[16] M ICALI , S., RABIN , M., AND K ILIAN , J. Zero-knowledge sets. InFoundations of Computer Science – FOCS(2003),
M. Sudan, Ed., IEEE Press, pp. 80–91.

[17] NAOR, M., AND PINKAS , B. Oblivious transfer and polynomial evaluation. InSymposium on Theory of Computation –
STOC(May 1999), T. Leighton, Ed., ACM Press, pp. 245–254.

[18] PAILLIER , P. Public-key cryptosystems based on composite degree residuosity classes. InAdvances in Cryptology – EU-
ROCRYPT ’99(May 1999), J. Stern, Ed., vol. 1592 ofLecture Notes in Computer Science, Springer, pp. 223–238.

[19] PAILLIER , P. Trapdooring discrete logarithms on elliptic curves over rings. InAdvances in Cryptology – ASIACRYPT ’00
(2000), T. Okamoto, Ed., vol. 1976 ofLecture Notes in Computer Science, Springer, pp. 573–584.

[20] PEDERSEN, T. P. Non-interactive and information-theoretic secure verifiable secret sharing. InAdvances in Cryptology –
CRYPTO ’91(1991), J. Feigenbaum, Ed., vol. 576 ofLecture Notes in Computer Science, Springer, pp. 129–140.

[21] YAMAMURA , A., AND SAITO , T. Private information retrieval based on the private information retrieval based on subgroup
membership problem. InAustralasian Conference on Information Security and Privacy(2001), V. Varadharajan and Y. Mu,
Eds., vol. 2119 ofLecture Notes in Computer Science, Springer, pp. 206–220.

[22] YAO, A. C. How to generate and exchange secrets. InFoundations of Computer Science – FOCS(1986), IEEE Press,
pp. 162–167.

A Security Proofs

Theorem 1 is proven in four steps: completeness, soundness, malicious-prover zero knowledge, and honest-
verifier zero knowledge.

A.1 Proof of Completeness

Recall the PDT completeness property:

∀A ∈ U, ∀B ∈ U, Pr
[
P(B)V(A) = D(A,B)

]
≥ (1− negl(k))

In the oblivious polynomial evaluation protocol discussed in Section 4.3, a verifierV sends(|A| + 1)
different Com(αi, γi) values to a proverP, wheref(x) =

∑
αix

i andr(x) =
∑

γix
i. P will respond

with |B| valueswj = Com(f(bj), r(bj))Rj for randomRj . If the protocol is followed correctly, then with
high probabilitybj ∈ A if and only if ord(wj) = p.

Case 1:bj ∈ A =⇒ ord(wj) = p w.h.p. overr(x) ∈ Zp[x].
If bj ∈ A thenf(bj) = kq for somek. Then we have that the valueCom(f(bj), r(bj))Rj = (gkqhr(bj))Rj .

Recalling thatn = pq, gn = 1, and thathp = 1, we have that the valuewp
j = (gknhr(bj)p)Rj = 1.

Note that there is also a negligible chance thatRjkq = Rjr(bj) = 0 mod p, i.e. wj = 1. This will
causeV to halt the protocol. SinceRj ∈ Z∗n, this would mean thatk = r(bj) = 0 mod p.

Recall thatr(x) is chosen uniformly at random fromZp[x]. Thus, the chance that a particularbj is a root
is at most|A|/p. The chance that none of the|B| values are roots ofr(x) is:

(
1− |A|

p

)|B|
=

(1− 1
p
|A|

) p
|A|


|A||B|
p

≈ e
−

“
|A||B|

p

”
> e

−
“

poly(k)

2k

”
> 1− negl(k)

Case 2:bj /∈ A =⇒ ord(wj) 6= p.
If bj /∈ A, thenf(bj) 6= 0 mod q. So,wp

j = gRjf(bj)phRjr(bj)p = gRjf(bj)p. Note thatRj ∈ Z∗n,
soRjf(bj) 6= 0 mod q. Therefore, we haveRjf(bj)p 6= 0 mod n and can conclude thatwp

j 6= 1.

A.2 Proof of Soundness

Recall the PDT soundness property:

∀P∗ppt, Pr
A∈U

[
P∗V(A) 6= 0

]
≤ negl(k)

The verifierV will only accept when one of thepoly(k) values sent toV byP∗ has orderp. Recall that
(even a malicious)P∗ only knows(G, n) andV ’s commitments. It does not knowp, q, h or eveng.

In the given soundness definition,V is operating with arandomsetA ∈ U .P∗ has noa priori knowledge
aboutA, other than|A|. By testable and homomorphic commitment hiding property,P∗ can learn nothing
aboutA from the commitments themselves.

It is worth elaborating on this particular definition of soundness. It assumes that a malicious prover
knows nothing about the set he is trying to cause a spurious intersection with. Otherwise, if he has some
partial knowledge, say that some element is in the setA with a 1/1000 chance, a malicious prover could

cause a spurious intersection with with1/1000 probability. Our formulation captures the notion that mali-
cious provers should not be able to trick verifiers that an intersection exists without the use of some previous
knowledge ofA.

Alternatively, one could formulate this as an experiment where an adversaryP∗ chooses a setB∗ as
input for an honest PDT proverP. Any partial knowledge ofA could be embedded inB∗. The probability
thatV believes there is an intersection interacting withP(B∗) would be non-negligibly different than when
interacting directly withP∗. However, the soundness formulation as given is clearer and captures the same
properties.

With no information onA, P∗ can try to evaluatef(x) at |B∗| = poly(k) random values and will fail
to guess a member ofA with probability approximatelye(−|A||B∗|/p) which is greater than1 − negl(k).
Note by the Subgroup Decision Assumption,P∗ won’t actually be able to verify when he correctly guesses
a value inA.

There is one caveat concerning the distribution ofα coefficients. It could be the case that some coef-
ficient, or linear combination of coefficients, has a non-negligible chance of being zero. Note that a zero
coefficient corresponds to a commitment of the formCom(0, ri) = g0hri . In other words, the commit-
ment corresponding to a zero coefficient has orderp. Thus, allP∗ would have to do to break soundness
is return this commitment toV. The same applies if some linear combination of coefficients is zero with
non-negligible probability.

To avoid this issue,αi values are checked whenf(x) is created to ensure they are non-zero. Recall that
to generatef(x) the verifier will choose a random constant or irreducible polynomialG(x) and multiply it
by
∏

(x − ai). If oneG(x) fails, another random irreducible polynomial can be chosen until allαi values
are non-zero. For each iteration, there is a high probability that no coefficients will be zero, so with high
probability a constant number of iterations will be necessary.

Since theαi coefficients are determined by some random irreducible polynomialG(x), and in this case,
a random setA, they are unpredictable to a proverP∗. A malicious prover cannot send any trivial linear
combinations of committed coefficients back to the verifier since the coefficients are determined entirely by
a randomA andG(x).

Thus,P∗ essentially must try to generate orderp values directly from(G, n). We will use the Subgroup
Computation Assumption (SCA), from Definition 2. The SCA asserts that it is difficult for a polynomial-
time adversary, given the description of an efficiently sample-able groupG of ordern = pq, to find an
element of orderp. We will show that any adversaryA that violates Soundness also violates the SCA.

Suppose we have some adversaryA that violates Soundness.Awould take(G, n) andV ’s commitments
as input and would have a non-negligible probability of returning an element of orderp. By the MPZK prop-
erty,A’s behavior cannot change significantly when we substituteV ’s commitments with random values.

Given such an adversaryA and setup(G, n), we could feed it random values sampled fromG and
obtain an element of orderp. Obviously, this violates the SCA. Thus by the facts thatA is chosen uniformly
at random, thatf has a negligible probability of having zero coefficients, and by the SCA, the Soundness
property from the PDT definition holds.

A.3 Proof of PDT Malicious-Prover Zero Knowledge

Recall the PDT Malicious-Prover Zero Knowledge (MPZK) property:

∃Sppt, ∀P∗ppt, ∀A ∈ U, {ViewP∗[
P∗V(A)

]
}

c
≈ {ViewP∗[

P∗S(1|A|)
]
}

The proof that a malicious-proverP∗ is not able to glean any information aboutA from the val-
uesCom(αi, γi) follows from the hiding property of the testable and homomorphic commitment scheme
from Lemma 1 (which in turn essentially follows from the semantic security of the BGN cryptosystem [3].)
The proof will argue this step, then describe a zero-knowledge simulator.

First, the Subgroup Decision Assumption (SDA), from Definition 1, implies thatCom is computation-
ally hiding. Suppose the contrapositive, thatCom is not hiding. LetA be a probabilistic polynomial time
adversary that runs the indistinguishability under chosen plaintext attack (IND-CPA) experiment shown in
Figure 7 for a given input(G, n) whereg, h ∈ G andh has orderp.

EXPIND−CPA
A (G, n, g, h):

1. A(G, n)→ (a0, a1)
2. t← Z∗

n

3. b← {0, 1}
4. A(G, n, gabht)→ b′

Fig. 7.Testable and homomorphic commitment IND-CPA experiment

Suppose, for the sake of contradiction, thatPr[b = b′] ≥ 1/2 + 1/poly(k). If this is the case, we
can construct an adversaryA∗ that violates the SDA assumption. To do so, given same input(G, n) and a
challengex ∈ G, the adversaryA∗ must be able to distinguish whetherx = gr or grq for r ∈ Z∗n. (We
ignore the case wherex = 1.)

Now,A∗ selects a random generatorg ∈ G and runs EXPIND−CPA
A (G, n, g, x) with the adversaryA.

If x = grq then it will have orderp, and thus theA∗ simulates EXPIND−CPA
A perfectly forA, soA will

maintain a1/2 + 1/poly(k) advantage.
If x = gr, in step 4 of EXPIND−CPA

A , the adversaryA will receive the valuega0grt (w.l.o.g.). Becauser
andt are chosen uniformly at random fromZ∗n, it’s equally possible thatA has received the valuega1gr′t′ ,
wherer′t′ = rt + a0 − a1. Thus,A has necessarily a1/2 chance of guessingb whenx = gr.

By running repeated EXPIND−CPA
A (G, n, g, x) experiments,A∗ can observeA’s performance at guess-

ing b. If A displays a1/2+1/poly(k) advantage,A∗ will guess thatx = grq. If A has no advantage, thenA∗
will guess thatx = gr. Thus,A∗ can distinguish distributions of(G, n, grq) from (G, n, gr), violating the
SDA.

Therefore, if the SDA holds, then the commitment schemeCom is computationally hiding. A malicious
adversary cannot distinguish a commitment to a particulara0 from a commitment to a random message.
Based on this, we will construct a simulatorS(1|A|) that will be indistinguishable from a verifierV(A) to
any probabilistic polynomial timeP∗.
S is quite simple: it will send|A| random values inG to P∗. Because random values are individually

indistinguishable from commitments to particularαi coefficients,P∗ will not be able to distinguishS(1|A|)
from V(A). Thus, by the SDA, the Malicious-Prover Zero Knowledge property holds.

A.4 Proof of Honest-Verifier Perfect Zero Knowledge

Recall the PDT Honest-Verifier Perfect Zero Knowledge (HVPZK) property:

∃Sppt, ∀A ∈ U, ∀B ∈ U, {ViewV[P(B)V(A)
]
} ≈ {S(A, 1|B|, 1|A∩B|)}

The HVPZK property implies that an adversary givenViewV [P(B)V(A)] cannot learn anything aboutB
that it could not learn given|A∩B| and|B|. The quantification is over all choices of inputA, which includes
adversarial choices ofA that might be based on some prior knowledge or some partial knowledge of a
particular setB. By running the legitimate protocol, however, a semi-honestV should not learn anything
beyond what is can conclude from the size of|A ∩B|.

Because the adversary is semi-honest, it cannot deviate from the protocol, manipulate its choice of(G, n),
or manipulate its committed coefficients. Its power is equivalent to choosing a query setA and running the
legitimate verifierV. We will describe a simulatorS, that on inputs(A, 1|B|, 1|A∩B|) produces a view that is
perfectly indistinguishable fromViewV [P(B)V(A)].

HVPZK SIMULATOR :

1. S runsS(1k) to obtain(G, p, q), selects random generatorsg, u in G, and computesn = pq andh = uq.
2. S publishes(G, n).
3. S announces|A| and|B|.
4. S publishes committed polynomial coefficientsCom(αi, γi) = gαihγi in G for i = 0 to |A|, exactly asV would.
5. S ignores the values from step 3 and generates|B| random elements ofG, raises a random selection of|A∩B| of these

values toq (thereby making them of orderp), leaves the other|B|− |A∩B| values as is, and outputs these|B| elements
as the response ofP.

Fig. 8.Honest-verifier perfect zero knowledge simulator

The HVPZK simulator works as shown in Figure 8 (recall the PDT protocol from Section 5). This
simulator perfectly generates the distributionViewP [P(B)V(A)]. Here,S follows the same setup asV
andP in steps 1, 2, and 3. In step 4, the response of the simulated prover is|A ∩ B| randomvalues of
orderp in G and|B| − |A ∩ B| randomvalues inG. This is exactly the distribution than an honest prover
would return. Thus, the two views are perfectly indistinguishable and the HVPZK property holds.

