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HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS

CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

1. INTRODUCTION AND OUTLINE

In this article we study the spectral properties of the Schrodinger operator
Hy = —A + V(x), x € R?, where the potential, V, is periodic and has honey-
comb structure symmetry. For general periodic potentials the spectrum of Hy,
considered as an operator on L?(R?), is the union of closed intervals of continu-
ous spectrum called the spectral bands. Associated with each spectral band are a
band dispersion function, pu(k), and Floquet-Bloch states, u(x;k) = p(x; k)e’k>,
where Hu(x;k) = p(k)u(x; k) and p(x;k) is periodic with the periodicity of V(x).
The quasi-momentum, k, varies over B, the first Brillouin zone [I0]. Therefore, the
time-dependent Schrédinger equation has solutions of the form e!*=#)1) p(x: k).
Furthermore, any finite energy solution of the initial value problem for the time-
dependent Schrédinger equation is a continuum weighted superposition, an integral
dk, over such states. Thus, the time-dynamics are strongly influenced by the char-
acter of u(k) on the spectral support of the initial data.

We investigate the properties of p(k) in the case where V =V}, is a honeycomb
lattice potential, i.e. Vj, is periodic with respect to a particular lattice, A, and has
honeycomb structure symmetry; see Definition [Z.Jl There has been intense interest
within the fundamental and applied physics communities in such structures; see,
for example, the survey articles [14] [I6]. Graphene, a single atomic layer of carbon
atoms, is a two-dimensional structure with carbon atoms located at the sites of a
honeycomb structure. Most remarkable is that the associated dispersion surfaces
are observed to have conical singularities at the vertices of B}, which in this case is a
regular hexagon. That is, locally about any such quasi-momentum vertex, k ~ K,
one has

(1.1) (k) = p(Ky) ~ £ Mg [k = KL,

for some complex constant Ay # 0. A consequence is that for wave-packet ini-
tial conditions with spectral components which are concentrated near these ver-
tices, the effective evolution equation governing the wave-packet envelope is the
two-dimensional Dirac wave equation, the equation of evolution for massless rel-
ativistic fermions [I4] [I]. Hence, these special vertex quasi-momenta associated
with the hexagonal lattice are often called Dirac points. In contrast, wave-packets
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1170 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

concentrated at spectral band edges, bordering a spectral gap where the disper-
sion relation is typically quadratic, behave as massive nonrelativistic particles; the
effective wave-packet envelope equation is the Schrodinger equation with inverse
effective mass related to the local curvature of the band dispersion relation at the
band edge. The presence of Dirac points has many physical implications with great
potential for technological applications [23]. Refractive index profiles with honey-
comb lattice symmetry and their applications are also considered in the context of
electromagnetics [7), 22]. Also, linear and nonlinear propagation of light in a two-
dimensional refractive index profile with honeycomb lattice symmetry, generated
via the interference pattern of plane waves incident on a photorefractive crystal,
have been investigated in [I7, B] . In such structures, wave-packets of light with
spectral components concentrated near Dirac points, evolve diffractively (rather
than dispersively) with increasing propagation distance into the crystal.

Previous mathematical analyses of such honeycomb lattice structures are based
upon extreme limit models:

(1) the tight-binding / infinite contrast limit (see, for example, [21] [14] T3] [20])
in which the potential is taken to be concentrated at lattice points or edges
of a graph; in this limit, the dispersion relation has an explicit analytical
expression, or

(2) the weak-potential limit, treated by formal perturbation theory in [7} [I]
and rigorously in [6].

The goal of the present paper is to provide a rigorous construction of conical
singularities (Dirac points) for essentially any potential with a honeycomb structure.
No assumptions on smallness or largeness of the potential are made. More precisely,
consider the Schrédinger operator

(1.2) H® = —A + £V}, (e real),

where V},(x) denotes a honeycomb lattice potential. These potentials are real-valued,
smooth, Aj,-periodic and, with respect to some origin of coordinates, inversion
symmetric (x — —x) and invariant under a 27w /3-rotation (R-invariance); see Def.
211 We also make a simple, explicit genericity assumption on Vj(z); see equation
2.

Our main results are:

(1) Theorem Bl which states that for fized honeycomb lattice potential Vi,
the dispersion surface of H®) has conical singularities at each vertex of the
hezxagonal Brillouin zone, except possibly for e in a countable and closed set,
C. We do not know whether exceptional nonzero € can occur, i.e. whether
the above countable closed set can be taken to be {0}. However our proof
excludes exceptional ¢ from (—eg,g)\{0}, for some gy > 0. Moreover,
for small € these conical singularities occur either as intersections between
the first and second band dispersion surfaces or between the second and
third dispersion surfaces. As e increases, there continue to be such conical
intersections of dispersion surfaces, but we do not control which dispersion
surfaces intersect.

(2) Theorem @], which states that the conical singularities of the dispersion
surface of HE) for e ¢ C, are robust in the following sense: Let W(x)
be real-valued, Aj-periodic and inversion-symmetric (even), but not nec-
essarily R-invariant. Then, for all sufficiently small real 1, the operator
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HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS 1171

H(n) = H®) +nW has a dispersion surface with conical-type singularities.
Furthermore, these conical singularities will typically not occur at the ver-
tices of the Brillouin zone, By; see also the numerical results in [3]. In
Remark we show instability of Dirac points to certain perturbations,
e.g., perturbations W which are Aj-periodic but not inversion-symmetric.
The dispersion surface is locally smooth in this case.

In a forthcoming paper we prove that Dirac points persist if the honey-
comb lattice is subjected to a small uniform strain.

The paper is structured as follows. In section 2l we briefly outline the spectral
theory of general periodic potentials. We then introduce Ay, the particular lattice
(Bravais lattice) used to generate a honeycomb structure or “honeycomb lattice”,
the union of two interpenetrating triangular lattices. Section 2] concludes with
implications for Fourier analysis in this setting. Section [3] contains a discussion
of the spectrum of the Laplacian on L2, the subspace of L? satisfying pseudo-
periodic boundary conditions with quasi-momentum k € By, the Brillouin zone.
We observe that degenerate eigenvalues of multiplicity three occur at the vertices
of By,. In section [ we state and prove Theorem 1] which reduces the construction
of conical singularities of the dispersion surface at the vertices of Bj, to establishing
the existence of two-dimensional R-invariant eigenspaces of H(€) for quasi-momenta
at the vertices of Bj. In section Bl we give a precise statement of our main result,
Theorem [5.1] on conical singularities of dispersion surfaces at the vertices of By,. In
section [6] we prove for all ¢ sufficiently small and nonzero, by a Lyapunov-Schmidt
reduction, that the degenerate, multiplicity three eigenvalue of the Laplacian splits
into a multiplicity two eigenvalue and a multiplicity one eigenvalue, with associated
R-invariant eigenspaces. In order to continue this result to € large we introduce,
in section [7 a globally-defined analytic function, £(u,e), whose zeros, counting
multiplicity, are the eigenvalues of H). Eigenvalues occur where an operator I +
C(u,e), C(u,e) compact, is singular. Since C(u, €) is not trace-class but is Hilbert-
Schmidt, we work with &(u,e) = deta(I + C(,€)), a renormalized determinant. In
section[8 €(u, ) and A7 (see (ILI))) are studied using techniques of complex function
theory to establish the existence of Dirac points for arbitrary real values of €, except
possibly for a countable closed subset of R. In section [ we prove Theorem 0.1
which gives conditions for the local persistence of the conical singularities. Remark
discusses perturbations which break the conical singularity and for which the
dispersion surface is smooth. Appendix [A] contains a counterexample, illustrating
the topological obstruction discussed in section [8.3l

Finally we remark that conical singularities have long been known to occur in
Maxwell equations with constant anisotropic dielectric tensor; see [4] and the ref-
erences cited therein.

1.1. Notation.

(1) ze C == 7z denotes the complex conjugate of z.
(2) A, adxdmatrix = A! is its transpose and A* is its conjugate-transpose.
(3) G = v/I+ 3P
(4) For q = (q1,42) € Z%, gk = q1k1 + goks .
(5) K™ =K =K +mk =K + m1k1 + m2k2.
K, k; and ks, are defined in section
(6) Vi = e‘ik'xvxeik'x = V4 + ik, Ax = Vi - Vi.
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1172 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

(7) X,yecna_<XaY>=§'y,X'Y=$1y1+"'+$nyn-
(8) <f7g>=gfg'
(9) B(2?) = {€ = {&hiers = Lo PGP <0}

2. PERIODIC POTENTIALS AND HONEYCOMB LATTICE POTENTIALS

We begin this section with a review of Floquet-Bloch theory of periodic potentials
[B], [12], [18]. We then turn to the definition of honeycomb structures and their
Fourier analysis.

2.1. Floquet-Bloch theory. Let {vi,va} be a linearly independent set in RZ.
Consider the lattice

(2.1) A={mivi +move :mi,me €Z } = Zvy ® Zvs.
The fundamental period cell is denoted by
(22) 92{01V1+92V220<9J‘<1, j=1,2}.

Denote by Lier’ A = L?*(R?/A), the space of L2 . functions which are periodic with

the respect to the lattice A, or equivalently functions in L? on the torus R?/A = T?:
feLl, nifandonly if f(x+v)= f(x), forxeR*, veA.

More generally, we consider functions satisfying a pseudo-periodic boundary con-

dition:

(2.3) fe Li,A if and only if f(x + v) = f(x)e™V, for x e R?, veA.

We shall suppress the dependence on the period-lattice, A, and write L2, if the

choice of lattice is clear from the context. For f and ¢ in Li As fg is locally
integrable and A-periodic and we define their inner product by

(2.4) Gog) = L 70 g(x) dx .

In a standard way, one can introduce the Sobolev spaces Hy ;.
The dual lattice, A*, is defined to be

(2.5) A* = {miky + moks : my,mo € Z} = Zk, @ Zks
where k; and ks are dual lattice vectors, satisfying the relations:
ki v; =2md;; .
If fe Lfmr’ A then f can be expanded in a Fourier series with Fourier coefficients
f: {fm }mezz:
(26) f(x) = X, fm €N = Y1 farymy elUTRRX,
mez? (my1,m2)ez?
CT) fm= g | T @ dy = g | ey ) dy,
1€ Jo 2 Jo

Let V(x) denote a real-valued potential which is periodic with respect to A, i.e.,
V(x+v)=V(x), forxeR*® veA.

Throughout this paper we shall also assume that the potential, V(x), under con-
sideration is C®. Thus,

(2.8) Ve C*(R?/A) .
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HONEYCOMB LATTICE POTENTIALS AND DIRAC POINTS 1173

We expect that this smoothness assumption can be relaxed considerably without
much extra work.
For each k € R? we consider the Floquet-Bloch eigenvalue problem

(2.9) Hy ¢(x;k) = p(k) o(x;k), xeR?,
(2.10) p(x +vik) = e*V g(x;k), veA,
where

(2.11) Hy = -A+V(x) .

An L-solution of ([Z3)-(ZI0) is called a Floquet-Bloch state.

Since the eigenvalue problem (2.39)-(2I0) is invariant under the change k — k+k,
where k € A*, the dual period lattice, the eigenvalues and eigenfunctions of 229)-
(2I0) can be regarded as A*-periodic functions of k, or functions on Tz = R /A*.
Therefore, it suffices to restrict our attention to k varying over any primitive cell.
It is standard to work with the first Brillouin zone, B, the closure of the set of
points k € R2, which are closer to the origin than to any other lattice point.

An alternative formulation is obtained as follows. For every k € B we set

(2.12) o(x; k) = e™*p(x; k).

Then p(x; k) satisfies the periodic elliptic boundary value problem:

(2.13) Hy (k)p(x = uk) p(x;k), xeR?,

(2.14) p(x + v; k) p(x;k), veA,

where

(2.15) Hy(k)=—(V+ik)>+V(x) = —Ap + V(x).

The eigenvalue problem (2.9)-(2I0), or equivalently (ZI3)-([214), has a discrete
spectrum:

(2.16) pi(k) < pa(k) < psk) < ...

with eigenpairs py(x; k), pp(k): b=1,2,3,.... The set {pp(x;k)}p>1 can be taken
to be a complete orthonormal set in Lper(R2 /).

The functions pu(k) are called band dispersion functions. Some general results
on their regularity appear in [2]. As k varies over B, up(k) sweeps out a closed
real interval. The spectrum of —A + V(x) in L?(R?) is the union of these closed
intervals:

(2.17) spec(Hy ) = U spec (Hy (k)).
keB

Moreover, the set (Jys; Ukep{®s(x:K)}, dp(x:k) = e *py(x; k), suitably normal-
ized, is complete in L?(R?):
FEE) — 0= | @-K). Dl d
b>1

where the sum converges in the L2 norm.
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1174 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

2.2. The period lattice, A;, , and its dual, A}. Consider Ay = Zv| @ Zv,, the
lattice generated by the basis vectors:

2 2
(2.18) vi=a , Vo= a , a>0.

1
2 T2
Note: Ap (“h” for honeycomb) is a triangular lattice, which arises naturally in
connection with honeycomb structures; see Figure [l

The dual lattice A} = Zk; @ Zk, is spanned by the dual basis vectors:

1 1
2 2 A7
(219) k1: q 3 k2:q y 4= —F=,
V3 _V3 av/'3
2 2
where
(220) kg Vo = 27‘((555/ s
a2
(2.21) [vi| = |vo| =a, vi-vy= 5
1
(2.22) ki = [ko| =g, ki ko= *§q2 .

The Brillouin zone, By, is a hexagon in R?; see Figure @l Denote by K and K’
the vertices of B, given by

1 1
(223) = § (kl - kg) 5 K, =-K-= g (kQ — kl) .

All six vertices of By, can be generated by an application of the rotation matrix, R,
which rotates a vector in R? clockwise by 27/3. R is given by

_1 B
2 2
(2.24) R =
_¥3 1
2 2
and the vertices of Bj, fall into two groups, generated by the action of R on K and
K’
K type-points: K, RK = K + ky, R’K = K — k;,
(2.25) ype-p 2 1

K’ type-points: K, RK' = K’ —k,, R’K' = K’ + k; .

Remark 2.1 (Symmetry Reduction). Let (¢(x;k),u(k)) denote a Floquet-Bloch
eigenpair for the eigenvalue problem (Z9)-(2I0) with quasi-momentum k. Since
V is real, (4(x;k) = o(x;k), u(k)) is a Floquet-Bloch eigenpair for the eigen-
value problem with quasi-momentum —k. Recall the relations (Z25) and the Aj-
periodicity of k — p(k) and k — ¢(x;k). It follows that the local character of
the dispersion surfaces in a neighborhood of any vertex of By, is determined by its

character about any other vertex of By,.
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In our computations using Fourier series, we shall frequently make use of the
following relations:

(226) Rki=ky, Rky=— (k1 + kg), R (k1 + kg) = —k;
(2.27) R(= 7¢ R( = 7, where
1 i 1 3

(2.28) C:\/—§< ::: ), 7_2623 =—§+’L\/7—7 7_3=1'

Moreover, R* maps the period lattice Ay to itself and, in particular,
(2.29) R*vV{ = —va, R*vy = v — va.
2.3. Honeycomb lattice potentials. For any function f, defined on R2, intro-
duce
(2.30) RfI(x) = f(R*x),

where R is the 2 x 2 rotation matrix displayed in (224)).
Definition 2.1 (Honeycomb lattice potentials). Let V' be real-valued and V €
C®(R?). V is a honeycomb lattice potential if there exists xo € R? such that
V(x) = V(x — x¢) has the following properties:
(1) ‘:/' is Ap-periodic, i.e. V(x+v) = V(X)Nfor all x € R? and v € Ay.
(2) V is even or inversion-symmetric, i.e. V(—x) = V(x).
(3) V is R-invariant, i.e.
RIV]I(x) = V(R*x) = V(x),
where R* is the counterclockwise rotation matrix by 27/3, i.e. R* = R™!,
where R is given by ([2.24]).

Thus, a honeycomb lattice potential is smooth, Ay-periodic and, with respect to
some origin of coordinates, both inversion symmetric and R-invariant.

Remark 2.2. As the spectral properties are independent of translation of the po-
tential we shall assume in the proofs, without any loss of generality, that xy = 0.

Remark 2.3. A consequence of a honeycomb lattice potential being real-valued
and even is that if (¢(x;k),u) is an eigenpair with quasi-momentum k of the
Floquet-Bloch eigenvalue problem, then (QS(—X; k),u) is also an eigenpair with

quasi-momentum k.

Remark 2.4. We present two constructions of honeycomb lattice potentials.

Example 1: “Atomic” honeycomb lattice potentials: Start with the two points
1

2.31 A=(0,0) and B=a|—,0]) ,

e o0 w21

which lie within the unit period cell of Ay; see (2I8). Define the
triangular lattices of A-type and B-type points:

(232) Ap = A + Ay, and Ag = B + Ay.

We define the honeycomb structure, H, to be the union of these two
triangular lattices:

(2.33) H = Axr U Ap;
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1176 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

see Figure[ll Let Vj be a smooth, radial and rapidly decreasing func-
tion, which we think of as an “atomic potential”. Then,

V(x)= > Vox—a)

acH

is a potential associated with “atoms” at each site of the honeycomb
structure H. Moreover, V(x) is a honeycomb lattice potential in the
sense of Definition 2.1l with xy = —B.

Note that a potential of the form

V(x) = Z Vo(x —a),

acAy,

a ‘“triangular lattice potential”, also satisfies the properties listed in
Definition 211

Example 2: Optical honeycomb lattice potentials: The electric field envelope
of a nearly monochromatic beam of light propagating through a di-
electric medium with two-dimensional refractive index profile satisfies
a linear Schrédinger equation 0.9 = —A, ¥ + V(z,y)y = 0. Here, 2
denotes the direction of propagation of the beam and (z,y) the trans-
verse directions. Honeycomb lattice potentials have been generated
by taking advantage of nonlinear optical phenomena. It was demon-
strated in [I7] that a honeycomb lattice potential (a honeycomb “pho-
tonic lattice”), V(x,y), can be generated through an optical induction
technique based on the interference of three plane wave beams of light
within a photorefractive crystal, exhibiting the defocusing (nonlinear)
optical Kerr effect. The refractive-index variations are governed by a
potential of the approximate form:

(2.34) V(x) ~ Vp (cos(ky - x) + cos(ks - x) + cos ((k1 + ko) - x))

It is straightforward to check, in view of (226, that a potential of
this type is a honeycomb lattice potential in the sense of Definition 2.1]
with xg = 0. In fact, in Proposition [2.3] below, we assert that with
respect to some origin of coordinates, any honeycomb lattice potential
can be expressed as a Fourier series of terms of this type.

The following proposition plays a key role. It states that at distinguished points
in k-space, namely the K and K’ type points, Hy with quasi-momentum dependent
boundary conditions (ZI0) or equivalently, Hy (k), with A, periodic boundary
conditions, has an extra rotational invariance property.

Proposition 2.2. Assume V is a honeycomb lattice potential, as in Definition
21l Assume K, is a point of K or K type; see 225). Then, Hy and R map a
dense subspace of L%(* to itself. Furthermore, restricted to this dense subspace of
L%{*, the commutator [H,R] = HyR — RHy wvanishes. In particular, if p(x;k) is
a solution of the Floquet-Bloch eigenvalue problem (Z9)-ZI0) with k = K., then
Rlo(-, k)](x) is also a solution of [Z9N)-EZI0) with k = K.,.

Proof. Take as a dense subspace Cg_, the space of C* functions satisfying f(x +
v) = e®Vf(x) for all x € R? and v € A. Clearly, H maps C¥, to itself.
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15F

aF

2 1 1 1 1 1 1 1 J

-2 -1.5 -1 -0.5 0 0.5 1 15 2

FiGURE 1. Part of the honeycomb structure, H. H is the union
of two sublattices A = A + A, (denoted by o) and Ap = B+ Ay,
(denoted by o). The lattice vectors {vi,va} generate Aj. See
Remark 241

Define ¢r(x) = R[o(-, Ki)](x) = ¢(R*x,K,). Without loss of generality, assume
K, =K. By 229, if v € Ap, then R*v € A;,. We have
br(x+v) = ¢(R*x + R*v,K) = KB Vy(R*x K)
_ eiRva ¢(R*X,K) _ ei(K+k2)-v Qb(R*X,K)
= Y YRR K) = €Y Gp(x).
Thus, we have that R maps Cg to itself.
Next note that by invariance of the Laplacian under rotations, —Ayxdgr(x) =
— Ayd(y, Ki)ly_ gy - Furthermore, by R-invariance of V'(x), note that V' (x)¢r(x)
= V(R*x)p(R*x,K,) = V(y)¢(y,Ki)|,_gsy - Therefore, [H,R| vanishes on
C¥.- In particular, we have that
HV¢(X7K*) = u¢(xa K*) = HV¢R(X) = #¢R(X) .
This completes the proof of the proposition. |
We conclude this section with a discussion of the Fourier representation of honey-

comb lattice potentials in the sense of Definition 2711 Let V(x) be such a potential
with Fourier series:

V(X) = Z Vmeimk»x — Z Vm17m2ei(m1k1+m2k2)-x.

meZ?2 (m1,m2)€Z?
Since V(x) = R[V](x), we have
V(R*X) _ 2 ‘/ml m2ei(mle1+m2Rk2)~x _ Z le s ei((fmz)k1+(m1fm2)k2).x'

(ml,mg) (m11m2)
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15F

051

2 1 1 1 1 1 1 1 J

-2 -1.5 -1 -0.5 0 0.5 1 15 2

FIGURE 2. Brillouin zone, By, and dual basis {ki,ks}. K and K’
are labeled. Other vertices of B, obtained via an application of R,
rotation by 27/3; see equation ([220]).

Therefore, Vi ms = Vomgmi—me- Similarly, V(x) = R2[V](x) implies that
Vinyms = Ving—my.—m,- Introduce the mapping R : Z? — Z? acting on the in-
dices of the Fourier coefficients of V:

(2.35) f{(ml, mz) = (—ma, my —mz) and therefore
. RQ(ml,mg) = (mg —my,—my), and R3(m1,m2) = (my1,ma) .

Then we have

(2.36) Vi = Vim = Vi

2m*

Note that RO = 0 and that 0 is the unique element of the kernel of R. Furthermore,
any m # 0 lies on an R-orbit of length exactly three. Indeed,

m=Rm < (my,mz2) = (—ma2,my —m2) == my3 =my =0 and
m = RQm Ad (ml,mg) = (*ml +m2,7m1) — M1 =My = 0.
Suppose m and n are nonzero. We say that m ~ n if m and n lie on the same
3-cycle. The relation ~ is an equivalence relation, which partitions Z2?\{0} into

equivalence classes, (ZQ\{O}) / ~. Let S denote a set consisting of exactly one rep-
resentative from each equivalence class. We now have the following characterization
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of Fourier series of honeycomb lattice potentials:

Proposition 2.3. Let V(x) denote a honeycomb lattice potential. Then,
(2.37)

V(x) = V(0) + Z Vin [cos(mk~x) + cos((Rm)k -x) + cos((7€2m)k-x)] ,

meS

where Vi are real and R is defined in (Z35).
Proof of Proposition 23l From (2.306]) we have

239 V()= V(0) 4 Y Vin (K5 4 Bk g i)
meS
The relation V(x) = (V(x) + V(—x))/2 and ([238) imply
(2.39)
V(x) =V(0) + Z Vin (cos(mk -X) + cos ((]:Zm)k . x) + cos <(R2m)k . x)) )
meS

Moreover, since V is real and even, Vi, is real for m € Z2. This completes the
proof. O

2.4. Fourier analysis in L . We characterize the Fourier series of functions
o€ L%{*, i.e. functions ¢(x; K,), satisfying the quasi-periodic boundary condition
(2.40) p(x+v) = BV p(x).
The discussion is analogous to that preceding Proposition

If (Z40) holds, then ¢(x) = e+ p(x), where p(x) is A-periodic. It follows that
¢ has a Fourier representation:
(2.41) p(x) = e Z c(my,my) ellmikatmake)x

(ml,m2)€ZZ
which we rewrite as
Ox) = D, clmimy) Tk mak)x

(m1 ,m2)€Z2

(2.42)

IK ™2 iK™ x
c(my, mg) €+ = Z c(m) e
(ml,mg)eZ2 meZ?2

where K* = K, + m1k; + moks.

Usually, we denote by cy(m) or c(m; ¢) the Fourier coefficients, as in ([2.42), of
¢e Lk,

Note that the transformation R, defined in ([230), is unitary on L? and so its
eigenvalues lie on the unit circle in C. Furthermore, if Rp = A¢ and ¢ # 0, then
since R? = Id, $ = R3¢ = A\3¢, we have \> = 1. Therefore A € {1,7,7}, where
T = exp(27i/3).

We are interested in the general Fourier expansion of functions in each of the
eigenspaces of R:

(2.43) L., ={felk, :Rf=[},
(2.44) L, ,={felk :Rf=7f},
(2.45) Lix.-={felik, :Rf=7f}.
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Since R is unitary these subspaces are pairwise orthogonal.
Fix, without loss of generality, K. = K. We first consider the action of R on
general ¢ € L. Applying R to ¢, given by ([242), we obtain:

RIBIx) = D) colmy,my) X7
(ml,m2)622

= Z c¢(m1, ’ITLQ) eiRKm-x

(ml ,m2)€Z2

_ Z c¢(m1,m2) ei(K+(—m2)k1+(m1—m2+1)k2)~x’

(m1,mo)EZ?

since

(2.46) RK™ = RK™"™2 = K + (—mg)k; + (my — my + 1)ky = K-m2m—mztl
Thus,

(2.47) Cre(—ma,m1 —mg + 1) = cy(m1,ma), or equivalently

cry(mi, ma) = cy(ma —my —1,—my) .
Similarly, by a second application of R, and using the relation
(2.48) R2ZK™Mymz — sz—ml—l,—m1,

we have

(2.49) cr2g(me —my —1,—mq) = cy(m1,ms), or equivalently
' cR2¢(m1,m2) = c¢(—m2,m1 —ma + 1)

Finally, since R? = I, crag(mi, ma) = cg(mi, mo).

R acting in L% induces a decomposition of Z? into orbits of length three:
(250) (ml,mQ) R = (77’)@2, ml—m2+1) R = (mg—mlfl, 777’),1) R = (ml, mg).
For convenience we shall abuse notation and write

Rm = R(my, ma) = (—mg,m; — mg + 1),
(251) RQm = RZ(ml,mg) = (m2 —mqi — 1, 7m1),
R3m = 1d (my,mse) = (my,ms).
Using the notation (ZX5I)), relations (247), (Z49) and ([2F5I) can be expressed
as:
crp(m) = cs(R?m) = cy(mg —my — 1, —my),

(252) CR2¢(m) _ C¢(Rm) = c¢(—m2,m1 — Mg + 1)

Furthermore, by (246) and ([2:43),
(2.53) RK™ = K®R™ and RZK™ = KR'™

Each point in Z? lies on an orbit of R of precisely length 3, a 3-cycle. To see this,
note that by ([2.51), R*m = m for all m € Z?. So we need only check that there are
no solutions to either Rm = m or to R?m = m. First, suppose Rm = m. Then,
R?m = m as well. So, on the one hand, the centroids of m, Rm and R?m are all
equal to m € Z2. On the other hand, by [Z51]), their centroid is (—1/3,1/3) ¢ Z2, a
contradiction. Therefore, there are no Z? solutions of Rm = m. Now if R?m = m,

then applying R to this relation yields m = R3m = Rm, and we’re back to the
previous case.
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We shall say that two points in Z2, m and n, are equivalent, m ~ n, if they lie
on the same 3-cycle of R. We identify all equivalent points by introducing the set
of equivalence classes, Z2/ ~ .

Definition 2.4. We denote by S a set consisting of exactly one representative of
each equivalence class in Z2/ ~ . For example, {(0,0), (0,1),(—1,0)} € Z?/ ~, from
which we choose (0,1) as its representative in S.

Using the relations (251I)), we can express the Fourier series of an arbitrary
¢ € L} as a sum over 3-cycles of R:

¢(X) = Z C¢(m1,m2) ei(K+m1k1+m2k2)-x

(ml,m2)622
= >0 (ealm) ¢F7F 4o (Rm)eHRE™ 4 ¢y (R2m)e! K> )
meS
where R'm, j = 1,2, is given in (Z51)).
We now turn to the Fourier representation of elements of the subspaces L%{,p
L%’T and L%{j.

Proposition 2.5. Let ¢ € L. Then

(255)  Ré = ¢ o colm) = cs(Rm) = cy(R?m),

(2.56) R = 7¢ = cg(R’m) = 1cy(m) and cg(Rm) = 7cy(m),
(2.57) Ro = T ¢ & c4(R*m) = 7ecg(m) and cg(Rm) = 7cy(m).
Moreover,

(2.58) R’ = T ¢ < crey(m) = cy(Rm) = Tcy(m),

where Rm and R*m are defined in ([2.51).

Proof. Assume R¢ = o¢. Then, cry(m) = ocg(m). By Z52), cre(m) =
¢s(R*m) and therefore

(2.59) cs(R*m) = o cy(m).

Furthermore, R?¢ = 02¢ and therefore cr2,(m) = 02cy(m). By [52), cr24(m) =
c¢(Rm) and therefore

(2.60) cs(Rm) = o2 cy(m).

We next apply relations ([259) and ([260) to the cases: ¢ = 1,7,7. Let 0 = 7.
Then, R¢ = 7¢ implies cy(R?*m) = 7 cy(m), by [259). Also, by [260), we have
cy(Rm) = 72 cy(m) = 7 cy(m). This proves ([Z56). The cases ¢ = 1,7 are
similar. ]

Proposition can now be used to find a representation of the eigenspaces of
R. We state the result for an arbitrary point, K,, of K or K’ type.

Proposition 2.6. (1) g€ L%(*)T < there exists {c(m)}mes € 12(S) such that
(2.61) d(x) = 2 c(m) (eiKT'x + T RKTx 4 piRPKx )
meS
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(2) g€ L%Qf < there exists {c(m)}mes € 12(S) such that

(2.62) 6(x) = Y clm) (FFX g re BRI paRET)

meS

(3) If o1 € L%Q!T is given by

(2.63)  ¢i1(x,K,) = Z c(m) (eiKT'x + 7 ESx 4o eiRQKT'x>,

meS

then ¢2(x,K.) = ¢1(—x,K.) € Lk, - and

,T

(2.64) P2 (x, K,) = Z M (eiKln'x + 7 fBRIx 42 emzKT'x) .

meS

(4) ¢ € L%{*,l < there exists {c(m)}mes € 12(S) such that

(2.65) 6(x) = Y clm) (HIx g T R,

meS

We summarize the preceding in a result which facilitates the study of Hy on
L% in terms of the action of R on invariant subspaces of Hy .

Proposition 2.7. Let K, denote a point of K or K’ type, R denote the 2mw/3
clockwise rotation matriz (see 224)) and R[f](x) = f(R*x). Then R, acting on
L%{* has eigenvalues 1, T and T = 72 inducing a corresponding orthogonal sum
decomposition of L%{* into eigenspaces:

(2.66) Lk, =Lk, 1®Lk, Lk, - -
The elements of each summand are represented as in Proposition 2.0l

Remark 2.5. Since, by Proposition 2.2 Hy and R commute on L%Q, the spec-
tral theory of Hy in L%{* can be reduced to its independent study in each of the
eigenspaces in the orthogonal sum (2.66]).

3. SPECTRAL PROPERTIES OF H(®) IN L3 -DEGENERACY AT K AND K’ POINTS

Our starting point for the study of H®) on L} is the study of H® = —A.
Consider the eigenvalue problem

HOp0) = /O (k)¢(0), P € L.
Equivalently ¢(® (x;k) = e *p()(x; k), where p(©(-; k) € L*(R?/A):
(3.1) HOKp® = —(V +ik)*p@ = uO)p,
(3:2) POx+vik) =pV(x;k), veA,.
The eigenvalue problem BI), (322 has solutions of the form:

Pl s (3 K) = ettt
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with associated eigenvalues
(3.3) p® (k) = |k +mik; +moko|?, keB.

Proposition 3.1. Let k = K, denote any vertex of the hexagon By, (points of K
or K’ type); see (2.28). Then,
(1) u© = |K,|? is an eigenvalue of Hy of multiplicity three with corresponding
three-dimensional eigenspace

(34) span { eiK*-x eiRK*-x

?

eiRQK*-x } )

(2) Restricted to each of the R-invariant subspaces of
Lk, = Ik.a ® L., ® Li.:
H©O) has an eigenvalue p(®) = |K.|? of multiplicity one with eigenspaces:
span {eiK*-x 4 iRK x| eiRzK*»x} - L%g,p
span {e+x 4 FelftKax TeiRzK*'x} c L%{MT and
span {e®rx 4 peiftkax 4 FelR KL x } < L%Qf'
(3) 9 s the lowest eigenvalue of H®) in Ly .
Proof. Without loss of generality, let K, = K. Since R is orthogonal, |K| = |RK| =
|R2K|. Therefore, —A¥ = |K|?¥ for ¥ = KX BKx 44 e K% Tt follows
that 4(©) = |K|? is an eigenvalue of multiplicity at least three. To show that the
multiplicity is exactly three, we seek all m = (my,mz) for which |[K™?> = |K|?.
Using K™ = K + m1k; + moks, we obtain
m%—km%—i—ml —mg —mimsg =0,
which can be zero only if m = (0,0), (0,1) or (—1,0). In the first instance, K9 =
K. If m = (0,1), then KOV = K + k; = RK. Finally, if m = (—1,0), then
KL = K —k; = (K+ky) — (k; +ky) = RK + Rky = R(K +ky) = R?K. This
proves conclusion 1. Proposition above, which characterizes the Fourier series

of functions in L%{)U, o =1, 7,7 implies conclusion 2. Conclusion 3 holds because
m2 +m3 — mimg +mq —may > 1 for (my,ma) € Z? other than (0,0), (0,1) and

(—1,0). O
Recall that for each k € By, the L} eigenvalues of H(®) are ordered (ZI6):
(3.5) i () < ) (k) < ) (k) < (k) < -
For k = K we have
0 0 0 0
(3.6) KP? = p{”(K) = n(K) = ' (K) < pV(K) <.
We shall see in section [ that for small €, the spectrum L% perturbs to
either
(3.7) i (K) = 1S (K) < p (K) < P (K) <+
or
3.8 (5)K (E)K: (E)K (E)K < ...
(3.8) i (K) < pp (K) =y (K) < g (K) <o

In either case, the multiplicity three eigenvalue splits into a multiplicity two eigen-
value and a simple eigenvalue. The connection between the double eigenvalue and
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conical singularities of the dispersion surface is explained in the next section; see
Theorem [Tl We shall see from Theorem [5.1], or rather its proof (in section[@) that
for all small e, conical singularities occur at all vertices K, of Bj, and that these
occur at the intersection point of the first and second band dispersion surfaces in
the case of (37), and at the intersection of the second and third bands in the case
of (B.8). As ¢ increases, we continue to have such conical intersections of dispersion
surfaces, but we do not control which dispersion surfaces intersect.

4. MULTIPLICITY TWO L% EIGENVALUES OF H(¥) AND CONICAL SINGULARITIES

Let K, be a point of K or K’ type. In this section we show that if Hy acting in
L%(* has a dimension two eigenspace E; @ Ez, where E. and E; are dimension one
subspaces of L%Q!T and L%Qj, respectively, then the dispersion surface is conical in
a neighborhood of K,. A related analysis is carried out in [6], where a more general
class of spectral problems is considered and weaker conclusions obtained; e.g., see
the notion of conical point in [6].

Recall that we assume V € C®(R?/A;). Below we shall, for notational conve-
nience, suppress the subscript V' and write simply H for Hy = —A + V.

Theorem 4.1. Let H = —A 4+ V, where V(x) is a honeycomb lattice potential in
the sense of Definition 21l Let K, denote any vertex of the Brillouin zone, By,.
Assume further that

(hl.7) H has an L%*’T-eigenvalue, o = pu(Ky), of multiplicity one, with corre-
sponding eigenvector ®1(x) = ®; (x;K,), normalized to have L*(Q) norm
equal to one.

(h1.7) H has an L%(*f—eigem;alue, o = pu(Ky), of multiplicity one, with corre-
sponding eigenvector ®o(x) = ®1(—x).

(h2) pp = p(K,) is not an eigenvalue of H on L%hl.
(h3) The following nondegeneracy condition holds:

(4.1) g = 3 x area(Q) x Z c(m; ®;)? < 1 > KPP # 0,

meS

where {c¢(m; ®1)}mes are Fourier coefficients of ®1, as defined in Proposi-
tion 2.6

Then H acting on L? has a dispersion surface which, in a neighborhood of k = K,,
is conical. That is, for k—K, near 0, there are two distinct branches of eigenvalues
of the Floquet-Bloch eigenvalue problem with quasi-momentum, k:

(4.2) (k) — u(K.)
(4.3) (k) — u(K.)

where E4 (k) = O(|&|) as |k| = 0 and Ex are Lipschitz continuous functions in a
neighborhood of 0.

+1A] [k - K| (1+ B (k-K,)),
— N k—K,| (1+E_(k—-K,)),

Remark 4.1. (1) Elliptic regularity implies that the eigenfunctions ®;, j = 1,2
are in H?(R?). Therefore, Y, s(14|m|?)?|c(m)[> < c0. We conclude that
the sum defining Ay converges.
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(2) In section [6] we study the case of “weak” or small potentials, i.e. V = eV},

with ¢ small. For all ¢ such that 0 < |¢| < €%, where €" is a sufficiently
small positive number, we will:
(i) verify the double eigenvalue hypothesis (h1) of Theorem 1] by showing
the persistence of a double eigenvalue due to intersection of the bands
one and two in case (3.7) or bands two and three in case [B.8), (ii) verify
hypothesis (h2) of Theorem 1] by showing, via explicit calculation, that
the L%(hl—eigenvalue of H differs from the double eigenvalue, and (iii) verify
(h3) by showing;: |)\§\2 = 16 area(Q)? 72/a® + O(¢); see ([6.30). Theorem
[£T then implies the existence of a nondegenerate cone at each vertex of By,
for all sufficiently small nonzero ¢.

(3) The condition: Ay # 0 in (@) is independent of the normalization of the
eigenfunction, ®;.

Proof of Theorem 1l By Symmetry Remark 2.1l we may without loss of generality
consider the specific By, vertex: K, = K. The local character of all others is
identical. O

We consider a perturbation of K, K + , with || small. We express ® € L2
as ®(x;k) = e *e)(x; k), where 9(x; k) is A-periodic. The eigenvalue problem for
k = K + « takes the form:

(4.4) (— (Vi +i (K +5)? + V(x)) VK + k) = K+ &) oK + k)
(45) Y+v;K+k) =¢(xK+k), forallve A.

Let po = pu® = u(K) be the double eigenvalue and let 1/(®) be in the corre-
sponding two-dimensional eigenspace. Express p(K + &) and ¢ (x; K + &) as:

(4.6) pK +r) = p + D K+ ) = 9O 4 g0,

where ¥(1) is to be chosen orthogonal to the nullspace of H(K) — w71, and pM
are corrections to be determined. Substituting ([@6) into the eigenvalue problem

(EA)-E3) we obtain:
(H(K) —pol )y

= (2 (V+iK) o+ D) g
(4.7)

+ (2m (V+iK)— k- K+ u“)) $(©
= F(l)a 1/J(1) € le)crA .

Since ¢(®) is in the L2, ,-nullspace of H(K) — uol, we write it as

per,
(4.8) P O(x) = agi(x) + Bez(x), where
(4.9) pi(x) = e E*Pi(x), j=1,2.

Here ¢ and ¢- are normalized eigenstates with Fourier expansions as in part 3 of
Proposition and «, 8 are constants to be determined.

We now turn to the construction of (). Introduce the orthogonal projections:
Q)|, onto the two-dimensional kernel of H(K) — uol, and Q1 = I — Q). Note that

(4.10) QY = Qv =0, and QM =M |
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We next seek a solution to ([£1) by solving the following system for M and

u:
(4.11) (H(K) — pol) v = Q1 FW(a, B, r, uM, M),
(4.12) 0 = QFW(a, B, pu M, ).

Equation [@I2) is a system of two equations obtained by setting the projections
of F() onto ¢; and ¢3 equal to zero. Our strategy is to solve (@II) for M) as
a continuous functional of a, 3, k, u(!) with appropriate estimates, then substitute
the result into (£I2) to obtain a closed bifurcation equation. This is a linear ho-
mogeneous system of the form M(u(V), k)(a, ) = 0. The function & — pM (k) is
then determined by the condition that det M(u(", k) = 0.

Written out in detail, the system ([LI1)-([I12) becomes:

(H(K) = pol) 6D = Qu 20k (V+iK) — o+ pV) oV

(4.13)
+ Q1 (2ik- (V4 iK))p©),

Q) (2ik (V+iK) = -k + u@) y©
+Q) (2ik- (V+iK) )ypM = 0.

Introduce the resolvent operator:

R (po) = (HK) —po )™

defined as a bounded map from Q L? to Q1 H?(R?/A},). Equation [@I3) for ™)
can be rewritten as:

(I + Ri(po)QL ( —2ik - (V+iK)+ k- — pb )) p®
= Rx(po) Q1 (2ir- (V +iK))y©.

In several equations above we have used ({10).
By elliptic regularity, the mapping

f—Af = Ri(uo)Q1 (—2i/@-(V+iK)+,@.,€ _ u“))f

(4.14)

(4.15)

is a bounded operator on H*(R?/Aj), for any s. Furthermore, for |x| + [u(V)|
sufficiently small, the operator norm of A is less than one, (I + A)~! exists, and
hence ([EI5) is uniquely solvable in Q) H2(R?/Ay):

P = (I + Rk (uo)QL < —2ik - (V+iK)+r-k — pb ))71
o Rx(mo) QL (2ik- (V +iK)) 9.
Since 1) is given by @), ¥»*) is clearly linear in o and § and we write:
(4.16) e = Dk, uM](x) a + P[r, uM](x) 8,

where (k, u™") — ¢ [k, u(M] is a smooth mapping from a neighborhood of (0,0) e
R? x C into H2(R%/A},) satisfying the bound:

|2 < C(lal + 1)), j=1,2.
Note that Q|‘c(j) =0,j=1,2.
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We next substitute ([£.I6]) into ([@I4]) to obtain a system of two homogeneous
linear equations for a and . Using the relations:

(4.17)
Vko; = e BXVeKXg; = eKXVD;, (¢4, ¢5) = (Bi, ;) = bij, 1,5 = 1,2,
CO[k, tM](x) = B> [k, uM](x), <<I>i,C’(j)> =0, i,j=1,2

we have:
@
(4.18) M, ) 0,
g
where M(p(M), k) is the 2 x 2 matrix given by:
p) — k- k4 (D1, 2ik - VI (D1, 2k - VDo)
MM, k) =
{ Bg,2ik - VP1 ) pM — k- k+( B2, 2ik - VDo )

(®1,2ik - VOO (1, pM) S (@1, 2ik - VC@ (5, u(D) >
+ .
{ Ba,2ik - VOO (g, pM) Y Bg,2ik - VCO (g, pM) )

Thus, u(K 4 &) = p(® + uM is an eigenvalue for the spectral problem (@4)-(@5)
if and only if (") solves:

(4.19) det M (™M, k) = 0.

Equation ({I9) is an equation for pM | which characterizes the splitting of the
double eigenvalue at x # 0. We now proceed to show that if the nondegeneracy
condition (@I holds, then the solution set of ([@I9) is locally conic.

We anticipate that a solution u() = O(|x|) and hence CU) = O(|x|). This
motivates expanding M as:

(4.20)
M(,u'(l)a H) = MO(;“'(I); H) + Ml(ﬂ(l)v "i)’ where

(4.21)

1) i . ; .
(1) _ 12 + 21 <¢17I€ V(I)1> 2Z<(I)1,I£ V‘I)2>
Mo(p™, k) ( 2 (Do, k- VD) D 420Dy, k- V) and

(4.22)
Mg (@ 5) = O (Il D] + []2).
Note that
(4.23) Oy(x) = B1(—x) = (1,5 VE1) = (B, k- Vdy).

Further, it is easily seen that this expression is purely imaginary:

(4.24) (B1, k- VP = i S (D1, k- V).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1188 CHARLES L. FEFFERMAN AND MICHAEL I. WEINSTEIN

Now we claim that, in a neighborhood of k = 0, the solutions of (£I9]) are
well-approximated by those of the truncated equation:

det v—2 <(I)1, K- V(I)1> 21 <(I)1, K- V(I)2>
2i<<1>1,/<;~V<I>2> V—2%<(I>1,K)'VCD1>

= (v=2S(®, k- VB ) — 4 [ (D1,6-VE)|* = 0.

(4.25) det Mo (v, k) =

Remark 4.2. We have not used R-symmetry and special structure of the Fourier
modes at vertices, K., in obtaining ([@I9) and its approximation (£25). We have
only used that there is a two-dimensional eigenspace spanned by ®1(x), ®(x) =
(I)l(—X).

We next use that K is a vertex of Bj to simplify and solve [@25) (Proposi-
tion [4.J)) and then show that the solutions of (£I9) are small corrections to these

(Proposition E.2]).
Proposition 4.1.
(4.26) (g, k- VOu)= 0, a=1,2.
(4.27)
2i (P1,k- Vo) = 2i (Do, k- VD)

— —3 area(() ( 3 ¢(m)? (1)Km >>< (K1 + ikia)

meS
= —)\_ﬁ x (k1 + ik2) ; see (&) .
We prove Proposition [£.1] just below. A consequence is that Mg simplifies to

L v —Xt X (K1 +iK2)
(4.28) Mo(vik) = (_)\ﬁ x (k1 —ik2) v >
and therefore
det Mo(v;r) = 12 — |\ |6]?
(4.29) i
= 1?2 — [3 x area(Q) x Z ¢(m)? ( 1 ) K™ x|k
meS

Therefore, the truncation of M to My yields det Mg (v, k) = 0 and a locally conical
dispersion relation, provided Ay # 0.

Proof of Proposition Il Recall that ®, € Lg . and ®y € Li . are given by
(261) and (262)), respectively. We first consider the diagonal elements and claim
(Pq,K - VP;) = 0. To see this, first apply k- V to @y, given by (Z63]), and obtain

/<;-V<I>1

. M _ . m S pP2pem
=ik Z c(m) (K*melK* * 1 7 RKPHKSx o 7 RIKm TS x) .
meS
—iK"x iK™

Therefore, since SQ e *dx = 0 if m # n we have

(4.30)
K (01, V®;) =area() ) |e(m)]* k- (K + |7]> RK® + |7]> RPKP ) = 0.

meS
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The latter equality holds since |7|? = 1, I — R is invertible (spec(R) = {7,7}) and
I+R+R?>=(I-R*)(I-R)"' = (I-I)(I-R)™! = 0. Similarly, (®3,x - V®3) = 0.
Thus, we have shown that the diagonal elements vanish, ([E26]).

One can check directly that the off-diagonal elements satisfy Mg 12 = Mo 21:

(431) 2i<<I>1,H-V<I>2> = 2@'(‘1)2,/@-V<I>1> .
Furthermore, using (Z61), (2.62) we have
21 <(I>17 K- VCI)2>

= —2 x area(Q) Z c(m)2 k- (K™ + 7% RKP + 72 RPKD™)
(4.32) mes

— —2xarea(®) Y, c(m)? k- (I +7 R+ (1 B)’ ) K.

meS

Note, by ([228), that 7R has an eigenvalue T with corresponding eigenvector ¢ =
2-1/2(1,4) and an eigenvalue 1 with corresponding eigenvector ¢ = 2-Y2(1, —i)?.
We express K™ as

K™ = ((K™)(+{(K™)(
where for a,b € C? we defined (a,b) = a-b. Clearly,

(I + TR+(TR)2)<§ — 3Cand (1 +TR+(TR)2)<:(1+f+<f)2) ¢=0.
Therefore,
(4.33) H-(I +TR+(TR)2>Km — 3 K™ k- = 3 (C-K™) x (k- ().

Substituting ([@33]) into [@32]) we obtain:
21 <q)1, K - V<I>2>

= —6 x area(Q) Z c(m)? (¢-Km) x (“' C)

mes
R Ll (LR (R e
= —3 x area(Q) Z c¢(m)? ( 1 ) K™ x (K +ikg),
mes

which by the definition of Ay in (@) implies (@27). Thus, det Mo(v,x) = v* —
|\¢|%|%|?, which proves [29). Furthermore, the solutions of det Mg (v, ) = 0 define
a nontrivial conical surface provided:

(4.35) Ap = 3 x area(Q) x Z ¢(m)? < 1 ) K™ # 0.
meS !
The proof of Proposition [£1] is complete. |

To complete the proof of Theorem [£.1] we next show that the local character of
solutions to ([4I9) is, for || small, essentially that derived in Proposition 1] for
the solutions of ([@25]).
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Proposition 4.2. Suppose A, defined in [f35)), is nonzero. Then, in a neighbor-
hood of any K or K’ point, the dispersion surface is conic. Specifically, the eigen-
value equation det M(uM, k) = 0 (see @EI9)) defines, in a neighborhood U < R?
of Kk =0, two functions:

1 1
(436) wi (k) = [l 6l A+ Ee(w), n(s) = — Nl [sl (1+E(s)).
where By (k) — 0 as k — 0 and Ey (k) is Lipschitz continuous in &.

Proof. By ([&I9), and Proposition B (! satisfies:

2
(431 (B0) = P e+ gar (1D 8) + g1s (D, 5) + goa (),
where g,, are smooth functions satisfying the bounds:

| grs(/% K) | < C |/"‘T |"£|S

for |u| < 1, |k| < 1. We now construct ,ugrl)(n). The construction of ug)(n) is

similar. Set u(j) = |X¢| || (14 n). Substitution into (£37) and using that Ay # 0,
we find that 7 satisfies:

G(n, k) = 2n+n° + Ji(n, k) + Jo(k) = 0.

Here J; and J, are smooth functions of n and Lipschitz continuous functions of
s, such that: Ji(n, 5) = O(w]), dya(n, ) = O(Is]), Ja(x) = Ols]) as |s] — 0.
Thus, G(n, k) and 0,G(n, k) are Lipschitz continuous in (1, x) with G(0,0) = 0
and 0,G(0,0) = 2 # 0. It follows easily that there exists n = E(x) defined and
Lipschitz continuous in a neighborhood U = R? of k = 0, such that E(0) = 0 and
G(E(k),k) =0forall ke U. O

5. MAIN THEOREM: CONICAL SINGULARITY IN DISPERSION SURFACES

Assume that V' is a honeycomb lattice potential in the sense of Definition [Z11
Since V € C*(R?/Ay,), its Fourier coefficients satisfy

(5.1) Vel(z?), ie. |V i@y = Y, [Vl <o0.

meZ?

Theorem 5.1 (Conical singularities and the dispersion surfaces of H(®)). Let V(x)
be a honeycomb lattice potential. Assume further that the Fourier coefficient of V.,
Vi1, is nonvanishing, i.e.

(5.2) Vii = f et MHkY V(y) dy #0.
Q

There exists a countable and closed set C = R such that for any vertex K, of By
and all € ¢ C the following holds:
(1) There exists a Floquet-Bloch eigenpair ®°(x; K.), u¢(K.) such that
e (K,) is an L%J-eigenvalue of H) of multiplicity one, with corre-
sponding eigenfunction, ®°(x; K,),
e (K,) is an L%j-eigenvalue of H) of multiplicity one, with corre-
sponding eigenfunction, ®(—x;K,),
e (K,) is not an L%Ql—eigenvalue of H®).
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(2) There exist 6. > 0, C. > 0 and Floquet-Bloch eigenpairs: (9% (x;k), u5 (k))
and (P (x; k), u° (k)), and Lipschitz continuous functions, E4(k), defined
for [k — K| < 0., such that

ps (k) —pf(Ky) = + M| [k—K.| (1 + E5(k)) and
pe(k) —pf(Ka) = — [Af| k=K. (1 + EZ(K)),

where Xj # 0 is given in terms of ®°(x;K.) by the expression in (LI)
and |E% (k)| < Cc|k — K,|. Thus, in a neighborhood of the point (k,u) =
(K., u$) € R3, the dispersion surface is conic.

(3) There exists €° > 0, such that for all ¢ € (—,°)\{0},
(i) eVia >0 = conical intersection of 1°¢ and 2™ dispersion surfaces,
(ii) eVi1 <0 == conical intersection of 2"* and 3" dispersion surfaces.

Remark 5.2. Part 3 of Theorem [B.] gives conditions for intersections of the first
and second band dispersion surfaces or intersections of the second and third. As
the magnitude of ¢ is increased it is possible that there are crossings among the
L%(J—eigenvalues of H®), so in general the theorem does not specify which band
dispersion surfaces intersect.

5.1. Outline of the proof of Theorem[5.1l By Symmetry Remark 2.1 it suffices
to prove Theorem [B.1] for K, = K. We have seen that the central point is to
verify for all e, except possibly those in a closed countable exceptional set, that
hypotheses (h1)-(h3) of Theorem BTl hold. These hypotheses state that H() has
simple L%*’T and L%*f eigenvalues which are related by symmetry, which are not
L%<*71—(eigenvziltles7 and moreover that >‘§ # 0. We proceed as follows.

In section [B] we show that there is a positive number, €°, such that for all € €
(—€%,e9\{0}, (h1)-(h3) of Theorem EI hold. That is, the conclusions of Theorem
5.1 hold for all sufficiently small, nonzero €. In section [L.8 we introduce the key
tool, a renormalized determinant, to detect and track the L%(J—eigenvalues of H(®)
for o = 1,7,7. A continuation argument is then implemented using tools from
complex function theory in section B to pass to large . We now embark on the
detailed proofs.

6. PROOF OF MAIN THEOREM [.1] FOR SMALL &

We begin the proof of Theorem [E.] by first establishing it for € € (—%,%)\{0},
where €° is positive but possibly small. We shall consider the eigenvalue problem
for H) on the three eigenspaces of R: Lk, . Lk, » and Lg -

(6.1) H® o(x;K,) = [ -A+eV(x)] o(xK,) = u(K,) d(x;K,),
d(x+v,K,) = eEVd(x,K,), xeR?
R[®(;Ky)](x) = 0 &(x;K,), where o€ {1,7,7}.

An eigenstate ®(x; K,) in L%hg is, by Proposition 2.8] of the form:

(6.2) P(x;K,) = Z c(m; @) ( KX 4 G KX eiRzKT'x) .
meS

The summation is over the set, S, introduced in Definition 24l Note that by
Proposition 2.6 and Remark 23] solutions to the eigenvalue problem on L . can

be obtained from those in L, , via the symmetry: ®(x) — ®(—x).
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Recall that cg(m) or ¢(m; ®) denote the L%{*J—Fourier coefficients of ®. Our
next task is to reformulate the eigenvalue problem (GII) as an equivalent algebraic
problem for the Fourier coefficients {c¢(m; ®(-; K,))}mes. First, applying —A — p
to @, given by (6.2)), and using that R is orthogonal, we have that

(6.3)
(—A - ) B(xiK.)
_ mi2 _ KT x _ iRKT.x iRZK™ .x
—Z (|K*| u) c(m,@)(e + e + oe )
meS
Next, we claim that V (x)®(x; K,) € Li ,. Indeed, since V is R-invariant, R[V](x)

= V(R*x) = V(x). Moreover, since ®(;K,) € Lk we have R[P] = 0.
Therefore

*,07

R[V®] =V (R*x) ®(R*x;K,) =V (x) 0 &(x;K,) =0 V.
Therefore, by Proposition 2.6, V®(-; K,) has the expansion

6.4) V(x)®(x;K,) = c(m; Vo KX | 5 (iRKDx o GiRPK ] x ,
(

meS
1 _Sm,
(6.5) c(m; V) = @ fQ e KTy V(y)®(y; Ks) dy .

Furthermore, with the notation gk - x = (g1 k1 + ¢2ka) - x,

cmiV®) = o | IV () dy
@l Ja
= ﬁJGiK?‘-y Z Ve ekay

qeZ?

reS

X ( 2 c(r; @) [eiK:'y +5 Py 4 eiRzK:'y] >

=ﬁ S Vel @)

qeZ2,resS

X J dy [ei(Ki—Ki“+qk)~y 45 (HRKI-KP+ak)y | o ei(RzK’i—Ki“+qk)-y]
Q

ﬁ Z ch(r;‘l))‘[dy

q€Z2,reS

x [eaq—(m—r))k»y 15 eila-(m-Re)ky | o ei(qf(mfn%))k-y]

> Vg @)

q€eZ?,reS

X [5(q—(m—r)) + 7d6(q—(m—Rr)) + Ué(q—(m—RQr)))].

Il

Thus,

c(m; Vo) = Z Ko(m,r) c(r; D),
reS
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where (recall (2Z251))
(6.6)
,Co'(mv I') = mer + 0o meRr + o Vm—'R2r

- le—ﬁ,mz—rz + 0 Vm1+7"27m2+7”2—7”1—1 + UVm1+7"1—7"2+17m2+7“1 :

Summarizing, we have

Proposition 6.1. Let o € {1,7,7}. Then, the spectral problem (61 on L%g,a is
equivalent to the algebraic eigenvalue problem for c(m) = c(m; ®) and p:

(6.7) <|KT|2—N> c(m) + ¢ Z Ko(m,r) e(r) = 0, meS,
reS
where {c(m)}mes € 1(S).

To fix ideas, let K, = K; starting with K’, we would proceed similarly. For
e = 0, we have the algebraic eigenvalue problem:

(6.8) (\K—lekl + maoksl|? —u) ¢(m) = 0, meS.

Equation (6.8)), viewed as an eigenvalue problem for ({¢(m)}mezz, 1), is equivalent
to the eigenvalue problem for —A on L% treated in Proposition Bl Restated in
terms of Fourier coefficients, Proposition Blstates that 4(®) = |K|? is an eigenvalue
of multiplicity three with corresponding eigenvectors:

C§O)(ml>m2) = 5m1,m2 > M(O) = |I<|27
céo)(ml,mg) = Omy,ma—1 o p® = |K]? = |[RK|? = [K + ko,
A (1, M) = Sy 1., o 4 = K2 = |RPK? = K — k|

Recall from Definition [Z4] that the equivalence class of indices {(0,0), (0,1), (—1,0)}
has as its representative in S the point (0,1).
The eigenvalue problem (6.8)) has a one-dimensional L%(J—eigenspace with eigen-
pair:
O = K + ko|> = K%, ¢(m1,ma) = 6mymy_1 (m1,ma) €S
corresponding to the L%J—eigenstate of Hy:

_ 10,1 _ P01, - 21e0,1
(DE—O(X;K) — ezK x4 o_e’LRK x +O_ezR K" x
_ ez(K+k2)-x +5_ez(K—k1)-x +UezK-x
=oce®*(1 + 0 elkax 4 ae_’kl'x).

We seek a solution of ([€.1) for e varying in a small open interval about e = 0.
We proceed via a Lyapunov-Schmidt reduction argument. First, decompose the
system (GX) into coupled equations for

(6.9) ¢ =c¢(0,1) € C and {ci(m)}mest € 281,
where
(6.10) St =8\{(0,1)}

and rewrite (G.7)) as a coupled system for ¢| and cy:

(6.11) [\KO’1

2_ 4 5160(0,1,0,1)] o + e Y Ko, L,r) er(r) = 0,

reSt
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£ Ko(m,0,1) ¢ + < K™|* — u) c; (m)
+ ¢ Z Ko(m,r) ci(r) = 0, me St

reS+t
We next seek a solution of (6II)-(EI2), for ¢ small, in a neighborhood of the
solution to the e = 0 problem: cﬂ =1,u =K% ci(r) =0,re St
We begin by solving the second equation in (612) for ¢, as a function of the
scalar parameter c|. For € small, the operator to be inverted is diagonally dominant

(6.12)

with diagonal elements: |[K™|* — 4, which we bound from below for m € St. By
the relations ([2.22)) we have

K™ —p = |K+mk +moks|” —
I
q a3

:|K|2_/~L + qz(m%+m§—m1m2+m1—m2),

If 4 varies near 1(©) = |K|?, then

2
)|Km|2—,u’ > me St

a2’
for some ¢; > 0. We now rewrite the equation for ¢, as:

€ Ko(m,0,1)
Omr + —— E Ko(m,r ci(r) = —e¢) —=
(6.13) l T KPP A ( )1 L) IR —

= cc Fo(p), me St

or, more compactly,

(6.14) (I + €Tk, (n))cL = € F7(p).
Recall Young’s inequality, which states that the operator defined by
Trf(m Z L(m,r)

satisfies the bound
ITLfliz(sty < COL || flliz(st), where
(6.15) Cp = sup Y, |L(m,r)| + sup > |L(m,x)| .

We apply (615) with L(m,r) = K,(m,r), defined by (6.6]), and conclude using the

bound
1

1
— < C e
|2 — 1+ |m|?
that V = {Vin}mest € 11(ST) (recall (Ej])) and that the operator
T (0fm) = e 3% Kalm.r) 100

reS+

meS+

maps [2(S*) — 12(S1) with the bound
(6.16) | T, () f lizsty < C [ fliz@e)-
Here, Hf”lzg(gi) = ZmeSL(l + |m‘2)2‘f(m)|2
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Proposition 6.2. There exists €* > 0 such that for all |¢| < € and any f € 1?(S*),
(6.17) (I +eTe, (n)cL =f
has a unique solution cy = c& € I13(St), analytic in e, satisfying ||Ci”lg(sL) <

2135 -

We now apply Proposition to solve ([GI4) to obtain

(6.18) ci(r) =¢ ¢ [(1 4T, (1) F () ] (r).

Substitution into (€.1]) yields a closed scalar equation for ¢ of the form M, (u, €)c
= 0, which has a nontrivial solution if and only if:

Mo(p,e) = |K|* —p + € K,(0,1,0,1)
+ Y K0 1) [+ T, () ()] () = 0.

reS+

(6.19)

M, (j1,¢€) is analytic in a neighborhood of (i,e) = (u(®,0) = (|K|?,0). Clearly,
M, (p®,0) = 0 and 0, M, (u°,0) = —1. By the implicit function theorem, there
exists €’ > 0 such that, defined in a complex neighborhood of the interval |e| < &°,
there is an analytic function € — uf, such that

Mg(pf,e) = 0, for —e% <e <€l
Thus, we take ¢ = 1 and via ([GI8)-(GI9) our solution for || < ¥ is

p= pt = |K*+ek,(0,1,0,1) + O(g?),
¢ = ¢(0,1) = 1,

(6.20) & = {E(M)mest = ¢ (I +eTe, (1) " Fp (1),
Ks(m,0,1) 1
where Fj, = -0, eST.
s (:u) |Km‘2 — i

From the definition of K, (m,r), displayed in (6.6]), we find:
(6.21) ICU(O, 1,0, 1) = VO,O + o ‘/1)1 + o %71 = VO,O + V171 (O’ + 5’), oc=1,7,T.

The latter equality uses:
(a) constraints on Vi, m, by R-symmetry of V' (Vp 1 = V1,1) and that
(b) V is even (V()’,l = V071).
Furthermore, V71 is real, since V(x) is even and real (Vi1 = Vo171 = Vi1).
Therefore, £,(0,1,0,1) is real, as expected.

The small € perturbation theory of the three-dimensional eigenspace is now sum-
marized:

Proposition 6.3. Assume Vi1 # 0. Then, there exists € > 0 such that for
0 < |e| < &%, the multiplicity three eigenvalue u = |K|? perturbs to 2-dimensional
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and 1-dimensional eigenspaces with corresponding eigenvalues u®(K) and i (K) as
follows:

(1) p=(K) is of geometric multiplicity 2 with a 2-dimensional eigenspace X, @
X: c L%{)T @L%{’f given by:
pe(K) = [K|* +e (Voo +2Vi1 cos(2n/3)) + O(e?)
(622) = |I<|2 + e (V()yo — V171) + 0(62)
with eigenstates ®] € Ly . and ®5 € Ly -, obtained by the symmetry (see
Remark [23)):
Py(x;K) = 1 (—x; K),
with Fourier expansions:
(6.23) P (x,K) = Z ¢ (m) ( KX F gRKTx eiRsz'x) ,
meS
(6.24) P5(x,K) = Z c#(m) ( e N O e eiRsz'x) , and
meS

(2) @°(K) is a simple eigenvalue with eigenspace X1 < L%)l:

(6.25) i°(K) = [K|*+¢e(Voo+2Vi1) +O(?)
with eigenstate o:
(6.26) P*(x,K) = Z & (m) (eiK’”-x 4 RK™x eiR2Km.x) .
meS

Proposition implies that the double-eigenvalue hypotheses of Theorem [4.1]
hold for € positive and small. In particular, by ([6.22]) and ([6.25]),

If V41 > 0,then
(6.27) i (K) = i (K) < p) (K) < pf (K) <

and if eV; ;1 <0, then
(6.28) 7 (K) < p? (K) = ) (K) < pd (K) <
By Theorem [L.T] assuming Aj # 0:
(i) if Vi1 < 0, the dispersion surfaces k — p;(k) and k — po(k) intersect
conically at the vertices of By;

(ii) if eVi1 > 0, the dispersion surfaces k — po(k) and k — ps3(k) intersect
conically at the vertices of By,.

So, in order to apply Theorem [£.]] it remains to check that Aj # 0. Here, >‘§ is the
expression given in (1)) . For ¢ small we have

(6.29) X6 = 3 area(Q) [ ( L ) - K(O’l)] + 0,

?

where we have used that ¢¢(0,1) = 1, (G.20) and that HCLH@(SL) = O(e). Note also
that

1 2 3/2
KO =K+ ky = §k1+§k2 = %( _\//§/2 )7 q=47r/a\/§.
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Therefore, for |e| < &, with €% chosen sufficiently small,

2
’2 = 16 area(Q)? T+ O(e).

(6.30) |xf =

This completes the proof of our main theorem, Theorem (.1l for the case where &
is taken to be sufficiently small. We now turn to extending Theorem .1 to large .

7. CHARACTERIZATION OF EIGENVALUES OF H(¢) FOR LARGE ¢

To extend the assertions of Theorem ] to large values of e, we introduce a
characterization of the L%(J—eigenvalues of the eigenvalue problem (6.1) as zeros of
an analytic function of ¢.

Since we can add an arbitrary constant to the potential, by redefinition of the
eigenvalue parameter, 1, we may assume without loss of generality that

0 < V(%) € Vinax-
Assume first that e € C and Re > 0. Then, H® — ul = —A + eV — ul =
(=A +¢eV +1)— (u+ 1)I. The eigenvalue problem (G.I)) may be rewritten as
(7.1) (-A+eV+DN®— (n+1)®=0, ue Lk, .
Now for any real ¢ > 0 we have —A + eV + I > I. Hence we introduce [
(7.2) T(E) = I-A+eV)™H
which exists as a bounded operator from L%(,a to HIQQU, and obtain the following
Lippmann—Schwinger equation, equivalent to the eigenvalue problem (G.1I):
(7.3) [I — (n+1) T(e)] ©=0, ®eLi, -

We now show that if Re < 0, we also obtain an equation of the same type
as in (Z3). In this case, we observe that € (V — Vijax) = 0. Therefore, —A +
e(V = Vinax) + I = I and we rewrite (6.1]) as

(7.4) (“A+e(V—Viax) + D@ — (p+1—eViax) @ =0, ®e L, .
If for € < 0 we define T'(¢) = I — A + & (V — Vinax), then () is equivalent to
(7.5) [1 (1= Vi) T(s)] ®-0, delk, .

For the remainder of this section we shall assume e > 0 and work with the form of
the eigenvalue problem given in (L3). The analysis below applies with only trivial
modifications to the case ¢ < 0 and the form of the eigenvalue problem given in
@3).

For each € > 0, we would like to characterize L%_U—eigenvalues, 1) as points
where the determinant of the operator I — (i + 1)T(¢) vanishes. To define the
determinant of I — 2T, one requires that T be trace class. Although T'(£) is compact
on L%(’U, it is not trace class. Indeed, in spatial dimension two, A;, the 4t eigenvalue

of —Ag + W acting in LIQ)%A satisfies the asymptotics A; ~ |j| (Weyl). Therefore

trace(T()) = BN ~ DI = oo

fFor Re > 0 and f smooth, we have R{(—A + eV + 1) f, f> > | f|?. Hence the nullspace of

—A + eV + I and its adjoint are {0}. By elliptic regularity theory, —A + eV + I is invertible on
L .
K,o
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The divergence of the determinant can be removed if we work with the regularized
or renormalized determinant; see [9, [I5]. Note that T'(e) is Hilbert—Schmidt, i.e.

1T 3.5, = D512~ Y1312 < o0,
i

J

For a Hilbert-Schmidt operator, A, i.e. tr(A42?) < oo, define
(7.6) Ro(A) = [I + Ale*—1I.

Note that I + A is singular if and only if I + Ra(A) = (I + A)e~4 is singular.
Since 7% =1 — 2z — 22 Sé (s — 1)e 5%ds, we have

Ry(2) = (14 2)e % —1 = —2? <1 +(1+2) Jl(s - 1)e_szds> :

0

Therefore

1
(7.7) Ry(A) = —A? (I + (I + A)f (s — 1)6_5Ad8> :

0
Since A? is trace class and the second factor is bounded, Ry(A) is trace class.
Therefore the regularized determinant of I + A:
(7.8) deto(I + A) = det (I + Ry(A)),
is well-defined. With A = —(u + 1)7T'(¢), we have the following [9, [15], [19]:

Theorem 7.1. Let o take on the values 1,7 or T.
(1) € = T(e) is an analytic mapping from {e € C* : Re > 0} to the space of
Hilbert—Schmidt operators on L%{,U-
(2) For T(e), considered as a mapping on L%(J, define:

(7.9) Eo(p,e) =deta (I — (p+ 1)T(g)).
The mapping (p,€) — Ex(p,€), which takes (u,e) € C* (Re > 0) to C is
analytic.
(3) For e real, u is an L%Qa—eigem;alue of the eigenvalue problem (6.1)) if and
only if
(7.10) Es(p,e) =0.

(4) For e real, 1 is an L%{’U-eigenvalue of @1 of geometric multiplicity m if
and only if p is a root of [TIQ) of multiplicity m.

8. CONTINUATION PAST A CRITICAL €
In section [6 we proved Theorem 511 for all ¢ € (—&%,£%)\{0}, with €° > 0 suffi-
ciently small, by establishing the following properties:
I. p*(K,) is a simple L%MT—eigenvalue of H) with corresponding 1-dimen-
sional eigenspace X, = span{ @fg (xK.) )< Ly, -
II. w®(K,) is a simple L%*j—eigenvalue of H®) with corresponding 1-dimen-
sional eigenspace X; = span{ /" (—x;K,) } Lk, »
L pf(K,) is not an Lk ;-cigenvalue of H(®).
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IV. We have
8.1 X = e (V) km 20
() g = ZC(m,M,E) i K # 0,

meS
where ¢(m, ¢, ) are Fourier coefficients of ®; [u®(K.), ] (x), an L%(*’T—

eigenfunction of H(®) with eigenvalue pf = p(K,); see Proposition

We next study the persistence of properties I-IV for ¢ of arbitrary size.

8.1. Continuation strategy. Denote by A the set of all € > 0 for which at least
one of the properties I-IV fail. With £° given as above, we clearly have A < [¢°, o0).
The main result of this section is that

(8.2) A is contained in a countable closed set.

Once ([B2) is shown, we’ll have completed the proof of Theorem Bl our main
result.
Our continuation strategy is based on the following general

Lemma 8.1. Let A < (°,0) with €° > 0. Then one of the following assertions
holds:

(1) A is contained in a closed countable set.

(2) There exists €. € (0,00) for which the set A n [0,e.) is contained in a closed
countable set, but for any ' > ., the set A n [0,€') is not contained in a closed
countable set.

The main work of this section is to prove (82 for A = A by precluding option
(2) of Lemma Bl This suggests introducing the notion of a critical value of e:

Definition 8.1 (Critical €.). Call a real and positive number e, critical if there is
an increasing sequence {¢, } tending to €. and a corresponding sequence of geometric
multiplicity-two Li-eigenvalues, {11, }, such that

(a) properties I-IV above, with e replaced by ¢, and p€ replaced by p,,, hold
forallv =1,2,..., and

(b) for € = e, and p. = p® = lim,_ o p, < 00 at least one of the properties
I-IV does not hold.

To prove Lemma [R.I] we use the following:

Lemma 8.2. Let 0 =¢1 <eg < -+ and let e, = lim, o &,. (Perhaps e, = 0.)
Suppose A N [0,e,) is contained in a closed countable set C, for each v = 1. Then,
An[0,ex) is contained in a closed countable set C.

First let’s use Lemma to prove Lemma [BJl We then give the proof of Lemma

Proof of Lemma [Bl Let e, = sup{e € (0,0) : A n [0,¢) is contained in a closed
countable set}. Clearly 0 < e < e, < 0. If . = o0, then option (1) holds, thanks
to Lemma B2 and if e, < oo, then by definition, A n [0,¢’) is not contained in
a closed countable set for any & > e.. Again applying Lemma shows that
A n[0,e.) is contained in a countable closed set. In this case, (2) holds and the
proof of Lemma [R1]is complete. O
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Proof of Lemma 82l Define
C= U (Cynlev—1,e0] )uie, v =0}

v=1

and set C = Cifep, = 0w and C = C U {ewn} if € < 0. One checks easily that

An|0,e4) < C, C is countable, and C is closed. This completes the proof of Lemma
O

We now outline our implementation of the continuation argument. By the dis-
cussion of section [1 and Proposition ] ¢ is in R\.A provided:

(i) & (p%,e) = 0, 0u&r(p%,€) # 0,

(ii) &1(ps,e) # 0 and

(iif) A7 # 0.
To continue property (i) past a finite critical value, ., one must show the persistence
of a simple zero of & (u,¢) for € > .. To continue (ii) and (iii) beyond &, it seems
at first natural to introduce the function & (u,€) x Ay (c[u, €]), where c[u, €] is the
collection of Fourier coefficients of the L%’T—eigenvector for the eigenvalue u, and
Ay is the expression in (8I]). Unfortunately the above function is not necessarily
analytic; in a neighborhood of €., € — c[u®, ] and therefore ¢ — Xy (c[p, €]) may
not vary analytically; see Appendix [Al Indeed there is a topological obstruction
related to the following observation: along a path of matrices in the space of complex
N x N matrices of rank N — 1, each matrix has a nonvanishing subdeterminant
of dimension N — 1, although the particular subdeterminant which is nonvanishing
changes along the path. The heart of the matter and its remedy are clarified by
linear algebra in Lemma B4l That lemma is applied in section B4l to construct a
vector-valued analytic function F(u, €), whose nonvanishing ensures that & (u, &) #
0 as well as the nondegeneracy condition, A7 # 0. A continuation lemma, Lemma
B3 of section B2] is then applied to the pair of analytic functions: P(u,e) =
E-(uf,e), F(u,e) to establish the continuation beyond any finite ..

8.2. Picking a branch. Let
(8.3) U={M\2)eC?: |\ <e1, |z <ea},
where €1 and e, are given positive numbers. Suppose we are given an analytic

function P : U — C and an analytic mapping F': U — C™. We make the following
Assumptions:
(Al) If (N\,2)e U, P(A,2z) =0and z € R, then A e R.
(A2) There exists {(A\,,2,)} € U, v =1 tending to (0,0) as ¥ — oo, such that
for each v = 1, z, e R\{0}, P(\,,2,) =0, O\P(Ap,2,) #0, F(\y,2,) # 0.

Remark 8.1. With the above setup, we have centered the analysis about (z,\) =
(0,0). We shall apply the results of this section to an appropriate analytic function
of (i, ) centered about (fic, €c).

Under assumptions (A1) and (A2) we will prove the following:

Lemma 8.3. There exist 6 > 0 and a real-analytic function B(z), defined for
z € (0,0), such that for all but at most countably many z € (0,0) we have:

(8.4) P(B(2),2) =0, 0xP(B(z),z) # 0, F(B(2),2) #0 .

Moreover, lim,_,o+ 8(z) = 0.
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Proof of Lemma B3l Assumption (Al) implies that A — P(A,0) is not identi-
cally zero. By the Weierstrass Preparation Theorem [I1], we may write P(),z) =
H(\, z)- P()\,2) for (), z) in some polydisc U = {|\| < €3, || < &4}, where P is a
Weierstrass polynomial (see (81 below) and H is a nonvanishing analytic function.
Assumptions (A1), (A2) hold also for P, F,U. Moreover, the conclusion of Lemma
B3 for P, F,U implies the conclusion for P, F,U. Therefore, it is enough to prove
Lemma B3 under the additional assumption that P is a Weierstrass polynomial.
Henceforth we make this assumption. Thus, we have for some D > 1:

D-1 D
(8.5) P(A2) =2+ Y gie)N = [[ (A= au(2)),
7=0 v=1
where a3(2),...,ap(z) denote the roots of A — P(\,z) (multiplicity counted),
where
(8.6) a;(0) =lima;(2) =0, j=1,...,D.

z—0

Moreover, g;(z) are analytic in |z| < 4. Note that D > 1, since Assumption (A2)
implies P(0,0) = 0. For k > 1, define

(87) Q%) D, for k=1,
. kl\zZ) = D k 2

Zul,.“,ukzl Hi,jzl, i#j (O‘w (2) —aw, (Z)) , k=2
The right-hand side of (87 is a symmetric polynomial in a4 (z),...,ap(z) and is
therefore a polynomial in the coefficients g;(z) of P()\,z) [8], which are analytic
in z. Consequently, each Qx(z) is an analytic function of z. Moreover, when z is
real, the «,(z) are also real, and therefore, for z € R, Qx(z) # 0 if and only if
A P(), z) has at least k distinct zeros. In particular, for k > D + 1, Qx(z) =0
for all real z, since A — P(), z) has only D zeros; see (83). Hence, there exists k
with 1 < k < D such that

Qz(2) is not identically zero, but Qx(z) =0 for all k > k.

Since Q7 (z) is analytic on a neighborhood of 0 and not identically zero, there is
an open interval (0,d;) such that Qz(2) # 0 for all z € (0,61). Thus, P(z, ) has
at least k distinct zeros, for each z € (0,41). On the other hand, Qz,(2) = 0 and
hence A — P(}, z), for real z, never has at least k+1 distinct zeros. So, A — P\ 2)
has exactly k distinct zeros for z € (0,81). We denote these zeros by
Pr(z) < B2(z) < -+ < Bg(2);

they are real by Assumption (Al). Note that each fj(z) is among the a;(z) (j =
1,...,D). Hence, by (84, lim,_,g+ Bx(z) = 0 for each k.

Fix « € (0,01), and let my,...,mj (respectively) be the multiplicities of the
zeros f1(x), Ba(x),. .., Be(x) of A — P(\,2); mi+---+mp = D. For z € (0,01)
close enough to = and for each j, there exist m; zeros of A — P(\, z) (multiplicities
counted) that lie close to B;(z). Unless these m; zeros of A — P(\,z) are all
equal, the function A — P(), z) would have more than k distinct zeros, which is
impossible. Therefore, for z € (0,071) close to x, and for each j, the polynomial
A — P(A, z) has a single zero 3;(z) of multiplicity m;, close to 5;(x). In particular,
the multiplicities of the zeros £1(2), 82(2),...,Br(z) are constant as z € (0,d;)
varies over a small enough neighborhood of z. Since x € (0,;) is arbitrary and
since (0, d1) is connected it follows that the multiplicities my, ..., mg (respectively)
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of the zeros f1(z) < P2(z) < --- < Br(z) of A — P(A,z) are constant as z varies
over the entire interval (0,d1). Therefore, we have

k
(8.8) P(z,\) = H()\—ﬁj(z))mj, z€(0,01), |Al <eq.

j=1

Here, f1(2) < B2(z) < -+ < Bg(z) for each z € (0,41) and each m; is a positive
integer. Now note that each §;(%) is a real-analytic function on (0, d1), since 3,(z)
. . m.—1
is a simple zero of A — 0,7 " P(\,2).

We now turn to F : U — C™. Let us write F(\, z) = (F1()\, 2),..., Fn() 2)).
For a small positive number p, to be chosen just below, we define:

(89) G(x) — —— 3@ 3 Fl()\,z)-ﬂ(j\,z)-% APV Z) dA.

We can pick p so that P(A,0) # 0 for |A\| = p. Therefore, for small enough 7, if
|z] <, we still have P(A, z) # 0 for |A\| = p. Fix such p and n. Then, G(z) is an
analytic function of z in the disc {|z| < n}. Moreover a residue calculation shows
that

(8.10) G(2) = D} >, Flh2)- B 2) - 3PN, 2) - & P(A, 2),

A l=1

where the sum is over all X in the set:
{XA: Al <p, P\z)=0},

with multiplicities included in the sum. In particular, if z is real, then the relevant
X’s are also real (see (Al)), and therefore

(8.11) G(z) = >, X IR\ 21 [P, 2)P,
A l=1

where the sum is over real A € (—p, p) such that P(}, z) = 0. Note that all nonzero
contributions to the sum (8IT]) come from A’s that are zeros of P with multiplicity
one. Consequently, for real z, we have G(z) # 0 if and only if there exists A € (—p, p)
such that P(\,z) =0, d\P(\,2z) # 0 and F(A, z) # 0.

Therefore, assumption (A2) tells us that the analytic function G(z) doesn’t van-
ish identically in {|z| < n}. It follows that we can pick a positive J, less than
min(n, d1), such that

G(z) #0 for 0<|z| <4 .

Now suppose z € (0,6). Then, there exists A € (—p, p) such that P()\ z) =
0, AAP(A 2z) # 0,F(\, z) # 0. This A must be equal to one of the 8;(z), j =
1,...,k, for which m; = 1. So, for each z € (0,4) there exists j such that m; = 1
and F(B;(z),z) # 0.

Unfortunately, the above j may depend on z. However, we may simply fix some
xo € (0,9), and pick jo such that m;, = 1 and F(B,,(z0),zo) # 0. The function
z — Bj,(2) is a real-analytic function of z € (0, ). Moreover, we know that the real
analytic function z — F(8;,(2), 2) is not identically zero on (0, §), since it is nonzero
for z = xg. So, it can vanish only on a set of discrete points that accumulate at 0
or at §. The proof of Lemma is complete. ]
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Remark 8.2. We have proven more than asserted in Lemma83l In fact, P(5(z), z)
= 0 and 0\P(8(z),2) # 0 for all z € (0,6), and F(B(2),z) # 0 for all z € (0,9)
except perhaps for countably many z tending to 0. Note that we can arrange for
this countable sequence not to accumulate at § by simply taking & to be slightly
smaller.

8.3. Linear algebra. Given an N x N (complex) matrix A of rank N —1, we would
like to produce a nonzero vector in the nullspace of A, depending analytically on
the entries of A. In general there is a topological obstruction to this; see Appendix
[Al However, the following result will be enough for our purposes.

Fix N = 1. Let Mat(N) be the space of all complex N x N matrices. We denote
an N x N matrix by A € Mat(N). We say that a map I' : Mat(N) — C¥ is
a polynomial map if the components of I'(A) are polynomials in the entries of A.
Polynomial maps are therefore analytic in the entries of A.

In this section we prove

Lemma 8.4. There exist polynomial maps T'j; : Mat(N) — CV, where j,k =
1,..., N, with the following property:

Let A € Mat(N) have rank N — 1. Then all the vectors I'ji(A) belong to the
nullspace of A, and at least one of these vectors is nonzero.

Proof of Lemma B4l We begin by setting up some notation. Given A € Mat(N),
we write AUF) to denote the matrix obtained from A by deleting row j and column
k. We write col(4, k) to denote the k" column of A. If v = (vy,...,vx)" € CV is
a column vector, then we write v; to denote the j** coordinate of v, and write o)
to denote the column vector obtained from v by deleting the k** coordinate. Thus,
k) e CN-L,
From linear algebra, we recall that
(8.12)

For any A € Mat(N) of rank N — 1, we have det (A(j’k)) # 0 for some (j, k).

For any A € Mat(N), and any v € Nullspace(A), we have
(8.13) AGR5E) — _Teol(A, k)] D) wy.

(Equation (BI3]) expresses the fact that (Av); =0, for all 7 # j.)

If rank(A) = N — 1 and det AU*) % 0, then the space of solutions of (8I3)
and the nullspace of A are one-dimensional; hence, in this case, the nullspace of A
consists precisely of the solutions of ([BI3]).

We now define I';j;(A) € CV to be the element, v, in the nullspace of A, whose
N components are constructed as follows: Set the free parameter

12
(8.14) U = [det A(m)]
and obtain the other N — 1 entries comprising the vector (*) by solving
. 4 12
(8.15) AGR) ) = [col(A, k)]~ ) [det AW)] .

If det AWF) 2 0, we can solve (8I5) uniquely for *) by Cramer’s rule and together
with (8TI4]) construct v.
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Note that each component of the vector I';;(A) has the form
det AU*) % Polynomial in the entries of A .

In particular, A — T';5(A) is a polynomial map. Furthermore, I';z(A) = 0 if
detA Gk) = 0. Also, Tjx(A) # 0 if det AR % 0, since the k™" coordinate of

[jk(A) is [det AU k>]
If rank(A) — 1, then some TI'j;(A) is nonzero, thanks to (812). Moreover,
each I';,(A) always belongs to the nullspace of A. Indeed, fix j, k; if det AU = 0,

then I';(A) = 0 € Nullspace(A). If instead det AU*) = 0, then Nullspace(A)
consists of the solutions of ([8I3)), and we defined T'j; to solve (8I3). Thus, in all
cases we have I'j;(A) € Nullspace(A) if rank(A) = N — 1. The proof of Lemma 4]
is complete. O

8.4. Hamiltonians depending on parameters. Recall the operator H(®) =
—A + €V (x). In this section we complete the continuation argument (and the
proof of Theorem [B.]) by showing how to continue Properties I-1V, listed at the
beginning of section 8] beyond any critical value, &., where one of these properties
may fail. This argument is based on appropriate applications of Lemma and
Lemma [R41

Let e, and p. be as in Definition

Without loss of generality we can assume K, = K. We work in the Hilbert

spaces
(8.16)
Lk, = { > c(m) [e"Km'x N TeiR2Km'x] © Y e(m)? < oo} ;
meS meS

Hy . = { 2 c(m) [eiKm'x S TeiR2Km'x] :

meS
>, (L4 m)fe(m)? < 00} :

meS

(8.17)

We will apply the results of section B2 and section B3], with the analysis centered
at (e, ec) rather than at (0,0); see Remark BIl We shall use that

H® legg - L%{ﬂ is selfadjoint for € real .

Let M be a positive integer, chosen below to be sufficiently large. We regard L%{)T
as the direct sum L% @ L2, where L? consists of Fourier series as in (8I6) such
that the ¢(m) = 0 whenever |m| > M, and L, consists of Fourier series as in (810))
such that the ¢(m) = 0 whenever [m| < M. Similarly, we regard Hy . as the direct
sum H @ H; using (8I7). We set N = dim(L2).

Let II), and II}; be the projections that map a Fourier series as in (816]) or (8.17)
to the truncated Fourier series obtained by setting all the ¢(m) with |m| > M, or
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with |m| < M, respectively, equal to zero. We may view H (¢) as the mapping
Uni Ale) B Uni
<¢lo > ~ (C(E) D® > <1/Jlo )
with A©) = I, H® 1I,;, B©® =11, H® 11,
c® =11, H® Iy, and D =11, H® II,,.
By choosing the frequency cutoff, M, to be sufficiently large, we have

) — ped : HZ — L2, has a bounded inverse, say

A€
(8.18) H(A(Ec) - I)_l < C.

2 2
Ly;—Hy;

Therefore, for all (i, ) in some fixed small neighborhood of (u.,e.) we have

—1
(8.19) ‘( A© I) <.
LY —HY;
The eigenvalue problem
(8.20) H®y = puap for ¢ = ( ﬁ“ ) € H: ® HZ,

is equivalent to the system

APy + By, = pabps, CO%p + DOy = piy, .

That is,
-1
(8.21) Ui = —(A@)—;u) B® 4y, and
—1
(8.22) [—C<5> (A@—,u) B® + <D<5>— uI) ]wlo =0,

where we regard A(®) — ;I as an operator from H}, to LE,. Note also that BE)yy, €
L? since ¢y, € Hi ; hence (A®) — /1])71 B©) 4y, € H, thanks to (81I9), which
holds under our assumption that (u, ) is near (p.,e.). It follows that

-1
c© ( A© _y ]) B® gy L2,
by the definition of C(€).

(8.23)  The operator in square brackets in ([822) will be denoted as D(pu,¢) .

Thus, D(u, €) is analytic in (u, €), where (u, €) varies over a small disc about (p., €.)
in C2. We may regard D(u,€) as an N x N matrix. Thus,

(8.24)
(S ( zlo ) is an eigenfunction of H ) with eigenvalue p
hi
if and only if (82I]) holds and ¢, is a nontrivial solution of D(u, &)1, = 0.

It follows that p is simple, i.e. a multiplicity one eigenvalue of H(®), if and only if
the N x N matrix D(u, ) has rank N — 1.
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We shall now apply Lemma B4l to D(u,e) € Mat(N), the space of N x N
complex matrices. Let I'j, denote the polynomial map given by Lemma 84l For
j,k=1,..., N we define

Wiy (,e) = Ty (D(pe))
and set )
{Fe) = = (A€ —u1) B}

as in (B21)).
By Lemma [84] (821)) and (822]) we now know the following for

Wi¥ ()
1 (ue)

(A) *(u,e) e HIQ{)T depends analytically on (u,¢),

for (u,e) in a small neighborhood of (pc, ).

W (u,e) =

(8.25)

(B) If u is a simple eigenvalue of H) (b — e, € — €. small),

(8.26) then all 1'% (4, ) are in the nullspace of H®) — puI .
. Furthermore, at least one of the 7 (1, ) is nonzero

and is therefore an eigenfunction of H(®).
Let us write out the Fourier expansions of the ¥/*(u, ). We have
(8.27) [1/}Jk(ﬂ7 Z *(m, pu, e [ K™x |z iRK™x | iRPK™x ] .
meS

The coefficients ¢/*(m, u, ¢) depend analytically on (u,¢) € U, where U is a small
neighborhood of (i, €.), which is independent of m. Moreover, since ¥7*(u, ¢) is
an analytic Hy  -valued function, it follows that

(8.28) Z (1+ |m|2)2 |cjk(m,u,5)}2 is bounded as (u,¢) varies over U .

meS

(Perhaps we must shrink U to achieve (825]).)

With a view toward continuation of the Properties I-IV (enumerated at the
start of section B]) as e traverses any critical value e, (Definition [B]), we state the
following:

Lemma 8.5. Suppose there exists a sequence of eigenvalues (pi,,,) — (le,€c)
with 0 < €, < €., such that for each v the following properties (Al)-(A4) hold:

(A1) p, is a simple eigenvalue of HE) on L%(J, with eigenfunction

U,(x) = 2 ¢, (m) [eiKm'x + FelRKTx 4 iRTKTx ] €Hg, .
meS
(A2) p, is a simple eigenvalue of HE) on L%(f, with eigenfunction
U, (—x) = Z ¢, (m) [eiKm'x + refETx | piRTKTx ] € Hy - .
meS

(A3) Ei(p,en) # 0, d.e. p, is not an Ly -eigenvalue of H(ev),
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(A4)  The following nondegeneracy condition (A7 # 0) holds:
(8.29) > wm) [e,(m)] # 0

meS

where {w(m)}mes are fived weights, such that
(8.30) lwm)] < C(1+m|), meS.
Our choice of weights (see (L)) is:

wmn:<1).Km.

Then, there exist a (nonempty) open interval T = (e.,e. + 0), a real-valued
real-analytic function () defined on I, a function ¢° € Li _ depending on the
parameter € € L, and a countable subset C < I, such that the fbllowmg hold:

(1) (—A+eVy) ) = B(e)p'®) for each e e T.
(i) lim_,_+ B(e) = pe.
(iii) C has no accumulation points in I, although €. may be an accumulation
point of C.
(iv) For each e in T\C,
(a) B(e) is a simple eigenvalue of —A + Vy, on L .,
(b) B(e) is not an eigenvalue of —A + Vi, on Li ;, and
(c) the quantity XS, arising from the eigenfunction ©*) via formula
@) (with ®; replaced by ) is nonzero.

Proof of Lemma [BH Recall that the zeros, u, of the renormalized determinant,
E1(p, €), defined in section [[.8 are precisely the set of L%(J—eigenvalues of H(),
Thus, tracking the set of (p,e) such that Assumptions (A1)-(.A4) and in particular
(A3) hold suggests that we introduce, for (u,€) € U, the matrix-valued function:

(8.31) Fik(ue) = ( Z w(m) [cjk(m,u,a)]2> x E1(p, ).

meS

Fi%(p,¢) is an analytic function on U. We define
_ jk
(832) F(:U‘7€) = ( F? (,LL,E) )j,k=1,...,N .

Thus, F: U — CM is an analytic map.

Now for each v, (B28) applies to (u,,&,) , since p,, is a simple eigenvalue. Thus,
for some jk, the function ¥7%(u,,¢,) is a nonzero null-vector of H®») — I, i.e.,
an eigenfunction of H¢»). Since by hypothesis 1, is an eigenfunction of H(=v)
satisfying (829) with eigenvalue u, and since p, is a simple eigenvalue of H (&),
the corresponding eigenfunction ¥, satisfies:

U, = v, ¢¥*(u,,e,) for a complex constant , # 0 .

Therefore,
- 2
0# Y w(m)[e,(m)]” =2 > w(m) [/ (m;p,, )]
meS meS
FI*(,,e)
=n~2 VT gee (B3D) and (R29).
’yu 51(,“1/,51/)
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The second equality holds since & (u,,€,) # 0; see hypothesis (A3). It follows that
Fi*(u,,¢,) # 0 for some jk, i.e.,

(8.33) F(uy,e,) #0, foreach v,
where {€,} is a sequence tending to €, from below.

We complete the proof of Lemma by an application of Lemmata and [8.4]
for appropriate choices of P(u, ) and F(u,¢€). Let £-(u, <), denote the renormalized

determinant ([C3)). Let P(u,e) = E;(u,e) and F(u,e) be given by (R3], (B32).
We now check the hypotheses of Lemma B3l First note that

(8.34)
P(u,e) =0 if and only if u is an L%(’T—eigenvalue of H®) and the multiplicity of

u as a zero of P(u,e) is equal to its multiplicity as an eigenvalue of H®.

Because H(®) is selfadjoint for real €, we see from (834 that

(8.35) if (u,e) €U, € isreal, and P(u,e) =0, then p € R.
Moreover, from ([829), (B33) and ([834) we see that
(8.36) (tty,e,) €U for each v = 1, (p,e0) = (le,ec), as v — o0;

and for each v, we have
(8.37)  P(uw,ev) =0, 0,P(pw,e) #0, F(p,e0) #0, e, €R, 0<eg<e, .

Recall that F : U — CN” is an analytic mapping and P(u,e) : U — C is
analytic. Results (830)-(837) tell us that conditions (A1) and (A2) of section 82
hold for our present choice of F and P. Therefore, Lemma R3] applies; see also
the remark immediately after its proof. Thus, we obtain a positive number § and
a real-analytic function §(g) such that the following holds:

(8.38) For each ¢ € (e.,e. + 8), we have P(B(g),e) =0 and 0 P(5(e),e) # 0.

230 Moreover, for all but countably many € € (e, e, + ),
(8 with their only possible accumulation point at €., we have F(3(e),e) # 0.
By ([B38) and ([834]), we have
(8.40)
For each ¢ in (g¢,&. + J), the number S(¢) is a simple L%J—eigenvalue of H®)
Therefore, from (820) we have that
(8.41)
For each ¢ in (e, . + 0), all the ¢/*(u, ) are in the nullspace of H® — B(e)l.

Recalling (827) and (831), (832), (B39), we now see that

242 For each ¢ in (g.,e. + d) outside a countable set
(842) with its only possible accumulation point at e., & (8(g),¢€) # 0,

(8.43) there exists jk such that Z w(m) [cjk(m,ﬂ(s),s)]2 # 0.
meS

Now unfortunately the pair (j,%) in ([843]) may depend on . However, (843
implies that for some fixed (4, k) = (jo, ko), the function

(8.44) e Y w(m) [¢oF(m, B(e),e)]”

meS
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defined for ¢ € (e.,e. + ) is not identically zero. Since this function is analytic
in e, it is equal to zero at most at countably many . Moreover, the zeros of the
function (844) in (e, e, + 0) can accumulate only at e, and at €. + 0. By taking &
smaller, we may assume that the zeros of the function (844 can only accumulate
at e..

We now set, for € € (e.,e. + 0):

o) = \Iljo’ko(ﬁ(s),s)eH%{’T and

W) = 3 o g e),0) [ 4 7T e
meS
We now have that the function p = () satisfies Properties I-IV for all € €
(€c,€c + 0) except possibly along a sequence of “bad” e’s which tends to .. Prop-
erties I-1I1, that 8(e) is an eigenvalue in each of the subspaces L%{,T and L%(j, and
not an L%Ql—eigenvalue, hold for all € € (e, e. + §), except possibly along the above
sequence of bad €’s. This completes the proof of Lemma
To complete the proof of Theorem [B.] for € of arbitrary size we require

Lemma 8.6. For alle € (0,00) outside a countable closed set there exists a Floquet-
Bloch eigenpair pe R, p € L%{’T for —=A + Vi, with the following properties:

(a) |pu| < Coe + Cy, where Cy and Cy depend only on V.

(b) w is a multiplicity one eigenvalue of —A + eV}, on L%{,T'

(¢) u is not an eigenvalue of —A + eV, on L%{,l'

(d) The quantity Aj, arising from ¢ by formula (&), is nonzero.

Theorem [5.T]is an immediate consequence of Lemma [R.6] which precludes option
(2) of Lemma BJ] and Proposition 1] O

Proof of Lemma [B.6. Set Cy = max |V;,|. By our analysis of section [6] there exists
g% > 0, a sufficiently large constant C, such that for € € (0,£°) there exist p, ¢
satisfying (a)-(d).

Now suppose that Lemma [B6 fails. Then, by Lemma[81] there exists €. € (0, 00)
such that for all € € (0,¢.) outside a countable closed set, there exist p, ¢ satisfying
(a)-(d) but

(8.45) for all e} > ¢, assertions (a)-(d) fail on a subset of (0,¢})
’ that is not contained in any countable closed set.
We will deduce a contradiction, from which we conclude Lemma
By assumption, we can find a sequence €1 < g9 < --- < g, < --- converging to
¢, such that each €, gives rise to a Floquet-Bloch eigenpair p, € R, ¢, € L%{)T
satisfying properties (a)-(d). Thanks to (a), we may pass to a subsequence, and
assume that pu, — u. as v — oo, for some real number ., with

(846) |/LC‘ < Coe.+Cq.

Since the Floquet-Bloch pairs p,, ¢, satisfy (a)-(d), and since ¢, 1 &, and p —
e as v — o0, Lemma applies. Thus we obtain a nonempty open interval
T = (g¢,&c + 0), a real-valued real-analytic function S(e) defined on Z, a function
ION= L%{)T parametrized by € € Z, and a countable closed subset C 7 satisfying
properties (i)-(iv) of Lemma We will prove that

(8.47) 1B(e)] < Coe + Cy, forall eeZ = (g.,e. +9).
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Once (847) is established, we conclude that we can satisfy all assertions (a)-(d)
of Lemma for all ¢ € Z\C, by taking u = f(¢) and ¢ = ¢®). However this
contradicts property (845) of €.. Thus, it suffices to prove the bound (8Z7]).

To establish [BAT), we fix £ € Z\C = (g, e. + 6)\C. For any € > 0, let A\i(e) <

A2(e) < --- denote the eigenvalues (multiplicity counted) of —A + €V}, on L%(J.
Then, since 3(£) is a simple eigenvalue (assertion (iv) of Lemma B.5]), there exists
k such that

B(E) = Mp(8) < A\gi1(8) and Aj_1(2) < A\i(€) unless k = 1.
Fix 7 > 0 such that
Me(8) < App1(8) =7 and Ap_1(8) < Ag(€) — 7 unless k = 1.

From the min-max characterization of eigenvalues, we have the Lipschitz bound

(8.48) |Ak(e) = Ae(€')| < le—¢'|-max|V,| = Co-le—¢|,
for any €, > 0 and any k > 1. Hence, as € varies in a small neighborhood of &,
we have
(8.49) IAR(e) = Ar(8)] < Co-le—4l,
and also
N 1 -
(8.50) Aip1(e) > Ag(8) + 57 and Ag_q(g) < Az () — 3 unless k = 1.

We have taken £ € Z\C. As ¢ varies in a small neighborhood of £, we have ¢ € Z\C,

thanks to property (iii) of Lemma [R5 Therefore, §(¢) is an eigenvalue of —A+¢V},

on L ., ie. B(e) = Ak(e) for some k. We now show that this value must be k.
Since fS(¢) is a real-analytic function of €, and since 3(€) = A;(&), we have

(3.51) M) =37 < BE) < () + 57

for all € close enough to &. From (8E0) and (85I), we have
Ar1(€) < B(e) < Agyale)

and therefore, 8() = A;(¢) for all € close enough to &. Estimate (849]) now shows
that the real-analytic function B(e) satisfies

=

o < Cy, fore=¢c.

Since & was taken to be an arbitrary point of Z\C, and since Z\C is dense in Z by
(iil) of Lemma [85] we have

dpB(e)
de
Recall that Z = (g¢,&. + d). Our desired estimate ([847) now follows at once from

®4a), (852) and (ii) of Lemma The proof of Lemma and therefore of
Theorem .1 is now complete. |

(8.52) ‘ < Cy, foralleeT.

*For k = 1, we have (g) < Az2(¢).
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9. PERSISTENCE OF CONICAL (DIRAC) POINTS UNDER PERTURBATION

In the previous sections we established the existence of conical singularities,
Dirac points, in the dispersion surface for honeycomb lattice potentials. These
Dirac points are at the vertices of the Brillouin zone, B;,. In this section we explore
the structural stability question of whether such Dirac points persist under small,
even and Aj-periodic perturbations of a base honeycomb lattice potential. We
prove the following:

Theorem 9.1. Let V(x) denote a honeycomb lattice potential in the sense of Defi-
nition 2l Let W (x) denote a real-valued, smooth, even and Ap-periodic function,
which does not necessarily have honeycomb structure symmetry; i.e., W(x) is not
necessarily R-invariant. Consider the operator

(9.1) Hn) =-A+V(x)+nW(x),

where 1 is a real parameter. Let k = K, be a verter of By. Assume that for
1 = 0, the operator H(0) has an L%Q -eigenvalue, p(K.,), of multiplicity two, with
corresponding orthonormal basis {®1, ®o} with ®1 € Ly, . and ®y(x) = ®1(—x).
Assume Ny, gwen in (A1), is nonzero. Then, the following hold:

(1) There exist a positive number 1, and a smooth mapping
2) n— p = (K, +0n) €R and n - K7 =K, + O(n) € By,

(9.2
3) 1 oM (K™Y = ¢;(x) + On) € LX(R/Ay)

9
(9
defined for |n| < m, such that H(n) has an L3, -eigenvalue, w of geo-
metric multiplicity two, with corresponding eigenspace spanned by

{7 @7} = {76 K ™), e R 00 (6 K)

(2) The operator H(n) has conical-type dispersion surfaces in a neighborhood of

points K\ = K. +O(n) with associated band dispersion functions, u(in) (k),

defined for k near K\

(9.4)
1
Nf)(k) _ u(KE’”) _ 77b(n) . (k _ KS")) + (Q(")(k _ KE,"))) 2 (1 + E_(*_n)(k 7 KE,"))) ’
(9.5)
1
N(:I) (k) _ M(Kﬁn)) _ nb(n) X (k _ KS{’?)) _ (Q(ﬂ)(k _ Kiﬂ))) 2 (1 + E(J])(k _ Kiﬂ))) )

where
e b e R? depends smoothly on 1.
e Q(.) is a quadratic form in k = (k1,k2) € R?, depending smoothly
on n and such that

(96)  (IM* = Clnl) (83 + £3) < Qrsm) < (I\gf* + Clnl) (57 + 43)

for |n| < my and k = (K1, ka) € R?, with 0y small, and
Ein)(/i)), ’E(j)(n)‘ < C |k for |n| < m and |k| < R, where & (small)
and C < oo are constants.

Remark below shows that Dirac points are unstable to typical perturbations,
W e C*(R?/A},), which are not even.
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Remark 9.1. For n = 0, Theorem [0.I reduces to Theorem [5.1] which covers the case
of the undeformed honeycomb lattice potential. In particular, if the perturbation

W is itself a honeycomb lattice potential, then K,(f’) = K.,.

We now prove Theorem As earlier, without loss of generality, we assume
K, = K. The family of Floquet-Bloch eigenvalue problems, parametrized by k €
By, is given by:

H(k;n) o™ (k) = u™ (k) ¢ (x: k), where
Hkn) = —(V+ik)? + V(x) + n W(x).
By hypothesis, we have:
(9.8)
For n = 0, H(K;0) = — (V +iK)> + V(x) has a degenerate eigenvalue 1(K),

(9.7)

of multiplicity two with 2-dimensional Lj-eigenspace: span{e(x), ¢a(x)}.

Introduce the projection operators

2
(9-9) Quf = D65 ) ¢;(x)and Qu = - Q.
j=1
We seek solutions of the Floquet-Bloch eigenvalue problem in the form:
2

(910) S KT) = Yla;o;(x) + 76 (x), Qe =0,

j=1
(9.11) K" = K + K",
(9.12) um = @ o

(9.13) dim null space ( H(n) —pI ) =2.

Substituting these expansions into ([@.1) yields:
(9.14)
( H(K) — M(og) oM 4 ( 1 G VI A CRO ,]|K1,n|2) (L7

2
= — ( —2%K" Vi + W — pbm — 77|K1”7|2) ( Z a;o; ) )

j=1

We take the inner product of (I14) with ¢; and ¢». This yields the system:
(9.15)
[ = (O 4 nKI2) + Cor Wond [ an + | A (K17 40Ky ) + (on, Wen) | g
+ <¢1, (—QiK(l’") Vi + W) QL¢(1’”)> -0,
(9.16)
| % (BT +K57) + Con, W) an + | = () + nKT2) + (o, W) | o

+n <¢2, (f2iK(1’"> Vi + W) QL¢(17n)> - 0.
In obtaining the system (Q.I5)-([@I6) we have used
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(1)
(9.17) Vi = (Vx +iK) = ¢ IKxy, KX
(2) W is real-valued and thus —2iK"7 -V + W is selfadjoint,
(3) —2i <¢>1, K'Y . Vi ¢2> = —9 <(I’17 K'Y .V, @2> _ )\_u(Kgn,l) +iK(1"’1)) ’

where ®; = ¢™*¢, by Proposition A1}
(4) Qo™ =0 and Q1" = ¢t .

An equation for ¢ is derived by applying Q1 to (.I4) and using
Qié; =0, j=1,2and Qo0 = 1m0
We obtain

(9.18)
( H(K) — M(O)I ) <Z5(1’n) + Q. ( %KY . Vg + W — u(l,n) _ mKl,n|2) Q. ¢(1,n)

2
= 7QL ( 72iK1ﬂ7 VK+W) ( ZO{j¢j ) .
j=1
Introduce the projections
~ 2 ~ ~
(9.19) QIF = Y@, F) ®;, QL =1-Q,
j=1
and note that these projections satisfy the commutation relation
(9.20) KX Q = Qe

Using (@.I7) we rewrite (O.18) as an equation for

(9.21) ol — Kexglm)
2 ~
(922) L (/.L,Kl’n”[]) (I)(l,n) - _ Z a; QL ( 727;K1,77 . Vx + W) @]7
j=1
where
(9-23) £ (K" n) = —A+V = +9 QL (—2K""- Vi + °[KV?) QL.

Note that £ is selfadjoint on Q 1L}. For n sufficiently small, we have that £ :
QLHE — Q1 L% is invertible. Solving ([0.22) yields

2
9.24) @0 = =N £ (KM n) QL (—2KM Vit W) @, .

Jj=1

Using (@Z1)) to express ¢(" in terms of &1 and substituting ([@.24)) into (.15)-
(@.16), we obtain the following linear homogeneous system for ¢, j =1,2:

1,m 11, a1 - 0
(9.25) M(u ",K",n><a2>—<0>,
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where
(9.26)
M (#(1,?7)’1{1771’,]) =
— (M 4 [K22) 4+ (D1, W) + 7 any Ay ( K} 4Ky ”) +{(P1, Wo2) +1b
e (KD +iKy™) + (@1, Wa2) +1 b — () 1 g K[2) £ (D1, WD) + 1 aso

a11, a2 and b are functions of x( K7 and n and are given by the expressions:
(9.27)

ay = <QL(—2iK1’”-Vx+W)<I>Z, o Ql(—ZiK“’-Vx+W)fl>l>, 1=1,2,

(9.28) b= <Ql(—2iK1”7-Vx+W)fI>1, Yo QL(—ZZ'KL"-VX+W)<I>2>,

where £ = L (u,Kl,n) is defined in ([@23]). Note that a;; and ago are real. The
matrix M (u(l), K!, 77) has the structure:

M (/L(l)aK17n) =
(9.29) —pD + Ay (u, K, ) B (u™M, K, n)

B(W.KLn) @+ Ay (1O K )
where A;; and B are smooth functions of (u(l),Kl’",n) , which can be read off
from ([@.26) and (@27)-(@28):
(9.30) Ay = (D, Wd) —nK'* +nay, 1=1,2,
(9.31) B = X\ (K{ +iK3) + (®1,Wds)+7nb.
A consequence of the above discussion is
Proposition 9.1. (1) The pair (u, ¢™M) is an L3, -eigenpair of H(n) =

—A+V +nW, where 1 is real and KM e R2, p(M, (1) ¢ L%{(n) are defined
in (OI0)-@I2) if and only if

(9.32) det M (u(l),Kl,n) ~0.

(2) By selfadjointness, for n € R and K' € R?, if u™V) is a solution of (@32,
then pM is real.

(3) ' is a geometric multiplicity two L3, -eigenvalue of H(n) if and only if
the triple ( M K, 77) is such that the 2x2 Hermitian matmx/\/l( K 77)
has zero as a double eigenvalue; i.e., M ( M K, ) 18 the zero matrix.

Now, up to this point we have not used the hypothesis that W(x) is an even
function (inversion symmetry). We now impose this condition on W. For the case
where W is not even, see Remark at this end of this section.

Claim 1. W(X) =W(fx) — <(I)1,Wq)1> = <¢27W¢2> and aip = agy. By
(m), it follows that A11 = AQQ.
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Proof of Claim 1. Recall, as in Theorem [5.1] that ®o(x; K) = ®;(—x; K) and thus
<(I>2, W(I>2> = f@l(—X)W(X)¢1(—X)dx = J|<I>1(x)|2W(—x)dx = <CI)1’ Wq)1>

Furthermore, one checks easily that a1; = aos.
In this case, we set

(9.33) a;1 =ax=a=a (,u(l),Kl,n> and A1 =Axp=A4A=A (u(l), Kl,n) .

Here a = a1 = ago and b are functions of (1), K, 7, displayed in (I.27) and ([@28).
By Proposition [@] and the above Claim 1, if W (x) = W(—x), then we obtain a
double eigenvalue if and only if

(9.34) pt— A (u(l),Kl,n) =0 and B (u(l),Kl,n) =0.

By analyzing the solution set of ([@.34]) for small n, we shall prove the following:

Proposition 9.2. For each real n in some small neighborhood of zero, there exists a
unique K' = K17 = (Kll’", K;”’) and ;1M = M such that p™ = p© 4 putm
(see @I2)) is a geometric multiplicity two L?(R?/Ay,)-eigenvalue of H(n; K7).

Proof of Proposition 2. Consider ([@.34) for ™ and K" for n = 0. We have

(9.35)  pu0 —A(u(l’o),K1,0> =0 o pu19 = (@, W) and

(9.36) B (n00,K,0) =0 o X (K10 +iK}") = ~(@, W) .
Equation ([@38)) is equivalent to the two equations:
(9.37) K= —R((N) (@1, WD), K0 = —F((Ng) 7 (@1, WD)

We next consider the case n # 0, real and sufficiently small.

Claim 2. A and B, defined via ([3.26)-([@.29), are smooth functions of (u(1), n, K}"°).
Moreover, there exist constants ¢; > 0, di > 0 and 79 > 0 such that for all

IK! - K'Y < ¢p, [pM) — p9] < d; and || < n9, we have

(1) A:<¢17W¢’1> + an (,u‘(l)aKlle)a

(2) B =X (K{ +iK3) + (D1,W®s) + 5 f5 (1, K',n),
(3) fA, fB = O(l) )

(4) 9,B = O(), |0,4] <1/2.

We leave the verification to the reader.
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An immediate consequence of Claims 1 and 2 is:

Claim 3. Assume )y # 0. Then, for || < o, [K' — p0)| <
dy, equations ([@.34) are equivalent to the system:

) — -1
(9.38) KW 4 k) = () (@, W) + nF (D, g, K KY),

(9.39) pV

(@1, W) + nfa (s Kn)
By the above, we have

Claim 3. p™ = p(© 49uM is an L?(R2?/Ap,)-eigenvalue of H(K ™, 7) of geometric
multiplicity two (see (II0)-(@12)) if and only if £, K" and K" satisfy:

K= () @0, W)+ gF (a0, KL KT ) = 0,
(940) K37 = S( () @, W)+ P (0 KK ) = 0,
0 = (@, W)+ a0, KK ) = 0,

So, in order to prove Theorem[0.1] we seek a solution of ([@.40) in a neighborhood
of its solution for n = 0, given by ([@.33]) and ([@.37):

(941) ,u/(l) _ /JJ(I,O)’ K1 _ KLO, K2 — KQ,O'

Note that the right-hand side of (@.40) defines a smooth map from a neighborhood
of (u™9, K1° K°) to R® with Jacobian at (@41)), for n = 0, equal to the identity.
Hence, by the 1mp11c1t function theorem, there exist a positive number, 7;, and
smooth functions:

(9.42) n pt e KN = (Kll,an;n> 7

defined for || < n1, such that p™ KU is the unique solution of ([@40) for all
In| < m1 in an open set about the point ([@4T]). This completes the proof of part (1)
of Theorem

To prove part (2) of Theorem [0.I] we need to display a conical singularity in the
dispersion surface about the point (K™, (), ([@2). For this we make strong use
of the calculations in the proof of Theorem EIl In particular, —A + V, u(9, K
and ¢;, j = 1,2 of the proof of Theorem 1] are replaced by H(n), p K™ from
the proof of part (1) and {(bgn) (")} where the latter now denotes an orthonormal
spanning set for the L?(R?/A;,) nullspace of H (1; KM)—u( . Then, {(1)&’7)7 @é")} =
{eiK'x¢§n),eiK'x¢én)} is an orthonormal spanning set for the L, nullspace of
H(n) — w™I. Note also that <I>§-77=0) = ®;, the Floquet-Bloch states associated
with the unperturbed honeycomb lattice potential, V.

We must study the Floquet-Bloch eigenvalue problem (compare with (@4)-(Z.3]))

( - (vx +i (K(") + n))Q V() + nW(x)) M (x; K™ 4 k)

- u(K(") +K) (M (x;K(") +K),

(9.43)

(9.44) P (x +v; KM 4 k) = o (x; KM 4 k), forallveA.
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We express p = pu (KM + k) and ™ (x; KM + k) as:

p=pu 4+ 10 (k),

2
(9-45) 500 (6 K@ 4 1) Z b (x),

where (M = () (K(”)) denotes the perturbed double-eigenvalue constructed above
with corresponding orthonormal eigenfunctions ¢§_n) (x), j=1,2.

Precisely along the lines of the derivation of ([@I9) in the proof of Theorem
A1 we now find that for || small, u(" (K™ + k) is an eigenvalue of the spectral

problem (@43)-@4) if " = p (k) solves

(9.46) det M (™", k5m) = 0,

where

(9.47) M i) = Mo ksm) + Ma(u® ki),
where

Mo (0O wim)| = € (Il [0+ v )

and
(9.48)
Mo(u ) — [ 2O+ 2007w w0y 2@ k- VYY)
o PTG ST vZ YOS CRO I V72 S U v S
(M) MYy() -k
M3 (n) - & pm + M(n) -k, )’

where M fk(n) are smooth complex-valued functions of 7. Note that

M&(n), MSQ(U) are real and Mgl (n) = MPQ(W)

and furthermore

(1,m) —X\ (k1 +ik
(9.49) MO(“(M)’HW)L:O N < Ag liLﬁl—iHZ) ﬁl(t(ll’”) ’ ) '

Thanks to ([@.48)), the equation det Mg (v, ;1) = 0 is equivalent to
950) v + { [M(n) + M%()] -k }v + det [(M;?l(n) : n)j’lzm] - 0.

The solutions have the form

(9.51) U= — [M&(??) ; M202(77)] K+ Q(n)(ﬁ),

where Q" (k) is a quadratic form in x with coefficients depending smoothly on 7.
For n = 0, ([@49) shows that the quadratic equation ([@50) takes the form:

v? — |M|? (kT + K3) = 0;

hence in (@.51]) we have
952 [ ML)+ MA@ |,y = 0and Q0] = N (F + ).

Therefore, for |n| < m (small) [@5]) takes the form

(9.53) v =nb" .+ 4/00 (),
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where b("" € R? depends smoothly on 7, Q" (k) is a quadratic form in x (depending
smoothly on 1) and

(9.54) (IMef* = Clnl) (+7 + #3) < QM (k) < (IMf* + Clnl) (vF + ),
for [n| < m and K = (k1,k2) € R2. Thus, the solutions of det Mg(v, k;n) = 0 are

given by ([@53) and ([@54).

We may now pass from solutions of det My (v, ;1) =0 to solutions of det M(v, ;1)
= 0 as in the proof of Proposition 4 Thus the L2 -eigenvalues of H( are
given by

K 4

pe(r) = mb™ -k £ 4/QW (k) - (1+ Bs(rin) ),

where E4 (k;n) < C|k| for |n| < 1, |&| < &. The proof of Theorem [0.11is complete.
O

Remark 9.2 (Instability of the Dirac point and smooth dispersion surfaces). We
here note a class of perturbing potentials, W, such that although —A + V has
Dirac (conical) points, the operator —A + V + nW has a locally smooth dispersion
surface near the vertices of Bj. Assume that V' is a honeycomb lattice potential,
which is inversion-symmetric with respect to x = 0, i.e. xg = 0 in Definition 2]
ie. V(—x) = V(x). Let W € C*®(R), Ap-periodic, but without the requirement
that W (x) = W(—x) for all x. Then, typically (&1, W) # (Pg, WPs). In this
case,
Ay (DK ) # Ago(u, K m);

e @30). For u™ = u©® 4+ nu'7 to be an L, -eigenvalue, we found that it is

necessary and sufficient that

det M (u(l’”),Kl,n) =0,

or equivalently

App + A\ App — A\
(9.55) (u(lm)_%> _ (¥) _BP =0

Thus, our eigenvalue equation becomes

A+ A A — A\
(9.56) pbm = 1112L 22 +\/< 112 22) +|BJ2.

When A;; — Agy # 0, each sign in (@50) gives rise to an equation to which we
may apply the implicit function theorem to obtain a smooth function (K!,7n) —
pM (K, ). In particular, at = 0, equation ([@56) gives

(9.57)

( 10 f@ +2W( )dx)2

2
U\@l 2 Wix W( x) dx) + | N (KO 4 iK30) + (B, W) |

Therefore, for small 7, the two signs in (@h0) give rise to two distinct solutions
ug’") . Thus, for small nonzero 7, the double eigenvalue disappears and the disper-

sion surface is smooth.
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APPENDIX A. TOPOLOGICAL OBSTRUCTION

In section [§] there arises the situation of an N x N complex matrix A varying
within the space of rank N — 1 matrices. It was of interest to know whether one can
construct a nonzero nullvector which is an analytic function of the entries of A. In
this section we provide a 2 x 2 matrix counterexample that exhibits a topological
obstruction.

Let Ml « Mat(2) denote the space of 2 x 2 complex matrices of rank 1. We prove
the following:

Proposition A.1. There is no continuous map ¢ : Ml — C2\{0} such that ¢(A) €
Nullspace(A) for each A € M.

Proof. Let ¢ denote such a map. We proceed to derive a contradiction. For vectors
v = (zz) € C?\{0}, define the 2 x 2 complex rank 1 matrix:

(A1) AW) = 9@ Jv = o (Jv)" |

where J is skew-symmetric and nonsingular. Note: v — A(v) is a continuous map
from C?\{0} to M. By skew-symmetry of J, A(v)v = 0 and therefore

Nullspace(A(v)) = C x v for each v € C*\{0} .

Hence, for each v € C%\{0} there is one and only one nonzero complex number A(v)
such that

(A2) B(A(W)) = A(w)o
Since ¢ is assumed continuous, the map v + A(v) is continuous from C?\{0} to
C\{0}. Moreover, for all v e C?\{0} and § € R: A(e?v) = A(v). Hence, by (A2,

A () v = ¢ (A(e")) = (A(v) = A(v)v
and therefore A (e’v) = e A(v) .
Now for every § € S' = R/27Z and t € [0, 1], let
(Ad)  0(0:t) = t & + (1 —1t) é, where é = ( ; > by = ( ; ) .
Note v(0;t) € C2\{0} and introduce, for (6;t) € S* x [0,1],

(A.5) CB:1) = Aw(B;1).
We think of 8 — ((6;t) as a 1-parameter (¢ € [0,1]) family of closed curves in
Cch\{0}.

Taking ¢t = 0, we have ((#;0) = X (&), for all § € S, and

taking t = 1, we have ((6;1) = A (ewél) = e )\ (¢), forallfe ST,

by ([(A3). Thus by varying ¢ between 0 and 1 we obtain a continuous deformation
of the unit circle to a point, remaining in C\{0}. This is impossible. O

(A.3)
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