
Honeypots for Distributed Denial of Service Attacks

Nathalie Weiler
Computer Engineering and Networks Laboratory (TIK),

Swiss Federal Institute of Technology ETH Zürich, Switzerland
weiler@tik.ee.ethz.ch

Abstract
Distributed Denial-of-Service attacks are still a big threat to

the Internet. Several proposals for coping with the attacks have
been made in the recent past, but neither of them are successful on
themselves alone. In this paper, we present a system that helps in
the defence in depth of a network from DDoS attacks. In addition
to state-of-art active and passive security defences, we propose a
honeypot for such attacks. The goal is to convincingly simulate
the success of the compromise of a system to a potential DDoS at-
tacker. Thereby, we can implement the lessons learned by the hon-
eypot in our other systems to harden them against such attacks.
On the other hand, we protect the rest of our network infrastruc-
ture form the impact of such an attack.

Keywords: Distributed Denial of Service Attacks, Honeypot,
Security Practices.

1 Introduction

Since February 2000, even laymen know what a devast-
ing effect a Denial of Service (DoS) can have: Ebay, Ama-
zon and Buy.com were out of business for hours due to new
generation of DoS attacks, the so called Distributed Denial
of Service (DDoS) attack [8]. Denial of Service Attacks are as
old as the Internet.

Control Traffic

Victim

Compromised
Slave

Attacker

Control traffic

Compromised
Slave

Compromised
Slave

Control Traffic

SRC=random
DST=victim

SRC=random
DST=victim

SRC=random
DST=victim

Figure 1. Overview of an DDoS Attack Scenario.

In fact, the first link in the ARPAnet, the mother of the
Internet, crashed while receiving data from the sender, the
fault being a bug in the communication software [14].

The danger of becoming a victim in a DoS or DDoS attack
increases with the availability of attacking tools for down-
loads in the World Wide Web. The threats to services and
users in the Internet becomes stronger. The yearly survey of
Computer Crime and Survey of 2001 names denial of ser-
vice attacks as one of the four major attacks seen in 2001.
This type of attack has seen a major increase from 24% of
companies reporting such incidents in 1998 to 36% in 2001
[13]. A simple experiment confirmed this trend: we set up
a misconfigured system with several unfixed security holes,
and announced is presence by trivial postings from the root
account in some newbie Newsgroups for system adminis-
trators.The log of our intrusion detection system reported 25
different presumed DDoS preparing attacks on this system
vs. 1 the day before.

Control Traffic

Victim

Compromised
Slave

Attacker

Control traffic

Compromised
Slave

Compromised
Slave

Control Traffic

REQUEST:
SRC=victim

DST=reflector

REPLY:

SRC=reflector
DST=victim

Reflector

Reflector

Reflector

Reflector

Reflector

Reflector

Figure 2. DDoS Attack using reflectors.

In a typical DDoS attack, the attacker subverts a num-
ber of servers on the Internet by exploiting well-known se-
curity flaws. These compromised servers become the slaves
of the attacker by the installation of flooding tools for the
real attack. Figure 1 illustrates the procedure of the attack.
The attacker sends control traffic to his compromised slaves

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

that instructs them to generate high volume traffic toward
the victim, typically with a faked source address to prevent
backtracing to the slaves (that might be used in another at-
tack).

In this paper, we present the design of a system that al-
lows to disrupt the attacker’s chain. The goal of the system
is to convince the attacker that he successfully compromised
the slave. In reality, the system is a kind of a honeypot that
lures him to believe so. Thereby, the operator of the honey-
pot learns the tactics of the attacker and can implement effi-
cient defences in the rest of his network. On the other hand,
the attack on the victim is of course successfully inhibited
and the recording of the compromise may help in a legal ac-
tion against the attacker.

The remaining of the paper is organised as follows: First,
Section 2 characterises DDoS attacks. Actual methods of de-
fences are discussed in Section 3. Section 4 details the design
of our system. We conclude with a short evaluation and fur-
ther work in Section 5.

2 Characteristics of Distributed Denial of
Service Attacks

2.1 Definitions of DoS and DDoS

A denial of service (DoS) attack is commonly charac-
terised as an incident in which a user or organisation is de-
prived of the services of a resource they would normally ex-
pect to have. Typically, the loss of service is the inability of
a particular network service, such as e-mail, to be available
or the temporary loss of all network connectivity and ser-
vices. In the worst case, for example, a Web site accessed by
millions of people can occasionally be forced to temporarily
cease operation. A denial of service attack can also destroy
programming and files in a computer system [3, 2].

This attack works well if the attacker and the target are
equally well equipped in bandwidth and in computing re-
sources. Distributed DoS are used in order to magnify the
effect on the victim. Thereby, the attacker can for instance
successfully flood a high-end web server consisting of a
cluster of web servers served by a powerful load balancer.
The WWW Security FAQ identifies such attacks as one of
the most dangerous because of their impact on web servers.
[19] defines: A Distributed Denial of Service (DDoS) attack
uses many computers to launch a coordinated DoS attack
against one or more targets. Using client/server technology,
the perpetrator is able to multiply the effectiveness of the
Denial of Service significantly by harnessing the resources
of multiple unwitting accomplice computers which serve as
attack platforms. Typically a DDoS master program is in-
stalled on one computer using a stolen account. The master
program, at a designated time, then communicates to any
number of ”agent” programs, installed on computers any-
where on the Internet. The agents, when they receive the
command, initiate the attack. Using client/server technol-
ogy, the master program can initiate hundreds or even thou-
sands of agent programs within seconds.

A further improvement on the impact of the attack is
achieved by using a second type of intermediate system

called a reflector [12]. The usage of such reflectors is illus-
trated in Figure 2: The compromised servers send spoofed
requests to the reflectors. The reflectors then reply to the
seen source of the request: the victim of the DDoS attack

2.2 Characterisation

Both types of attacks have in common that they typically
use a limited number of well know attacks sometimes in dif-
ferent combinations. A DoS attack’s main characteristics is
that an attacker attempts to prevent one or more legitimate
users of a service from the use of the required resources.
Therefore, he attempts (1) to inhibit legitimate network traf-
fic by flooding the network with useless traffic. (2) to deny
access to a service by disrupting connections between two
parties, (3) to block the access of a particular individual to a
service, or (4) to disrupt the specific system or service itself.

DDoS attacks follow the same path, but they become
more effective and difficult to prevent because of the inter-
mediary systems that add a many-to-one dimension to the
whole attack. In the following we will explain by examples
the different characteristics of common DoS and DDoS at-
tacks.

Software bugs are frequently used by attackers to com-
promise a system. One of the first seen DoS attacks, while
not widely spread, relied on a software bug in the IOS/700
software release version 4.1. It allowed to crash some Cisco
7xx routers by connecting with telnet and typing very long
password strings. By exploiting this software bug, attackers
could reboot the 7xx routers and deny service to legitimate
users during the reboot period [5].

Another example of a well exploited software bug is the
“myriad escaped characters vulnerability” in the Microsoft
Internet Information Server1. [11] defines it as a denial of
service vulnerability allowing a malicious user to overload
a web server by a request for a file via a specially-malformed
URL for some period of time. The vulnerability does not
cause the server to fail, or cause any data to be lost, and the
server eventually would resume normal operation, given
enough time. Microsoft’s IIS implements the decoding of es-
caped characters2 in URL strings very inefficiently. So that’s
why the server was overloaded with the processing of long
strings with a large number of escaped characters. Microsoft
does of course provide a patch for this vulnerability on its
technical support web page.

A Smurf DoS uses the Internet Control Message Proto-
col (ICMP) that handles errors and exchange control mes-
sages [10]. It sends an ICMP ECHO REQUEST packet with
a spoofed source address (the IP address of the victim) to
one or several subnet broadcast addresses. All machines on
the subnet reply directly to the victim’s address. The nor-
mal effect this attack causes is congestion either in the vic-
tim’s network connection or in the access ISP network. The

1Better known as the URL parsing bug.
2Escaped characters are way for users to specify non-printing

or special characters in URLs. For example, if a percent sign is fol-
lowed by two hexadecimal digits, they are replaced by the equiva-
lent ASCII character.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

most effective countermeasure against this attack is to dis-
able broadcast pings from outside a subnet. Many people
believe that a subnet that still allows such pings have a
faulty configuration. Therefore, Smurf like attacks belong to
the class of attacks based on misconfigurations.

Another popular attack misuses the standard three-way
handshake of the Transport Control Protocol (TCP) [4]. This
handshake requires an exchange of three messages between
client and server before the service can be used: (1) The
client indicates that it wants to start a connection with the
server by sending a synchronise (SYN) request. (2) The
server replies with a message indicating its readiness: a
SYN/ACK (ACKnowledgment) reply. (3) The connection
can be used after the final ACK of the client. The so called
SYN flood attacks the server – the victim in this case – by
sending a large amount of SYN requests without fulfilling
the third step of the handshake. Typically, the client’s ad-
dress is also spoofed. Because today’s TCP/IP implemen-
tations only handle a limited number of connections, the
server will discard new connections as long as its back-
log queue is full with semi-open connections. This attack is
an example of a protocol attack. Analogue attacks exist for
other network protocols such as UDP and ICMP.

Setting up of a stolen account
as a repository for attack tools

Scanning of large ranges for
potential vulnerable targets

Script automated installation of
the needed tools on the
compromised servers

Optional installation of a root kit
to hide the compromise

Creation of script to perform the
exploit and to report the results

Choice of a subset of suitable
compromised servers from the

list

Figure 3. DDoS Pattern.

DDoS attacks follow the simple pattern illustrated in
Figure 3. We list the variations on this pattern in chronolog-
ical order on an example basis.

Trinoo was the first widely known DDoS tool. It uses
TCP to exchange control data between the attacker and the
master attack host. The compromised slaves are controlled
though UDP messages. These then operate an UDP flooding
attack on the victim.

Tribe Flood Network (TFN) uses command line inter-
faces (telnet or ssh) to deliver the control messages to the
slaves. Communication between the slave and the attack
daemon is done by ICMP echo reply packets because these
typically pass through firewalls and are harder to detect
than UDP packets. In addition to Trinoo’s UDP flooding at-
tack, TFN supports TCP SYN and ICMP floods as well as
Smurf attacks.

Stacheldraht is a variant of TFN that uses encrypted TCP
connections for control traffic. Furthermore, attack daemons
may be updated automatically.

TFN2K further enhances TFN: communications are en-
crypted to make it more difficult to detect the attack. Slaves
and attack daemons communicate through ICMP, UDP or
TCP selected randomly. .

3 Defenses against Attacks
Several proposals have been made to cope with DDoS

attacks even though neither of them solves the issue com-
pletely. Broadly the approaches can be categorised into two
broad categories: mitigation of the impact/detection the
attack and identification of the source of the attack. The
first category includes measures as (a) filtering packets [6],
(b) disabling broadcasts and unused services, and (c) ap-
plying security patches [7]. The second area of proposals
focuses on identifying the source of the DDoS attack. This
problem of tracing back of such packets of data received
considerable attention in the past: Bellovin’s ITRACE [1]
uses ICMP packets to verify the path of a small subset of
selected forwarded packets. So, the victim may be able to
locate the compromised slave. [15] use a packet marking
scheme to enable the victim to traceback the real source of
the packet. [18] enhance the scheme by reducing the number
of markings by employing network topology maps. Finally,
[16] propose a source path isolation engine in strategical lo-
cated routers in order to enable victims to request the taken
path of a given packet. However, all these mechanisms sup-
pose that a large enough amount of networks implements
them. How realistic this assumption is for the future cannot
be fully answered currently.

4 A Honeypot for DDoS
In our analysis of existing research in the coping with

DDoS, we looked for a generally applicable solution. The
response to an incident should be independent of platform
as the attack occurs across many different platforms within
a network and should not assume the changes in a large
part of the backbone network. Therefore, we propose a sys-
tem that can be generally applied in each organisation and
relies on state-of-the-art technology. The vantages of this
system are two-fold: First we can defend our operational
network with a high probability against known DDoS and
against new, future variants. Second, we trap the attacker so
that recording of the compromise can help in a legal action
against the attacker.

The devised system is a honeypot that lures the attacker
to believe that he successfully compromised a slave for his
needs. In reality, the honeypot learns the tools, tactics, and

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

Internet

Firewall

Web Server FTP Server

Mail Server

DNS Server

Firewall

LAN

Servers

Clients

Active Content
Monitoring

Host- IDS

Network IDS

Firewalls

Security
Appliances

Penetration
Testing

Authentication

CA/PKI

File/Session
Encryption

Single-
Signon

Secure Web
Servers

Vulnerability Scanners
(Network)

Vulnerability Scanners
(Host)

Incident Response

Enterprise Security
Administration

Trusted OS

Policy
Deployment

DMZ

Honeypot

(a) Implementation in the Organisation.

Internet

Firewall

Web Server
(HONEYPOT)

FTP Server
(HONEYPOT)

Mail Server
(HONEYPOT)

DNS Server
(HONEYPOT)

Firewall

LAN

Servers
(HONEYPOT)Client

(HONEYPOT)

Active Content
Monitoring

Firewalls

Security
Appliances

CA/PKI

Secure Web
Servers

Vulnerability Scanners
(Network)

DMZ

Attacker

(b) View of the Attacker.

Figure 4. Two Different Views of the Honeypot.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

motives of the blackhat. The lessons learned are then imple-
mented in the rest of the network as defensive mechanisms.

The honeypot provides an organisation information on
their own security risks and vulnerabilities. It should consist
of similar systems and applications than the one used by the
organisation for its productive environment so to give the
attacker a real world feeling and to be able to implement the
learned lessons in the productive environment.

Figure 4(a) illustrates the implementation in the organ-
isation. The depicted organisation runs a well set up and
maintained security infrastructure with classical elements
and recent developments: Services such as web, mail, ftp
services and DNS that should be accessible form the out-
side are situated in a demilitarised zone (DMZ). The local
internal network (LAN) of the organisation is in another
zone protected by a firewall with adequate, up-to-date se-
curity appliances; even inside the LAN file transmission
are always encrypted, the clients run trusted operating sys-
tems, the services are managed by a indirect authentica-
tion method3. Furthermore, detection systems are running:
host based intrusion detection systems (IDS) and vulnera-
bility scanners ,and network IDS together with network vul-
nerability scanners at the borders of the organisation’s net-
work. The organisation might operate virtual private net-
works (VPN) with local subsidiaries and a public key in-
frastructure (PKI) for intra-business corporation. Standard
mechanisms are used for protection of web and mail servers.

In this security infrastructure, we introduce a new sys-
tem: a honeypot that should attract distributed denial-
of-service attackers. This virtual system physically corre-
sponds to a set of computing system or a network of such
systems following the idea of the Honeynet project4 [9]. The
Honeynet is a conceptually upgrading of traditional honey-
pots used for intrusion detection. According to the defini-
tion,

”a Honeynet is different from traditional honeypots, it is
what we would categorise as a research honeypot. This does
not make it a better solution then traditional honeypots,
merely it has a different purpose. Instead of its value being
detecting or deceiving attackers, its value is gaining infor-
mation on threats. The two biggest design differences from
a classic honeypot are: (1) It is not a single system but a net-
work of multiple systems. (2) All systems placed within the
Honeynet are standard production systems. These are real
systems and applications, the same you find on the Inter-
net. Nothing is emulated nor is anything done to make the
systems less secure. The risks and vulnerabilities discovered
within a Honeynet are the same that exist in many organisa-
tions today. ”

Our DDoS honeypot must fulfil the task to lure the at-
tacker into employing this system as a compromised slave.

3Kerberos is an example of such a method. An off-line authenti-
cation method (i.e. based on certificates) should be used if the man-
agement of the clients becomes too burdening and if the organisa-
tion requires larger corporation environments than one single LAN.

4The Honeynet itself cannot be directly applied to this situa-
tion, because it does not deceive the attacker about the real net-
work structure. However our DDoS honeypot needs this illusion
as shown below.

That’s why the attacker’s packet – regardless of protocol –
should be handled by the honeypot while all other – regular
– packets are forwarded to the legitimate destination (web
server, mail server, client, e.g.). So, the honeypot should sim-
ulate the whole network of the organisation to the attacker
as shown in Figure 4(b). Every system in the organisation
might be a honeypot. For example, if the attacker’s com-
promise packets to the webserver of the corporation are de-
tected, the packets go to the honeypot for processing. The
reply the attacker gets should be indistinguishable from a
real reply of the web server.

Three major problems must be solved to successfully
project this illusion to the attacker:
1. The attack must be detectable.
2. The attack packets must be actively directed to the hon-

eypot.
3. The honeypot must be able to simulate the organisation’s

network infrastructure, at least the parts known to the
attacker.
The first issue is linked to the solution of the second prob-

lem: both should ideally be implemented by a transparent
packet forwarder at the border of the corporation’s DMZ.
Its functionality is to look at each packet and decide if the
packet belongs to a DDoS attack. If the test is negative, the
packet should go to the given destination inside the DMZ
or the LAN. In all other cases the packet forwarder should
determine which part of the honeypot system should pro-
duce the request. A possible setup of the honeypot could be
that each Internet service of the corporation is replicated in
one system of the honeypot. First experiments showed that
the forwarder is a potential bottleneck in this setup. There-
fore, we investigate currently different other setups with
next generation routers for this issue.

The detection itself is done by efficiently matching sig-
natures of DDoS packets. Currently, we employ similar sig-
natures as the DDoS signatures of [17], to be able to detect
know attacks with a large probability. However, this method
has the drawback, although being very efficient,that new at-
tacks are not detected until our system knows the signature.

Finally, the third problem can be solved by employing a
variant of the Honeynet approach. Then, it should also be
easier to simulate realistic confirmation messages to the at-
tacker as depicted in Figure 5. The depicted warning system
of the honeypots to the reflectors and the victim enables to
play down eventual probes of the attacker to verify the suc-
cess of the DDoS attack at these points.

5 Conclusion

In this paper, we described a promising tool for luring
attackers into the belief of a successful DDoS attack. We
showed how such a system can be used in a defence in
depth real-world network environment. We identified dif-
ferent problems with the current realisation and provided
first solutions to cope with the scalability of the honeypot.
Although our honeypot is still in its’ infancy, we achieved
first promising results with the presented initial setup. Fu-
ture work will consist of the development of a honeynet

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

Control Traffic

Victim

Compromised
Slave

(HONEYPOT)

Attacker

Control traffic

Compromised
Slave

(HONEYPOT)

Compromised
Slave

Control Traffic

Reflector

Reflector

Reflector

Reflector

Reflector

Reflector

Simulated Traffic, e.g. fake
confirmation messages to

the attacker

Simulated Traffic, e.g. fake
confirmation messages to

the attacker

Information of Reflectors
and victim about detected

attack pattern

Figure 5. Tracing of the Attacker.

scalable to a middle sized organisation and the investigation
of other solution to the re-direction of packets.

References
[1] S. Bellovin. ICMP Traceback Messages. http:

www.research.att.com/˜smb/papers/
draft-bellovin-itrace-00.txt, March 2000.

[2] CERT Cordination Center. CA-1999-17: Denial-of-
Service Tools. http://www.cert.org/advisories/
CA-1999-1.html.

[3] CERT Cordination Center. CA-2000-01: Denial-of-Service
Developments. http://www.cert.org/advisories/
CA-2000-01.html.

[4] CERT Cordination Center. CA-2000-21: Denial-of-Service Vul-
nerabilities in TCP/IP Stacks. http://www.cert.org/
advisories/CA-2000-21.html.

[5] Cisco Systems, Inc. Cisco Security Advisory: 7xx Router Pass-
word Buffer Overflow. http://www.cisco.com/warp/
public/770/pwbuf-pub.shtml, June 1998.

[6] Cisco Systems, Inc. Defining Strategies to Protect against TCP
SYN Denial of Service Attacks. http://www.cisco.com/
warp/public/707/4.html, July 1999.

[7] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating
Denial-of-service Attacks which Employ IP Source Address
Spoofing. RFC 2267, January 1998.

[8] A. Harrison. The Denial-of-service Attack Aftermath.
http://www.cnn.com/2000/TECH/computing/02/14/
dos.aftermath.idg, 2000.

[9] HoneyNet Project. http://project.honeynet.org/.

[10] C. A. Huegen. The latest in Denial-of-Service Attacks: ”Smurf-
ing” Description and Information to Minimize Effects. White
Paper, February 2000.

[11] Microsoft Technical Support. Myriad Escaped Characters
Vulnerability. http://www.microsoft.com/technet/
security/bulletin/fq00-023.asp, April 2000.

[12] V. Paxson. An Analysis of Using Reflectors for Distributed
Denial-of-Service Attacks. Computer Communication Review,
31(3), July 2001.

[13] R. Power. 2001 CSI/FBI Computer Crime and Security Survey.
Technical report, Computer Security Institute, 2001.

[14] P. H. Salus. Cating the Net: From ARPANET to INTERNET and
Beyond. Addison-Wesley, 1995.

[15] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practi-
cal Network Support for IP Traceback. In Proceedings of ACM
SIGCOMM 2000, August 2000.

[16] A. Snoeren, C. Partridge, L. Sanchez, W. Strayer, C. Jones, and
F. Tchakountio. Hash-Based IP Traceback. In Proceedings of
ACM SIGCOMM 2001, August 2001.

[17] Snort Signature Database. http://www.snort.org/
snort-db.

[18] D. Song and A. Perrig. Advanced and Authenticated Marking
Schemes for IP Traceback. In Proceedings of ACM INFOCOM
2001, April 2001.

[19] L. D. Stein and J. N. Stewart. The World Wide Web Secu-
rity FAQ – Version 3.1.2. http://www.w3.org/Security/
Faq/, February 2002.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

