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1 Introduction

With the increasing importance of Internet in everyone’s daily life, Internet
security poses a serious problem. Now-a-days, botnets are the major tool to
launch Internet-scale attacks. A “botnet” is a network of compromised ma-
chines that is remotely controlled by an attacker. In contrast of the earlier
hacking activities (mainly used to show off the attackers’ technique skills),
botnets are better organized and mainly used for the profit-centered endeav-
ors. For example, the attacker can make profit through Email spam [1], click
fraud [2], game accounts and credit card numbers harvest, and extortion
through DoS attacks.

Although thorough understanding and prevention of botnets are very im-
portant. Currently, the research community gains only limited insight into
botnets.

Several approaches can help to understand the botnet phenomena:

Source code study is to examine the botnets’ source code, given that the
most famous bot sources are under GPL. This can give us an insight about
all the malicious activities that can be achieved by the botnet. However,
there are different versions of botnets and major versions have different
variants. It is hard to study all their source codes, given many of them
might not be obtained in the first place. Another problem is that this
approach only gives us the static features of botnets, but not the dynamic
features, such as the size of botnets, the geological distribution of the
bots, etc.. However this study can give us some insight into their current
functionalities and how they achieve that.

Command and Control study is the study of IRC traffic or other commu-
nication protocols that botnets use for communication. Potentially, this
approach can be used to observe the global view, if the traffic of IRC com-
mand and control channel can be sniffed. However, the trend has moved
towards using private IRC servers or other communication protocols, such
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as WEB or P2P. Moreover, a more fundamental problem is that botnets
may encrypt their command and control channels. The covert channel
detection could be extremely difficult.

Controlling botnet is to gain the control of the botnet, so that we can
have a global view and study its behavior. Usually, researchers limited
their approach to either set up or buy a botnet. Another way is to hijack
the botnets’ DDNS entries [3]. However, this is dependent on whether the
DDNS vendors are willing to cooperate and whether the DDNS names
can be detected.

Behavior study is the study of the botnet by observing their behaviors. For
example, botnet scanning, botnet based DoS attack, botnet based spam,
botnet based click fraud etc.. This study usually can capture dynamic
features and measurements become easier.

We are interested in developing a general technique which has a minimum
monitoring overhead for observing botnet behavior, and hard to evade by
botnets. Therefore, people from any corner around the world can easily adopt
it to measure the characteristics of the botnet behavior. If we could aggregate
the measurements, potentially we can get a more accurate global picture of
the botnets. After carefully analyzing the above behavioral list, we found that
the botnet scanning behavior is ingrained to the botnet because this is the
most effective way for them to recruit new bots. Therefore, we believe in
near future, the botmaster will not give up scanning. Moreover, monitoring
scanning is relatively easy. With a honeynet installed people can easily get
the botnet scanning traffic.

With this motivation, we designed a general paradigm to extract botnet
related scanning events and analyzing methods. We further analyzed one year
honeynet traffic from a large research institution to demonstrate the methods.

In [4], three types of scanning strategies of botnets have been introduced:
localized scanning, targeted scanning and uniform scanning. Localized scan-
ning is that each bot chose the scanning range based their own IP prefixes.
Targeted scanning is that the botmaster specified a particular IP prefix for
bots to scan. The uniform scanning is the botnet scanning the whole Inter-
net. Here, we call the targeted scanning and the uniform scanning as global
scanning, since usually it is hard to determine the scanning range of a botnet.
In the honeynet, the global scanning events can be easily identified since it
usually related to large number of sources. However, the localized scanning is
quite hard to identify. It is hard to differentiate whether it is a single scanner
or it is part of a large botnet.

In this chapter, we mainly studied the botnet scanning behaviors, and use
its scanning behavior to infer the general properties of botnets. Scanning is
the major tool for recruiting new bots. In our study we found out that 75%
of the successful botnet scanning events followed by the malicious payloads.
Understanding the botnet scanning behavior is very important since it will
help us to understand how to detect/prevent botnet propagation. Moreover,
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we can gain insight into the general properties of botnets through this study.
Because of the prevalence of botnet scan activities, we believe that scan based
botnet property inference is also very general.

In this book chapter we mainly wanted to answer the following questions.

• How to use botnet scan behavior to infer the general properties of the
botnets?

• How to extract the botnet scan events?
• How are the network level behavior of the botnets?
• What are the different scan strategies used by the botnets and how these

related to dynamic behavior of the bots?

In this book chapter, we demonstrated that the botnet scan traffic can
be very useful in terms of inferring the general properties of the botnets.
We developed a general paradigm for botnet scan event extraction. Based
on it we analyzed one year honeynet traffic. In our study, we found that the
bot population is highly diverse. Although, 41% of bots come form top 20
ASes, but the total population is from 2860 ASes. But the bot population is
pretty concentrated in certain IP ranges, which confirmed the conclusion from
botnet spamming study [1]. The IP range distributions have high variance
from botnets to botnets. This implies the IP blacklist might not always be
effective for different botnets. In most cases, the scan arrival follows a Poisson
process and the inter arrival time follow an exponential distribution. This
suggested that the bots scan randomly and the scan range is much larger
than the sensor size. We found there are two clear modes for bots to arrive.
They either arrive mostly at the very beginning or they are pretty evenly
distributed in the whole scan event duration. This might due to different
scan strategies the botmasters used. We also found some very complex scan
strategies used by the botmasters.

The rest of this book chapter is organized as follows. We discussed the
related work in Section 2. Section 3 described the design of the general botnet
scan event extraction paradigms. Section 5 discussed our findings of analyz-
ing botnet scan events extracted from one year honeynet traffic from a large
research institution. Finally, Section 6 stated the conclusions.

2 Related Work

Currently, most botnet studies leverage on two approaches: IRC channel mon-
itoring [5, 4] and DNS hijacking [3, 1]. If the botnet uses an IRC based com-
mand and control mechanism and does not encrypt the channel, potentially a
faked bot can be inserted into the channel to monitor the botnet behavior. To
be really useful, this further requires the botnet IRC channel allows message
broadcasting, so that a bot can hear the information of other bots. Obviously,
this approach can get the botnet behavior from a “insider’s perspective”.
However, given the trend of botnet command and control mechanisms are
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changing towards WEB [6] or P2P [7] based approach. This approach might
bias the study towards the characteristics of IRC based botnets.

If we can know the domain name of a botnet’s command and control
server, and we can convince the domain name service provider to redirect the
domain name to another system, potentially we can hijack the botnet and
control it by ourselves. In this way, we can fully control the botnet and study
its behavior. However, usually to find the domain name and convince the
DNS service provider to redirect the domain name for us is not always easy,
especially when the botnet use a DNS service provider in a foreign country.

Botnets have been used for cyber-crimes for quite some time, but studies
on botnet detection are sparse. Known techniques for botnet detection in-
cludes honeynets and IDS system with signature detection. Honeynets [8] or
darknets can be proved useful in studying botnet behavior, but cannot track
the actual infected host. Signature matching and behavior of existing botnet
can be used for detection. An open-source system like Snort [9] can be used for
detection of known botnets. Signature matching has its own disadvantage that
it can be easily fooled by smart bots and also fails for new botnets. [10] has
suggested an anomaly-based detection method, which combine an IRC mesh
detection component with a TCP scan detection heuristic for detecting botnet
attacks. However, this system suffers from false positive and could be evaded
by simple encoding of IRC channel. Another interesting work for finding bot-
net membership is by using DNSBL Counter-Intelligence [11]. This method
is limited to the detection of spamming botnets and it is computationally
expensive and memory intensive.

As [5] firstly suggested that botnet propagation and attack behavior can
be another way to study the botnets. We mainly studied the scan behavior
of botnets and through it we inferred the general properties of botnets. We
argue this also is a very important angle, since most botnets leverage on
scanning and exploiting the vulnerable hosts to recruit new bots. Therefore,
it is a very common behavior of the botnets. Understand it better will help us
improve the botnet detection/prevention. Since the botnet scanning activities
are prevalence, it is also a general way to infer the properties of botnets. In [12],
they mainly infer the difference between the botnet scanning event with worm
propagation and misconfigurations. Here, we focused on using the scanning
events to understand the botnet scan behavior and botnet prosperities in
general.

Most general honeynet [13, 14, 15] and honeyfarm [16, 17] approach can be
used to monitor the botnet scanning behavior. A large continuous IP space is
good for monitoring the botnet global scan, i.e., scan a given IP prefix which
is different from the bots’ IP prefix. A distributed honeynet/honeyfarm can
be better in terms of monitoring local scan activities in which case each bot
scan their local prefixes.
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3 Botnet Scanning Event Identification

Figure 1 shows the botnet event extraction and analysis paradigm. To un-
derstand the botnet scanning behavior, we first extract coordinated scanning
events from the honeynet traffic. A botnet scan event is a large scale coor-
dinated scanning event which normally has to employ large number of bots.
We use the large number of unique sources contacting the honeynet as an
indicator of the botnet scanning. Then, we separate the misconfiguration and
worm cases from botnet cases. We focus on the analysis of botnet events

Misconfiguration

Botnet
Worm

Misconfiguration 
Separation

Honeynets/Honeyfarms 
Traffic

Traffic Classification

Event Extraction

Worm 
Separation

Botnet Event
Analysis

Fig. 1. Botnet event extraction and analysis paradigm

3.1 Honeynet and Data Collection

Traffic sent to unused Internet addresses (“darknets”) can reflect a variety of
activity. We cannot determine the nature of the activity by simply watching it
passively as probes arrive because the specifics of most forms of activity only
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manifest after the source establishes a connection (or, sometimes, a whole set
of connections comprising a session) with the destination. As a general ap-
proach, we can take traffic sent to unresponsive darknets and channel it to
a honeypot system that will respond in some fashion. Such a combination is
often referred to as a honeynet. Honeynet systems can employ low- or medium-
interaction honeypots [13, 15], which provide fake responses of varying detail,
and thus can elicit a range of possible activity from the sender. Going further,
one can employ high-interaction honeypots (full, infectible systems, often run-
ning inside virtual machines), which when coupled with a honeynet is termed
as a honeyfarm [16, 17].

Our analysis is based on one year (2006) honeynet data from a large re-
search institution. The honeynet has ten continuous class C networks. The
half of the sensor is dark which means no response to any incoming packets
and the second half accompanied with Honeyd responder which simulate most
popular protocols and respond the SYN/ACK packets to the unknown proto-
cols. The configuration is similar to the ones used in [18, 12]. We also adapt
the source-destination filtering [18].

3.2 Traffic Classification

Some attack traffic can have complex session structures involving multiple
application protocols. For example, the attacker can send an exploit to TCP
port 139 which, if successful, results in opening a shell and issuing a http
download command. In general, the application protocol contacted first is the
protocol being exploited, so we label the entire session with the first protocol
used. This also provides consistent labeling for those connection attempts in
which the honeynet did not respond and we observe only the initial SYN
packet. We aggregate the connections to sessions using an approach similar to
the first step algorithm by Kannan et al [19]. We consider all those connections
within Taggreg of each other as part of the same session for a given pair of
hosts. We used the same threshold, Taggreg = 100 seconds, as Kannan et
al [19], and found that this grouped the majority of connections between any
given pair of hosts.

For application protocols which are not commonly used, the average back-
ground radiation noise is low and thus port numbers are used to separate event
traffic. However, noise is usually quite strong for more popular protocols, thus
requiring further differentiation. Assuming that we observe at least one suc-
cessful session from each sender, we can use the payload analysis of that session
to separate it from other traffic. We use a similar approach for the Radiation-

analy summaries proposed in [12], which further classify the traffic within
one application protocol or one application protocol family by rich semantic
analysis. We analyzed the semantics of 20 common and backdoor protocols
based on Bro’s application semantic analysis [20], and generated a session sum-
mary for each session (e.g., 445/tcp/[exploit] (NAMED PIPE:"\\<dst-IP>\IPC$
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\wkssvc"; RPC request (4280 bytes))). Based on the session summary we can
further classify the traffic within one protocol family.

3.3 Event Extraction

We found for the traffic of all the port number or protocol semantics, the
traffic consists of a steady background noise with some large spikes. The large
spikes usually are corresponding to the botnet scanning events. We found to
extract the big spikes is similar to the traditional signal detection problem.
Signal strength S is defined as the peak of unique source count arrival, and
the typical unique source count when there are no events is defined as noise
strength N . Noise strength is calculated as the median of unique source counts
of every time interval for TN days before the event. If the event occurrence
time is less than TN/2, then noise strength is the median of the time window
TN . We define the signal to noise ratio as SNR = S

N
, and examine only those

events with large SNR. We use TN = 30 (30 days) since we never see an event
last more than two days. The thresholds we use are SNR ≥ 50.

We calculate the unique source count of every pre-defined time interval for
a given protocol. Event extraction is done using time series analysis. While
many general statistical signal detection approaches might be applied here,
we currently extract the events semi-manually. We first automatically extract
potential events using the following algorithm: for any given time interval, we
calculate the median of the previous TN intervals and the SNR. For those
spikes which exceed our SNR threshold, we extend the range until S ≤ ωN
where ω is a tunable parameter controlling the amount of the signal tail to
include in the event.

After an event is extracted, we might refine the event by re-scaling it into
smaller time intervals and recalculating the unique source counts. We use
manual analysis and visualization techniques at this point, since re-scaling
might make the shape of events more complex.

3.4 Misconfiguration and Worm Separation

Events with a large number of sources are usually misconfigurations, botnets
and worms [12]. We separate misconfigurations from worms or botnets based
on the observation that botnet scans and worms contact a significant range
of the IP addresses in the sensor, whereas events with few hotspots target are
caused by misconfigurations. We use two metrics to separate misconfiguations
from other events. The address hit ratio, NE/ND, where NE is the number of
destination addresses involved in the event and ND is the number of destina-
tion addresses in the honeynet, should be much smaller for misconfigurations
than for botnet sweeps or worms. Secondly, the average number of sources per
destination address should be much larger for misconfigurations. If the first
metric is below given threshold while the second crosses a given threshold,
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we consider the event to be a misconfiguration; otherwise it is classified as a
worm or botnet event.

Worm behavior and botnet probes are quite similar: both scan and send
exploits to the address range in a similar manner. However, usually the num-
ber of sources for worms grows much more quickly than botnets, and events
also last longer for worms. But if botnets scans the entire Internet, with new
infected bots continuing to join the scan activity, then there is no observable
difference from worms. Hence it is difficult to define a strict distinction be-
tween botnet sweeps and worms. In this paper, we treat all events with an
exponential growing trend in the number of sources as worms [21], and the
other events as botnet sweeps. We use the Kalman filter based exponential
trend detection proposed in [21] to differentiate botnet and worm events.

4 Botnet Scanning Event Analysis

In our one year honeynet traffic, we found 43 botnet global scan events. We
first analyzed the overall sender (bot) characteristics of the all the senders.
Then, we analyzed each event individually and compare the characteristics
among different events.

In this book chapter, we focused on the following characteristics of botnet
scanning behavior.

• Bot IP distribution and AS distribution
• Bot operating system characteristics
• Botnet scan arrival behavior
• Bot arrival and departure process observed in the scanning events
• Bot observed local scan rate behavior
• Botnet scanning source and destination relationship

4.1 Source Characteristics of Bots

We observed thousands of senders in most of the events. In 43 events, we
totally observed 63,851 unique senders. Figure 2 shows the number of senders
(bots) observed over all the events, as a function of IP address space. The
overall trend is very similar to the spamming IP distribution in [1]. From the
figure we knew, most bots are from 60.* – 90.* and 193.* – 222.* and some
are from 24.* (cable modem provider). The figure illustrated that the bots
mostly come from quite concentrated IP ranges. This result confirmed the
result from the bot spamming behavior study [1].

We also analyzed the IP space distribution for every event. We found for
most events we got the similar IP space distribution as figure 2. However,
there are some events whose IP space distributions are far from the total
distribution. Figure 3 and Figure 4 shows a few such examples. Since different
events might be corresponding to different botnets, this implies the IP space
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Fig. 2. The number of all unique source IP addresses, as a function of IP address
space. On the x-axis, IP address space is binned by /24.
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Fig. 3. The number of all unique source IP addresses for the event on TCP port
2967 on 2006-11-26, as a function of IP address space. On the x-axis, IP address
space is binned by /24.

distributions of different botnets can be quite different. Therefore, the coarse
grain IP range based botnet filtering or detect might not work well in practice.
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Fig. 4. The number of all unique source IP addresses for the event on TCP port
5000 on 2006-8-24, as a function of IP address space. On the x-axis, IP address space
is binned by /24.

In our study, we found most bots are from a relative small number of ASes.
More than 22% of bots are from the five ASes, and 41% of the bots from 20
ASes. In Table 1, we showed the top 20 ASes and the corresponding number
of bots for each AS. From the analysis of the top 20 ASes, we found about
21% of the bots are Asia, mainly from China, Korea and Taiwan. Europe and
North America (Unite States and Canada) have similar amount of bots 9.5%
and 9% respectively. Surprisingly there are also about 2% bots coming from
Brazil. The bot population is from 2860 ASes in total. Although our honeynet
detection sensor is in Unite States but the bots indeed come from all over the
world. The overall result are similar to the result from [1]. The difference
between our result and the result from [1] is mainly that we observed more
hosts from Europe than them.

4.2 Operating Systems of Bots

We also investigated the prevalence of operating system among the bots. We
used p0f [22] tool to identified the operating system versions. P0f is a passive
OS fingerprinting tool which mainly uses the TCP options within the TCP
SYN packets to identify the operating system versions. For each bot, we might
observe multiple SYN packets. Sometimes, the different SYN packets from a
bot might be given different OS results by p0f. We used the following priorities
to solve the potential conflict. We think the other OS types have higher prior-
ity than Windows, and Windows has higher priority than Unknown. The rule
is to favorite the non-Windows operating systems and to try to avoid assign-
ing Unknown. Table 2 shows the operating system distribution we found. We
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AS number #Source AS Name Primary Country

4134 4449 CHINANET-BACKBONE China
9318 2988 Hanaro Telecom Inc Korea
3462 2712 Data Communication Business Group Taiwan
4837 2091 CHINA169-BACKBONE China
5617 1849 Polish Telecom’s commercial IP network Poland
7132 1660 SBC Internet Services United States
6327 1545 Shaw Communications Inc. Canada
19262 1441 Verizon Internet Serv United States
3320 1060 Deutsche Telekom AG Germany
3352 855 Internet Access Network of TDE Spain
7738 744 Telecomunicacoes da Bahia S.A Brazil
20961 675 Autonomous System Poland
577 619 Bell Canada Canada
3269 609 Telecom ITALIA Italy
9394 541 CHINA RAILWAY Internet(CRNET) China
12322 533 PROXAD AS for Proxad/Free ISP France
8167 498 Telecomunicacoes de Santa Catarina SA Brazil
3356 493 Level 3 Communications United States
25310 469 Cable and Wireless Access LTD United Kingdom
4766 429 Korea Telcom Korea

Table 1. Amount of scan received from botnet scanning in the top 20 ASes.

Operating System Clients

Windows 58797 (92%)
-Windows 2000 or XP 58028 (90.8%)
-Windows 98 404 (0.63%)
-Windows NT 329 (0.51%)
-Windows 2003 25 (<.1%)
-Windows 95 11 (<.1%)

Linux 9 (<.1%)
Novell 23 (<.1%)
HP-UX 1 (<.1%)

Unidentified 5021 (7.8%)

Total 63851

Table 2. The operating system distribution for unique senders of received scan, as
determined by passive OS fingerprinting.
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found 92% of the bots are identified as Windows machines by p0f [22]. And
among the Windows machines, 90.8% of the bots are Windows 2000 or XP.
This result supported the conventional wisdom that botnet army are mainly
comprised Windows machines.

We also did the similar analysis at per event level. We found for all the
43 events the dominated operating system are Windows. We did not observe
any events which mainly consist of other types of machines. Although, there
are some rumors that some botnets are Linux or Unix based, based on our
finding, we believe the percentage of non-Windows based botnets in the botnet
population are really low.
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Fig. 5. The cumulative scan session arrival process of the event on TCP port 8888
on 2006-02-06, which corresponding to a backdoor shell.

4.3 Scan Arrival Characteristics

For all the botnet events, we analyzed how the scan sessions arrive in time. We
found for most events the very beginning and the very end of the events have
complex arrival behavior. However, for most events in the middle part, the
scan arrival speeds are quite constant, and the more than half of the events’
inter-arrival time follows exponential distributions. This suggested that the
scan arrivals follow a Poisson distribution. One plausible explanation for this
is based on the law of rare events. Usually the botnet scans a large IP scope,
and the sensor is only a tiny portion of it. If the botnet uses random scanning,
for each scan session there is a small probability p to arrive the honeynet
detection sensor. According the law of rare events, the observed scan sessions
in a given time interval will follow a Poisson distribution and the inter arrival
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Fig. 6. The inter-arrival time log scale CDF of the event on TCP port 8888 on
2006-02-06, which corresponding to a backdoor shell.

time will follow an exponential distribution. Among the 43 events, about 25
(58%) events the inter-arrival time follows an exponential distribution. This
suggested most botnets indeed use a random scan strategy. An example of
the scan arrival and scan inter arrival time is shown in Figure 5 and Figure 6
respectively.
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Fig. 7. The arrival process of the event on TCP port 1433 on 2006-01-22 (from
2006-01-22 21:00 to 2006-01-23 07:00), which corresponding to a MS SQL Server
vulnerability.
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Fig. 8. The arrival process of the event on TCP port 1433 on 2006-08-24, which
corresponding to a MS SQL Server vulnerability.

4.4 Source Arrival and Departure

We also investigated for each event when the bots are observed. We defined,
for a given bot, the time it begins to scan as its true source arrival time, and
the time it stops to scan as its true source departure time. We cannot measure
the true arrival time and departure time of the bots, since the botnet might
scan a large range and the honeynet sensor can only observe a small sample of
the scans. Instead, we defined the time of the first scan we seen from a given
bot as its observed arrival time, and the time of the last scan we seen from the
same bot as its observed departure time. For random scanning, we can assume
the scans we observed are a random sampling from the total scan population.
Certainly the sampling errors will influence the results. The number of scan
between the first scan sent out by a bot and the first scan we observed from
that given bot follows a geometry distribution. If we assume the scan speed is
close to constant, the time difference of the first scan sent out by a bot and the
first scan we observed from that bot will also follow a geometry distribution.
We can make the similar argument to the true departure time of the bot and
the departure time we observed. For the long lived events usually we can use
the observed arrival and departure time as good approximation of the true
arrival and departure time. For the short lived event the observed arrival and
departure time might not be able to present true arrival and departure time.

For the long lived events, we found there are two types of source arrival pro-
cesses. In some events, most bots arrived at the beginning part of the events,
but on some other events bots arrivals distributed over the whole period of the
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event duration. Figure 7 and Figure 8 showed such two representative cases
respectively.

In Figure 7, most bots arrived at the beginning part of the events. This
might correspond to the case that after the botmaster typed the scan com-
mand in the command and control channel, immediately the bots in the chan-
nel received the scan command and began to scan. The true source arrival
times of bots are same, so the observed source arrival time follows a geometry
distribution.

In Figure 8, the bot arrive uniformly in the event duration, which indicate
the true source arrival time of different bots are different and also should
be uniformly distributed in time. There are two possibilities to make this
happen. One possibility is that every bot defer to execute the scan command
by random seconds uniformly. The other possibility is that the scan command
is the default channel topic [4]. Therefore, after a bot join the channel, it will
get the scan command and start scanning. From the data we cannot separate
these two cases.

In the departure process, we found, in all the long-lived events, many bots
depart before the events end.

For the events most bots arrived at the beginning part of the events,
we observed at the end of event, the bot departure rate increased sharply.
We analyzed several botnet source code genres and found in most case the
botmaster asks the bot to scan a fixed amount of time. If that is the case,
it makes sense that at the end of the time specified by the botmaster all the
remaining bots end the scanning.
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Fig. 9. The bot arrival process of event on TCP port 139 from 2006-08-24 13:40 to
2006-08-25 11:04, which corresponding to a Netbios-SSN scan.
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Fig. 10. The scan arrival of event on TCP port 139 from 2006-08-24 13:40 to 2006-
08-25 11:04, which corresponding to a Netbios-SSN scan.

There is one event different from other events, in which the bots arrived
in groups, but the total scan arrivals are still linear in time. In Figure 9 we
can see there are four major groups of bots arrived in batch. But in Figure 10
the number of scan arrivals is still linear in time. Through further analysis we
found, after the first group of bots departed, the second group of bots arrived
immediately. This is also true for other consecutive groups of bots. Obviously,
the botmaster intentionally divide the bots in four groups to do the scanning
one after another.

We also studied the observed bot scan duration, i.e., the time between the
first scan observed from a given bot and the last scan observed from the given
bot. An example CDF of the scan duration is shown in Figure 11. However,
we found the scan duration varies from events to events. There is no clear
pattern can be found.

4.5 Observed Local Scan Rate

We calculated the local scan rate of a given bot as the number of scans we
observed minus one over its observed scan duration. The idea behind is that
we can think after the first scan arrives we started the timer, and in the
observed scan duration we will observed the scans except the first one. We
will not define the local scan rate for the senders from which only one scan is
observed.

We first looked at the CDF of local scan rate of different events. In four
cases, the numbers of bots which send more than one scans are very small, so
the CDF is not very representative. For the remaining cases, we found most
bots have similar local scan rate with a few bot with very high local scan rate.
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Fig. 11. The CDF of observed scan duration of bots of event on TCP port 1433 on
2006-08-24, which corresponding to a MS SQL Server vulnerability.
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Fig. 12. The CDF of local scan rate distribution of the event on TCP port 5900 on
2006-09-26, which corresponding to a VNC vulnerabilty.

We further analyzed the bots with very high local scan rate, and find they are
not necessarily the bots which send most scans. Many of such cases are due
to they have very short observed scan duration. Figure 12 shows an example
of such a CDF distribution.

We further investigated whether the local scan speed have any correlation
with the bot arrival and departure time. We did not find any obvious trend.
We believe in most case, the bot arrival and departure time might not have
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strong correlation with their local scan speed. However they might have certain
weak correlation and which can be buried into the random noises in the data.
Figure 13 and Figure 14 show an example of this analysis.
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Fig. 13. The scatter plot of the source observed arrival times and their correspond-
ing observed scan rate of the event on TCP port 1025 on 2006-09-19.
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Fig. 14. The scatter plot of the source observed departure times and their corre-
sponding observed scan rates of the event on TCP port 1025 on 2006-09-19.
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4.6 Scan Source Destination Relationship
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Fig. 15. The distribution of number of sources a destination contacted of the event
on TCP port 1433 on 2006-08-24, which corresponding to a MS SQL Server vulner-
ability.
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Fig. 16. The distribution of number of destinations a source touched of the event
on TCP port 2967 on 2006-11-27, which corresponding to a backdoor shell.



20 Zhichun Li, Anup Goyal, and Yan Chen

We also analyzed source destination relationships. We mainly studied two
distributions: how many sources target a destination address in the honeynet
sensor, and how many destinations are contacted by a source.

We found in all the events, the distribution of how many sources a des-
tination contacts is close to the binomial distribution with only very few ex-
ceptions. This implies that the source usually choose the destination uniform
randomly. Figure 15 is such an example.

The distribution of how many destinations a source targets is more com-
plex. Sometimes it has multiple modes. The conjecture is that it can be ex-
plained as a multiplex of multiple binomial distributions, due to different bots
might have different scan speeds and durations. In Figure 16 we showed an
example which clearly has this pattern.

5 Conclusion

Botnets have become the most serious threats to the Internet security. Many
cyber-crimes are botnet related. Measuring and understanding the botnet
will help us gain more insight to the botnet phenomenon, and further help us
design better detection and prevention systems.

In this book chapter, we proposed a general framework to extract botnet
global scanning events. Based on one year honeynet traffic from a large re-
search institution we studied the six different botnet scanning characteristics.
We found botnets although mainly from a small number of ASes but indeed
spread out all over the world from totally 2860 ASes. There are two different
botnet arrival/departure patterns: all together and gradually. We conjecture
this is related to different scan strategies. We also found the scan arrivals are
linear in time and inter-arrival time follows a exponential distribution, which
might imply the scans are random scanning and the scan range is much larger
than the detection sensor.
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