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HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS

CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

1. Introduction and outline

In this article we study the spectral properties of the Schrödinger operator
HV “ ´Δ ` V pxq, x P R2, where the potential, V , is periodic and has honey-
comb structure symmetry. For general periodic potentials the spectrum of HV ,
considered as an operator on L2pR2q, is the union of closed intervals of continu-
ous spectrum called the spectral bands. Associated with each spectral band are a
band dispersion function, µpkq, and Floquet-Bloch states, upx;kq “ ppx;kqeik¨x,
where Hupx;kq “ µpkqupx;kq and ppx;kq is periodic with the periodicity of V pxq.
The quasi-momentum, k, varies over B, the first Brillouin zone [10]. Therefore, the
time-dependent Schrödinger equation has solutions of the form eipk¨x´μpkqtq ppx;kq.
Furthermore, any finite energy solution of the initial value problem for the time-
dependent Schrödinger equation is a continuum weighted superposition, an integral
dk, over such states. Thus, the time-dynamics are strongly influenced by the char-
acter of µpkq on the spectral support of the initial data.

We investigate the properties of µpkq in the case where V “ Vh is a honeycomb
lattice potential, i.e. Vh is periodic with respect to a particular lattice, Λh, and has
honeycomb structure symmetry; see Definition 2.1. There has been intense interest
within the fundamental and applied physics communities in such structures; see,
for example, the survey articles [14, 16]. Graphene, a single atomic layer of carbon
atoms, is a two-dimensional structure with carbon atoms located at the sites of a
honeycomb structure. Most remarkable is that the associated dispersion surfaces
are observed to have conical singularities at the vertices of Bh, which in this case is a
regular hexagon. That is, locally about any such quasi-momentum vertex, k « K‹,
one has

(1.1) µpkq ´ µpK‹q « ˘ |λ7| ¨ |k ´ K‹| ,
for some complex constant λ7 ‰ 0. A consequence is that for wave-packet ini-
tial conditions with spectral components which are concentrated near these ver-
tices, the effective evolution equation governing the wave-packet envelope is the
two-dimensional Dirac wave equation, the equation of evolution for massless rel-
ativistic fermions [14, 1]. Hence, these special vertex quasi-momenta associated
with the hexagonal lattice are often called Dirac points. In contrast, wave-packets
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1170 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

concentrated at spectral band edges, bordering a spectral gap where the disper-
sion relation is typically quadratic, behave as massive nonrelativistic particles; the
effective wave-packet envelope equation is the Schrödinger equation with inverse
effective mass related to the local curvature of the band dispersion relation at the
band edge. The presence of Dirac points has many physical implications with great
potential for technological applications [23]. Refractive index profiles with honey-
comb lattice symmetry and their applications are also considered in the context of
electromagnetics [7, 22]. Also, linear and nonlinear propagation of light in a two-
dimensional refractive index profile with honeycomb lattice symmetry, generated
via the interference pattern of plane waves incident on a photorefractive crystal,
have been investigated in [17, 3] . In such structures, wave-packets of light with
spectral components concentrated near Dirac points, evolve diffractively (rather
than dispersively) with increasing propagation distance into the crystal.

Previous mathematical analyses of such honeycomb lattice structures are based
upon extreme limit models:

(1) the tight-binding / infinite contrast limit (see, for example, [21, 14, 13, 20])
in which the potential is taken to be concentrated at lattice points or edges
of a graph; in this limit, the dispersion relation has an explicit analytical
expression, or

(2) the weak-potential limit, treated by formal perturbation theory in [7, 1]
and rigorously in [6].

The goal of the present paper is to provide a rigorous construction of conical
singularities (Dirac points) for essentially any potential with a honeycomb structure.
No assumptions on smallness or largeness of the potential are made. More precisely,
consider the Schrödinger operator

(1.2) Hpεq ” ´Δ ` εVh pε realq,
where Vhpxq denotes a honeycomb lattice potential. These potentials are real-valued,
smooth, Λh-periodic and, with respect to some origin of coordinates, inversion
symmetric px Ñ ´xq and invariant under a 2π{3-rotation (R-invariance); see Def.
2.1. We also make a simple, explicit genericity assumption on Vhpxq; see equation
(5.2).
Our main results are:

(1) Theorem 5.1, which states that for fixed honeycomb lattice potential Vh,
the dispersion surface of Hpεq has conical singularities at each vertex of the
hexagonal Brillouin zone, except possibly for ε in a countable and closed set,
C̃. We do not know whether exceptional nonzero ε can occur, i.e. whether
the above countable closed set can be taken to be t0u. However our proof
excludes exceptional ε from p´ε0, ε0qzt0u, for some ε0 ą 0. Moreover,
for small ε these conical singularities occur either as intersections between
the first and second band dispersion surfaces or between the second and
third dispersion surfaces. As ε increases, there continue to be such conical
intersections of dispersion surfaces, but we do not control which dispersion
surfaces intersect.

(2) Theorem 9.1, which states that the conical singularities of the dispersion

surface of Hpεq for ε R C̃, are robust in the following sense: Let W pxq
be real-valued, Λh-periodic and inversion-symmetric (even), but not nec-
essarily R-invariant. Then, for all sufficiently small real η, the operator
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HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS 1171

Hpηq “ Hpεq ` ηW has a dispersion surface with conical-type singularities.
Furthermore, these conical singularities will typically not occur at the ver-
tices of the Brillouin zone, Bh; see also the numerical results in [3]. In
Remark 9.2 we show instability of Dirac points to certain perturbations,
e.g., perturbations W which are Λh-periodic but not inversion-symmetric.
The dispersion surface is locally smooth in this case.

In a forthcoming paper we prove that Dirac points persist if the honey-
comb lattice is subjected to a small uniform strain.

The paper is structured as follows. In section 2 we briefly outline the spectral
theory of general periodic potentials. We then introduce Λh, the particular lattice
(Bravais lattice) used to generate a honeycomb structure or “honeycomb lattice”,
the union of two interpenetrating triangular lattices. Section 2 concludes with
implications for Fourier analysis in this setting. Section 3 contains a discussion
of the spectrum of the Laplacian on L2

k, the subspace of L2 satisfying pseudo-
periodic boundary conditions with quasi-momentum k P Bh, the Brillouin zone.
We observe that degenerate eigenvalues of multiplicity three occur at the vertices
of Bh. In section 4 we state and prove Theorem 4.1, which reduces the construction
of conical singularities of the dispersion surface at the vertices of Bh to establishing
the existence of two-dimensional R-invariant eigenspaces ofHpεq for quasi-momenta
at the vertices of Bh. In section 5 we give a precise statement of our main result,
Theorem 5.1, on conical singularities of dispersion surfaces at the vertices of Bh. In
section 6 we prove for all ε sufficiently small and nonzero, by a Lyapunov-Schmidt
reduction, that the degenerate, multiplicity three eigenvalue of the Laplacian splits
into a multiplicity two eigenvalue and a multiplicity one eigenvalue, with associated
R-invariant eigenspaces. In order to continue this result to ε large we introduce,
in section 7, a globally-defined analytic function, Epµ, εq, whose zeros, counting
multiplicity, are the eigenvalues of Hpεq. Eigenvalues occur where an operator I `
Cpµ, εq, Cpµ, εq compact, is singular. Since Cpµ, εq is not trace-class but is Hilbert-
Schmidt, we work with Epµ, εq “ det2pI ` Cpµ, εqq, a renormalized determinant. In
section 8, Epµ, εq and λε

7 (see (1.1)) are studied using techniques of complex function
theory to establish the existence of Dirac points for arbitrary real values of ε, except
possibly for a countable closed subset of R. In section 9 we prove Theorem 9.1,
which gives conditions for the local persistence of the conical singularities. Remark
9.2 discusses perturbations which break the conical singularity and for which the
dispersion surface is smooth. Appendix A contains a counterexample, illustrating
the topological obstruction discussed in section 8.3.

Finally we remark that conical singularities have long been known to occur in
Maxwell equations with constant anisotropic dielectric tensor; see [4] and the ref-
erences cited therein.

1.1. Notation.

(1) z P C ùñ z denotes the complex conjugate of z.
(2) A, a dˆd matrix ùñ At is its transpose and A˚ is its conjugate-transpose.

(3) xjy “
a

1 ` |j|2.
(4) For q “ pq1, q2q P Z2, qk “ q1k1 ` q2k2 .
(5) Km “ Km1,m2 “ K ` mk “ K ` m1k1 ` m2k2.

K,k1 and k2 are defined in section 2.2.
(6) ∇k “ e´ik¨x∇xe

ik¨x “ ∇x ` ik, Δk “ ∇k ¨ ∇k.
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1172 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

(7) x,y P Cn, xx,yy “ x ¨ y, x ¨ y “ x1y1 ` ¨ ¨ ¨ ` xnyn.
(8) xf, gy “

ş

fg.

(9) l2spZ2q “
!

ξ “ tξjujPZ2 :
ř

jPZ2 xjy2s|ξj|2 ă 8
)

.

2. Periodic potentials and honeycomb lattice potentials

We begin this section with a review of Floquet-Bloch theory of periodic potentials
[5], [12], [18]. We then turn to the definition of honeycomb structures and their
Fourier analysis.

2.1. Floquet-Bloch theory. Let tv1,v2u be a linearly independent set in R
2.

Consider the lattice

(2.1) Λ “ tm1v1 ` m2v2 : m1,m2 P Z u “ Zv1 ‘ Zv2.

The fundamental period cell is denoted by

(2.2) Ω “ tθ1v1 ` θ2v2 : 0 ď θj ď 1, j “ 1, 2u .

Denote by L2
per,Λ “ L2pR2{Λq, the space of L2

loc functions which are periodic with

the respect to the lattice Λ, or equivalently functions in L2 on the torus R2{Λ “ T
2:

f P L2
per,Λ if and only if fpx ` vq “ fpxq, for x P R

2, v P Λ .

More generally, we consider functions satisfying a pseudo-periodic boundary con-
dition:

(2.3) f P L2
k,Λ if and only if fpx ` vq “ fpxqeik¨v, for x P R

2, v P Λ.

We shall suppress the dependence on the period-lattice, Λ, and write L2
k, if the

choice of lattice is clear from the context. For f and g in L2
k,Λ, fg is locally

integrable and Λ-periodic and we define their inner product by

(2.4) xf, gy “
ż

Ω

fpxq gpxq dx .

In a standard way, one can introduce the Sobolev spaces Hs
k,Λ.

The dual lattice, Λ˚, is defined to be

(2.5) Λ˚ “ tm1k1 ` m2k2 : m1,m2 P Zu “ Zk1 ‘ Zk2 ,

where k1 and k2 are dual lattice vectors, satisfying the relations:

ki ¨ vj “ 2πδij .

If f P L2
per,Λ, then f can be expanded in a Fourier series with Fourier coefficients

f̂ “ tfmumPZ2 :

fpxq “
ÿ

mPZ2

fm eimk¨x “
ÿ

pm1,m2qPZ2

fm1,m2
eipm1k1`m2k2q¨x ,(2.6)

fm ” 1

|Ω|

ż

Ω

e´imk¨y fpyq dy “ 1

|Ω|

ż

Ω

e´ipm1k1`m2k2q¨y fpyq dy.(2.7)

Let V pxq denote a real-valued potential which is periodic with respect to Λ, i.e.,

V px ` vq “ V pxq, for x P R
2, v P Λ.

Throughout this paper we shall also assume that the potential, V pxq, under con-
sideration is C8. Thus,

(2.8) V P C8pR2{Λq .
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HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS 1173

We expect that this smoothness assumption can be relaxed considerably without
much extra work.

For each k P R
2 we consider the Floquet-Bloch eigenvalue problem

HV φpx;kq “ µpkq φpx;kq, x P R
2,(2.9)

φpx ` v;kq “ eik¨v φpx;kq, v P Λ,(2.10)

where

(2.11) HV ” ´Δ ` V pxq .

An L2
k-solution of (2.9)-(2.10) is called a Floquet-Bloch state.

Since the eigenvalue problem (2.9)-(2.10) is invariant under the change k ÞÑ k`k̃,

where k̃ P Λ˚, the dual period lattice, the eigenvalues and eigenfunctions of (2.9)-
(2.10) can be regarded as Λ˚-periodic functions of k, or functions on T2

k “ R2
k{Λ˚.

Therefore, it suffices to restrict our attention to k varying over any primitive cell.
It is standard to work with the first Brillouin zone, B, the closure of the set of
points k P R2, which are closer to the origin than to any other lattice point.

An alternative formulation is obtained as follows. For every k P B we set

(2.12) φpx;kq “ eik¨xppx;kq.

Then ppx;kq satisfies the periodic elliptic boundary value problem:

HV pkqppx;kq “ µpkq ppx;kq, x P R
2,(2.13)

ppx ` v;kq “ ppx;kq, v P Λ,(2.14)

where

(2.15) HV pkq ” ´ p∇ ` ikq2 ` V pxq ” ´Δk ` V pxq.

The eigenvalue problem (2.9)-(2.10), or equivalently (2.13)-(2.14), has a discrete
spectrum:

(2.16) µ1pkq ď µ2pkq ď µ3pkq ď . . .

with eigenpairs pbpx;kq, µbpkq : b “ 1, 2, 3, . . . . The set tpbpx;kqubě1 can be taken
to be a complete orthonormal set in L2

perpR2{Λq.
The functions µbpkq are called band dispersion functions. Some general results

on their regularity appear in [2]. As k varies over B, µbpkq sweeps out a closed
real interval. The spectrum of ´Δ ` V pxq in L2pR2q is the union of these closed
intervals:

(2.17) specpHV q “
ď

kPB
spec pHV pkqq .

Moreover, the set
Ť

bě1

Ť

kPBtφbpx;kqu, φbpx;kq ” eik¨xpbpx;kq, suitably normal-

ized, is complete in L2pR2q:

f P L2pR2q ùñ fpxq “
ÿ

bě1

ż

B

xφbp¨,kq, fyφbpx;kq dk ,

where the sum converges in the L2 norm.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1174 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

2.2. The period lattice, Λh , and its dual, Λ˚
h. Consider Λh “ Zv1 ‘Zv2, the

lattice generated by the basis vectors:

v1 “ a

¨

˝

?
3
2

1
2

˛

‚, v2 “ a

¨

˝

?
3
2

´1
2

˛

‚, a ą 0.(2.18)

Note: Λh (“h” for honeycomb) is a triangular lattice, which arises naturally in
connection with honeycomb structures; see Figure 1.

The dual lattice Λ˚
h “ Zk1 ‘ Zk2 is spanned by the dual basis vectors:

k1 “ q

¨

˝

1
2

?
3
2

˛

‚, k2 “ q

¨

˝

1
2

´
?
3
2

˛

‚, q ” 4π

a
?
3
,(2.19)

where

kℓ ¨ vℓ1 “ 2πδℓℓ1 ,(2.20)

|v1| “ |v2| “ a, v1 ¨ v2 “ a2

2
,(2.21)

|k1| “ |k2| “ q, k1 ¨ k2 “ ´1

2
q2 .(2.22)

The Brillouin zone, Bh, is a hexagon in R2; see Figure 2. Denote by K and K1

the vertices of Bh given by

(2.23) K ” 1

3
pk1 ´ k2q , K1 ” ´K “ 1

3
pk2 ´ k1q .

All six vertices of Bh can be generated by an application of the rotation matrix, R,
which rotates a vector in R2 clockwise by 2π{3. R is given by

(2.24) R “

¨

˚

˝

´1
2

?
3
2

´
?
3
2

´1
2

˛

‹

‚

and the vertices of Bh fall into two groups, generated by the action of R on K and
K1:

K type-points: K, RK “ K ` k2, R2K “ K ´ k1,

K1 type-points: K1, RK1 “ K1 ´ k2, R2K1 “ K1 ` k1 .
(2.25)

Remark 2.1 (Symmetry Reduction). Let pφpx;kq, µpkqq denote a Floquet-Bloch
eigenpair for the eigenvalue problem (2.9)-(2.10) with quasi-momentum k. Since

V is real, pφ̃px;kq ” φpx;kq, µpkqq is a Floquet-Bloch eigenpair for the eigen-
value problem with quasi-momentum ´k. Recall the relations (2.25) and the Λ˚

h-
periodicity of k ÞÑ µpkq and k ÞÑ φpx;kq. It follows that the local character of
the dispersion surfaces in a neighborhood of any vertex of Bh is determined by its
character about any other vertex of Bh.
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HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS 1175

In our computations using Fourier series, we shall frequently make use of the
following relations:

R k1 “ k2, R k2 “ ´ pk1 ` k2q , R pk1 ` k2q “ ´k1(2.26)

R ζ “ τ ζ, R ζ̄ “ τ̄ ζ̄ , where(2.27)

ζ ” 1?
2

ˆ

1
i

˙

, τ “ e
2πi
3 “ ´1

2
` i

?
3

2
, τ3 “ 1.(2.28)

Moreover, R˚ maps the period lattice Λh to itself and, in particular,

(2.29) R˚v1 “ ´v2, R˚v2 “ v1 ´ v2.

2.3. Honeycomb lattice potentials. For any function f , defined on R2, intro-
duce

(2.30) Rrf spxq “ fpR˚xq,
where R is the 2 ˆ 2 rotation matrix displayed in (2.24).

Definition 2.1 (Honeycomb lattice potentials). Let V be real-valued and V P
C8pR2q. V is a honeycomb lattice potential if there exists x0 P R2 such that

Ṽ pxq “ V px ´ x0q has the following properties:

(1) Ṽ is Λh-periodic, i.e. Ṽ px ` vq “ Ṽ pxq for all x P R2 and v P Λh.

(2) Ṽ is even or inversion-symmetric, i.e. Ṽ p´xq “ Ṽ pxq.
(3) Ṽ is R-invariant, i.e.

RrṼ spxq ” Ṽ pR˚xq “ Ṽ pxq,
where R˚ is the counterclockwise rotation matrix by 2π{3, i.e. R˚ “ R´1,
where R is given by (2.24).

Thus, a honeycomb lattice potential is smooth, Λh-periodic and, with respect to
some origin of coordinates, both inversion symmetric and R-invariant.

Remark 2.2. As the spectral properties are independent of translation of the po-
tential we shall assume in the proofs, without any loss of generality, that x0 “ 0.

Remark 2.3. A consequence of a honeycomb lattice potential being real-valued
and even is that if pφpx;kq, µq is an eigenpair with quasi-momentum k of the

Floquet-Bloch eigenvalue problem, then
´

φp´x;kq, µ
¯

is also an eigenpair with

quasi-momentum k.

Remark 2.4. We present two constructions of honeycomb lattice potentials.

Example 1: “Atomic” honeycomb lattice potentials: Start with the two points

(2.31) A “ p0, 0q and B “ a

ˆ

1?
3
, 0

˙

,

which lie within the unit period cell of Λh; see (2.18). Define the
triangular lattices of A-type and B-type points:

(2.32) ΛA “ A ` Λh and ΛB “ B ` Λh.

We define the honeycomb structure, H, to be the union of these two
triangular lattices:

(2.33) H “ ΛA Y ΛB ;
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1176 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

see Figure 1. Let V0 be a smooth, radial and rapidly decreasing func-
tion, which we think of as an “atomic potential”. Then,

V pxq “
ÿ

aPH
V0px ´ aq

is a potential associated with “atoms” at each site of the honeycomb
structure H. Moreover, V pxq is a honeycomb lattice potential in the
sense of Definition 2.1 with x0 “ ´B.

Note that a potential of the form

V pxq “
ÿ

aPΛh

V0px ´ aq,

a “triangular lattice potential”, also satisfies the properties listed in
Definition 2.1.

Example 2: Optical honeycomb lattice potentials: The electric field envelope
of a nearly monochromatic beam of light propagating through a di-
electric medium with two-dimensional refractive index profile satisfies
a linear Schrödinger equation iBzψ “ ´Δx,yψ ` V px, yqψ “ 0. Here, z
denotes the direction of propagation of the beam and px, yq the trans-
verse directions. Honeycomb lattice potentials have been generated
by taking advantage of nonlinear optical phenomena. It was demon-
strated in [17] that a honeycomb lattice potential (a honeycomb “pho-
tonic lattice”), V px, yq, can be generated through an optical induction
technique based on the interference of three plane wave beams of light
within a photorefractive crystal, exhibiting the defocusing (nonlinear)
optical Kerr effect. The refractive-index variations are governed by a
potential of the approximate form:

(2.34) V pxq « V0 pcospk1 ¨ xq ` cospk2 ¨ xq ` cos ppk1 ` k2q ¨ xqq

It is straightforward to check, in view of (2.26), that a potential of
this type is a honeycomb lattice potential in the sense of Definition 2.1
with x0 “ 0. In fact, in Proposition 2.3 below, we assert that with
respect to some origin of coordinates, any honeycomb lattice potential
can be expressed as a Fourier series of terms of this type.

The following proposition plays a key role. It states that at distinguished points
in k-space, namely theK and K1 type points, HV with quasi-momentum dependent
boundary conditions (2.10) or equivalently, HV pkq, with Λh periodic boundary
conditions, has an extra rotational invariance property.

Proposition 2.2. Assume V is a honeycomb lattice potential, as in Definition
2.1. Assume K‹ is a point of K or K1 type; see (2.25). Then, HV and R map a
dense subspace of L2

K‹
to itself. Furthermore, restricted to this dense subspace of

L2
K‹

, the commutator rH,Rs ” HV R ´ RHV vanishes. In particular, if φpx;kq is
a solution of the Floquet-Bloch eigenvalue problem (2.9)-(2.10) with k “ K‹, then
Rrφp¨,kqspxq is also a solution of (2.9)-(2.10) with k “ K‹.

Proof. Take as a dense subspace C8
K‹

, the space of C8 functions satisfying fpx `
vq “ eiK‹¨vfpxq for all x P R2 and v P Λh. Clearly, H maps C8

K‹
to itself.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS 1177

Figure 1. Part of the honeycomb structure, H. H is the union
of two sublattices ΛA “ A `Λh (denoted by ‚) and ΛB “ B `Λh

(denoted by ˝). The lattice vectors tv1,v2u generate Λh. See
Remark 2.4.

Define φRpxq “ Rrφp¨,K‹qspxq “ φpR˚x,K‹q. Without loss of generality, assume
K‹ “ K. By (2.29), if v P Λh, then R˚v P Λh. We have

φRpx ` vq “ φpR˚x ` R˚v,Kq “ eiK¨R˚vφpR˚x,Kq
“ eiRK¨v φpR˚x,Kq “ eipK`k2q¨v φpR˚x,Kq
“ eiK¨v φpR˚x,Kq “ eiK¨v φRpxq.

Thus, we have that R maps C8
K‹

to itself.
Next note that by invariance of the Laplacian under rotations, ´ΔxφRpxq “

´ Δyφpy,K‹q|
y“R˚x

. Furthermore, byR-invariance of V pxq, note that V pxqφRpxq
“ V pR˚xqφpR˚x,K‹q “ V pyqφpy,K‹q|y“R˚x . Therefore, rH,Rs vanishes on

C8
K‹

. In particular, we have that

HV φpx,K‹q “ µφpx,K‹q ùñ HV φRpxq “ µφRpxq .

This completes the proof of the proposition. �

We conclude this section with a discussion of the Fourier representation of honey-
comb lattice potentials in the sense of Definition 2.1. Let V pxq be such a potential
with Fourier series:

V pxq “
ÿ

mPZ2

Vmeimk¨x “
ÿ

pm1,m2qPZ2

Vm1,m2
eipm1k1`m2k2q¨x.

Since V pxq “ RrV spxq, we have

V pR˚xq “
ÿ

pm1,m2q
Vm1,m2

eipm1Rk1`m2Rk2q¨x “
ÿ

pm1,m2q
Vm1,m2

eipp´m2qk1`pm1´m2qk2q¨x.
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Figure 2. Brillouin zone, Bh, and dual basis tk1,k2u. K and K1

are labeled. Other vertices of Bh obtained via an application of R,
rotation by 2π{3; see equation (2.25).

Therefore, Vm1,m2
“ V´m2,m1´m2

. Similarly, V pxq “ R2rV spxq implies that

Vm1,m2
“ Vm2´m1,´m1

. Introduce the mapping R̃ : Z2 Ñ Z
2 acting on the in-

dices of the Fourier coefficients of V :

R̃pm1,m2q “ p´m2,m1 ´ m2q and therefore

R̃2pm1,m2q “ pm2 ´ m1,´m1q, and R̃3pm1,m2q “ pm1,m2q .
(2.35)

Then we have

(2.36) Vm “ VR̃m “ VR̃2m.

Note that R̃0 “ 0 and that 0 is the unique element of the kernel of R̃. Furthermore,
any m ‰ 0 lies on an R̃-orbit of length exactly three. Indeed,

m “ R̃m Ø pm1,m2q “ p´m2,m1 ´ m2q ùñ m1 “ m2 “ 0 and

m “ R̃2m Ø pm1,m2q “ p´m1 ` m2,´m1q ùñ m1 “ m2 “ 0 .

Suppose m and n are nonzero. We say that m „ n if m and n lie on the same
3-cycle. The relation „ is an equivalence relation, which partitions Z2zt0u into

equivalence classes,
`

Z2zt0u
˘

{ „. Let S̃ denote a set consisting of exactly one rep-
resentative from each equivalence class. We now have the following characterization

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS 1179

of Fourier series of honeycomb lattice potentials:

Proposition 2.3. Let V pxq denote a honeycomb lattice potential. Then,
(2.37)

V pxq “ V̂ p0q `
ÿ

mPS̃
Vm

”

cospmk ¨ xq ` cosppR̃mqk ¨ xq ` cosppR̃2mqk ¨ xq
ı

,

where Vm are real and R̃ is defined in (2.35).

Proof of Proposition 2.3. From (2.36) we have

(2.38) V pxq “ V̂ p0q `
ÿ

mPS̃
Vm

´

eimk¨x ` eipR̃mqk¨x ` eipR̃
2mqk¨x

¯

.

The relation V pxq “ pV pxq ` V p´xqq{2 and (2.38) imply
(2.39)

V pxq “ V̂ p0q `
ÿ

mPS̃

Vm

´

cospmk ¨ xq ` cos
´

pR̃mqk ¨ x
¯

` cos
´

pR̃2mqk ¨ x
¯¯

.

Moreover, since V is real and even, Vm is real for m P Z2. This completes the
proof. �

2.4. Fourier analysis in L2
K‹

. We characterize the Fourier series of functions

φ P L2
K‹

, i.e. functions φpx;K‹q, satisfying the quasi-periodic boundary condition

(2.40) φpx ` vq “ eiK‹¨v φpxq.
The discussion is analogous to that preceding Proposition 2.3.

If (2.40) holds, then φpxq “ eiK‹¨x ppxq, where ppxq is Λ-periodic. It follows that
φ has a Fourier representation:

(2.41) φpxq “ eiK‹¨x
ÿ

pm1,m2qPZ2

cpm1,m2q eipm1k1`m2k2q¨x,

which we rewrite as

φpxq “
ÿ

pm1,m2qPZ2

cpm1,m2q eipK‹`m1k1`m2k2q¨x

“
ÿ

pm1,m2qPZ2

cpm1,m2q eiK
m1,m2
‹ ¨x “

ÿ

mPZ2

cpmq eiK
m

‹ ¨x,(2.42)

where Km
‹ “ K‹ ` m1k1 ` m2k2.

Usually, we denote by cφpmq or cpm;φq the Fourier coefficients, as in (2.42), of
φ P L2

K‹
.

Note that the transformation R, defined in (2.30), is unitary on L2 and so its
eigenvalues lie on the unit circle in C. Furthermore, if Rφ “ λφ and φ ‰ 0, then
since R3 “ Id, φ “ R3φ “ λ3φ, we have λ3 “ 1. Therefore λ P t1, τ, τ̄u, where
τ “ expp2πi{3q.

We are interested in the general Fourier expansion of functions in each of the
eigenspaces of R:

L2
K‹,1

” tf P L2
K‹

: Rf “ fu,(2.43)

L2
K‹,τ

” tf P L2
K‹

: Rf “ τfu,(2.44)

L2
K‹,τ̄

” tf P L2
K‹

: Rf “ τ̄ fu.(2.45)
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Since R is unitary these subspaces are pairwise orthogonal.
Fix, without loss of generality, K‹ “ K. We first consider the action of R on

general φ P L2
K. Applying R to φ, given by (2.42), we obtain:

Rrφspxq “
ÿ

pm1,m2qPZ2

cφpm1,m2q eiK
m¨R˚x

“
ÿ

pm1,m2qPZ2

cφpm1,m2q eiRKm¨x

“
ÿ

pm1,m2qPZ2

cφpm1,m2q eipK`p´m2qk1`pm1´m2`1qk2q¨x,

since

(2.46) RKm “ RKm1,m2 “ K ` p´m2qk1 ` pm1 ´ m2 ` 1qk2 “ K´m2,m1´m2`1.

Thus,

cRφp´m2,m1 ´ m2 ` 1q “ cφpm1,m2q, or equivalently

cRφpm1,m2q “ cφpm2 ´ m1 ´ 1,´m1q .
(2.47)

Similarly, by a second application of R, and using the relation

(2.48) R2Km1,m2 “ Km2´m1´1,´m1 ,

we have

cR2φpm2 ´ m1 ´ 1,´m1q “ cφpm1,m2q, or equivalently

cR2φpm1,m2q “ cφp´m2,m1 ´ m2 ` 1q.(2.49)

Finally, since R3 “ I, cR3φpm1,m2q “ cφpm1,m2q.
R acting in L2

K induces a decomposition of Z2 into orbits of length three:

(2.50) pm1,m2q R ÞÑ p´m2,m1´m2`1q R ÞÑ pm2´m1´1,´m1q R ÞÑ pm1,m2q.
For convenience we shall abuse notation and write

Rm “ Rpm1,m2q “ p´m2,m1 ´ m2 ` 1q,
R2m “ R2pm1,m2q “ pm2 ´ m1 ´ 1,´m1q,
R3m “ Id pm1,m2q “ pm1,m2q.

(2.51)

Using the notation (2.51), relations (2.47), (2.49) and (2.51) can be expressed
as:

cRφpmq “ cφpR2mq “ cφpm2 ´ m1 ´ 1,´m1q,
cR2φpmq “ cφpRmq “ cφp´m2,m1 ´ m2 ` 1q.

(2.52)

Furthermore, by (2.46) and (2.48),

(2.53) RKm “ KRm and R2Km “ KR2m.

Each point in Z2 lies on an orbit of R of precisely length 3, a 3-cycle. To see this,
note that by (2.51), R3m “ m for all m P Z

2. So we need only check that there are
no solutions to either Rm “ m or to R2m “ m. First, suppose Rm “ m. Then,
R2m “ m as well. So, on the one hand, the centroids of m,Rm and R2m are all
equal to m P Z2. On the other hand, by (2.51), their centroid is p´1{3, 1{3q R Z2, a
contradiction. Therefore, there are no Z

2 solutions of Rm “ m. Now if R2m “ m,
then applying R to this relation yields m “ R3m “ Rm, and we’re back to the
previous case.
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We shall say that two points in Z2, m and n, are equivalent, m « n, if they lie
on the same 3-cycle of R. We identify all equivalent points by introducing the set
of equivalence classes, Z2{ « .

Definition 2.4. We denote by S a set consisting of exactly one representative of
each equivalence class in Z2{ « . For example, tp0, 0q, p0, 1q, p´1, 0qu P Z2{ «, from
which we choose p0, 1q as its representative in S.

Using the relations (2.51), we can express the Fourier series of an arbitrary
φ P L2

K as a sum over 3-cycles of R:

φpxq “
ÿ

pm1,m2qPZ2

cφpm1,m2q eipK`m1k1`m2k2q¨x

“
ÿ

mPS

´

cφpmq eiK
m¨x ` cφpRmqeiRKm¨x ` cφpR2mqeiR2Km¨x

¯

,
(2.54)

where Rjm, j “ 1, 2, is given in (2.51).
We now turn to the Fourier representation of elements of the subspaces L2

K,1,

L2
K,τ and L2

K,τ̄ .

Proposition 2.5. Let φ P L2
K. Then

Rφ “ φ ô cφpmq “ cφpRmq “ cφpR2mq,(2.55)

Rφ “ τ φ ô cφpR2mq “ τcφpmq and cφpRmq “ τ̄ cφpmq,(2.56)

Rφ “ τ̄ φ ô cφpR2mq “ τ̄ cφpmq and cφpRmq “ τcφpmq.(2.57)

Moreover,

R2φ “ τ̄ φ ô cR2φpmq “ cφpRmq “ τ̄ cφpmq,(2.58)

where Rm and R2m are defined in (2.51).

Proof. Assume Rφ “ σφ. Then, cRφpmq “ σcφpmq. By (2.52), cRφpmq “
cφpR2mq and therefore

(2.59) cφpR2mq “ σ cφpmq.
Furthermore, R2φ “ σ2φ and therefore cR2φpmq “ σ2cφpmq. By (2.52), cR2φpmq “
cφpRmq and therefore

(2.60) cφpRmq “ σ2 cφpmq.
We next apply relations (2.59) and (2.60) to the cases: σ “ 1, τ, τ̄ . Let σ “ τ .
Then, Rφ “ τφ implies cφpR2mq “ τ cφpmq, by (2.59). Also, by (2.60), we have
cφpRmq “ τ2 cφpmq “ τ̄ cφpmq. This proves (2.56). The cases σ “ 1, τ̄ are
similar. �

Proposition 2.5 can now be used to find a representation of the eigenspaces of
R. We state the result for an arbitrary point, K‹, of K or K1 type.

Proposition 2.6. (1) φ P L2
K‹,τ

ô there exists tcpmqumPS P l2pSq such that

(2.61) φpxq “
ÿ

mPS
cpmq

´

eiK
m

‹ ¨x ` τ̄ eiRKm

‹ ¨x ` τeiR
2Km

‹ ¨x
¯

.
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(2) φ P L2
K‹,τ̄

ô there exists tcpmqumPS P l2pSq such that

(2.62) φpxq “
ÿ

mPS
cpmq

´

eiK
m

‹ ¨x ` τeiRKm

‹ ¨x ` τ̄ eiR
2Km

‹ ¨x
¯

.

(3) If φ1 P L2
K‹,τ

is given by

φ1px,K‹q “
ÿ

mPS
cpmq

´

eiK
m
‹ ¨x ` τ̄ eiRKm

‹ ¨x ` τ eiR
2Km

‹ ¨x
¯

,(2.63)

then φ2px,K‹q ” φ1p´x,K‹q P L2
K‹,τ

and

φ2px,K‹q “
ÿ

mPS
cpmq

´

eiK
m
‹ ¨x ` τ eiRKm

‹ ¨x ` τ̄ eiR
2Km

‹ ¨x
¯

.(2.64)

(4) φ P L2
K‹,1

ô there exists tcpmqumPS P l2pSq such that

(2.65) φpxq “
ÿ

mPS
cpmq

´

eiK
m

‹ ¨x ` eiRKm

‹ ¨x ` eiR
2Km

‹ ¨x
¯

.

We summarize the preceding in a result which facilitates the study of HV on
L2
K‹

in terms of the action of R on invariant subspaces of HV .

Proposition 2.7. Let K‹ denote a point of K or K1 type, R denote the 2π{3
clockwise rotation matrix (see (2.24)) and Rrf spxq “ fpR˚xq. Then R, acting on
L2
K‹

has eigenvalues 1, τ and τ̄ “ τ2 inducing a corresponding orthogonal sum

decomposition of L2
K‹

into eigenspaces:

(2.66) L2
K‹

“ L2
K‹,1

‘ L2
K‹,τ

‘ L2
K‹,τ̄

.

The elements of each summand are represented as in Proposition 2.6.

Remark 2.5. Since, by Proposition 2.2, HV and R commute on L2
K‹

, the spec-

tral theory of HV in L2
K‹

can be reduced to its independent study in each of the
eigenspaces in the orthogonal sum (2.66).

3. Spectral properties of Hp0q in L2
K‹

-degeneracy at K and K1 points

Our starting point for the study of Hpεq on L2
K‹

is the study of Hp0q “ ´Δ.
Consider the eigenvalue problem

Hp0qφp0q “ µp0qpkqφp0q, φp0q P L2
k.

Equivalently φp0qpx;kq “ eik¨xpp0qpx;kq, where pp0qp¨;kq P L2pR2{Λhq:

Hp0qpkqpp0q ” ´p∇ ` ikq2pp0q “ µp0qpkqpp0q,(3.1)

pp0qpx ` v;kq “ pp0qpx;kq, v P Λh .(3.2)

The eigenvalue problem (3.1), (3.2) has solutions of the form:

pp0q
m1,m2

px;kq “ eipm1k1`m2k2q¨x
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with associated eigenvalues

(3.3) µp0q
m1,m2

pkq “ |k ` m1k1 ` m2k2|2 , k P B .

Proposition 3.1. Let k “ K‹ denote any vertex of the hexagon Bh (points of K
or K1 type); see (2.25). Then,

(1) µp0q “ |K‹|2 is an eigenvalue of H0 of multiplicity three with corresponding
three-dimensional eigenspace

(3.4) span t eiK‹¨x , eiRK‹¨x , eiR
2K‹¨x u .

(2) Restricted to each of the R-invariant subspaces of

L2
K‹

” L2
K‹,1

‘ L2
K‹,τ

‘ L2
K‹,τ̄

,

Hp0q has an eigenvalue µp0q “ |K‹|2 of multiplicity one with eigenspaces:

span teiK‹¨x ` eiRK‹¨x ` eiR
2K‹¨xu Ă L2

K‹,1
,

span teiK‹¨x ` τ̄ eiRK‹¨x ` τeiR
2K‹¨xu Ă L2

K‹,τ
and

span teiK‹¨x ` τeiRK‹¨x ` τ̄ eiR
2K‹¨x u Ă L2

K‹,τ̄
.

(3) µp0q is the lowest eigenvalue of Hp0q in L2
K‹

.

Proof. Without loss of generality, letK‹ “ K. Since R is orthogonal, |K| “ |RK| “
|R2K|. Therefore, ´ΔΨ “ |K|2Ψ for Ψ “ eiK¨x, eiRK¨x and eiR

2K¨x. It follows
that µp0q “ |K|2 is an eigenvalue of multiplicity at least three. To show that the
multiplicity is exactly three, we seek all m “ pm1,m2q for which |Km|2 “ |K|2.
Using Km “ K ` m1k1 ` m2k2, we obtain

m2
1 ` m2

2 ` m1 ´ m2 ´ m1m2 “ 0,

which can be zero only if m “ p0, 0q, p0, 1q or p´1, 0q. In the first instance, Kp0,0q “
K. If m “ p0, 1q, then Kp0,1q “ K ` k2 “ RK. Finally, if m “ p´1, 0q, then
Kp´1,0q “ K´k1 “ pK`k2q ´ pk1 `k2q “ RK`Rk2 “ RpK`k2q “ R2K. This
proves conclusion 1. Proposition 2.6 above, which characterizes the Fourier series
of functions in L2

K,σ, σ “ 1, τ, τ̄ implies conclusion 2. Conclusion 3 holds because

m2
1 ` m2

2 ´ m1m2 ` m1 ´ m2 ě 1 for pm1,m2q P Z2 other than p0, 0q, p0, 1q and
p´1, 0q. �

Recall that for each k P Bh, the L2
k eigenvalues of Hp0q are ordered (2.16):

(3.5) µ
p0q
1 pkq ď µ

p0q
2 pkq ď µ

p0q
3 pkq ď µ

p0q
4 pkq ď ¨ ¨ ¨ .

For k “ K we have

(3.6) |K|2 “ µ
p0q
1 pKq “ µ

p0q
2 pKq “ µ

p0q
3 pKq ă µ

p0q
4 pKq ď ¨ ¨ ¨ .

We shall see in section 6 that for small ε, the spectrum L2
K perturbs to

either

µ
pεq
1 pKq “ µ

pεq
2 pKq ă µ

pεq
3 pKq ă µ

pεq
4 pKq ď ¨ ¨ ¨ .(3.7)

or

µ
pεq
1 pKq ă µ

pεq
2 pKq “ µ

pεq
3 pKq ă µ

pεq
4 pKq ď ¨ ¨ ¨ .(3.8)

In either case, the multiplicity three eigenvalue splits into a multiplicity two eigen-
value and a simple eigenvalue. The connection between the double eigenvalue and
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conical singularities of the dispersion surface is explained in the next section; see
Theorem 4.1. We shall see from Theorem 5.1, or rather its proof (in section 6) that
for all small ε, conical singularities occur at all vertices K‹ of Bh, and that these
occur at the intersection point of the first and second band dispersion surfaces in
the case of (3.7), and at the intersection of the second and third bands in the case
of (3.8). As ε increases, we continue to have such conical intersections of dispersion
surfaces, but we do not control which dispersion surfaces intersect.

4. Multiplicity two L2
K eigenvalues of Hpεq and conical singularities

Let K‹ be a point of K or K1 type. In this section we show that if HV acting in
L2
K‹

has a dimension two eigenspace Eτ ‘ Eτ̄ , where Eτ and Eτ̄ are dimension one

subspaces of L2
K‹,τ

and L2
K‹,τ̄

, respectively, then the dispersion surface is conical in

a neighborhood of K‹. A related analysis is carried out in [6], where a more general
class of spectral problems is considered and weaker conclusions obtained; e.g., see
the notion of conical point in [6].

Recall that we assume V P C8pR2{Λhq. Below we shall, for notational conve-
nience, suppress the subscript V and write simply H for HV “ ´Δ ` V .

Theorem 4.1. Let H “ ´Δ ` V , where V pxq is a honeycomb lattice potential in
the sense of Definition 2.1. Let K‹ denote any vertex of the Brillouin zone, Bh.
Assume further that

(h1.τ ) H has an L2
K‹,τ

-eigenvalue, µ0 “ µpK‹q, of multiplicity one, with corre-

sponding eigenvector Φ1pxq “ Φ1 px;K‹q, normalized to have L2pΩq norm
equal to one.

(h1.τ̄) H has an L2
K‹,τ̄

-eigenvalue, µ0 “ µpK‹q, of multiplicity one, with corre-

sponding eigenvector Φ2pxq “ Φ1p´xq.
(h2) µ0 “ µpK‹q is not an eigenvalue of H on L2

K‹,1
.

(h3) The following nondegeneracy condition holds:

(4.1) λ7 ” 3 ˆ areapΩq ˆ
ÿ

mPS
cpm; Φ1q2

ˆ

1
i

˙

¨ Km
‹ ‰ 0,

where tcpm; Φ1qumPS are Fourier coefficients of Φ1, as defined in Proposi-
tion 2.6.

Then H acting on L2 has a dispersion surface which, in a neighborhood of k “ K‹,
is conical. That is, for k´K‹ near 0, there are two distinct branches of eigenvalues
of the Floquet-Bloch eigenvalue problem with quasi-momentum, k:

µ`pkq ´ µpK‹q “ ` |λ7| |k ´ K‹| p1 ` E`pk ´ K‹qq ,(4.2)

µ´pkq ´ µpK‹q “ ´ |λ7| |k ´ K‹| p1 ` E´pk ´ K‹qq ,(4.3)

where E˘pκq “ Op|κ|q as |κ| Ñ 0 and E˘ are Lipschitz continuous functions in a
neighborhood of 0.

Remark 4.1. (1) Elliptic regularity implies that the eigenfunctions Φj , j “ 1, 2
are in H2pR2q. Therefore, ř

mPSp1`|m|2q2|cpmq|2 ă 8. We conclude that
the sum defining λ7 converges.
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(2) In section 6 we study the case of “weak” or small potentials, i.e. V “ εVh

with ε small. For all ε such that 0 ă |ε| ă ε0, where ε0 is a sufficiently
small positive number, we will:
(i) verify the double eigenvalue hypothesis (h1) of Theorem 4.1 by showing
the persistence of a double eigenvalue due to intersection of the bands
one and two in case (3.7) or bands two and three in case (3.8), (ii) verify
hypothesis (h2) of Theorem 4.1 by showing, via explicit calculation, that
the L2

K‹,1
-eigenvalue of H differs from the double eigenvalue, and (iii) verify

(h3) by showing: |λε
7 |2 “ 16 areapΩq2 π2{a2 ` Opεq; see (6.30). Theorem

4.1 then implies the existence of a nondegenerate cone at each vertex of Bh

for all sufficiently small nonzero ε.
(3) The condition: λ7 ‰ 0 in (4.1) is independent of the normalization of the

eigenfunction, Φ1.

Proof of Theorem 4.1. By Symmetry Remark 2.1, we may without loss of generality
consider the specific Bh vertex: K‹ “ K. The local character of all others is
identical. �

We consider a perturbation of K, K ` κ, with |κ| small. We express Φ P L2
k

as Φpx;kq “ eik¨xψpx;kq, where ψpx;kq is Λ-periodic. The eigenvalue problem for
k “ K ` κ takes the form:

´

´ p∇x ` i pK ` κqq2 ` V pxq
¯

ψpx;K ` κq “ µpK ` κqψpx;K ` κq ,(4.4)

ψpx ` v;K ` κq “ ψpx;K ` κq, for all v P Λ .(4.5)

Let µ0 “ µp0q “ µpKq be the double eigenvalue and let ψp0q be in the corre-
sponding two-dimensional eigenspace. Express µpK ` κq and ψpx;K ` κq as:

µpK ` κq “ µp0q ` µp1q, ψpx;K ` κq “ ψp0q ` ψp1q,(4.6)

where ψp1q is to be chosen orthogonal to the nullspace of HpKq ´ µp0qI, and µp1q

are corrections to be determined. Substituting (4.6) into the eigenvalue problem
(4.4)-(4.5) we obtain:

p HpKq ´ µ0I qψp1q

“
´

2iκ ¨ p∇ ` iKq ´ κ ¨ κ ` µp1q
¯

ψp1q

`
´

2iκ ¨ p∇ ` iKq ´ κ ¨ κ ` µp1q
¯

ψp0q

” F p1q, ψp1q P L2
per,Λ .

(4.7)

Since ψp0q is in the L2
per,Λ-nullspace of HpKq ´ µ0I, we write it as

ψp0qpxq “ αφ1pxq ` βφ2pxq, where(4.8)

φjpxq “ e´iK¨x Φjpxq, j “ 1, 2.(4.9)

Here φ1 and φ2 are normalized eigenstates with Fourier expansions as in part 3 of
Proposition 2.6 and α, β are constants to be determined.

We now turn to the construction of ψp1q. Introduce the orthogonal projections:
Q‖, onto the two-dimensional kernel of HpKq ´ µ0I, and QK “ I ´ Q‖. Note that

(4.10) Q‖ψ
p1q “ QKψ

p0q “ 0, and QKψ
p1q “ ψp1q .
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We next seek a solution to (4.7) by solving the following system for ψp1q and
µp1q:

pHpKq ´ µ0Iqψp1q “ QK F p1qpα, β, κ, µp1q, ψp1qq,(4.11)

0 “ Q‖F
p1qpα, β, κ, µp1q, ψp1qq.(4.12)

Equation (4.12) is a system of two equations obtained by setting the projections
of F p1q onto φ1 and φ2 equal to zero. Our strategy is to solve (4.11) for ψp1q as
a continuous functional of α, β, κ, µp1q with appropriate estimates, then substitute
the result into (4.12) to obtain a closed bifurcation equation. This is a linear ho-
mogeneous system of the form Mpµp1q, κqpα, βqt “ 0. The function κ ÞÑ µp1qpκq is
then determined by the condition that detMpµp1q, κq “ 0.

Written out in detail, the system (4.11)-(4.12) becomes:

pHpKq ´ µ0Iqψp1q “ QK
´

2iκ ¨ p∇ ` iKq ´ κ ¨ κ ` µp1q
¯

ψp1q

` QK p2iκ ¨ p∇ ` iKqqψp0q,
(4.13)

Q‖

´

2iκ ¨ p∇ ` iKq ´ κ ¨ κ ` µp1q
¯

ψp0q

` Q‖ p 2iκ ¨ p∇ ` iKq qψp1q “ 0.
(4.14)

Introduce the resolvent operator:

RKpµ0q “ pHpKq ´ µ0 Iq´1

defined as a bounded map from QKL2 to QKH2pR2{Λhq. Equation (4.13) for ψp1q

can be rewritten as:
´

I ` RKpµ0qQK
´

´2iκ ¨ p∇ ` iKq ` κ ¨ κ ´ µp1q
¯¯

ψp1q

“ RKpµ0q QK p2iκ ¨ p∇ ` iKqqψp0q.
(4.15)

In several equations above we have used (4.10).
By elliptic regularity, the mapping

f ÞÑ Af ” RKpµ0qQK
´

´2iκ ¨ p∇ ` iKq ` κ ¨ κ ´ µp1q
¯

f

is a bounded operator on HspR2{Λhq, for any s. Furthermore, for |κ| ` |µp1q|
sufficiently small, the operator norm of A is less than one, pI ` Aq´1 exists, and
hence (4.15) is uniquely solvable in QKH2pR2{Λhq:

ψp1q “
´

I ` RKpµ0qQK
´

´2iκ ¨ p∇ ` iKq ` κ ¨ κ ´ µp1q
¯¯´1

˝ RKpµ0q QK p2iκ ¨ p∇ ` iKqqψp0q.

Since ψp0q is given by (4.8), ψp1q is clearly linear in α and β and we write:

(4.16) ψp1q “ cp1qrκ, µp1qspxq α ` cp2qrκ, µp1qspxq β,

where pκ, µp1qq ÞÑ cpjqrκ, µp1qs is a smooth mapping from a neighborhood of p0, 0q P
R2 ˆ C into H2pR2{Λhq satisfying the bound:

}cpjq}H2 ď Cp|κ| ` |µp1q|q, j “ 1, 2 .

Note that Q‖c
pjq “ 0, j “ 1, 2.
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We next substitute (4.16) into (4.14) to obtain a system of two homogeneous
linear equations for α and β. Using the relations:

∇Kφj “ e´iK¨x∇eiK¨xφj “ e´iK¨x∇Φj , xφi, φjy “ xΦi,Φjy “ δij , i, j “ 1, 2,

Cpjqrκ, µp1qspxq ” eiK¨xcpjqrκ, µp1qspxq,
A

Φi, C
pjq

E

“ 0, i, j “ 1, 2

(4.17)

we have:

(4.18) Mpµp1q, κq

¨

˝

α

β

˛

‚ “ 0 ,

where Mpµp1q, κq is the 2 ˆ 2 matrix given by:

Mpµp1q, κq ”

¨

˝

µp1q ´ κ ¨ κ ` xΦ1, 2iκ ¨ ∇Φ1y xΦ1, 2iκ ¨ ∇Φ2y

x Φ2, 2iκ ¨ ∇Φ1 y µp1q ´ κ ¨ κ ` x Φ2, 2iκ ¨ ∇Φ2 y

˛

‚

`

¨

˝

@

Φ1, 2iκ ¨ ∇Cp1qpκ, µp1qq
D

x Φ1, 2iκ ¨ ∇Cp2qpκ, µp1qq y

x Φ2, 2iκ ¨ ∇Cp1qpκ, µp1qq y x Φ2, 2iκ ¨ ∇Cp2qpκ, µp1qq y

˛

‚ .

Thus, µpK ` κq “ µp0q ` µp1q is an eigenvalue for the spectral problem (4.4)-(4.5)
if and only if µp1q solves:

(4.19) detMpµp1q, κq “ 0.

Equation (4.19) is an equation for µp1q, which characterizes the splitting of the
double eigenvalue at κ ‰ 0. We now proceed to show that if the nondegeneracy
condition (4.1) holds, then the solution set of (4.19) is locally conic.

We anticipate that a solution µp1q “ Op|κ|q and hence Cpjq “ Op|κ|q. This
motivates expanding M as:

Mpµp1q, κq “ M0pµp1q, κq ` M1pµp1q, κq, where

(4.20)

M0pµp1q, κq “
ˆ

µp1q ` 2i xΦ1, κ ¨ ∇Φ1y 2i xΦ1, κ ¨ ∇Φ2y
2i xΦ2, κ ¨ ∇Φ1y µp1q ` 2i xΦ2, κ ¨ ∇Φ2y

˙

and

(4.21)

M1,ijpµp1q, κq “ O

´

|κ| ¨ |µp1q| ` |κ|2
¯

.

(4.22)

Note that

(4.23) Φ2pxq “ Φ1p´xq ùñ xΦ1, κ ¨ ∇Φ1y “ xΦ2, κ ¨ ∇Φ2y .

Further, it is easily seen that this expression is purely imaginary:

(4.24) xΦ1, κ ¨ ∇Φ1y “ i ℑ xΦ1, κ ¨ ∇Φ1y .
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Now we claim that, in a neighborhood of κ “ 0, the solutions of (4.19) are
well-approximated by those of the truncated equation:

detM0pν, κq “ det

ˆ

ν ´ 2ℑ xΦ1, κ ¨ ∇Φ1y 2i xΦ1, κ ¨ ∇Φ2y
2i xΦ1, κ ¨ ∇Φ2y ν ´ 2ℑ xΦ1, κ ¨ ∇Φ1y

˙

“ p ν ´ 2 ℑ xΦ1, κ ¨ ∇Φ1y q2 ´ 4 | xΦ1, κ ¨ ∇Φ2y |2 “ 0 .

(4.25)

Remark 4.2. We have not used R-symmetry and special structure of the Fourier
modes at vertices, K‹, in obtaining (4.19) and its approximation (4.25). We have
only used that there is a two-dimensional eigenspace spanned by Φ1pxq, Φ2pxq “
Φ1p´xq.

We next use that K is a vertex of Bh to simplify and solve (4.25) (Proposi-
tion 4.1) and then show that the solutions of (4.19) are small corrections to these
(Proposition 4.2).

Proposition 4.1.

(4.26) xΦa, κ ¨ ∇Φay “ 0, a “ 1, 2.

2i xΦ1, κ ¨ ∇Φ2y “ 2i xΦ2, κ ¨ ∇Φ1y

“ ´3 areapΩq
˜

ÿ

mPS
cpmq2

ˆ

1
i

˙

¨ Km

¸

ˆ pκ1 ` iκ2q

“ ´λ7 ˆ pκ1 ` iκ2q ; see (4.1) .

(4.27)

We prove Proposition 4.1 just below. A consequence is that M0 simplifies to

(4.28) M0pν;κq “
ˆ

ν ´λ7 ˆ pκ1 ` iκ2q
´λ7 ˆ pκ1 ´ iκ2q ν

˙

and therefore

detM0pν;κq “ ν2 ´ |λ7|2 |κ|2

” ν2 ´
ˇ

ˇ

ˇ

ˇ

ˇ

3 ˆ areapΩq ˆ
ÿ

mPS
cpmq2

ˆ

1
i

˙

¨ Km

ˇ

ˇ

ˇ

ˇ

ˇ

2

ˆ |κ|2.
(4.29)

Therefore, the truncation ofM toM0 yields detM0pν, κq “ 0 and a locally conical
dispersion relation, provided λ7 ‰ 0.

Proof of Proposition 4.1. Recall that Φ1 P L2
K,τ and Φ2 P L2

K,τ̄ are given by

(2.61) and (2.62), respectively. We first consider the diagonal elements and claim
xΦ1, κ ¨ ∇Φ1y “ 0. To see this, first apply κ ¨ ∇ to Φ1, given by (2.63), and obtain

κ ¨ ∇Φ1

“ i κ ¨
ÿ

mPS
cpmq

´

Km
‹ eiK

m

‹ ¨x ` τ̄ RKm
‹ eiRKm

‹ ¨x ` τ R2Km
‹ eiR

2Km

‹ ¨x
¯

.

Therefore, since
ş

Ω
e´iKn¨x eiK

m¨xdx “ 0 if m ‰ n we have

(4.30)

κ ¨ xΦ1,∇Φ1y “ areapΩq
ÿ

mPS
|cpmq|2 κ ¨

`

Km
‹ ` |τ |2 RKm

‹ ` |τ |2 R2Km
‹

˘

“ 0.
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The latter equality holds since |τ |2 “ 1, I ´ R is invertible (specpRq “ tτ, τ̄u) and
I`R`R2 “ pI´R3qpI´Rq´1 “ pI´IqpI´Rq´1 “ 0. Similarly, xΦ2, κ ¨ ∇Φ2y “ 0.
Thus, we have shown that the diagonal elements vanish, (4.26).

One can check directly that the off-diagonal elements satisfy M0,12 “ M0,21:

(4.31) 2i xΦ1, κ ¨ ∇Φ2y “ 2i xΦ2, κ ¨ ∇Φ1y .

Furthermore, using (2.61), (2.62) we have

2i xΦ1, κ ¨ ∇Φ2y

“ ´2 ˆ areapΩq
ÿ

mPS
cpmq2 κ ¨

`

Km
‹ ` τ2 RKm

‹ ` τ̄2 R2Km
‹

˘

“ ´2 ˆ areapΩq
ÿ

mPS
cpmq2 κ ¨

´

I ` τ R ` pτ Rq2
¯

Km
‹ .

(4.32)

Note, by (2.28), that τR has an eigenvalue τ̄ with corresponding eigenvector ζ “
2´1{2p1, iqt and an eigenvalue 1 with corresponding eigenvector ζ̄ “ 2´1{2p1,´iqt.
We express Km as

Km “ xζ,Kmy ζ `
@

ζ̄ ,Km
D

ζ̄ ,

where for a,b P C2 we defined xa,by “ a ¨ b. Clearly,
´

I ` τ R ` pτ Rq2
¯

ζ̄ “ 3 ζ̄ and
´

I ` τ R ` pτ Rq2
¯

ζ “
`

1 ` τ̄ ` pτ̄q2
˘

ζ “ 0.

Therefore,

(4.33) κ ¨
´

I ` τ R ` pτ Rq2
¯

Km “ 3
@

ζ̄ ,Km
D

κ ¨ ζ̄ “ 3 pζ ¨ Kmq ˆ
`

κ ¨ ζ̄
˘

.

Substituting (4.33) into (4.32) we obtain:

2i xΦ1, κ ¨ ∇Φ2y

“ ´6 ˆ areapΩq
ÿ

mPS
cpmq2 pζ ¨ Kmq ˆ

`

κ ¨ ζ̄
˘

“ ´3 ˆ areapΩq
ÿ

mPS
cpmq2

„ ˆ

1
i

˙

¨ Km

j

ˆ
„ ˆ

κ1

κ2

˙

¨
ˆ

1
´i

˙j

“ ´3 ˆ areapΩq
ÿ

mPS
cpmq2

ˆ

1
i

˙

¨ Km ˆ pκ1 ` iκ2q,

(4.34)

which by the definition of λ7 in (4.1) implies (4.27). Thus, detM0pν, κq “ ν2 ´
|λ7|2|κ|2, which proves (4.29). Furthermore, the solutions of detM0pν, κq “ 0 define
a nontrivial conical surface provided:

(4.35) λ7 ” 3 ˆ areapΩq ˆ
ÿ

mPS
cpmq2

ˆ

1
i

˙

¨ Km ‰ 0.

The proof of Proposition 4.1 is complete. �

To complete the proof of Theorem 4.1 we next show that the local character of
solutions to (4.19) is, for |κ| small, essentially that derived in Proposition 4.1 for
the solutions of (4.25).
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Proposition 4.2. Suppose λ7, defined in (4.35), is nonzero. Then, in a neighbor-
hood of any K or K1 point, the dispersion surface is conic. Specifically, the eigen-
value equation detMpµp1q, κq “ 0 (see (4.19)) defines, in a neighborhood U Ă R

2

of κ “ 0, two functions:

µ
p1q
` pκq “ |λ7| |κ| p1 ` E`pκqq , µ

p1q
´ pκq “ ´ |λ7| |κ| p1 ` E´pκqq ,(4.36)

where E˘pκq Ñ 0 as κ Ñ 0 and E˘pκq is Lipschitz continuous in κ.

Proof. By (4.19), and Proposition 4.1, µp1q satisfies:

(4.37)
´

µp1q
¯2

“ |λ7|2 |κ|2 ` g21

´

µp1q, κ
¯

` g12

´

µp1q, κ
¯

` g03pκq,

where grs are smooth functions satisfying the bounds:

| grspµ, κq | ď C |µ|r |κ|s

for |µ| ď 1, |κ| ď 1. We now construct µ
p1q
` pκq. The construction of µ

p1q
´ pκq is

similar. Set µ
p1q
` “ |λ7| |κ| p1 ` ηq. Substitution into (4.37) and using that λ7 ‰ 0,

we find that η satisfies:

Gpη, κq ” 2η ` η2 ` J1pη, κq ` J2pκq “ 0.

Here J1 and J2 are smooth functions of η and Lipschitz continuous functions of
κ, such that: J1pη, κq “ Op|κ|q, BηJ1pη, κq “ Op|κ|q, J2pκq “ Op|κ|q as |κ| Ñ 0.
Thus, Gpη, κq and BηGpη, κq are Lipschitz continuous in pη, κq with Gp0, 0q “ 0
and BηGp0, 0q “ 2 ‰ 0. It follows easily that there exists η “ Epκq defined and
Lipschitz continuous in a neighborhood U Ă R2 of κ “ 0, such that Ep0q “ 0 and
GpEpκq, κq “ 0 for all κ P U . �

5. Main Theorem: Conical singularity in dispersion surfaces

Assume that V is a honeycomb lattice potential in the sense of Definition 2.1.
Since V P C8pR2{Λhq, its Fourier coefficients satisfy

(5.1) V̂ P l1pZ2q, i.e. } V̂ }l1pZ2q “
ÿ

mPZ2

|Vm| ă 8 .

Theorem 5.1 (Conical singularities and the dispersion surfaces of Hpεq). Let V pxq
be a honeycomb lattice potential. Assume further that the Fourier coefficient of V ,
V1,1, is nonvanishing, i.e.

(5.2) V1,1 “
ż

Ω

e´ipk1`k2q¨y V pyq dy ‰ 0 .

There exists a countable and closed set C̃ Ă R such that for any vertex K‹ of Bh

and all ε R C̃ the following holds:

(1) There exists a Floquet-Bloch eigenpair Φεpx;K‹q, µεpK‹q such that
µεpK‹q is an L2

K,τ -eigenvalue of Hpεq of multiplicity one, with corre-

sponding eigenfunction, Φεpx;K‹q,
µεpK‹q is an L2

K,τ̄ -eigenvalue of Hpεq of multiplicity one, with corre-

sponding eigenfunction, Φεp´x;K‹q,
µεpK‹q is not an L2

K,1-eigenvalue of Hpεq.
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(2) There exist δε ą 0, Cε ą 0 and Floquet-Bloch eigenpairs: pΦε
`px;kq, µε

`pkqq
and pΦε

´px;kq, µε
´pkqq, and Lipschitz continuous functions, E˘pkq, defined

for |k ´ K‹| ă δε, such that

µε
`pkq ´ µεpK‹q “ ` |λε

7 | |k ´ K‹|
`

1 ` Eε
`pkq

˘

and

µε
`pkq ´ µεpK‹q “ ´ |λε

7 | |k ´ K‹|
`

1 ` Eε
´pkq

˘

,

where λε
7 ‰ 0 is given in terms of Φεpx;K‹q by the expression in (4.1)

and |Eε
˘pkq| ď Cε|k ´ K‹|. Thus, in a neighborhood of the point pk, µq “

pK‹, µε
‹q P R3, the dispersion surface is conic.

(3) There exists ε0 ą 0, such that for all ε P p´ε0, ε0qzt0u,
(i) εV1,1 ą 0 ùñ conical intersection of 1st and 2nd dispersion surfaces,
(ii) εV1,1 ă 0 ùñ conical intersection of 2nd and 3rd dispersion surfaces.

Remark 5.2. Part 3 of Theorem 5.1 gives conditions for intersections of the first
and second band dispersion surfaces or intersections of the second and third. As
the magnitude of ε is increased it is possible that there are crossings among the
L2
K,σ-eigenvalues of Hpεq, so in general the theorem does not specify which band

dispersion surfaces intersect.

5.1. Outline of the proof of Theorem 5.1. By Symmetry Remark 2.1, it suffices
to prove Theorem 5.1 for K‹ “ K. We have seen that the central point is to
verify for all ε, except possibly those in a closed countable exceptional set, that
hypotheses (h1)-(h3) of Theorem 4.1 hold. These hypotheses state that Hpεq has
simple L2

K‹,τ
and L2

K‹,τ̄
eigenvalues which are related by symmetry, which are not

L2
K‹,1

-eigenvalues, and moreover that λε
7 ‰ 0. We proceed as follows.

In section 6 we show that there is a positive number, ε0, such that for all ε P
p´ε0, ε0qzt0u, (h1)-(h3) of Theorem 4.1 hold. That is, the conclusions of Theorem
5.1 hold for all sufficiently small, nonzero ε. In section 7.8 we introduce the key
tool, a renormalized determinant, to detect and track the L2

K,σ-eigenvalues of H
pεq

for σ “ 1, τ, τ̄ . A continuation argument is then implemented using tools from
complex function theory in section 8, to pass to large ε. We now embark on the
detailed proofs.

6. Proof of Main Theorem 5.1 for small ε

We begin the proof of Theorem 5.1 by first establishing it for ε P p´ε0, ε0qzt0u,
where ε0 is positive but possibly small. We shall consider the eigenvalue problem
for Hpεq on the three eigenspaces of R: L2

K‹,τ
, L2

K‹,τ̄
and L2

K‹,1
:

Hpεq Φpx;K‹q ” r ´Δ ` εV pxq s Φpx;K‹q “ µpK‹q Φpx;K‹q,(6.1)

Φpx ` v,K‹q “ eiK‹¨vΦpx,K‹q, x P R
2,

R rΦp¨;K‹qs pxq “ σ Φpx;K‹q, where σ P t1, τ, τ̄u.
An eigenstate Φpx;K‹q in L2

K‹,σ
is, by Proposition 2.6, of the form:

Φpx;K‹q “
ÿ

mPS
cpm; Φq

´

eiK
m
‹ ¨x ` σ̄ eiRKm

‹ ¨x ` σ eiR
2Km

‹ ¨x
¯

.(6.2)

The summation is over the set, S, introduced in Definition 2.4. Note that by
Proposition 2.6 and Remark 2.3, solutions to the eigenvalue problem on L2

K‹,τ̄
can

be obtained from those in L2
K‹,τ

via the symmetry: Φpxq ÞÑ Φp´xq.
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Recall that cΦpmq or cpm; Φq denote the L2
K‹,σ

-Fourier coefficients of Φ. Our

next task is to reformulate the eigenvalue problem (6.1) as an equivalent algebraic
problem for the Fourier coefficients tcpm; Φp¨;K‹qqumPS . First, applying ´Δ ´ µ

to Φ, given by (6.2), and using that R is orthogonal, we have that

(6.3)

p´Δ ´ µqΦpx;K‹q

“
ÿ

mPS

´

|Km
‹ |2 ´ µ

¯

cpm,Φq
´

eiK
m
‹ ¨x ` σ̄ eiRKm

‹ ¨x ` σ eiR
2Km

‹ ¨x
¯

.

Next, we claim that V pxqΦpx;K‹q P L2
K,σ. Indeed, since V is R-invariant, RrV spxq

“ V pR˚xq “ V pxq. Moreover, since Φp¨;K‹q P L2
K‹,σ

, we have RrΦs “ σΦ.
Therefore

RrV Φs “ V pR˚xq ΦpR˚x;K‹q “ V pxq σ Φpx;K‹q “ σ V Φ.

Therefore, by Proposition 2.6, V Φp¨;K‹q has the expansion

V pxqΦpx;K‹q “
ÿ

mPS
cpm;V Φq

´

eiK
m
‹ ¨x ` σ̄ eiRKm

‹ ¨x ` σ eiR
2Km

‹ ¨x
¯

,(6.4)

cpm;V Φq “ 1

|Ω|

ż

Ω

e´iKm

‹ ¨y V pyqΦpy;K‹q dy .(6.5)

Furthermore, with the notation qk ¨ x “ pq1k1 ` q2k2q ¨ x,

cpm;V Φq “ 1

|Ω|

ż

Ω

e´iKm

‹ ¨ypV Φqpyq dy

“ 1

|Ω|

ż

e´iKm

‹ ¨y

¨

˝

ÿ

qPZ2

Vq eikq¨y

˛

‚

ˆ
˜

ÿ

rPS
cpr; Φq

”

eiK
r

‹¨y ` σ̄ eiRKr

‹¨y ` σ eiR
2Kr

‹¨y
ı

¸

“ 1

|Ω|
ÿ

qPZ2,rPS
Vq cpr; Φq

ˆ
ż

Ω

dy
”

eipK
r

‹´Km

‹ `qkq¨y ` σ̄ eipRKr

‹´Km

‹ `qkq¨y ` σ eipR
2Kr

‹´Km

‹ `qkq¨y
ı

“ 1

|Ω|
ÿ

qPZ2,rPS
Vq cpr; Φq

ż

dy

ˆ
”

eipq´pm´rqqk¨y ` σ̄ eipq´pm´Rrqqk¨y ` σ eipq´pm´R2rqqk¨y
ı

“
ÿ

qPZ2,rPS
Vq cpr; Φq

ˆ
“

δ pq ´ pm ´ rqq ` σ̄ δ pq ´ pm ´ Rrqq ` σ δ
`

q ´ pm ´ R2rq
˘

q
‰

.

Thus,

cpm;V Φq “
ÿ

rPS
Kσpm, rq cpr; Φq,
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where (recall (2.51))

Kσpm, rq ” Vm´r ` σ̄ Vm´Rr ` σ Vm´R2r

(6.6)

“ Vm1´r1,m2´r2 ` σ̄ Vm1`r2,m2`r2´r1´1 ` σ Vm1`r1´r2`1,m2`r1 .

Summarizing, we have

Proposition 6.1. Let σ P t1, τ, τ̄u. Then, the spectral problem (6.1) on L2
K‹,σ

is

equivalent to the algebraic eigenvalue problem for cpmq “ cpm; Φq and µ:
´

|Km
‹ |2 ´ µ

¯

cpmq ` ε
ÿ

rPS
Kσpm, rq cprq “ 0, m P S,(6.7)

where tcpmqumPS P l2pSq.
To fix ideas, let K‹ “ K; starting with K1, we would proceed similarly. For

ε “ 0, we have the algebraic eigenvalue problem:
´

|K ` m1k1 ` m2k2|2 ´ µ
¯

cpmq “ 0, m P S.(6.8)

Equation (6.8), viewed as an eigenvalue problem for ptcpmqumPZ2 , µq, is equivalent
to the eigenvalue problem for ´Δ on L2

K treated in Proposition 3.1. Restated in

terms of Fourier coefficients, Proposition 3.1 states that µp0q “ |K|2 is an eigenvalue
of multiplicity three with corresponding eigenvectors:

c
p0q
1 pm1,m2q “ δm1,m2

Ø µp0q “ |K|2,
c

p0q
2 pm1,m2q “ δm1,m2´1 Ø µp0q “ |K|2 “ |RK|2 “ |K ` k2|2,
c

p0q
2 pm1,m2q “ δm1`1,m2

Ø µp0q “ |K|2 “ |R2K|2 “ |K ´ k1|2.
Recall from Definition 2.4 that the equivalence class of indices tp0, 0q, p0, 1q, p´1, 0qu
has as its representative in S the point p0, 1q.

The eigenvalue problem (6.8) has a one-dimensional L2
K,σ-eigenspace with eigen-

pair:

µp0q “ |K ` k2|2 “ |K|2, cpm1,m2q “ δm1,m2´1 pm1,m2q P S

corresponding to the L2
K,σ-eigenstate of H0:

Φε“0px;Kq “ eiK
0,1¨x ` σ̄eiRK0,1¨x ` σeiR

2K0,1¨x

“ eipK`k2q¨x ` σ̄eipK´k1q¨x ` σeiK¨x

“ σ eiK¨x `

1 ` σ̄ eik2¨x ` σe´ik1¨x˘

.

We seek a solution of (6.7) for ε varying in a small open interval about ε “ 0.
We proceed via a Lyapunov-Schmidt reduction argument. First, decompose the
system (6.7) into coupled equations for

(6.9) c‖ ” cp0, 1q P C and tcKpmqumPSK P l2pSKq ,

where

(6.10) SK ” Sztp0, 1qu
and rewrite (6.7) as a coupled system for c‖ and cK:

(6.11)
”

ˇ

ˇK0,1
ˇ

ˇ

2 ´ µ ` ε Kσp0, 1, 0, 1q
ı

c‖ ` ε
ÿ

rPSK

Kσp0, 1, rq cKprq “ 0,
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ε Kσpm, 0, 1q c‖ `
´

|Km|2 ´ µ
¯

cKpmq

` ε
ÿ

rPSK

Kσpm, rq cKprq “ 0, m P SK.
(6.12)

We next seek a solution of (6.11)-(6.12), for ε small, in a neighborhood of the
solution to the ε “ 0 problem: c0‖ “ 1, µp0q “ |K|2, cKprq “ 0, r P SK.

We begin by solving the second equation in (6.12) for cK as a function of the
scalar parameter c‖. For ε small, the operator to be inverted is diagonally dominant

with diagonal elements: |Km|2 ´ µ, which we bound from below for m P SK. By
the relations (2.22) we have

|Km|2 ´ µ ” |K ` m1k1 ` m2k2|2 ´ µ

“ |K|2 ´ µ ` q2
`

m2
1 ` m2

2 ´ m1m2 ` m1 ´ m2

˘

, q “ 4π

a
?
3
.

If µ varies near µp0q “ |K|2, then
ˇ

ˇ

ˇ
|Km|2 ´ µ

ˇ

ˇ

ˇ

2

ě c1

a2
, m P SK

for some c1 ą 0. We now rewrite the equation for cK as:
«

δm,r ` ε

|Km|2 ´ µ

ÿ

rPSK

Kσpm, rq
ff

cKprq “ ´ ε c‖
Kσpm, 0, 1q
|Km|2 ´ µ

” ε c‖ F σ
mpµq, m P SK

(6.13)

or, more compactly,

(6.14) pI ` εTKσ
pµqq cK “ ε c‖ F σpµq.

Recall Young’s inequality, which states that the operator defined by

TLfpmq “
ÿ

r

Lpm, rqfprq

satisfies the bound

}TLf}l2pSKq ď CL }f}l2pSKq, where

CL “ sup
r

ÿ

m

|Lpm, rq| ` sup
m

ÿ

r

|Lpm, rq| .(6.15)

We apply (6.15) with Lpm, rq “ Kσpm, rq, defined by (6.6), and conclude using the
bound

1

||Km|2 ´ µ| ď C
1

1 ` |m|2 , m P SK

that V̂ “ tVmumPSK P l1pSKq (recall (5.1)), and that the operator

TKσ
pµqfpmq “ 1

|Km|2 ´ µ

ÿ

rPSK

Kσpm, rq fprq

maps l2pSKq Ñ l22pSKq with the bound

(6.16) } TKσ
pµqf }l2

2
pSKq ď C }f}l2pZ2q.

Here, }f}2
l2
2

pSKq ” ř

mPSK p1 ` |m|2q2|fpmq|2.
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Proposition 6.2. There exists ε0 ą 0 such that for all |ε| ă ε0 and any f P l2pSKq,

pI ` εTKσ
pµqq cK “ f(6.17)

has a unique solution cK “ cεK P l22pSKq, analytic in ε, satisfying ||cεK||
l2
2

pSKq ď
2 ||f ||l2

2
pSKq .

We now apply Proposition 6.2 to solve (6.14) to obtain

(6.18) cKprq “ ε c‖

”

pI ` εTKσ
pµqq´1

F σpµq
ı

prq.

Substitution into (6.11) yields a closed scalar equation for c‖ of the form Mσpµ, εqc‖
“ 0, which has a nontrivial solution if and only if:

Mσpµ, εq ” |K|2 ´ µ ` ε Kσp0, 1, 0, 1q

` ε2
ÿ

rPSK

Kσp0, 1, rq
”

pI ` εTKσ
pµqq´1

F σpµq
ı

prq “ 0.
(6.19)

Mσpµ, εq is analytic in a neighborhood of pµ, εq “ pµp0q, 0q “ p|K|2, 0q. Clearly,
Mσpµp0q, 0q “ 0 and BμMσpµ0, 0q “ ´1. By the implicit function theorem, there
exists ε0 ą 0 such that, defined in a complex neighborhood of the interval |ε| ă ε0,
there is an analytic function ε ÞÑ µε, such that

Mσpµε, εq “ 0, for ´ ε0 ă ε ă ε0.

Thus, we take c‖ “ 1 and via (6.18)-(6.19) our solution for |ε| ă ε0 is

µ “ µε “ |K|2 ` εKσp0, 1, 0, 1q ` Opε2q,
cε‖ “ cp0, 1q ” 1,

cεK “ tcεpmqumPSK “ ε pI ` εTKσ
pµεqq´1

Fσpµεq,

where Fσ,mpµq “ ´Kσpm, 0, 1q
|Km|2 ´ µ

, m P SK .

(6.20)

From the definition of Kσpm, rq, displayed in (6.6), we find:

(6.21) Kσp0, 1, 0, 1q “ V0,0 ` σ̄ V1,1 ` σ V0,1 “ V0,0 ` V1,1 pσ ` σ̄q , σ “ 1, τ, τ̄ .

The latter equality uses:
(a) constraints on Vm1,m2

by R-symmetry of V (V0,´1 “ V1,1) and that
(b) V is even (V0,´1 “ V0,1).

Furthermore, V1,1 is real, since V pxq is even and real (V1,1 “ V´1,´1 “ V1,1).
Therefore, Kσp0, 1, 0, 1q is real, as expected.

The small ε perturbation theory of the three-dimensional eigenspace is now sum-
marized:

Proposition 6.3. Assume V1,1 ‰ 0. Then, there exists ε0 ą 0 such that for
0 ă |ε| ă ε0, the multiplicity three eigenvalue µ “ |K|2 perturbs to 2-dimensional
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and 1-dimensional eigenspaces with corresponding eigenvalues µεpKq and µ̃εpKq as
follows:

(1) µεpKq is of geometric multiplicity 2 with a 2-dimensional eigenspace Xτ ‘
Xτ̄ Ă L2

K,τ ‘ L2
K,τ̄ given by:

µεpKq “ |K|2 ` ε pV0,0 ` 2V1,1 cosp2π{3qq ` Opε2q
“ |K|2 ` ε pV0,0 ´ V1,1q ` Opε2q(6.22)

with eigenstates Φε
1 P L2

K,τ and Φε
2 P L2

K,τ̄ , obtained by the symmetry (see

Remark 2.3):

Φ2px;Kq “ Φ1p´x;Kq,
with Fourier expansions:

Φε
1px,Kq “

ÿ

mPS
cεpmq

´

eiK
m¨x ` τ̄ eiRKm¨x ` τ eiR

2Km¨x
¯

,(6.23)

Φε
2px,Kq “

ÿ

mPS
cεpmq

´

eiK
m¨x ` τ eiRKm¨x ` τ̄ eiR

2Km¨x
¯

, and(6.24)

(2) µ̃εpKq is a simple eigenvalue with eigenspace X1 Ă L2
K,1:

(6.25) µ̃εpKq “ |K|2 ` ε pV0,0 ` 2V1,1q ` Opε2q
with eigenstate Φ̃:

(6.26) Φ̃εpx,Kq “
ÿ

mPS
c̃εpmq

´

eiK
m¨x ` eiRKm¨x ` eiR

2Km¨x
¯

.

Proposition 6.3 implies that the double-eigenvalue hypotheses of Theorem 4.1
hold for ε positive and small. In particular, by (6.22) and (6.25),

If εV1,1 ą 0, then

µ
pεq
1 pKq “ µ

pεq
2 pKq ă µ

pεq
3 pKq ă µ

pεq
4 pKq ď ¨ ¨ ¨(6.27)

and if εV1,1 ă 0, then

µ
pεq
1 pKq ă µ

pεq
2 pKq “ µ

pεq
3 pKq ă µ

pεq
4 pKq ď ¨ ¨ ¨ .(6.28)

By Theorem 4.1, assuming λε
7 ‰ 0:

(i) if εV1,1 ă 0, the dispersion surfaces k ÞÑ µ1pkq and k ÞÑ µ2pkq intersect
conically at the vertices of Bh;

(ii) if εV1,1 ą 0, the dispersion surfaces k ÞÑ µ2pkq and k ÞÑ µ3pkq intersect
conically at the vertices of Bh.

So, in order to apply Theorem 4.1 it remains to check that λε
7 ‰ 0 . Here, λε

7 is the

expression given in (4.1) . For ε small we have

(6.29) λε
7 “ 3 areapΩq

„ ˆ

1
i

˙

¨ Kp0,1q
j

` Opεq,

where we have used that cεp0, 1q “ 1, (6.20) and that }cK}l2
2

pSKq “ Opεq. Note also
that

Kp0,1q “ K ` k2 “ 1

3
k1 ` 2

3
k2 “ q

3

ˆ

3{2
´

?
3{2

˙

, q “ 4π{a
?
3.
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Therefore, for |ε| ă ε0, with ε0 chosen sufficiently small,

(6.30)
ˇ

ˇλε
7
ˇ

ˇ

2 “ 16 areapΩq2 π2

a2
` Opεq.

This completes the proof of our main theorem, Theorem 5.1, for the case where ε

is taken to be sufficiently small. We now turn to extending Theorem 5.1 to large ε.

7. Characterization of eigenvalues of Hpεq for large ε

To extend the assertions of Theorem 5.1 to large values of ε, we introduce a
characterization of the L2

K,σ-eigenvalues of the eigenvalue problem (6.1) as zeros of
an analytic function of ε.

Since we can add an arbitrary constant to the potential, by redefinition of the
eigenvalue parameter, µ, we may assume without loss of generality that

0 ď V pxq ď Vmax.

Assume first that ε P C and ℜε ą 0. Then, Hpεq ´ µI “ ´Δ ` εV ´ µI “
p´Δ ` εV ` Iq ´ pµ ` 1qI. The eigenvalue problem (6.1) may be rewritten as

(7.1) p´Δ ` εV ` IqΦ ´ pµ ` 1qΦ “ 0, u P L2
K,σ .

Now for any real ε ą 0 we have ´Δ ` εV ` I ě I. Hence we introduce ;

(7.2) T pεq ” pI ´ Δ ` εV q´1,

which exists as a bounded operator from L2
K,σ to H2

K,σ, and obtain the following

Lippmann–Schwinger equation, equivalent to the eigenvalue problem (6.1):

rI ´ pµ ` 1q T pεqs Φ “ 0, Φ P L2
K,σ .(7.3)

We now show that if ℜε ă 0, we also obtain an equation of the same type
as in (7.3). In this case, we observe that ε pV ´ Vmaxq ě 0. Therefore, ´Δ `
ε pV ´ Vmaxq ` I ě I and we rewrite (6.1) as

(7.4) p´Δ ` ε pV ´ Vmaxq ` IqΦ ´ pµ ` 1 ´ εVmaxqΦ “ 0, Φ P L2
K,σ .

If for ε ă 0 we define T̃ pεq “ I ´ Δ ` ε pV ´ Vmaxq, then (6.1) is equivalent to
”

I ´ pµ ` 1 ´ εVmaxq T̃ pεq
ı

Φ “ 0, Φ P L2
K,σ .(7.5)

For the remainder of this section we shall assume ℜε ą 0 and work with the form of
the eigenvalue problem given in (7.3). The analysis below applies with only trivial
modifications to the case ε ă 0 and the form of the eigenvalue problem given in
(7.5).

For each ε ą 0, we would like to characterize L2
K,σ-eigenvalues, µ

pεq, as points

where the determinant of the operator I ´ pµ ` 1qT pεq vanishes. To define the
determinant of I´zT , one requires that T be trace class. Although T pεq is compact
on L2

K,σ, it is not trace class. Indeed, in spatial dimension two, λj , the j
th eigenvalue

of ´ΔK ` W acting in L2
per,Λ satisfies the asymptotics λj „ |j| (Weyl). Therefore

tracepT pεqq “
ÿ

j

|λj |´1 „
ÿ

j

|j|´1 “ 8 .

;For ℜε ą 0 and f smooth, we have ℜ xp´Δ ` εV ` Iq f, fy ě }f}2. Hence the nullspace of
´Δ ` εV ` I and its adjoint are t0u. By elliptic regularity theory, ´Δ ` εV ` I is invertible on
L2
K,σ

.
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The divergence of the determinant can be removed if we work with the regularized
or renormalized determinant; see [9, 15]. Note that T pεq is Hilbert–Schmidt, i.e.

}T }2H.S. “
ÿ

j

|λj |´2 „
ÿ

j

|j|´2 ă 8.

For a Hilbert–Schmidt operator, A, i.e. trpA2q ă 8, define

(7.6) R2pAq ” rI ` A s e´A ´ I.

Note that I ` A is singular if and only if I ` R2pAq “ pI ` Aqe´A is singular.

Since e´z “ 1 ´ z ´ z2
ş1

0
ps ´ 1qe´szds, we have

R2pzq “ p1 ` zqe´z ´ 1 “ ´z2
ˆ

1 ` p1 ` zq
ż 1

0

ps ´ 1qe´szds

˙

.

Therefore

(7.7) R2pAq “ ´A2

ˆ

I ` pI ` Aq
ż 1

0

ps ´ 1qe´sAds

˙

.

Since A2 is trace class and the second factor is bounded, R2pAq is trace class.
Therefore the regularized determinant of I ` A:

(7.8) det2pI ` Aq ” det pI ` R2pAqq ,
is well-defined. With A “ ´pµ ` 1qT pεq, we have the following [9, 15, 19]:

Theorem 7.1. Let σ take on the values 1, τ or τ̄ .

(1) ε ÞÑ T pεq is an analytic mapping from tε P C1 : ℜε ą 0u to the space of
Hilbert–Schmidt operators on L2

K,σ.

(2) For T pεq, considered as a mapping on L2
K,σ, define:

(7.9) Eσpµ, εq ” det2 pI ´ pµ ` 1qT pεqq .
The mapping pµ, εq ÞÑ Eσpµ, εq, which takes pµ, εq P C2 (ℜε ą 0) to C is
analytic.

(3) For ε real, µ is an L2
K,σ-eigenvalue of the eigenvalue problem (6.1) if and

only if

(7.10) Eσpµ, εq “ 0 .

(4) For ε real, µ is an L2
K,σ-eigenvalue of (6.1) of geometric multiplicity m if

and only if µ is a root of (7.10) of multiplicity m.

8. Continuation past a critical ε

In section 6 we proved Theorem 5.1 for all ε P p´ε0, ε0qzt0u, with ε0 ą 0 suffi-
ciently small, by establishing the following properties:

I. µεpK‹q is a simple L2
K‹,τ

-eigenvalue of Hpεq with corresponding 1-dimen-

sional eigenspace Xτ “ spant Φμε

1 px;K‹q u Ă L2
K‹,τ

.

II. µεpK‹q is a simple L2
K‹,τ̄

-eigenvalue of Hpεq with corresponding 1-dimen-

sional eigenspace Xτ̄ “ spant Φμε

1 p´x;K‹q u Ă L2
K‹,τ̄

.

III. µεpK‹q is not an L2
K‹,1

-eigenvalue of Hpεq.
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IV. We have

(8.1) λε
7 ”

ÿ

mPS
cpm, µε, εq2

ˆ

1
i

˙

¨ Km
‹ ‰ 0,

where cpm, µε, εq are Fourier coefficients of Φ1 rµεpK‹q, εs pxq, an L2
K‹,τ

-

eigenfunction of Hpεq with eigenvalue µε “ µεpK‹q; see Proposition 2.6.

We next study the persistence of properties I-IV for ε of arbitrary size.

8.1. Continuation strategy. Denote by A the set of all ε ą 0 for which at least
one of the properties I-IV fail. With ε0 given as above, we clearly have A Ă rε0,8q.
The main result of this section is that

(8.2) A is contained in a countable closed set.

Once (8.2) is shown, we’ll have completed the proof of Theorem 5.1, our main
result.

Our continuation strategy is based on the following general

Lemma 8.1. Let A Ă pε0,8q with ε0 ą 0. Then one of the following assertions
holds:
(1) A is contained in a closed countable set.
(2) There exists εc P p0,8q for which the set A X r0, εcq is contained in a closed
countable set, but for any ε1 ą εc, the set A X r0, ε1q is not contained in a closed
countable set.

The main work of this section is to prove (8.2) for A “ A by precluding option
(2) of Lemma 8.1. This suggests introducing the notion of a critical value of ε:

Definition 8.1 (Critical εc). Call a real and positive number εc critical if there is
an increasing sequence tενu tending to εc and a corresponding sequence of geometric
multiplicity-two L2

K-eigenvalues, tµνu, such that

(a) properties I-IV above, with ε replaced by εν and µε replaced by µν , hold
for all ν “ 1, 2, . . . , and

(b) for ε “ εc and µc “ µεc ” limνÑ8 µν ă 8 at least one of the properties
I-IV does not hold.

To prove Lemma 8.1 we use the following:

Lemma 8.2. Let 0 “ ε1 ă ε2 ă ¨ ¨ ¨ and let ε8 “ limνÑ8 εν . (Perhaps ε8 “ 8.)
Suppose A X r0, ενq is contained in a closed countable set Cν for each ν ě 1. Then,

A X r0, ε8q is contained in a closed countable set C̃.

First let’s use Lemma 8.2 to prove Lemma 8.1. We then give the proof of Lemma
8.2.

Proof of Lemma 8.1. Let εc “ suptε P p0,8q : A X r0, εq is contained in a closed
countable setu. Clearly 0 ă ε0 ď εc ď 8. If εc “ 8, then option (1) holds, thanks
to Lemma 8.2, and if εc ă 8, then by definition, A X r0, ε1q is not contained in
a closed countable set for any ε1 ą εc. Again applying Lemma 8.2 shows that
A X r0, εcq is contained in a countable closed set. In this case, (2) holds and the
proof of Lemma 8.1 is complete. �
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Proof of Lemma 8.2. Define

C “
ď

νě1

p Cν X rεν´1, ενs q Y tεν : ν ě 0u

and set C̃ “ C if ε8 “ 8 and C̃ “ C Y tε8u if ε8 ă 8. One checks easily that

AXr0, ε8q Ă C̃, C̃ is countable, and C̃ is closed. This completes the proof of Lemma
8.2. �

We now outline our implementation of the continuation argument. By the dis-
cussion of section 7 and Proposition 4.1, ε is in RzA provided:

(i) Eτ pµε, εq “ 0, BμEτ pµε, εq ‰ 0,
(ii) E1pµε, εq ‰ 0 and
(iii) λε

7 ‰ 0.

To continue property (i) past a finite critical value, εc, one must show the persistence
of a simple zero of Eτ pµ, εq for ε ą εc. To continue (ii) and (iii) beyond εc it seems
at first natural to introduce the function E1pµ, εq ˆ λ7 pcrµ, εsq, where crµ, εs is the
collection of Fourier coefficients of the L2

K,τ -eigenvector for the eigenvalue µ, and

λ7 is the expression in (8.1). Unfortunately the above function is not necessarily
analytic; in a neighborhood of εc, ε ÞÑ crµε, εs and therefore ε ÞÑ λ7 pcrµε, εsq may
not vary analytically; see Appendix A. Indeed there is a topological obstruction
related to the following observation: along a path of matrices in the space of complex
N ˆ N matrices of rank N ´ 1, each matrix has a nonvanishing subdeterminant
of dimension N ´ 1, although the particular subdeterminant which is nonvanishing
changes along the path. The heart of the matter and its remedy are clarified by
linear algebra in Lemma 8.4. That lemma is applied in section 8.4 to construct a
vector-valued analytic function F pµ, εq, whose nonvanishing ensures that E1pµ, εq ‰
0 as well as the nondegeneracy condition, λε

7 ‰ 0. A continuation lemma, Lemma

8.3, of section 8.2, is then applied to the pair of analytic functions: P pµ, εq “
Eτ pµε, εq, F pµ, εq to establish the continuation beyond any finite εc.

8.2. Picking a branch. Let

(8.3) U “ tpλ, zq P C
2 : |λ| ă ε1, |z| ă ε2u,

where ε1 and ε2 are given positive numbers. Suppose we are given an analytic
function P : U Ñ C and an analytic mapping F : U Ñ Cm. We make the following

Assumptions:

(A1) If pλ, zq P U, P pλ, zq “ 0 and z P R, then λ P R.
(A2) There exists tpλν , zνqu Ă U, ν ě 1 tending to p0, 0q as ν Ñ 8, such that

for each ν ě 1, zν P Rzt0u, P pλν , zνq “ 0, BλP pλν , zνq ‰ 0, F pλν , zνq ‰ 0.

Remark 8.1. With the above setup, we have centered the analysis about pz, λq “
p0, 0q. We shall apply the results of this section to an appropriate analytic function
of pµ, εq centered about pµc, εcq.

Under assumptions (A1) and (A2) we will prove the following:

Lemma 8.3. There exist δ ą 0 and a real-analytic function βpzq, defined for
z P p0, δq, such that for all but at most countably many z P p0, δq we have:

(8.4) P pβpzq, zq “ 0, BλP pβpzq, zq ‰ 0, F pβpzq, zq ‰ 0 .

Moreover, limzÑ0` βpzq “ 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS 1201

Proof of Lemma 8.3. Assumption (A1) implies that λ ÞÑ P pλ, 0q is not identi-
cally zero. By the Weierstrass Preparation Theorem [11], we may write P pλ, zq “
Hpλ, zq ¨ P̃ pλ, zq for pλ, zq in some polydisc Ũ ” t|λ| ă ε3, |z| ă ε4u, where P̃ is a
Weierstrass polynomial (see (8.5) below) and H is a nonvanishing analytic function.

Assumptions (A1), (A2) hold also for P̃ , F, Ũ . Moreover, the conclusion of Lemma

8.3 for P̃ , F, Ũ implies the conclusion for P, F, U . Therefore, it is enough to prove
Lemma 8.3 under the additional assumption that P̃ is a Weierstrass polynomial.
Henceforth we make this assumption. Thus, we have for some D ě 1:

(8.5) P pλ, zq “ λD `
D´1
ÿ

j“0

gjpzqλj “
D

ź

ν“1

pλ ´ ανpzqq ,

where α1pzq, . . . , αDpzq denote the roots of λ ÞÑ P pλ, zq (multiplicity counted),
where

(8.6) αjp0q “ lim
zÑ0

αjpzq “ 0, j “ 1, . . . , D .

Moreover, gjpzq are analytic in |z| ă ε4. Note that D ě 1, since Assumption (A2)
implies P p0, 0q “ 0. For k ě 1, define

Qkpzq “
#

D, for k “ 1,
řD

ν1,...,νk“1

śk
i,j“1, i‰j

`

ανi
pzq ´ ανj

pzq
˘2

, k ě 2 .
(8.7)

The right-hand side of (8.7) is a symmetric polynomial in α1pzq, . . . , αDpzq and is
therefore a polynomial in the coefficients gjpzq of P pλ, zq [8], which are analytic
in z. Consequently, each Qkpzq is an analytic function of z. Moreover, when z is
real, the ανpzq are also real, and therefore, for z P R, Qkpzq ‰ 0 if and only if
λ ÞÑ P pλ, zq has at least k distinct zeros. In particular, for k ě D ` 1, Qkpzq “ 0
for all real z, since λ ÞÑ P pλ, zq has only D zeros; see (8.5). Hence, there exists k̄
with 1 ď k̄ ď D such that

Qk̄pzq is not identically zero, but Qkpzq ” 0 for all k ą k̄.

Since Qk̄pzq is analytic on a neighborhood of 0 and not identically zero, there is
an open interval p0, δ1q such that Qk̄pzq ‰ 0 for all z P p0, δ1q. Thus, P pz, λq has
at least k̄ distinct zeros, for each z P p0, δ1q. On the other hand, Qk̄`1pzq ” 0 and

hence λ ÞÑ P pλ, zq, for real z, never has at least k̄`1 distinct zeros. So, λ ÞÑ P pλ, zq
has exactly k̄ distinct zeros for z P p0, δ1q. We denote these zeros by

β1pzq ă β2pzq ă ¨ ¨ ¨ ă βk̄pzq;
they are real by Assumption (A1). Note that each βkpzq is among the αjpzq pj “
1, . . . , Dq. Hence, by (8.6), limzÑ0` βkpzq “ 0 for each k.

Fix x P p0, δ1q, and let m1, . . . ,mk̄ (respectively) be the multiplicities of the
zeros β1pxq, β2pxq, . . . , βk̄pxq of λ ÞÑ P pλ, zq; m1 ` ¨ ¨ ¨ ` mk̄ “ D. For z P p0, δ1q
close enough to x and for each j, there exist mj zeros of λ ÞÑ P pλ, zq (multiplicities
counted) that lie close to βjpxq. Unless these mj zeros of λ ÞÑ P pλ, zq are all
equal, the function λ ÞÑ P pλ, zq would have more than k̄ distinct zeros, which is
impossible. Therefore, for z P p0, δ1q close to x, and for each j, the polynomial
λ ÞÑ P pλ, zq has a single zero βjpzq of multiplicity mj , close to βjpxq. In particular,
the multiplicities of the zeros β1pzq, β2pzq, . . . , βk̄pzq are constant as z P p0, δ1q
varies over a small enough neighborhood of x. Since x P p0, δ1q is arbitrary and
since p0, δ1q is connected it follows that the multiplicities m1, . . . ,mk̄ (respectively)
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of the zeros β1pzq ă β2pzq ă ¨ ¨ ¨ ă βk̄pzq of λ ÞÑ P pλ, zq are constant as z varies
over the entire interval p0, δ1q. Therefore, we have

(8.8) P pz, λq “
k̄

ź

j“1

pλ ´ βjpzqqmj , z P p0, δ1q, |λ| ă ε1.

Here, β1pzq ă β2pzq ă ¨ ¨ ¨ ă βk̄pzq for each z P p0, δ1q and each mj is a positive
integer. Now note that each βjpzq is a real-analytic function on p0, δ1q, since βjpzq
is a simple zero of λ ÞÑ Bmj´1

λ P pλ, zq.
We now turn to F : U Ñ C

m. Let us write F pλ, zq “ pF1pλ, zq, . . . , Fmpλ, zqq.
For a small positive number ρ, to be chosen just below, we define:

(8.9) Gpzq “ 1

2πi

¿

|λ|“ρ

m
ÿ

l“1

Flpλ, zq ¨ Flpλ̄, z̄q ¨ pBλP pλ, zqq2
P pλ, zq BλP pλ̄, z̄q dλ.

We can pick ρ so that P pλ, 0q ‰ 0 for |λ| “ ρ. Therefore, for small enough η, if
|z| ă η, we still have P pλ, zq ‰ 0 for |λ| “ ρ. Fix such ρ and η. Then, Gpzq is an
analytic function of z in the disc t|z| ă ηu. Moreover a residue calculation shows
that

(8.10) Gpzq “
ÿ

λ

m
ÿ

l“1

Flpλ, zq ¨ Flpλ̄, z̄q ¨ BλP pλ, zq ¨ BλP pλ̄, z̄q,

where the sum is over all λ in the set:

t λ : |λ| ă ρ, P pλ, zq “ 0 u ,

with multiplicities included in the sum. In particular, if z is real, then the relevant
λ’s are also real (see (A1)), and therefore

(8.11) Gpzq “
ÿ

λ

m
ÿ

l“1

|Flpλ, zq|2 ¨ |BλP pλ, zq|2,

where the sum is over real λ P p´ρ, ρq such that P pλ, zq “ 0. Note that all nonzero
contributions to the sum (8.11) come from λ’s that are zeros of P with multiplicity
one. Consequently, for real z, we have Gpzq ‰ 0 if and only if there exists λ P p´ρ, ρq
such that P pλ, zq “ 0, BλP pλ, zq ‰ 0 and F pλ, zq ‰ 0.

Therefore, assumption (A2) tells us that the analytic function Gpzq doesn’t van-
ish identically in t|z| ă ηu. It follows that we can pick a positive δ, less than
minpη, δ1q, such that

Gpzq ‰ 0 for 0 ă |z| ă δ .

Now suppose z P p0, δq. Then, there exists λ P p´ρ, ρq such that P pλ, zq “
0, BλP pλ, zq ‰ 0, F pλ, zq ‰ 0. This λ must be equal to one of the βjpzq, j “
1, . . . , k̄, for which mj “ 1. So, for each z P p0, δq there exists j such that mj “ 1
and F pβjpzq, zq ‰ 0.

Unfortunately, the above j may depend on z. However, we may simply fix some
x0 P p0, δq, and pick j0 such that mj0 “ 1 and F pβj0px0q, x0q ‰ 0. The function
z ÞÑ βj0pzq is a real-analytic function of z P p0, δq. Moreover, we know that the real
analytic function z ÞÑ F pβj0pzq, zq is not identically zero on p0, δq, since it is nonzero
for z “ x0. So, it can vanish only on a set of discrete points that accumulate at 0
or at δ. The proof of Lemma 8.3 is complete. �
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Remark 8.2. We have proven more than asserted in Lemma 8.3. In fact, P pβpzq, zq
“ 0 and BλP pβpzq, zq ‰ 0 for all z P p0, δq, and F pβpzq, zq ‰ 0 for all z P p0, δq
except perhaps for countably many z tending to 0. Note that we can arrange for
this countable sequence not to accumulate at δ by simply taking δ to be slightly
smaller.

8.3. Linear algebra. Given an NˆN (complex) matrix A of rank N´1, we would
like to produce a nonzero vector in the nullspace of A, depending analytically on
the entries of A. In general there is a topological obstruction to this; see Appendix
A. However, the following result will be enough for our purposes.

Fix N ě 1. Let MatpNq be the space of all complex N ˆN matrices. We denote
an N ˆ N matrix by A P MatpNq. We say that a map Γ : MatpNq Ñ C

N is
a polynomial map if the components of ΓpAq are polynomials in the entries of A.
Polynomial maps are therefore analytic in the entries of A.

In this section we prove

Lemma 8.4. There exist polynomial maps Γjk : MatpNq Ñ C
N , where j, k “

1, . . . , N , with the following property:
Let A P MatpNq have rank N ´ 1. Then all the vectors ΓjkpAq belong to the
nullspace of A, and at least one of these vectors is nonzero.

Proof of Lemma 8.4. We begin by setting up some notation. Given A P MatpNq,
we write Apj,kq to denote the matrix obtained from A by deleting row j and column
k. We write colpA, kq to denote the kth column of A. If v “ pv1, . . . , vN qt P CN is
a column vector, then we write vj to denote the jth coordinate of v, and write v̂pkq

to denote the column vector obtained from v by deleting the kth coordinate. Thus,
v̂pkq P CN´1.

From linear algebra, we recall that
(8.12)

For any A P MatpNq of rank N ´ 1, we have det
´

Apj,kq
¯

‰ 0 for some pj, kq.

For any A P MatpNq, and any v P NullspacepAq, we have

(8.13) Apj,kqv̂pkq “ ´ rcolpA, kqsˆ pjq vk.

(Equation (8.13) expresses the fact that pAvqi “ 0, for all i ‰ j.)
If rankpAq “ N ´ 1 and detApj,kq ‰ 0, then the space of solutions of (8.13)

and the nullspace of A are one-dimensional; hence, in this case, the nullspace of A
consists precisely of the solutions of (8.13).

We now define ΓjkpAq P CN to be the element, v, in the nullspace of A, whose
N components are constructed as follows: Set the free parameter

(8.14) vk “
”

detApj,kq
ı2

and obtain the other N ´ 1 entries comprising the vector v̂pkq by solving

(8.15) Apj,kq v̂pkq “ ´ rcolpA, kqsˆ pjq
”

detApj,kq
ı2

.

If detApj,kq ‰ 0, we can solve (8.15) uniquely for v̂pkq by Cramer’s rule and together
with (8.14) construct v.
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Note that each component of the vector ΓjkpAq has the form

detApj,kq ˆ Polynomial in the entries of A .

In particular, A ÞÑ ΓjkpAq is a polynomial map. Furthermore, ΓjkpAq “ 0 if

detApj,kq “ 0. Also, ΓjkpAq ‰ 0 if detApj,kq ‰ 0, since the kth coordinate of

ΓjkpAq is
“

detApj,kq‰2.
If rankpAq “ N ´ 1, then some ΓjkpAq is nonzero, thanks to (8.12). Moreover,

each ΓjkpAq always belongs to the nullspace of A. Indeed, fix j, k; if detApj,kq “ 0,

then ΓjkpAq “ 0 P NullspacepAq. If instead detApj,kq ‰ 0, then NullspacepAq
consists of the solutions of (8.13), and we defined Γjk to solve (8.13). Thus, in all
cases we have ΓjkpAq P NullspacepAq if rankpAq “ N ´ 1. The proof of Lemma 8.4
is complete. �

8.4. Hamiltonians depending on parameters. Recall the operator Hpεq “
´Δ ` εV pxq. In this section we complete the continuation argument (and the
proof of Theorem 5.1) by showing how to continue Properties I-IV, listed at the
beginning of section 8.1, beyond any critical value, εc, where one of these properties
may fail. This argument is based on appropriate applications of Lemma 8.3 and
Lemma 8.4.

Let εc and µc be as in Definition 8.1.
Without loss of generality we can assume K‹ “ K. We work in the Hilbert

spaces
(8.16)

L2
K,τ “

#

ÿ

mPS
cpmq

”

eiK
m¨x ` τ̄ eiRKm¨x ` τeiR

2Km¨x
ı

:
ÿ

mPS
|cpmq|2 ă 8

+

,

Hs
K,τ “

#

ÿ

mPS
cpmq

”

eiK
m¨x ` τ̄ eiRKm¨x ` τeiR

2Km¨x
ı

:

ÿ

mPS
p1 ` |m|2qs|cpmq|2 ă 8

+

.

(8.17)

We will apply the results of section 8.2 and section 8.3, with the analysis centered
at pµc, εcq rather than at p0, 0q; see Remark 8.1. We shall use that

Hpεq : H2
K,σ Ñ L2

K,σ is selfadjoint for ε real .

Let M be a positive integer, chosen below to be sufficiently large. We regard L2
K,τ

as the direct sum L2
lo ‘ L2

hi, where L2
lo consists of Fourier series as in (8.16) such

that the cpmq “ 0 whenever |m| ą M , and L2
hi consists of Fourier series as in (8.16)

such that the cpmq “ 0 whenever |m| ď M . Similarly, we regard Hs
K,τ as the direct

sum Hs
lo ‘ Hs

hi using (8.17). We set N “ dimpL2
loq.

Let Πlo and Πhi be the projections that map a Fourier series as in (8.16) or (8.17)
to the truncated Fourier series obtained by setting all the cpmq with |m| ą M , or
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with |m| ď M , respectively, equal to zero. We may view Hpεq as the mapping
ˆ

ψhi

ψlo

˙

ÞÑ
ˆ

Apεq Bpεq

Cpεq Dpεq

˙ ˆ

ψhi

ψlo

˙

with Apεq “ Πhi H
pεq Πhi, Bpεq “ Πhi H

pεq Πlo,

Cpεq “ Πlo Hpεq Πhi, and Dpεq “ Πlo Hpεq Πlo.

By choosing the frequency cutoff, M , to be sufficiently large, we have

Apεcq ´ µcI : H2
hi Ñ L2

hi has a bounded inverse, say
›

›

›

›

´

Apεcq ´ µc I
¯´1

›

›

›

›

L2

hi
ÑH2

hi

ď C .(8.18)

Therefore, for all pµ, εq in some fixed small neighborhood of pµc, εcq we have

(8.19)

›

›

›

›

´

Apεq ´ µ I
¯´1

›

›

›

›

L2

hi
ÑH2

hi

ď C 1 .

The eigenvalue problem

(8.20) Hpεqψ “ µ ψ for ψ “
ˆ

ψhi

ψlo

˙

P H2
lo ‘ H2

hi

is equivalent to the system

Apεqψhi ` Bpεqψlo “ µ ψhi, Cpεqψhi ` Dpεqψlo “ µ ψlo .

That is,

ψhi “ ´
´

Apεq ´ µI
¯´1

Bpεq ψlo and(8.21)
„

´Cpεq
´

Apεq ´ µI
¯´1

Bpεq `
´

Dpεq ´ µI
¯

j

ψlo “ 0,(8.22)

where we regard Apεq ´µI as an operator from H2
hi to L2

hi. Note also that Bpεqψlo P
L2 since ψlo P H2

K,τ ; hence
`

Apεq ´ µI
˘´1

Bpεq ψlo P H2
hi, thanks to (8.19), which

holds under our assumption that pµ, εq is near pµc, εcq. It follows that

Cpεq
´

Apεq ´ µI
¯´1

Bpεq ψlo P L2
lo

by the definition of Cpεq.

(8.23) The operator in square brackets in (8.22) will be denoted as Dpµ, εq .

Thus, Dpµ, εq is analytic in pµ, εq, where pµ, εq varies over a small disc about pµc, εcq
in C2. We may regard Dpµ, εq as an N ˆ N matrix. Thus,

ψ “
ˆ

ψlo

ψhi

˙

is an eigenfunction of Hpεq with eigenvalue µ

if and only if (8.21) holds and ψlo is a nontrivial solution of Dpµ, εqψlo “ 0.

(8.24)

It follows that µ is simple, i.e. a multiplicity one eigenvalue of Hpεq, if and only if
the N ˆ N matrix Dpµ, εq has rank N ´ 1.
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We shall now apply Lemma 8.4 to Dpµ, εq P MatpNq, the space of N ˆ N

complex matrices. Let Γjk denote the polynomial map given by Lemma 8.4. For
j, k “ 1, . . . , N we define

ψ
jk
lo pµ, εq “ Γjk pDpµ, εqq

and set

ψ
jk
hi pµ, εq “ ´

´

Apεq ´ µI
¯´1

Bpεqψjk
lo

as in (8.21).
By Lemma 8.4, (8.21) and (8.22) we now know the following for

ψjkpµ, εq “

¨

˝

ψ
jk
lo pµ, εq

ψ
jk
hi pµ, εq

˛

‚ :

pAq ψjkpµ, εq P H2
K,τ depends analytically on pµ, εq,

for pµ, εq in a small neighborhood of pµc, εcq.
(8.25)

pBq If µ is a simple eigenvalue of Hpεq pµ ´ µc, ε ´ εc smallq,
then all ψjkpµ, εq are in the nullspace of Hpεq ´ µI .

Furthermore, at least one of the ψjkpµ, εq is nonzero

and is therefore an eigenfunction of Hpεq.

(8.26)

Let us write out the Fourier expansions of the ψjkpµ, εq. We have

(8.27)
“

ψjkpµ, εq
‰

pxq “
ÿ

mPS
cjkpm, µ, εq

”

eiK
m¨x ` τ̄ eiRKm¨x ` τeiR

2Km¨x
ı

.

The coefficients cjkpm, µ, εq depend analytically on pµ, εq P U , where U is a small
neighborhood of pµc, εcq, which is independent of m. Moreover, since ψjkpµ, εq is
an analytic H2

K,τ -valued function, it follows that

(8.28)
ÿ

mPS

`

1 ` |m|2
˘2 ˇ

ˇcjkpm, µ, εq
ˇ

ˇ

2
is bounded as pµ, εq varies over U .

(Perhaps we must shrink U to achieve (8.28).)
With a view toward continuation of the Properties I-IV (enumerated at the

start of section 8) as ε traverses any critical value εc (Definition 8.1), we state the
following:

Lemma 8.5. Suppose there exists a sequence of eigenvalues pµν , ενq Ñ pµc, εcq
with 0 ă εν ă εc, such that for each ν the following properties (A1)-(A4) hold:

(A1) µν is a simple eigenvalue of Hpενq on L2
K,τ , with eigenfunction

Ψνpxq “
ÿ

mPS
cνpmq

”

eiK
m¨x ` τ̄ eiRKm¨x ` τeiR

2Km¨x
ı

P H2
K,τ .

(A2) µν is a simple eigenvalue of Hpενq on L2
K,τ̄ , with eigenfunction

Ψνp´xq “
ÿ

mPS
cνpmq

”

eiK
m¨x ` τeiRKm¨x ` τ̄ eiR

2Km¨x
ı

P H2
K,τ̄ .

(A3) E1pµν , ενq ‰ 0, i.e. µν is not an L2
K,1-eigenvalue of Hpενq.
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(A4) The following nondegeneracy condition (λε
7 ‰ 0) holds:

(8.29)
ÿ

mPS
wpmq rcνpmqs2 ‰ 0,

where twpmqumPS are fixed weights, such that

(8.30) |wpmq| ď C p1 ` |m|q , m P S .

Our choice of weights (see (4.1)) is:

wpmq “
ˆ

1
i

˙

¨ Km .

Then, there exist a (nonempty) open interval I “ pεc, εc ` δq, a real-valued
real-analytic function βpεq defined on I, a function ϕε P L2

K,τ depending on the
parameter ε P I, and a countable subset C Ă I, such that the following hold:

(i) p´Δ ` εVhqϕpεq “ βpεqϕpεq for each ε P I.
(ii) limεÑε

`
c
βpεq “ µc.

(iii) C has no accumulation points in I, although εc may be an accumulation
point of C.

(iv) For each ε in IzC,
(a) βpεq is a simple eigenvalue of ´Δ ` εVh on L2

K,τ ,

(b) βpεq is not an eigenvalue of ´Δ ` εVh on L2
K,1, and

(c) the quantity λε
7 , arising from the eigenfunction ϕpεq via formula

(4.1) (with Φ1 replaced by ϕpεqq is nonzero.

Proof of Lemma 8.5. Recall that the zeros, µ, of the renormalized determinant,
E1pµ, εq, defined in section 7.8, are precisely the set of L2

K,1-eigenvalues of Hpεq.
Thus, tracking the set of pµ, εq such that Assumptions (A1)-(A4) and in particular
(A3) hold suggests that we introduce, for pµ, εq P U , the matrix-valued function:

(8.31) F jkpµ, εq ”
˜

ÿ

mPS
wpmq

“

cjkpm, µ, εq
‰2

¸

ˆ E1pµ, εq.

F jkpµ, εq is an analytic function on U . We define

(8.32) F pµ, εq ”
`

F jkpµ, εq
˘

j,k“1,...,N
.

Thus, F : U Ñ CN2

is an analytic map.
Now for each ν, (8.26) applies to pµν , ενq , since µν is a simple eigenvalue. Thus,

for some jk, the function ψjkpµν , ενq is a nonzero null-vector of Hpενq ´ µνI, i.e.,
an eigenfunction of Hpενq. Since by hypothesis ψν is an eigenfunction of Hpενq

satisfying (8.29) with eigenvalue µν and since µν is a simple eigenvalue of Hpενq,
the corresponding eigenfunction Ψν satisfies:

Ψν “ γν ψjkpµν , ενq for a complex constant γν ‰ 0 .

Therefore,

0 ‰
ÿ

mPS
wpmq rcνpmqs2 “ γ2

ν

ÿ

mPS
wpmq

“

cjkpm;µν , ενq
‰2

“ γ2
ν

F jkpµν , ενq
E1pµν , ενq ; see (8.31) and (8.29).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1208 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

The second equality holds since E1pµν , ενq ‰ 0; see hypothesis (A3). It follows that
F jkpµν , ενq ‰ 0 for some jk, i.e.,

(8.33) F pµν , ενq ‰ 0, for each ν ,

where tενu is a sequence tending to εc from below.
We complete the proof of Lemma 8.5 by an application of Lemmata 8.3 and 8.4

for appropriate choices of P pµ, εq and F pµ, εq. Let Eτ pµ, εq, denote the renormalized
determinant (7.9). Let P pµ, εq “ Eτ pµ, εq and F pµ, εq be given by (8.31), (8.32).
We now check the hypotheses of Lemma 8.3. First note that

P pµ, εq “ 0 if and only if µ is an L2
K,τ -eigenvalue of Hpεq and the multiplicity of

µ as a zero of P pµ, εq is equal to its multiplicity as an eigenvalue of Hpεq.

(8.34)

Because Hpεq is selfadjoint for real ε, we see from (8.34) that

(8.35) if pµ, εq P U, ε is real, and P pµ, εq “ 0, then µ P R.

Moreover, from (8.29), (8.33) and (8.34) we see that

(8.36) pµν , ενq P U for each ν ě 1, pµν , ενq Ñ pµc, εcq, as ν Ñ 8;

and for each ν, we have

(8.37) P pµν , ενq “ 0, BμP pµν , ενq ‰ 0, F pµν , ενq ‰ 0, εν P R, 0 ă ε0 ď εν .

Recall that F : U Ñ CN2

is an analytic mapping and P pµ, εq : U Ñ C is
analytic. Results (8.35)-(8.37) tell us that conditions (A1) and (A2) of section 8.2
hold for our present choice of F and P . Therefore, Lemma 8.3 applies; see also
the remark immediately after its proof. Thus, we obtain a positive number δ and
a real-analytic function βpεq such that the following holds:

(8.38) For each ε P pεc, εc ` δq,we have P pβpεq, εq “ 0 and BλP pβpεq, εq ‰ 0.

Moreover, for all but countably many ε P pεc, εc ` δq,
with their only possible accumulation point at εc, we have F pβpεq, εq ‰ 0.

(8.39)

By (8.38) and (8.34), we have
(8.40)

For each ε in pεc, εc ` δq, the number βpεq is a simple L2
K,τ -eigenvalue of Hpεq .

Therefore, from (8.26) we have that
(8.41)

For each ε in pεc, εc ` δq, all the ψjkpµ, εq are in the nullspace of Hpεq ´ βpεqI.
Recalling (8.27) and (8.31), (8.32), (8.39), we now see that

For each ε in pεc, εc ` δq outside a countable set

with its only possible accumulation point at εc, E1pβpεq, εq ‰ 0,
(8.42)

there exists jk such that
ÿ

mPS
wpmq

“

cjkpm, βpεq, εq
‰2 ‰ 0 .(8.43)

Now unfortunately the pair pj, kq in (8.43) may depend on ε. However, (8.43)
implies that for some fixed pj, kq “ pj0, k0q, the function

(8.44) ε ÞÑ
ÿ

mPS
wpmq

“

cj0k0pm, βpεq, εq
‰2
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defined for ε P pεc, εc ` δq is not identically zero. Since this function is analytic
in ε, it is equal to zero at most at countably many ε. Moreover, the zeros of the
function (8.44) in pεc, εc ` δq can accumulate only at εc and at εc ` δ. By taking δ

smaller, we may assume that the zeros of the function (8.44) can only accumulate
at εc.

We now set, for ε P pεc, εc ` δq:
Ψpεq ” Ψj0,k0pβpεq, εq P H2

K,τ and

Ψpεqpxq “
ÿ

mPS
cj0,k0pm;βpεq, εq

”

eiK
m¨x ` τ̄ eiRKm¨x ` τeiR

2Km¨x
ı

.

We now have that the function µ “ βpεq satisfies Properties I-IV for all ε P
pεc, εc ` δq except possibly along a sequence of “bad” ε’s which tends to εc. Prop-
erties I-III, that βpεq is an eigenvalue in each of the subspaces L2

K,τ and L2
K,τ̄ , and

not an L2
K,1-eigenvalue, hold for all ε P pεc, εc ` δq, except possibly along the above

sequence of bad ε’s. This completes the proof of Lemma 8.5.
To complete the proof of Theorem 5.1, for ε of arbitrary size we require

Lemma 8.6. For all ε P p0,8q outside a countable closed set there exists a Floquet-
Bloch eigenpair µ P R, ϕ P L2

K,τ for ´Δ ` εVh, with the following properties:

(a) |µ| ď C0ε ` C1, where C0 and C1 depend only on Vh.
(b) µ is a multiplicity one eigenvalue of ´Δ ` εVh on L2

K,τ .

(c) µ is not an eigenvalue of ´Δ ` εVh on L2
K,1.

(d) The quantity λε
7 , arising from ϕ by formula (4.1), is nonzero.

Theorem 5.1 is an immediate consequence of Lemma 8.6, which precludes option
(2) of Lemma 8.1, and Proposition 4.1. �

Proof of Lemma 8.6. Set C0 “ max |Vh|. By our analysis of section 6, there exists
ε0 ą 0, a sufficiently large constant C1, such that for ε P p0, ε0q there exist µ, ϕ

satisfying (a)-(d).
Now suppose that Lemma 8.6 fails. Then, by Lemma 8.1 there exists εc P p0,8q

such that for all ε P p0, εcq outside a countable closed set, there exist µ, ϕ satisfying
(a)-(d) but

for all ε1c ą εc, assertions (a)-(d) fail on a subset of p0, ε1cq
that is not contained in any countable closed set.

(8.45)

We will deduce a contradiction, from which we conclude Lemma 8.6.
By assumption, we can find a sequence ε1 ă ε2 ă ¨ ¨ ¨ ă εν ă ¨ ¨ ¨ converging to

εc, such that each εν gives rise to a Floquet-Bloch eigenpair µν P R, ϕν P L2
K,τ

satisfying properties (a)-(d). Thanks to (a), we may pass to a subsequence, and
assume that µν Ñ µc as ν Ñ 8, for some real number µc, with

(8.46) |µc| ď C0 εc ` C1.

Since the Floquet-Bloch pairs µν , ϕν satisfy (a)-(d), and since εν Ò εc and µ Ñ
µc as ν Ñ 8, Lemma 8.5 applies. Thus we obtain a nonempty open interval
I “ pεc, εc ` δq, a real-valued real-analytic function βpεq defined on I, a function
ϕpεq P L2

K,τ parametrized by ε P I, and a countable closed subset C Ă I satisfying

properties (i)-(iv) of Lemma 8.5. We will prove that

(8.47) |βpεq| ď C0 ε ` C1, for all ε P I “ pεc, εc ` δq.
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Once (8.47) is established, we conclude that we can satisfy all assertions (a)-(d)
of Lemma 8.6 for all ε P IzC, by taking µ “ βpεq and ϕ “ ϕpεq. However this
contradicts property (8.45) of εc. Thus, it suffices to prove the bound (8.47).

To establish (8.47), we fix ε̄ P IzC “ pεc, εc ` δqzC. For any ε ą 0, let λ1pεq ď
λ2pεq ď ¨ ¨ ¨ denote the eigenvalues (multiplicity counted) of ´Δ ` εVh on L2

K,τ .

Then, since βpε̄q is a simple eigenvalue (assertion (iv) of Lemma 8.5), there exists
k̄ such that

βpε̄q “ λk̄pε̄q ă λk̄`1pε̄q and λk̄´1pε̄q ă λk̄pε̄q unless k̄ “ 1.

Fix η̄ ą 0 such that

λk̄pε̄q ă λk̄`1pε̄q ´ η̄ and λk̄´1pε̄q ă λk̄pε̄q ´ η̄ unless k̄ “ 1.

From the min-max characterization of eigenvalues, we have the Lipschitz bound

(8.48)
ˇ

ˇλkpεq ´ λkpε1q
ˇ

ˇ ď |ε ´ ε1| ¨ max |Vh| “ C0 ¨ |ε ´ ε1|,

for any ε, ε1 ą 0 and any k ě 1. Hence, as ε varies in a small neighborhood of ε̄,
we have

(8.49) |λk̄pεq ´ λk̄pε̄q| ď C0 ¨ |ε ´ ε̄|,
and also

(8.50) λk̄`1pεq ą λk̄pε̄q ` 1

2
η̄ and λk̄´1pεq ă λk̄pε̄q ´ 1

2
η̄ unless k̄ “ 1.

We have taken ε̄ P IzC. As ε varies in a small neighborhood of ε̄, we have ε P IzC,
thanks to property (iii) of Lemma 8.5. Therefore, βpεq is an eigenvalue of ´Δ`εVh

on L2
K,τ , i.e. βpεq “ λkpεq for some k. We now show that this value must be k̄.

Since βpεq is a real-analytic function of ε, and since βpε̄q “ λk̄pε̄q, we have

(8.51) λk̄pε̄q ´ 1

2
η̄ ă βpεq ă λk̄pε̄q ` 1

2
η̄

for all ε close enough to ε̄. From (8.50) and (8.51), we have ˚

λk̄´1pεq ă βpεq ă λk̄`1pεq

and therefore, βpεq “ λk̄pεq for all ε close enough to ε̄. Estimate (8.49) now shows
that the real-analytic function βpεq satisfies

ˇ

ˇ

ˇ

ˇ

dβpεq
dε

ˇ

ˇ

ˇ

ˇ

ď C0, for ε “ ε̄.

Since ε̄ was taken to be an arbitrary point of IzC, and since IzC is dense in I by
(iii) of Lemma 8.5, we have

(8.52)

ˇ

ˇ

ˇ

ˇ

dβpεq
dε

ˇ

ˇ

ˇ

ˇ

ď C0, for all ε P I.

Recall that I “ pεc, εc ` δq. Our desired estimate (8.47) now follows at once from
(8.46), (8.52) and (ii) of Lemma 8.5. The proof of Lemma 8.6 and therefore of
Theorem 5.1 is now complete. �

˚For k̄ “ 1, we have βpεq ă λ2pεq.
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9. Persistence of conical (Dirac) points under perturbation

In the previous sections we established the existence of conical singularities,
Dirac points, in the dispersion surface for honeycomb lattice potentials. These
Dirac points are at the vertices of the Brillouin zone, Bh. In this section we explore
the structural stability question of whether such Dirac points persist under small,
even and Λh-periodic perturbations of a base honeycomb lattice potential. We
prove the following:

Theorem 9.1. Let V pxq denote a honeycomb lattice potential in the sense of Defi-
nition 2.1. Let W pxq denote a real-valued, smooth, even and Λh-periodic function,
which does not necessarily have honeycomb structure symmetry; i.e., W pxq is not
necessarily R-invariant. Consider the operator

(9.1) Hpηq “ ´Δ ` V pxq ` ηW pxq ,

where η is a real parameter. Let k “ K‹ be a vertex of Bh. Assume that for
η “ 0, the operator Hp0q has an L2

K‹
-eigenvalue, µpK‹q, of multiplicity two, with

corresponding orthonormal basis tΦ1,Φ2u with Φ1 P L2
K‹,τ

and Φ2pxq “ Φ1p´xq.
Assume λ7, given in (4.1), is nonzero. Then, the following hold:

(1) There exist a positive number η1 and a smooth mapping

η ÞÑ µpηq “ µpK‹q ` Opηq P R and η ÞÑ Kpηq “ K‹ ` Opηq P Bh,(9.2)

η ÞÑ φ
pηq
j px;Kpηqq “ φjpxq ` Opηq P L2pR{Λhq(9.3)

defined for |η| ă η1, such that Hpηq has an L2
Kpηq-eigenvalue, µ

pηq, of geo-
metric multiplicity two, with corresponding eigenspace spanned by

!

Φ
pηq
1 ,Φ

pηq
2

)

“
!

eiK
pηq¨xφpηq

1 px;Kpηqq, eiKpηq¨xφpηq
2 px;Kpηqq

)

.

(2) The operator Hpηq has conical-type dispersion surfaces in a neighborhood of

points K
pηq
‹ “ K‹ `Opηq with associated band dispersion functions, µ

pηq
˘ pkq,

defined for k near K
pηq
‹ :

µ
pηq
` pkq ´ µpKpηq

‹ q “ ηb
pηq ¨ pk ´ K

pηq
‹ q `

´

Q
pηqpk ´ K

pηq
‹ q

¯ 1

2

´

1 ` E
pηq
` pk ´ K

pηq
‹ q

¯

,

(9.4)

µ
pηq
´ pkq ´ µpKpηq

‹ q “ ηb
pηq ¨ pk ´ K

pηq
‹ q ´

´

Q
pηqpk ´ K

pηq
‹ q

¯ 1

2

´

1 ` E
pηq
´ pk ´ K

pηq
‹ q

¯

,

(9.5)

where
‚ bpηq P R2 depends smoothly on η.
‚ Qpηqp¨q is a quadratic form in κ “ pκ1, κ2q P R

2, depending smoothly
on η and such that

(9.6)
`

|λ7|2 ´ C|η|
˘

pκ2
1 ` κ2

2q ď Qpκ; ηq ď
`

|λ7|2 ` C|η|
˘

pκ2
1 ` κ2

2q
for |η| ď η1 and κ “ pκ1, κ2q P R

2, with η1 small, and

‚
ˇ

ˇ

ˇ
E

pηq
` pκq

ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ
E

pηq
´ pκq

ˇ

ˇ

ˇ
ď C |κ| for |η| ď η1 and |κ| ď κ̃, where κ̃ (small)

and C ă 8 are constants.

Remark 9.2 below shows that Dirac points are unstable to typical perturbations,
W P C8pR2{Λhq, which are not even.
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Remark 9.1. For η “ 0, Theorem 9.1 reduces to Theorem 5.1, which covers the case
of the undeformed honeycomb lattice potential. In particular, if the perturbation

W is itself a honeycomb lattice potential, then K
pηq
‹ ” K‹.

We now prove Theorem 9.1. As earlier, without loss of generality, we assume
K‹ “ K. The family of Floquet-Bloch eigenvalue problems, parametrized by k P
Bh, is given by:

Hpk; ηq φpηqpx;kq “ µpηqpkq φpηqpx;kq, where

Hpk; ηq “ ´ p∇ ` ikq2 ` V pxq ` η W pxq .
(9.7)

By hypothesis, we have:

For η “ 0, HpK; 0q “ ´ p∇ ` iKq2 ` V pxq has a degenerate eigenvalue µpKq,
of multiplicity two with 2-dimensional L2

K-eigenspace: spantφ1pxq, φ2pxqu.

(9.8)

Introduce the projection operators

(9.9) Q‖f “
2

ÿ

j“1

xφj , fy φjpxq and QK “ I ´ Q‖ .

We seek solutions of the Floquet-Bloch eigenvalue problem in the form:

φpηqpx;Kηq “
2

ÿ

j“1

αjφjpxq ` η φp1,ηqpxq, Q‖φ
p1,ηq “ 0 ,(9.10)

Kpηq “ K ` ηK1,η ,(9.11)

µpηq “ µp0q ` ηµp1,ηq ,(9.12)

dim null space
´

Hpηq ´ µpηqI
¯

“ 2 .(9.13)

Substituting these expansions into (9.7) yields:

´

HpKq ´ µp0qI
¯

φp1,ηq ` η
´

´2iK1,η ¨ ∇K ` W ´ µp1,ηq ´ η|K1,η|2
¯

φp1,ηq

“ ´
´

´2iK1,η ¨ ∇K ` W ´ µp1,ηq ´ η|K1,η|2
¯

˜

2
ÿ

j“1

αjφj

¸

.

(9.14)

We take the inner product of (9.14) with φ1 and φ2. This yields the system:

”

´
´

µp1,ηq ` η|K1,η|2
¯

` xφ1,Wφ1y
ı

α1 `
”

λ7
´

K
1,η
1 ` iK

1,η
2

¯

` xφ1,Wφ2y
ı

α2

` η
A

φ1,
´

´2iKp1,ηq ¨ ∇K ` W
¯

QKφ
p1,ηq

E

“ 0 ,

(9.15)

”

λ7
´

K
1,η
1 ` iK

1,η
2

¯

` xφ1,Wφ2y
ı

α1 `
”

´
´

µp1,ηq ` η|K1,η|2
¯

` xφ2,Wφ2y
ı

α2

` η
A

φ2,
´

´2iKp1,ηq ¨ ∇K ` W
¯

QKφ
p1,ηq

E

“ 0 .

(9.16)

In obtaining the system (9.15)-(9.16) we have used
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(1)

(9.17) ∇K ” p∇x ` iKq “ e´iK¨x∇xe
iK¨x,

(2) W is real-valued and thus ´2iK1,η ¨ ∇ ` W is selfadjoint,

(3) ´2i
@

φ1, K
1,η ¨ ∇K φ2

D

“ ´2i
@

Φ1, K
1,η ¨ ∇x Φ2

D

“ λ7

´

K
pη,1q
1 ` iK

pη,1q
1

¯

,

where Φj “ eiK¨xφj , by Proposition 4.1,

(4) Q‖φ
p1,ηq “ 0 and QKφp1,ηq “ φp1,ηq .

An equation for φp1,ηq is derived by applying QK to (9.14) and using

QKφj “ 0, j “ 1, 2 and QKφ
p1,ηq “ φp1,ηq.

We obtain

´

HpKq ´ µ
p0q

I
¯

φ
p1,ηq ` η QK

´

´2iK1,η ¨ ∇K ` W ´ µ
p1,ηq ´ η|K1,η|2

¯

QK φ
p1,ηq

“ ´QK

`

´2iK1,η ¨ ∇K ` W
˘

˜

2
ÿ

j“1

αjφj

¸

.

(9.18)

Introduce the projections

(9.19) Q̃‖F “
2

ÿ

j“1

xΦj , F y Φj , Q̃K “ I ´ Q̃‖

and note that these projections satisfy the commutation relation

(9.20) eiK¨x Q “ Q̃ eiK¨x .

Using (9.17) we rewrite (9.18) as an equation for

(9.21) Φp1,ηq “ eiK¨xφp1,ηq :

(9.22) L
`

µ,K1,η, η
˘

Φp1,ηq “ ´
2

ÿ

j“1

αj Q̃K
`

´2iK1,η ¨ ∇x ` W
˘

Φj ,

where

(9.23) L
`

µ,K1,η, η
˘

” ´Δ ` V ´ µp0q ` η Q̃K
`

´2iK1,η ¨ ∇x ` η2|K1,η|2
˘

Q̃K.

Note that L is selfadjoint on Q̃KL2
K. For η sufficiently small, we have that L :

Q̃KH2
K Ñ Q̃KL2

K is invertible. Solving (9.22) yields

(9.24) Φp1,ηq “ ´
2

ÿ

j“1

αj L
`

µ,K1,η, η
˘´1

Q̃K
`

´2iK1,η ¨ ∇x ` W
˘

Φj .

Using (9.21) to express φp1,ηq in terms of Φp1,ηq and substituting (9.24) into (9.15)-
(9.16), we obtain the following linear homogeneous system for αj , j “ 1, 2:

(9.25) M

´

µp1,ηq,K1,η, η
¯

ˆ

α1

α2

˙

“
ˆ

0
0

˙

,
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where

M

´

µp1,ηq,K1,η, η
¯

”
¨

˚

˚

˝

´
`

µp1,ηq ` η|K1,η |2
˘

` xΦ1,WΦ1y ` η a11 λ7

´

K
1,η
1 ` iK

1,η
2

¯

` xΦ1,WΦ2y ` η b

λ7

´

K
1,η
1 ` iK

1,η
2

¯

` xΦ1,WΦ2y ` η b ´
`

µp1,ηq ` η|K1,η |2
˘

` xΦ1,WΦ1y ` η a22

˛

‹

‹

‚

.

(9.26)

a11, a22 and b are functions of µp1,ηq,K1,η and η and are given by the expressions:
(9.27)

all “
A

Q̃K
`

´2iK1,η ¨ ∇x ` W
˘

Φl, L´1 Q̃K
`

´2iK1,η ¨ ∇x ` W
˘

Φl

E

, l “ 1, 2,

(9.28) b “
A

Q̃K
`

´2iK1,η ¨ ∇x ` W
˘

Φ1, L´1 Q̃K
`

´2iK1,η ¨ ∇x ` W
˘

Φ2

E

,

where L “ L
`

µ,K1, η
˘

is defined in (9.23). Note that a11 and a22 are real. The

matrix M
`

µp1q,K1, η
˘

has the structure:

M

´

µp1q,K1, η
¯

“
¨

˝

´µp1q ` A11

`

µp1q,K1, η
˘

B
`

µp1q,K1, η
˘

B
`

µp1q,K1, η
˘

´µp1q ` A22

`

µp1q,K1, η
˘

˛

‚,
(9.29)

where All and B are smooth functions of
`

µp1q,K1,η, η
˘

, which can be read off
from (9.26) and (9.27)-(9.28):

All “ xΦl,WΦly ´ η|K1|2 ` η all, l “ 1, 2,(9.30)

B “ λ7 pK1
1 ` iK1

2 q ` xΦ1,WΦ2y ` η b .(9.31)

A consequence of the above discussion is

Proposition 9.1. (1) The pair pµpηq, φpηqq is an L2
Kpηq-eigenpair of Hpηq “

´Δ`V `ηW , where η is real and Kpηq P R2, µpηq, φpηq P L2
Kpηq are defined

in (9.10)-(9.12) if and only if

detM
´

µp1q,K1, η
¯

“ 0 .(9.32)

(2) By selfadjointness, for η P R and K1 P R2, if µp1q is a solution of (9.32),
then µp1q is real.

(3) µpηq is a geometric multiplicity two L2
Kpηq-eigenvalue of Hpηq if and only if

the triple
`

µp1q,K1, η
˘

is such that the 2ˆ2 Hermitian matrix M
`

µp1q,K1, η
˘

has zero as a double eigenvalue; i.e., M
`

µp1q,K1, η
˘

is the zero matrix.

Now, up to this point we have not used the hypothesis that W pxq is an even
function (inversion symmetry). We now impose this condition on W . For the case
where W is not even, see Remark 9.2 at this end of this section.

Claim 1. W pxq “ W p´xq ùñ xΦ1,WΦ1y “ xΦ2,WΦ2y and a11 “ a22. By
(9.30), it follows that A11 “ A22.
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Proof of Claim 1. Recall, as in Theorem 5.1, that Φ2px;Kq “ Φ1p´x;Kq and thus

xΦ2,WΦ2y “
ż

Φ1p´xqW pxqΦ1p´xqdx “
ż

|Φ1pxq|2W p´xqdx “ xΦ1,WΦ1y.

Furthermore, one checks easily that a11 “ a22.
In this case, we set

(9.33) a11 “ a22 ” a “ a
´

µp1q,K1, η
¯

and A11 “ A22 ” A “ A
´

µp1q,K1, η
¯

.

Here a “ a11 “ a22 and b are functions of µp1q,K1, η, displayed in (9.27) and (9.28).
By Proposition 9.1 and the above Claim 1, if W pxq “ W p´xq, then we obtain a

double eigenvalue if and only if

(9.34) µp1q ´ A
´

µp1q,K1, η
¯

“ 0 and B
´

µp1q,K1, η
¯

“ 0.

By analyzing the solution set of (9.34) for small η, we shall prove the following:

Proposition 9.2. For each real η in some small neighborhood of zero, there exists a

unique K1 “ K1,η “
´

K
1,η
1 ,K

1,η
2

¯

and µp1q “ µp1,ηq such that µpηq “ µp0q ` ηµp1,ηq

(see (9.12)) is a geometric multiplicity two L2pR2{Λhq-eigenvalue of Hpη;K1,ηq.

Proof of Proposition 9.2. Consider (9.34) for µp1,ηq and K1,η for η “ 0. We have

µp1,0q ´ A
´

µp1,0q,K1, 0
¯

“ 0 Ø µp1,0q “ xΦ1,WΦ1y and(9.35)

B
´

µp1,0q,K1, 0
¯

“ 0 Ø λ7
´

K
1,0
1 ` iK

1,0
2

¯

“ ´xΦ1,WΦ2y .(9.36)

Equation (9.36) is equivalent to the two equations:

K
1,0
1 “ ´ℜ

`

p λ7 q´1 xΦ1,WΦ2y
˘

, K
1,0
2 “ ´ℑ

`

p λ7 q´1 xΦ1,WΦ2y
˘

.(9.37)

We next consider the case η ‰ 0, real and sufficiently small.

Claim 2. A and B, defined via (9.26)-(9.29), are smooth functions of pµp1q, η,K1,0
1 q.

Moreover, there exist constants c1 ą 0, d1 ą 0 and η0 ą 0 such that for all
|K1 ´ K1,0| ă c1, |µp1q ´ µp1,0q| ă d1 and |η| ă η0, we have

(1) A “ xΦ1,WΦ1y ` η fA
`

µp1q,K1, η
˘

,

(2) B “ λ7 pK1
1 ` iK1

2 q ` xΦ1,WΦ2y ` η fB
`

µp1q,K1, η
˘

,
(3) fA, fB “ Op1q ,
(4) BμB “ Opηq, |BμA| ď 1{2.

We leave the verification to the reader.
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An immediate consequence of Claims 1 and 2 is:

Claim 3. Assume λ7 ‰ 0. Then, for |η| ă η0, |K1 ´K1,0| ă c1 and |µp1q ´µp1,0q| ă
d1, equations (9.34) are equivalent to the system:

K
p1q
1 ` iK

p1q
2 “

`

λ7
˘´1 xΦ1,WΦ1y ` ηF pµp1q, η,Kp1q

1 ,K
p1q
2 q,(9.38)

µp1q “ xΦ1,WΦ1y ` ηfA

´

µp1q,K1, η
¯

.(9.39)

By the above, we have

Claim 3. µpηq “ µp0q`ηµp1,ηq is an L2pR2{Λhq-eigenvalue ofHpKpηq, ηq of geometric

multiplicity two (see (9.10)-(9.12)) if and only if µp1,ηq, K1,η
1 and K

1,η
2 satisfy:

K
1,η
1 ´ ℜ

´

`

λ7
˘´1 xΦ1,WΦ1y ` ηF pµp1,ηq, η,K1,η

1 ,K
1,η
2 q

¯

“ 0,

K
1,η
2 ´ ℑ

´

`

λ7
˘´1 xΦ1,WΦ1y ` ηF pµp1,ηq, η,K1,η

1 ,K
1,η
2 q

¯

“ 0,

µp1,ηq ´
´

xΦ1,WΦ1y ` η fApµp1,ηq, η,K1,η
1 ,K

1,η
2 q

¯

“ 0.

(9.40)

So, in order to prove Theorem 9.1, we seek a solution of (9.40) in a neighborhood
of its solution for η “ 0, given by (9.35) and (9.37):

(9.41) µp1q “ µp1,0q, K1 “ K1,0, K2 “ K2,0.

Note that the right-hand side of (9.40) defines a smooth map from a neighborhood

of pµp1,0q,K1,0
1 ,K

1,0
2 q to R3 with Jacobian at (9.41), for η “ 0, equal to the identity.

Hence, by the implicit function theorem, there exist a positive number, η1, and
smooth functions:

η ÞÑ µp1,ηq, η ÞÑ K1,η “
´

K
1,η
1 ,K

1,η
2

¯

,(9.42)

defined for |η| ă η1, such that µp1,ηq,K1,η is the unique solution of (9.40) for all
|η| ă η1 in an open set about the point (9.41). This completes the proof of part (1)
of Theorem 9.1.

To prove part (2) of Theorem 9.1, we need to display a conical singularity in the
dispersion surface about the point pKpηq, µpηqq, (9.2). For this we make strong use
of the calculations in the proof of Theorem 4.1. In particular, ´Δ ` V , µp0q, K
and φj , j “ 1, 2 of the proof of Theorem 4.1 are replaced by Hpηq, µpηq,Kpηq from

the proof of part (1) and tφpηq
1 , φ

pηq
2 u, where the latter now denotes an orthonormal

spanning set for the L2pR2{Λhq nullspace ofHpη;Kpηqq´µpηqI. Then, tΦpηq
1 ,Φ

pηq
2 u “

teiK¨xφpηq
1 , eiK¨xφpηq

2 u is an orthonormal spanning set for the L2
Kpηq nullspace of

Hpηq ´ µpηqI. Note also that Φ
pη“0q
j “ Φj , the Floquet-Bloch states associated

with the unperturbed honeycomb lattice potential, V .
We must study the Floquet-Bloch eigenvalue problem (compare with (4.4)-(4.5))

ˆ

´
´

∇x ` i
´

Kpηq ` κ
¯¯2

` V pxq ` ηW pxq
˙

ψpηqpx;Kpηq ` κq

“ µpKpηq ` κq ψpηqpx;Kpηq ` κq ,

(9.43)

(9.44) ψpηqpx ` v;Kpηq ` κq “ ψpηqpx;Kpηq ` κq, for all v P Λ .
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We express µ “ µpηqpKpηq ` κq and ψpηqpx;Kpηq ` κq as:

µ “ µpηq ` µp1,ηqpκq,

ψpηqpx;Kpηq ` κq “
2

ÿ

j“1

αjφ
pηq
j pxq ` ψp1,ηqpxq,

(9.45)

where µpηq “ µpηqpKpηqq denotes the perturbed double-eigenvalue constructed above

with corresponding orthonormal eigenfunctions φ
pηq
j pxq, j “ 1, 2.

Precisely along the lines of the derivation of (4.19) in the proof of Theorem
4.1, we now find that for |κ| small, µpηqpKpηq ` κq is an eigenvalue of the spectral
problem (9.43)-(9.44) if µp1,ηq “ µp1,ηqpκq solves

(9.46) detMpµp1,ηq, κ; ηq “ 0,

where

(9.47) Mpµp1,ηq, κ; ηq “ M0pµp1,ηq, κ; ηq ` M1pµp1,ηq, κ; ηq,
where

ˇ

ˇ

ˇ
M1,ijpµp1,ηq, κ; ηq

ˇ

ˇ

ˇ
“ C

´

|κ| |µp1,ηq| ` |κ|2
¯

and

M0pµp1,ηq, κ; ηq “
˜

µp1,ηq ` 2ixΦpηq
1 , κ ¨ ∇Φ

pηq
1 y 2ixΦpηq

1 , κ ¨ ∇Φ
pηq
2 y

2ixΦpηq
2 , κ ¨ ∇Φ

pηq
1 y µp1,ηq ` 2ixΦpηq

2 , κ ¨ ∇Φ
pηq
2 y

¸

“
ˆ

µp1,ηq ` M0
11pηq ¨ κ M0

12pηq ¨ κ
M0

21pηq ¨ κ µp1,ηq ` M0
22pηq ¨ κ,

˙

,

(9.48)

where M0
jkpηq are smooth complex-valued functions of η. Note that

M0
11pηq, M0

22pηq are real and M0
21pηq “ M0

12pηq
and furthermore

M0pµp1,ηq, κ; ηq
ˇ

ˇ

ˇ

η“0
“

ˆ

µp1,ηq ´λ7 pκ1 ` iκ2q
´λ7 pκ1 ´ iκ2q µp1,ηq

˙

.(9.49)

Thanks to (9.48), the equation detM0pν, κ; ηq “ 0 is equivalent to

(9.50) ν2 `
� “

M0
11pηq ` M0

22pηq
‰

¨ κ
(

ν ` det
”

`

M0
jlpηq ¨ κ

˘

j,l“1,2

ı

“ 0.

The solutions have the form

(9.51) ν “ ´
“

M0
11pηq ` M0

22pηq
‰

2
¨ κ ˘

b

Qpηqpκq,

where Qpηqpκq is a quadratic form in κ with coefficients depending smoothly on η.
For η “ 0, (9.49) shows that the quadratic equation (9.50) takes the form:

ν2 ´ |λ7|2
`

κ2
1 ` κ2

2

˘

“ 0;

hence in (9.51) we have

(9.52)
“

M0
11pηq ` M0

11pηq
‰ˇ

ˇ

η“0
“ 0 and Qpηqpκq

ˇ

ˇ

ˇ

η“0
“ |λ7|2

`

κ2
1 ` κ2

2

˘

.

Therefore, for |η| ă η1 (small) (9.51) takes the form

(9.53) ν “ ηbpηq ¨ κ ˘
b

Qpηqpκq,
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where bpηq P R2 depends smoothly on η, Qpηqpκq is a quadratic form in κ (depending
smoothly on η) and

(9.54)
`

|λ7|2 ´ C|η|
˘

pκ2
1 ` κ2

2q ď Qpηqpκq ď
`

|λ7|2 ` C|η|
˘

pκ2
1 ` κ2

2q,
for |η| ď η1 and κ “ pκ1, κ2q P R2. Thus, the solutions of detM0pν, κ; ηq “ 0 are
given by (9.53) and (9.54).

We may now pass from solutions of detM0pν, κ; ηq“0 to solutions of detMpν, κ; ηq
“ 0 as in the proof of Proposition 4.2. Thus the L2

Kpηq`κ
-eigenvalues of Hpηq are

given by

µ˘pκq “ ηbpηq ¨ κ ˘
b

Qpηqpκq ¨ p 1 ` E˘pκ; ηq q ,
where E˘pκ; ηq ď C|κ| for |η| ď η1, |κ| ď κ̃. The proof of Theorem 9.1 is complete.

�

Remark 9.2 (Instability of the Dirac point and smooth dispersion surfaces). We
here note a class of perturbing potentials, W , such that although ´Δ ` V has
Dirac (conical) points, the operator ´Δ` V ` ηW has a locally smooth dispersion
surface near the vertices of Bh. Assume that V is a honeycomb lattice potential,
which is inversion-symmetric with respect to x “ 0, i.e. x0 “ 0 in Definition 2.1,
i.e. V p´xq “ V pxq. Let W P C8pRq, Λh-periodic, but without the requirement
that W pxq “ W p´xq for all x. Then, typically xΦ1,WΦ1y ‰ xΦ2,WΦ2y. In this
case,

A11pµp1q,K1, ηq ‰ A22pµp1q,K1, ηq;
see (9.30). For µpηq “ µp0q ` ηµ1,η to be an L2

Kpηq-eigenvalue, we found that it is
necessary and sufficient that

detM
´

µp1,ηq,K1, η
¯

“ 0,

or equivalently

(9.55)

ˆ

µp1,ηq ´ A11 ` A22

2

˙2

´
ˆ

A11 ´ A22

2

˙2

´ |B|2 “ 0.

Thus, our eigenvalue equation becomes

(9.56) µp1,ηq “ A11 ` A22

2
˘

d

ˆ

A11 ´ A22

2

˙2

` |B|2 .

When A11 ´ A22 ‰ 0, each sign in (9.56) gives rise to an equation to which we
may apply the implicit function theorem to obtain a smooth function pK1, ηq ÞÑ
µp1,ηqpK1, ηq. In particular, at η “ 0, equation (9.56) gives

ˆ

µ
p1,0q ´

ż

|Φ1pxq|2
W pxq ` W p´xq

2
dx

˙2

“

ˆ
ż

|Φ1pxq|2
W pxq ´ W p´xq

2
dx

˙2

`
ˇ

ˇ λ7

`

K
1,0
1 ` iK

1,0
2

˘

` xΦ1,WΦ2y
ˇ

ˇ

2
.

(9.57)

Therefore, for small η, the two signs in (9.56) give rise to two distinct solutions

µ
p1,ηq
˘ . Thus, for small nonzero η, the double eigenvalue disappears and the disper-

sion surface is smooth.
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Appendix A. Topological obstruction

In section 8 there arises the situation of an N ˆ N complex matrix A varying
within the space of rank N ´1 matrices. It was of interest to know whether one can
construct a nonzero nullvector which is an analytic function of the entries of A. In
this section we provide a 2 ˆ 2 matrix counterexample that exhibits a topological
obstruction.

Let M Ă Matp2q denote the space of 2ˆ2 complex matrices of rank 1. We prove
the following:

Proposition A.1. There is no continuous map φ : M Ñ C2zt0u such that φpAq P
Nullspace(A) for each A P M.

Proof. Let φ denote such a map. We proceed to derive a contradiction. For vectors
v “

`

v1
v2

˘

P C
2zt0u, define the 2 ˆ 2 complex rank 1 matrix:

(A.1) Apvq “ v̄ b Jv “ v̄ pJvqT ,

where J is skew-symmetric and nonsingular. Note: v ÞÑ Apvq is a continuous map
from C2zt0u to M. By skew-symmetry of J , Apvqv “ 0 and therefore

NullspacepApvqq “ C ˆ v for each v P C
2zt0u .

Hence, for each v P C2zt0u there is one and only one nonzero complex number λpvq
such that

(A.2) φpApvqq “ λpvqv .

Since φ is assumed continuous, the map v ÞÑ λpvq is continuous from C2zt0u to
Czt0u. Moreover, for all v P C

2zt0u and θ P R: Apeiθvq “ Apvq. Hence, by (A.2),

λ
`

eiθv
˘

¨ eiθv “ φ
`

Apeiθvq
˘

“ φ pApvqq “ λpvqv
and therefore λ

`

eiθv
˘

“ e´iθ λpvq .
(A.3)

Now for every θ P S1 “ R{2πZ and t P r0, 1s, let

vpθ; tq ” t eiθ ê1 ` p1 ´ tq ê2,where ê1 “
ˆ

1
0

˙

, ê2 “
ˆ

0
1

˙

.(A.4)

Note vpθ; tq P C2zt0u and introduce, for pθ; tq P S1 ˆ r0, 1s,
ζpθ; tq ” λpvpθ; tqq.(A.5)

We think of θ ÞÑ ζpθ; tq as a 1-parameter (t P r0, 1s) family of closed curves in
C1zt0u.

Taking t “ 0,we have ζpθ; 0q “ λ pê2q , for all θ P S1, and

taking t “ 1, we have ζpθ; 1q “ λ
`

eiθ ê1
˘

“ e´iθλ pê1q , for all θ P S1 ,

by (A.3). Thus by varying t between 0 and 1 we obtain a continuous deformation
of the unit circle to a point, remaining in Czt0u. This is impossible. �
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