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SUMMARY

Honl-London factors are given for the general doublet transition in a diatomic
molecule between two states both of which are intermediate between Hund’s
coupling case (a) and case (b). As a necessary preliminary the energy levels for
the intermediate case are derived.

I. INTRODUCTION

The appearance of a band system depends on two things: the disposition of the
lines that constitute it, and the intensities of these lines. The intensities of the lines
depend on the populations of molecules in the various rotational levels and on the
probabilities of transitions between the upper and lower levels. The transition
probabilities can be written as the product of two factors: one gives the band transi-
tion probability and is called the band strength; the second gives the relative
distribution among the rotational branches within a band.

The relative intensity distribution factors were originally calculated by Hénl &
London (1925) for singlet transitions. Now, however, these factors for any multipli-
city bear their names.

Hill & Van Vleck (1928) gave the Honl-London factors for transitions between
two case (a) states* or two case (b) states, for any multiplicity. Since for singlet
states the distinction between Hund’s coupling cases (a) and (b) disappears, these
two tables of factors include the original formulae of Hénl and London as a special
case.

Hénl-London factors have been obtained for various particular triplet transi-
tions; in some cases both states are in a coupling condition intermediate between
cases (a) and (b) (Budé 1937; Kovics 1960, 1963, 1966; Kovics & Budé 1949;
Kovics & Toros 1965; Tatum 1966, 1968). These have covered the important
triplet transitions fairly completely.

The Honl-London factors for doublet transitions which have been obtained are
for the general doublet transition between two states both of which are case (a) or
both of which are case (b) (Hill & Van Vleck 1928; Mulliken 1931) and for the
2[1—2% and 2X —2II transitions, where the 2II state is in a coupling condition
intermediate between cases (a) and (b) (Earls 1935). In addition, Hénl-London
factors for the 2A—2II transition have been calculated by Kovacs but are un-
published. (Cited by Tatum (1967) as a personal communication to Tatum and
Schadee.)

The present paper describes the calculation of the Honl-London factors for the

* For a discussion of Hund’s coupling cases see Herzberg (1950, p. 219).
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general doublet transition in a diatomic molecule between two states both of which
are intermediate between cases (a) and (b). All doublet transitions are now covered
by these formulae, in particular the 2II —2II transition which is of some interest
(Tatum 1967).

2. THEORY

Hund’s coupling cases represent idealized limiting situations and although they
often represent the observed states to a good approximation, multiplet states with
A >o often belong to a case intermediate between (a) and (b). The amount of
intermediate character depends on the relative strengths of the coupling of the spin
to the molecular axis and the coupling between the spin and the molecular rota-
tion. Thus case (a) can be a good approximation for small rotation, but, if the
multiplet splitting is not too great, as the rotation increases and tends to uncouple
the spin from the axis, the coupling approaches case (b).

In the mathematical derivation for the intermediate coupling case we may either
start from case (b) and work back to case (a), that is, neglect at first the coupling of
the spin to the axis and then take this as a perturbation; or start with case (a) and
work back to case (b), that is, neglect at first the spin-rotation interaction and then
take this as a perturbation. The latter approach is used here.

The theory will not be developed in detail here; only the essential points will be
given. A full account will be given elsewhere (Bennett 1970).

The energy levels in case (a) may be written

Euo = Eng®(Re) —yo[S(S+ 1) — 22| + G(v) + Fy( JQSZ), (1)
where a=(nvJ) and n=(¢SA), and where ¢ provides information necessary to
distinguish, for example, between A 211 and B 2I1. E,,¢(R,) is the electronic energy

evaluated at the equilibrium internuclear separation R,. Taking into account the
relativistic electron spin-orbit interaction we may write to first order (Herzberg

1950, p. 214)

Eng(Re) = Ep(Re)+ A(R,)AZ, (2)
where A(R¢) is the equilibrium multiplet splitting. The term y,[S(:S + 1) — 22] is the
contribution to the energy from the relativistic spin-rotation interaction. The terms
G(v) and Fy(JQSX) are the vibrational and rotational energies respectively and may
be represented according to Dunham (1932) but with the generalization to S#o,
A#o by

G(e) = 3. Yulo+3y 6
Fy(JQSZ) = By[J(J+1)— Q2+ S(S+1)—X2]
—Dy[J(J+1)— Q2+ S(S+1)—Z2]12+ .... (4)
The total internal wave function for the molecule is
|aQM) = (r1...1t5,01. .. aN;Ran)II—Q(RanvJ)

x |25 Duarepn, 0

where (r1...ry, 01... on; R|nQ) is the electronic wave function*, (R|nQuv/J) is

* We take as electronic wave functions the zero-order wave functions with respect to the
spin-orbit interaction.
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the wave function for the nuclear vibration, and D o7 *¥(aBy) is the rotation matrix
as defined by Rose (1957, p. 52) describing the nuclear rotation, where ofy are the
Euler angles relating the coordinate system fixed on the molecule to the coordinate
system fixed in space.

The spin-rotation perturbation is

H' = —2B[J3S5+JySy] +y[S.R— (nQ[S.R|nQ)] (6)
- —2 (B - g) [JoSa+ JySy]—y(nQ|S.R|nQ)— y[S2—8,2], (7)

where B(R) = %2/2uR? and y(R) is the coupling constant of the relativistic inter-
action of the magnetic moment due to electron spin S and the magnetic field
developed by the molecular rotation R.

The perturbation connects the different multiplet components of the given
electronic state. Since these are not degenerate we cannot use degenerate perturba-
tion theory and because the coupling between them may become large compared to
the energy separations between them (case (b)) we cannot use non-degenerate
perturbation theory. A new perturbation theory must therefore be constructed
and is described by Dalgarno (1961, p. 203). The perturbation is split into two
parts H;" and Hy' in such a way that if we take as the Hamiltonian of the un-
perturbed system the sum of the original unperturbed Hamiltonian Hy and one
of the parts Hy' the problem reduces to a degenerate one. We may then use de-
generate perturbation theory taking as the perturbation Hy' = H'— H;'.

In the intermediate case we write the energy as

E.n=EnNO+E,NnV4+ ..., N= IJ——SI,...J+S, (8)
and wave function as

|aNM) = [aNM)O+ .. ., (9)
where
A4S
[aNM) = 3 (alN|aQ)|aQM). (10)
Q=A-g§

The transformation coefficients are chosen to make the |« NM)? orthonormal so

that
A+8

Z—S («Q[aN"YaN"|aQ) = §(N', N"). (11)

According to the modified perturbation theory if we take
EaN(O) = EocA—S
we obtain the set of equations

A4S

Y (aV |aQ")[(«Q'M | H' |aQ" M) + (Agr— E,nD)S(Q’, Q"] = o,
-8

Q<A
Q' =A-S,...A+S, (12)
with
Ag- = Eq—E,/_g. (13)
For a non-trivial solution we must have
det|(«Q'M |H' | Q" M)+ (Ag—E.nD)8(Q’, Q)| = o. (14)
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The matrix elements of H' are easily shown to be (Van Vleck 1929)

(«QM |H'|aQM) = o (15)
(aQ+ 1M |H'|«QM) = (nQ + 10 B—g nQud)

X [J(T+1) = Q£ N]V2S(S+ 1)~ XS+ )2, (16)
with (James 1964)

(nQi 10J B-g nQvJ):B,,-—zDv[J(J+1)——QZ+S(S+ 1)—22—1 F(Q+ )]
_Yv
~ (17)

taking terms up to second-order in B(R) and first-order in y(R).

The doublet case is the only one for which equation (14) is soluble analytically.
Neglecting higher terms in equation (4) and solving for E,x) and adding to E,5©@
we obtain to first-order

By = En*(Re)=22— DyA2+G(0)+ Bo[(J + 32— AF]— Dof(J + 1)~ A2]2 £ B, W,

(18)
where
~ 5.\ 2 ~ /2
W= +1% [4 (1 —2D1,X—7—’29) (J+%)2+(Y—;”/,,)(Y—4+8D,,X+'}7,,)A2] » (19)
v=4 x-(7+pe-Ay (20)
By
and where ~ implies that the quantity is divided by B,.
Substituting in equations (12) and using equations (11) we obtain
12
@I +Had+]) = @7 -Har-} = [F22Y]
- v
@ +Had=}) = —@/-ar+]) = 7227 (a1)
where
U= L Z= Y—z+4ﬁ,,X. (22)

2W’
The (N |«€) may in general have arbitrary phase factors but it was shown by Hill
& Van Vleck (1928) that for the calculation of intensity formulae they can be
disregarded so that the (aV |«Q) may be taken as real.

Both y, and D, are usually small compared with B, and if they are neglected
equation (18) reduces to that given by Hill & Van Vleck (1928) and Van Vleck
(1929). The parameter Y is a measure of the relative strengths of the spin-axis and
spin-rotation couplings, thus, Yoo corresponds fo pure case (a) (regular),
Y = 9y (or 4—8DyX —¥y) corresponds to pure case (b) and Y —— oo corresponds
to pure case (a) (inverted).

Fig. 1 shows the energy level diagram for a 2II state. On the left the state belongs
to case (a) (regular); on the right to case (a) (inverted); and in the centre to case (b).
We know that as the spin becomes uncoupled from the axis the levels in case (a)
must eventually go over to those in case (b), and must do so in such a way that J
remains unchanged and levels with equal J do not cross. In this way we obtain the
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connecting lines, which represent only schematically the behaviour of the levels for
intermediate coupling conditions. In an actual molecule the coupling changes from
one level to the next, approaching case (b) for the higher levels.

J
772 *
2 -
Hm 5/2 7
T 32
3/2 ¢
T * |72
7/2 *
= 1 /2
Case (b)
5/2 5
2] . * 572 Pl
172 - 3/2
YR —— \_
—————— T 372
172 %

Case (aMregular) Case (a)inverted)

F16. 1. Correlation of the cnergy levels in case (a) and case (b) for a 2I1 state.

3. INTENSITIES

The line strength in case (a) for electric dipole radiation is defined as (Condon &
Shortley 1963, p. 98)

J’ J
SEQy )= 5 3 Y |[(QM|Pi|aQM)|? (23)
wly M=ty 3
where P; (i = X, Y, Z) are the components of the electric dipole moment referred
to space-fixed axes. This can be written (Rose 1957, p. 64)
S@Q,aQ) = Y T |« QM|Pe®]aQM)|2 (24)
M'M ¢
where
Pa® = FRYPy+iP,)
and
Py = P, (25)

are the components of the irreducible tensor operator of rank 1 representing the
electric dipole moment, referred to molecular-fixed axes. Following Rasmussen &
Brodersen (1968) we have

2 + 112
(' QM| PD|aQM) = [?J'Tx’] C(J1d’; MAMM")S(AM, g)
x C(J1d"; QAQQ) o' Q' | Pag®|af), (26)
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which becomes on integrating over spin coordinates
2J+1
2J'+1

x C(J1d"; QAAQ ) (o' Q" | PApn®| )8(S”, S)S(Z', Z) (27)
where C(J1J’'; M AM M ")and C(J1J’; Q AA Q") are Clebsch-Gordan coefficients
as defined by Rose (1957, p. 33). Substituting in equation (24) and using the

orthogonality properties of the Clebsch—Gordan coefficients (Rose 1957, p. 34) we
have

S'Q, Q) = (27 +1)C(T1J"; QAAQ (' Q' | Py a0 aQ)28(S7, S)S(Z’, =) (28)
= ('Q' | Pya®|aQ)2 £(Q' T, QI)S(S’, S)S(Z, Z), (29)

1/2
(' QM| PyV|aQM) = [ ] C(J1J’; MAMM \S(AM, q)

where
SN +ZJ, A+3J) = (2 +1)C(J1J’; A+ Z AA A’ + Z)2 (30)

is the Honl-London factor.
Although it is not necessary in case (a), in order to separate off the Honl-
London factor in the intermediate case it is necessary to assume

(¢A' 3| Pan @[ ah = 3% = (A" +§| Pap @]t + )2

The integral over R is virtually independent of the spin orientation as the potential
curves for the two multiplet components usually run very nearly parallel. Thus we
may approximate equation (29) as

S(a'Q, aQ) = S(o’, o) F(Q' T, QI)S(S’, S)S(Z, ), (31)

and S(a’, o) is called the band strength.
The line strength in the intermediate case is

S(@N’,aN) = ¥ ¥ |(’N'M'|P®|aNM)|2. (32)
M g

Taking |aNM) to zero-order, equation (10), equation (32) becomes

2

S@N',aN)= Y > ,
Mg

T (@ N[ Q)Y QM| P QM) [ o)

(33)

and substituting from equation (27) and summing over M and M this reduces to
S(a’N', aN) = [Z (a'N"|o'Q"Y(2d + 1)V2C(J1d"; Q AN Q") (o' Q' [ Pap | Q)
a0

2
x 8(S’, S)8(%’, 2)(aN|aQ)] . (34)
From equation (28) we may write
2

SN’ aN) = [ £ @[S, eV, 9)

which leaves an ambiguity in sign which may be resolved in the case (b) limit.
Substituting from equation (31) we have

S@N’, aN) = S(o, 2) Z(N"J’, NI)S(S", S), (36)
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where
2
F(N'J', NJ) = [Z («’N"|a’A"+ X) SN +ZJ, A+ ZIYW2(aN| A + Z)] (37)
T
is the Hoénl-London factor in the intermediate case.

4. RESULTS

'The Clebsch-Gordan coeflicients can be obtained from Rose (1957, p. 225) and
the Honl-London factors in case (a) are given in Table I. The Hénl-London factors
in the intermediate case then follow and are given in Tables II, III, IV. In these
tables the following abbreviations are used:

~

A(a) = [(2a+ 12— 4A%][(2] +1)2— 4A%] [1 — 2Dy X —YZB] [1 —zﬁvX—%’], (38)

B(a) = [(2J +1)2— 4a?][(2J + 1)2— 4A?] [1 -zﬁv'X'—Z:f] [1 —zﬁ,,X—%”], (39)

Cula,b) = [2a+1 £ 2B][(2d + 1)2 — 4A2] [ - zz‘)v'x'—tg-] [ ~2Dox -7, (40

D(a) = (2a+ 1)(2J + 1) —4A2, (41)

E(a) = (2J +1)2— 4aA — 2. (42)
Expressions for U and Z are given in equation (22) and for Y in equation (20).

All unprimed quantities refer to the lower state and primed quantities to the
upper state.

From the properties of the Clebsch-Gordan coefficients (Rose 1957, p. 33), it
can be shown that the sum of the Hénl-London factors in case (a) for all transitions

TasLe 11
Hénl-London factors for doublet transitions with AA =o—both states intermediate

Ry 87‘71:;) [D(J +1)+4A2Z'U’ + 4A2ZU+[A2Z'ZD(J + 1)+ A(J + 1)]U' U]

O1 f%% [1+4A2—4A2Z'U’ =4 A\2ZU+ [A2(4A2+1)Z'Z — A(0)]U U]

Py SITT [D(J —1)+4A2Z'U’"+4A2ZU +[A2Z'ZD(J — 1) + A(J — 1)U’ U]
%R12 g(%_l_l-) [D(J +1)+4A2Z'U’ — 4A2ZU - [A2Z'ZD(J + 1)+ A(J + 1)|U'U]
PQ12 8;(%11—) [1+4A2—4A2Z'U’"+4A2ZU — [A2(4A\2+1)Z'Z — A(0)]U' U]

OP1s 817 [D(J —1)+4A2Z'U’" = 4A2ZU - [A2Z'ZD(J — 1)+ A(J — 1)U U]
SRa1 WI?I) [D(J +1)—4A2Z'U’'+4A2ZU—[A2Z'ZD(J + 1)+ A(J + 1)]U'U]
Qo gg% [1+4A244A2Z°U" — 4 A2ZU — [A2(4 A2+ 1) Z' Z — A(0)]U U]

QPg SLJ [D(J —1)—4A2Z'U’" +4A2ZU ~[A2Z'ZD(J — 1)+ A(J — 1)]U’ U}

Ry zs(TIﬁj [D(J +1) = 4A2Z'U’ — 4 A2ZU +[A2Z’ZD(J + 1) + A(J + 1)]U U]

Q2 35%?) [1+4A24+4A2Z°U" 4+ 4A2ZU + [A2(4 A2+ 1) Z' Z — A(0)]U U]

Ps g_Ij [D(J —1)—4A2Z'U’ -4 A2ZU+[A2Z'ZD(J — 1)+ A(J —1)]U’U]
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from a level with a given J is equal to the statistical weight 2J + 1 of that level, that is

Y PN +ZI A+ ZT) = 2J+1. (43)
i
It follows that the sum of the Honl-London factors for all branches in a band is
S
Y Y SN +ZT,A+ZT) = (2S+1)(2] +1). (44)
pofiely L

From the properties of the Clebsch-Gordan coefficients and the transformation
coefficients (N |«Q), equation (11), it can be shown that the Honl-London factors
in the intermediate case are normalized in the same way, as they should be, that is
J'+8 J+8
SIN'J', NJ) = (2S+1)(2J +1). (45)
T N'=|T—8| N={T-8|

As mentioned in the Introduction there are three published tabulations of
Hénl-London factors for doublet transitions: these have been used to check the
algebra by verifying that as (1) Y', Y—>o0, (2) Y' =9, Y =95, (3) A" =1,
A=0,Y =%9y; A" =0,Y" = #,/, A = 1 the formulae here go over to the formulae
there. It was found that all three checks were necessary as no one tabulation
completely checked the formulae.

Fig. 2 shows the permitted transitions between two 2II states in a compact level
scheme. For J = &, all the transitions shown occur in intermediate coupling. Only
the broken lines apply if both states are pure case (a). The dotted lines are absent if
both states are pure case (b).

I 2 3 4 N’
172 372 372 5/2 5/2 7/2 772 92 J°

NN
172 3/2 3/2 5/2 5/2 7/2 7/2 9/2 J
1 2 3 4 N

F1G. 2. Transitions between two 211 states.

§. DISCUSSION

The equation for the doublet energy levels in the intermediate case obtained by
Hill and Van Vleck was extended to include rotational centrifugal distortion by
Almy & Horsfall (1937) and later by James (1964) who also included the relativistic
part of the spin-rotation interaction. Almy and Horsfall attempted to take account
of the rotational centrifugal distortion by a procedure which as pointed out by
James was incorrect. Neglecting other effects considered by James his equation
agrees with the one given here.

Starting the perturbation treatment from case (b) Hill and Van Vleck obtained
the coefficients for the doublet case (neglecting Dy and y,) relating the wave functions
in the intermediate case with those in case (b). However, as it is more convenient to
derive the Hénl-London factors in the intermediate case from case (a) these
coefficients must be transformed to relate the wave functions in the intermediate
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case to those in case (a). These coefficients then agree with the ones given here, to the
same approximation.

The method of calculation (Section 3) has apparently never been described in
detail. Most discussions (see Hill & Van Vleck 1928; Budé 1937) give only the
transition moment for the intermediate case from which equation (32) is derived.
The derivation of equation (37) is not trivial and involves certain approximations
which require justification. Probably the worst approximation is to assume that the
vibrational wave functions are independent of the spin orientation, for in some cases
the potential curves for the different multiplets are far from parallel. For the 4 2II
state in HgH, A(R,) = 3684 cm™1 compared with

A(0) = E(Hg, 3P1)— E(Hg, 3Po) = 1767 cm™1,

Unfortunately this approximation is necessary in order that the Hénl-London
factor in the intermediate case can be defined.
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NOTE ADDED IN PROOF

Tables similar to Tables II-IV have been given by Kovacs in Rotational Structure in the
Spectra of Diatomic Molecules, Adam Hilger, London, shortly to be published (November,
1969). The formulae contained within them agree with the present ones, when Dy and 7
are neglected.

The theory is given here in a fuller and more consistent way.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny 9| uo Jasn aonsnr Jo Juswipedaq 'S N AQ ££82092/SE/ L/ L1 L/I91UE/SEIUW/WOY dNO-0lWapede//:sdiy WOl PapeojumMod


http://adsabs.harvard.edu/abs/1970MNRAS.147...35B

