
Review Article

J Innate Immun 2019;11:289–299

Hoodwinking the Big-Eater to Prosper: 
The Salmonella-Macrophage Paradigm

Mayuri Gogoi 

a, b    Meghanashree M. Shreenivas 

a, d    Dipshikha Chakravortty 

a–c    
a

 Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; b Division of Biological 
Sciences, Indian Institute of Science, Bangalore, India; c Centre for Biosystems Science and Engineering, Indian 
Institute of Science, Bangalore, India; d Undergraduate Studies, Indian Institute of Science, Bangalore, India

Received: April 3, 2018
Accepted after revision: June 10, 2018
Published online: July 24, 2018

Journal of Innate
Immunity

Prof. Dipshikha Chakravortty
Department of Microbiology and Cell Biology
Indian Institute of Science
Bangalore 560012 (India)
E-Mail dipa @ iisc.ac.in

© 2018 The Author(s)
Published by S. Karger AG, Basel

E-Mail karger@karger.com
www.karger.com/jin

DOI: 10.1159/000490953

Keywords
Macrophage · TLR · NLR · ROS · Pyroptosis · Metal starvation · 
AMP · Exosome

Abstract
Salmonella is a major cause of morbidity and mortality in the 
developing and underdeveloped nations. Being a food-
borne disease, Salmonella infection is primarily contracted 
through the ingestion of contaminated food or water, or due 
to close contact with infected/carrier individuals. It is an in-
tracellular pathogen, which can survive and replicate in var-
ious cells including macrophages, dendritic cells, epithelial 
cells, and other white blood cells. Once Salmonella crosses 
the intestinal barrier, it disseminates to various systemic sites 
by circulation via immune cells. One of the major cell types 
which are involved in Salmonella infection are host macro-
phages. They are the niche for intracellular survival and pro-
liferation of Salmonella and a mode of dissemination to dis-
tal systemic sites. These cells are very crucial as they mediate 
the mounting of an appropriate innate and adaptive anti-
Salmonella immune response. In this review, we have tried 
to concise the current knowledge of complex interactions 
that occur between Salmonella and macrophages.

© 2018 The Author(s)
Published by S. Karger AG, Basel

Introduction

Salmonella is a Gram-negative pathogen which causes 
a variety of diseases ranging from life-threatening system-
ic infection like typhoid to mild gastroenteritis in humans. 
Global estimates indicate 21 million typhoid cases and 5 
million cases of paratyphoid fever along with 215,000 fa-
talities each year [1]. There is an estimated 93 million non-
typhoidal salmonellosis with 155,000 fatalities every year 
[2]. These estimates make Salmonella a major cause of 
morbidity and mortality in developing and underdevel-
oped nations. Annually, 175–388 cases per 100,000 chil-
dren and 2,000–7,500 cases per 100,000 HIV-infected 
adults are approximated in sub-Saharan Africa [3]. In 95% 
of the cases, nontyphoidal serovars cause gastroenteritis; 
however, 5% of the cases result in bacteremia and system-
ic infection called invasive nontyphoidal salmonellosis 
(iNTS). The incidence of iNTS is prevalent in African 
countries, particularly among children. 20–25% of iNTS 
tends to be fatal [4]. Apart from the human host, Salmo­
nella enterica subspecies have been reported to infect oth-
er warm-blooded animals of economic importance such 
as poultry, cattle, etc. The vast diversity showed by these 
serovars with respect to host range adaptation and viru-
lence strategy makes Salmonella a daunting pathogen.
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Salmonella infection is primarily contracted through 
ingestion of contaminated food or water or due to close 
contact with infected/carrier individuals. Once ingested, 
Salmonella crosses the host intestinal barrier by entering 
through “M cells” (microfold cells) and dendritic cells 
present in Peyer’s patches. Additionally, it can induce 
bacterial uptake by intestinal epithelial cells via injection 
of virulence factors into the host cell. These virulence fac-
tors are encoded by various horizontally acquired patho-
genicity islands present in the Salmonella genome, called 
the Salmonella pathogenicity islands (SPIs), which are 
critical for the entry and intracellular survival [5]. After 
colonization, the bacteria disseminate through the reticu-
loendothelial system and reside in host macrophages, 
dendritic cells, polymorphonuclear cells, and hepatic 
cells. During its systemic phase, the pathogen spreads 
from the intestine to the mesenteric lymph node (MLN), 
spleen, liver, gallbladder, and even into bone marrow [6].

Macrophages play an essential role in anti-Salmonella 
response as it is involved in mediating both innate and 
adaptive immune responses. Its importance in Salmonel­
la pathology is further emphasized by the fact that the 
mutants which are incapable of intracellular life in mac-
rophages are in general defective in causing a systemic 
infection [7]. As a part of innate immune response, mac-
rophages sense the presence of Salmonella-derived patho-
gen-associated molecular patterns (PAMPs) via pattern 
recognition receptors (PRRs) like Toll-like receptors 
(TLRs) and NOD-like receptors (NLRs). This subse-
quently leads to an antibacterial response which compris-
es reactive oxygen species (ROS), reactive nitrogen spe-
cies (RNS), acidic environment, metal starvation, and  
antimicrobial peptides (AMPs). As a part of adaptive im-
mune response, it is essential to mount a Th1 response 
against Salmonella to avoid a chronic infection. During 
Salmonella infection, macrophage polarization to M1 or 
M2 phenotype plays a determinant role in dictating the 
disease outcome. In this review, we have tried to bring 
together the intricacies of macrophage-Salmonella inter-
action.

Intracellular Life of Salmonella in Macrophage

In the host phagocytic cells, Salmonella resides in a 
modified endosome known as Salmonella-containing 
vacuole (SCV). The membrane properties of SCV are dy-
namic and the nascent bacteria containing endosome ma-
tures into a modified late endosome. Salmonella avoids 
SCV lysosome fusion, providing it a safe intracellular 

niche for bacterial survival and replication [8, 9]. Early 
SCV contains markers like EEA1 and Rab4 and 5 and 
transferrin receptors. During the late maturation stage, 
about 20–40 min after internalization, the late endosomal 
markers like LAMPs, Rab7, 11, and vATPase replace the 
early endosome markers [10]. For replication of bacteria 
within the cell, perinuclear localization of SCV is obliga-
tory. During its intracellular life, SPI-2 effectors are in-
strumental for both replication and SCV positioning [11]. 
In case of host epithelial cells, SCVs form filamentous 
structures called Salmonella-induced filaments (Sifs) [9, 
12]. MYD88- and TRIF-mediated TLR signalling is essen-
tial for initial SCV acidification [13]. Within an hour of 
infection, the SCV attains the pH of 4–5. In response to 
the acidic environment of SCV, the cytoplasm of the bac-
teria also undergoes acidification. This acidification pro-
cess is EnvZ sensor kinase and OmpR mediated. EnvZ 
senses the osmotic stress and in response to it OmpR reg-
ulates expression of various pH regulatory genes, includ-
ing CadC/BA operon and ATP synthase gene of the bac-
teria [14]. The low pH and low Mg2+ environment of SCV 
activates the PhoP/Q two-component system. This leads 
to the upregulation of the Mg2+ transporter (mgtCBR op-
eron), lipopolysaccharide (LPS) modification, and SPI-2 
expression [15]. During the process of internalization as 
well as inside the host macrophage, Salmonella activates 
signalling of the host PRRs. This process activates various 
antibacterial responses in macrophages.

TLR and NLR Signalling

TLRs and NLRs are the PRRs responsible for sensing 
most of the PAMPs. Early detection of Salmonella is de-
pendent on both surface and endosomal TLRs. TLR2 and 
TLR4 are present on the macrophages and recognize the 
Salmonella PAMPs. Mice lacking these TLRs exhibit 
higher extracellular bacterial burden, thus implicating 
their role in host innate immune responses [16]. Con-
versely, the absence of TLR signalling in macrophages 
impairs its acidification, which in turn compromises in-
tracellular replication [13]. Collectively, TLR signalling 
helps the intracellular replication of bacteria, but inhibits 
the extracellular growth of the same. As compared to 
TLR2/4 and TLR4/9 double knockout mice, mice lacking 
all the three TLRs (i.e., TLR2, 4, and 9) are less susceptible 
to Salmonella-mediated lethality. Further, complete abla-
tion of TLR (TLR2, 4, 3, 7, 9) signalling results in reduced 
inflammatory response which in turn enhances suscepti-
bility to Salmonella infection [17].
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Apart from the TLRs, NLRs also detect intracellular 
PAMPs. Salmonella infection activates NLRC4 and NLRP3 
signalling, resulting in inflammasome formation [18]. This 
further leads to activation of caspase-1 and secretion of IL-
1β and IL-18 and pyroptosis. NLRC4 recognizes Salmo­
nella flagellin and in order to avoid activation of NLRC4, 
Salmonella downregulates flagellin production during its 
intracellular life [19]. The Salmonella PAMP responsible 
for NLRP3 activation is yet unknown. However, NLRP3 
signalling might be linked to ROS production and ROS 
production is often accompanied by K+ efflux which is a 
known signal for NLRP3 activation [20]. A deficiency in 
either of NLRC4 and NLRP3 results in a higher systemic 
bacterial burden, emphasizing its role in antibacterial re-
sponse against Salmonella [21]. In contrast, NLRP6 and 
NLRP12 deletion reduces the bacterial burden and en-
hances neutrophil and macrophage recruitment to the site 
of infection [22, 23]. Pathogen sensing by host PRRs in-
duce oxidative burst as an antibacterial response.

ROS and RNS

Recognition of Salmonella PAMPs induce proinflam-
matory cytokine production by various immune cells. 
These cytokines further activate macrophages and den-
dritic cells to produce antibacterial ROS and RNS re-
sponse. In response to Salmonella infection in macro-
phages, the initial bactericidal respiratory burst is driven 
by phagocyte oxidase (phox) also known as NADPH oxi-
dase [24]. This is followed by a long bacteriostatic nitro-
sative stress driven by inducible nitric oxide synthase 
(iNOS) [25]. The regulatory effect of cytokines on ROS is 
proven by the fact that in vivo administration of IFNγ re-
sults in increase in ROS, which in turn inhibits systemic 
spread of Salmonella in rats. The importance of ROS is 
demonstrated by the fact that mice lacking gp91phox, an 
essential subunit of NADPH oxidase, succumb to Salmo­
nella infection much faster than wild-type mice. This is 
also accompanied by a 1,000-fold increase in bacterial 
burden in the liver of these knockout mice [26]. In addi-
tion, patients suffering from chronic granulomatous dis-
ease, a condition compromising ROS production, suffer 
from recurring Salmonella and other bacterial infections 
[27]. Studies on murine peritoneal macrophages reveal 
that clearance of up to 99% of intracellular bacteria with-
in the first 6 h of infection is predominantly ROS depen-
dent [28]. However, ROS production reduces after 6 h of 
infection. Salmonella mutants, which are deficient is ROS 
and RNS detoxification enzymes such as superoxide dis-

mutase (SodC) [29] and oxidative burst scavenger gluta-
thione, are unable to lead a successful intracellular life in 
macrophages [30]. Thus, the bacteria are compromised in 
causing a systemic infection. The SPI-2 is essential for 
successful evasion of intracellular ROS assault. This is 
demonstrated by the fact that PhoPQ mutants, respon-
sible for SPI-2 expression in the SCV, are unequipped to 
handle intra-macrophage ROS [31]. The integrity of the 
SCV is also crucial to evade ROS. Cytosolic population of 
Salmonella has been reported to face enhanced ROS levels 
in both human and murine macrophages [32].

Once the ROS production diminishes, a prolonged  
iNOS-mediated nitrosative stress follows. iNOS converts 
L-arginine to nitric oxide (NO) and citrulline, which show 
a bacteriostatic effect at a later stage of infection [33]. Be-
ing a free radicle, NO can react with various intracellular 
molecules to generate more destructive reactive nitrogen 
intermediates. The reaction of ROS and NO produces 
peroxynitrite, which damages DNA and hence results in 
mutagenesis, further accompanied by damage to proteins 
as well as lipids. Although, IFN-γ is the main inducer of 
iNOS [34] even IL-17, IL-22, IL-1, and TNFα can induce 
its upregulation [33, 35]. Genetically deficient iNOS mice 
can control the bacterial burden at the initial stage of in-
fection, but are unable to do so at a later stage and show 
enhanced mortality [36]. This indicates the role of iNOS 
in controlling Salmonella infection at a later stage. Salmo­
nella also evades RNS by limiting substrate for iNOS. Sal­
monella infection of murine macrophages results in up-
regulating of iNOS but simultaneously it enhances argi-
nase II production, which converts L-arginine to ornithine 
and urea, thus limiting iNOS substrate [37]. PhoPQ plays 
a crucial role in evasion of nitrosative stress as its deletion 
results in hyper-susceptibility to NO. Recent reports sug-
gest that PhoPQ-mediated Mg2+ transport is crucial for 
surviving RNS [38]. The hyper-susceptibility of this mu-
tant to RNS is due to nitrotyrosine formation, DNA dam-
age, and oxidation of iron sulfur cluster. Apart from its 
antibacterial effect, NO also has immune-modulatory ef-
fects as it can suppress T-cell proliferation [38].

Apart from ROS and RNS response, macrophages 
control bacterial replication by limiting the availability of 
metal ions.

Metal Starvation/Toxicity

Intracellular availability of trace elements is essential 
for the survival of an intracellular pathogen. One of the 
innate immune responses against pathogens is metal star-
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vation. Macrophages and neutrophils restrict intracellu-
lar bacterial replication by limiting iron and zinc. Addi-
tionally, macrophages utilize iron as a co-factor for the 
generation of ROS and RNS, indicating that the right 
equilibrium of metal ions is essential for successful patho-
gen clearance.

Iron is most commonly available in bound form with 
proteins like transferrin, ferritin, lactoferrin, and lipocal-
in-2. Transferrin receptor present on the surface of the 
macrophage binds to plasma ferric ion-bound transferrin 
which results in receptor-mediated endocytosis. During 
the endosomal maturation, iron dissociates from trans-
ferrin protein due to the acidic pH of the vacuole and 
empty transferrin receptors are recycled to the cell surface 
for the next cycle [39]. 

The importance of iron availability is demonstrated 
by the fact that individuals suffering from iron overload 
such as hemochromatosis are more susceptible to Sal­
monella infection. Mice lacking HEF allele which is as-
sociated with hemochromatosis show better survival 
during Salmonella infection [40, 41]. Furthermore, iron 
supplementation increases intracellular survival of Sal­
monella [42]. During Salmonella infection, macro-
phages increase iron efflux by upregulating an iron ex-
port protein ferroprotein-1, thereby limiting the bio-
availability of iron to the pathogen [43]. In addition, 
Salmonella further decreases the intracellular iron pool 
by enhancing the level of both haem oxygenase, a haem-
degrading enzyme, and lipocalin-2, an iron siderophore 
[39]. All these changes in macrophage iron homeostasis 
are reported to be IFNγ mediated [44]. Apart from being 
an iron siderophore, lipocalin-2 also represses IL-10 
production and enhances proinflammatory response by 
upregulation TNFα, IL-6, and NOS2 levels [45]. Macro-
phage iron-regulatory protein (IRB) 1 and 2 deficiency 
results in increased mortality in response to Salmonella 
infection, emphasizing the role of iron homeostasis in 
disease severity [46]. Live Salmonella also induce the 
transformation of macrophages to hemophagocytes, 
these are phagocytes which have engulfed erythrocyte or 
leukocyte. In these cells, intracellular bacterial survival 
is greatly enhanced within hemophagocytes, due to a 
surplus of iron [47, 48].

The importance of divalent transition metal ions like 
iron and manganese in host defense is further supported 
by the fact that the presence of natural resistance-associ-
ated protein 1 (Nramp1) [49] in mice results in survival 
of acute infection, whereas those which lack them are sus-
ceptible and succumb to the infection. In some individu-
als, conversion of one glycine residue to asparagine due 

to a single nucleotide polymorphism results in a nonfunc-
tional Nramp1 protein [50]. This results in uncontrolled 
replication of Salmonella in the SCV. Nramp1 is ex-
pressed in phagocytic cells and is localized to late endo-
some and lysosome. It is LPS inducible and exports man-
ganese ions from the phagosome in a pH-dependent 
manner [51]. Further, Mn2+ is reported to inversely regu-
late NO production and IFNγ response [52].

Zinc is crucial for both the structural aspect and gene 
expression of various proteins and its sequestration is one 
of the host defense mechanism against microbial assault. 
As a response to infection, macrophages upregulate zinc 
scavengers, metallothioneins 1 and 2 [53]. Their ablation 
results in a reduction in ROS and RNS levels and an in-
crease in free zinc levels. Collectively, this leads to in-
creased bacterial intracellular survival of Salmonella. The 
increase in intracellular free zinc level inhibits NFκB and 
hence proinflammatory responses [54].

Metal ion availability can act as a double-edged sword: 
on the one hand, it is essential for bacterial survival in 
trace amounts, and on the other hand, at a higher concen-
tration they can be antibacterial in nature. The best ex-
ample for this is zinc and copper toxicity. Both human 
and murine macrophages show increased uptake of cop-
per in response to TLR4 activation. In the intracellular 
vacuoles, Salmonella is subjected to an increased copper 
concentration. In murine bone marrow-derived macro-
phages, treatment with copper chelator enhances intra-
cellular survival of Salmonella [55]. The antibacterial role 
of copper is further validated by reduced organ load in 
CueO, a copper oxidase mutant as compared to wild-type 
Salmonella [56]. Salmonella also express CopA, a copper 
efflux pump to avoid copper toxicity.

In human monocyte-derived macrophages, although 
Salmonella induces the formation of zinc-containing ves-
icles, simultaneously it also upregulates the expression of 
a zinc efflux pump ZntA [57]. Further, prolonged stimu-
lation of NOD-2 results in accumulation of intracellular 
zinc which in turn induces autophagy and hence clear-
ance of Salmonella [58]. In addition to starving the intra-
cellular bacteria with the unavailability of metal ions, 
macrophages also mount an AMP response.

AMP Response

AMPs are generally 10- to 50-amino-acid-long cat-
ionic peptides which show direct bactericidal effects. As 
the name suggests, it contains positively charged basic 
amino acids along with hydrophobic amino acid residues 
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that can interact with the LPS and bacterial membrane 
resulting in pore formation. Cathelicidins and defensins 
are the two major classes of cationic AMPs. Most of the 
AMP studies regarding Salmonella have been carried out 
in epithelial cells as they are the major producers of 
AMPs in vertebrates. The status of macrophage-derived 
AMPs during Salmonella infection remains largely unex-
plored. However, the existing limited literature suggests 
a role of cathelicidin in macrophages [59]. In macro-
phages, cathelicidin resides in the lysosome. It is com-
posed of a C-terminal antimicrobial domain which is 
masked by a conserved N-terminal domain. Removal of 
the N-terminal domain by a cellular serine protease is 
crucial for its antimicrobial activity. Humans express 
cathelicidin hCAP-18 gene, whereas mouse expresses 
cathelicidin-related antimicrobial peptide (CRAMP). 
Salmonella infection of macrophages results in the up-
regulation of CRAMP [60]. It has been reported to show 
an antibacterial effect both in vitro and in vivo. Salmo­
nella-mediated upregulation of CRAMP is both ROS and 
serine protease activity dependent. Salmonella infection 
of antioxidant pretreated macrophages were unable to 
show upregulation of CRAMP, confirming that the role 
of ROS is cathelicidin function. PhoP mutants are more 
sensitive to CRAMP which might be due to the absence 
of PhoP-mediated LPS modification [61]. In case of hu-
man macrophages, hCAP-18 production is TLR de
pendent. Stimulation of TLR2, 4, and 9 results in the up-
regulation of hCAP expression in alveolar macrophages. 
Furthermore, TLR regulation of hCAP-18 is vitamin D 
dependent [60, 62]. In case of human monocyte-derived 
macrophages, Salmonella does not induce cathelicidin 
hCAP-18 [61]. The effects of other macrophage-derived 
AMPs in anti-Salmonella response requires further in-
vestigation. Another area which remains hugely unex-
plored is the miRNA regulation in macrophages upon 
Salmonella infection.

miRNAs in Salmonella Infection

miRNAs belong to the class of noncoding RNAs of 
about 18–22 nucleotides in length. They play major roles 
in regulating the expression of protein-coding genes by 
either controlling at the transcriptional level or by repres-
sion of translation [63]. Since the host-pathogen interac-
tion is a complex network, many of the host gene expres-
sion levels are, or should be, altered by the pathogen to 
tend to its own needs. Thus miRNA regulation also has a 
role to play during Salmonella infection of macrophages 
(Table 1).

Salmonella is known to modulate the levels of certain 
miRNAs in vitro in both macrophages and epithelial cells. 
In murine macrophage-like RAW 264.7 cells, miRNAs like 
miR-21, miR-146, and miR-155 were found to be upregu-
lated [64]. Interestingly, None of these miRNAs have 
known roles associated with invasion or intracellular rep-
lication of Salmonella. Another miRNA, let-7a, was found 
to be downregulated in both RAW 264.7 cells and HeLa 
cells. This downregulation was found to be a response to 
the TLR4 stimulation by the LPS. Target genes of this let-
7a miRNA are IL-6 and IL-10 whose repression is relieved 
upon its downregulation. These cytokines mediate the pro- 
and anti-inflammatory responses, respectively [65, 66].

The mammalian adenosine deaminases, ADAR1 and 
ADAR2, have been found to deaminate the adenosines in 
dsRNAs leading to the A to I conversions. ADAR1 is an 
ubiquitously expressed protein [67] ADAR2 has high lev-
els of expression in the brain [68]. ADAR1 knockout mice 
die at the embryogenesis stages [69], whereas ADAR2 
knockout mice die by postnatal day 20 with epileptic sei-
zures [70]. Defective editing by these enzymes has been 
implicated in several diseases like amyotrophic lateral 
sclerosis, cancers, and metabolic disorders like type 2 dia-
betes mellitus [71]. These A to I conversions in miRNAs 
lead to the reduction of the mature miRNA levels. This is 
either due to the failure of the processing enzymes to bind 

Table 1. The miRNAs altered in macrophages upon Salmonella infection

miRNA Modulation by 
Salmonella infection

Molecules/pathways altered Authors [Ref.], year

let-7a Downregulation IL-6 and IL-10/ pro- and anti-inflammatory responses, respectively Das et al. [64], 2016
miR-155 Downregulation Inflammatory mediators, cytokines Das et al. [64], 2016
miR-146a Upregulation IRAK4 and TRAF6/important molecules of TLR signalling Heale et al. [72], 2010
miR-125b Downregulation Alteration in TNFα levels Heale et al. [72], 2010
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to the pri-miRNAs after editing, or due to the inability of 
the miRNA to bind to their targets as a result of the loss 
of complementarity after editing. It has been found that 
the levels of ADAR1 increase dramatically upon Salmo­
nella infection. LPS stimulation of macrophages is found 
to alter the levels of miR-146a, miR-155, and miR125b 
[72]. miR-146a has roles in regulating the levels of IRAK1 
and TRAF6; two important members of TLR signalling. 
miR-146a also regulates the levels of TNFα which is one 
of the major cytokines produced via TLR signalling that 
mediates proinflammatory responses.

Exosomes

Many intracellular pathogens induce exosome secre-
tion which has immunomodulatory properties [73]. Exo-
somes are small vesicles secreted by various cells of the 
dimension of 50–100 nm. The role of exosomes during 
Salmonella infection is largely unexplored. Salmonella 
stimulates exosome secretion in infected THP-1 macro-
phages [74]. These exosomes are CD63+ and CD9+ posi-
tive. They contain LPS and can activate a TLR4-depen-
dent pathway in naive macrophages. They can induce 
TNFα production in naive macrophages in a Myd-88-de-
pendent manner. In addition to LPS, Salmonella-induced 
exosomes have also been reported to contain OUT deu-
biquitinase1 which does not contain any secretory motif. 
The secretion of exosomes is mediated via multivesicular 
bodies [74, 75]. Furthermore, Salmonella Typhi infection 
of both epithelial cells and macrophages also results in the 
secretion of outer membrane vesicles containing cytole-
thal distending toxins (CDTs) [76]. This process requires 
the microenvironment of SCV or its mimic. Infected cells 
release CDT-containing exosomes via actin and microtu-
bule-dependent anterograde transport. Internalization of 
these OMVs by bystander cells requires active endocyto-
sis and retrograde transport, ultimately resulting in DNA 
damage. Salmonella infection also results in various types 
of host cell death [77]. 

Cell Death

One of the many strategies employed by various patho-
gens to manipulate host is via host cell death. Salmonella 
causes host cell death by both apoptosis, pyroptosis, 
necroptosis, and autophagy.

Pyroptosis is an inflammatory cell death. It is a cas-
pase-1-dependent programmed cell death which results 

in the lysis of the infected cell. It is characterized by the 
secretion of proinflammatory cytokines IL-1β, IL-18, nu-
clease-mediated cleavage of DNA in the nucleus and 
membrane lysis, and LDH release [78]. Salmonella stimu-
lates pyroptosis in infected macrophages in a SPI-1-de-
pendent manner. Translocation of flagellin to the cytosol 
by the type three secretion system (T3SS) results in acti-
vation of cytosolic NLRC4-mediated activation of in-
flammasome which ultimately results in caspase-1-medi-
ated cell death. NLRP3-mediated activation of inflamma-
some also results in pyroptosis of Salmonella-infected 
macrophages. Inflammasome formation, Ipaf and adap-
tor protein ASC interaction is crucial for caspase-1 activa-
tion [79]. Further, SPI-1 mutants cannot secrete flagellin 
and hence cannot stimulate pyroptosis in macrophages. 
Caspase-1 activation results in IL-1β, IL-18, and LDH re-
lease [80]. IL-1β and IL-18 secretion affect the recruit-
ment of T cells and NK cells. Being a well-known pyro-
gen, IL-1β also affects the extent of fever during salmonel-
losis. Flagellin-mediated cell death is the most prominent 
in the early phase of infection but not during the system-
ic phase. However, prolonged Salmonella infection also 
results in a caspase-1-dependent delayed cell death in a 
SPI-2-dependent manner. SPI-2 effector SpvB is crucial 
for this phenotype. Caspase-1-deficient mice are 1,000-
fold more susceptible to Salmonella infection and display 
a higher organ burden in Peyer’s patches, MLN, and 
spleen when the infection is through the oral route [81]. 
Peritoneal infection of these mice does not exhibit any 
difference when compared to wild type, highlighting its 
role in intestinal invasion and dissemination. Release of 
proinflammatory cytokines by macrophages undergoing 
pyroptosis can recruit more immune cells which can be 
infected by the bacteria and result in dissemination. De-
ficiency of caspase-1 in resistant mouse strain (Nramp1 
positive) also enhances lethality to Salmonella [82]. 
Among other signalling cascades, Raf-1 kinase is also 
known to mediate inflammatory signals upon LPS stimu-
lation in macrophages. Raf-1-deficient macrophages are 
hypersensitive towards pathogen-induced caspase-1 acti-
vation and cell death [78].

Infected macrophages also undergo SPI-2-dependent 
apoptosis. SpvB, a SPI-2 cytotoxin, depolymerizes actin 
cytoskeleton in human macrophages and causes apopto-
sis. This process requires TLR4 signalling and bacterial 
LPS. Salmonella-mediated activation of PKR kinase re-
sults in phosphorylation of eIF2α which in turn inhibits 
protein synthesis. This ultimately leads to delayed apop-
tosis of infected cells. NFκB and MAPK activity negative-
ly regulates Salmonella-mediated apoptosis of macro-
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phages [83]. Salmonella effector AvrA shows MAPKK 
acetyl transferase activity which results in inhibition of 
JNK and NFκB. PhoP has also been reported to play a role 
in Salmonella-mediated cell death of human macro-
phages. This kind of apoptosis of macrophages is induced 
by only invasive Salmonella strains irrespective of their 
intracellular replication ability. During Salmonella-medi-
ated apoptosis of macrophages, infected cells show mem-
brane blebbing, DNA fragmentation, and activation of  
effector caspase-3 [78, 80].

Apart from apoptosis and pyroptosis, Salmonella in-
fection has been reported to induce necroptosis in mac-
rophages. Salmonella infection of macrophages stimu-
lates type I interferon signalling which in turn activates 
RIP1 and 3 kinases resulting in necroptosis of infected 
cells. Mice deficient in IFN receptor or RIP3 show pro-
longed survival as compared to wild-type mice. This is 
attributed to the absence of macrophage necroptosis [84].

Salmonella has also been reported to cause autophagy-
mediated cell death in macrophages deficient in cas-
pase-1. This process is SipB dependent. SipB disrupts host 
mitochondria in infected cells which results in autophagy 
induction and cell death [85].

Metabolism

In human and murine macrophages, glycolysis is the 
major source of energy and glucose is the main carbon 
source. The tri-carboxylic acid (TCA) cycle is partially re-
quired for amino acid synthesis; however, complete TCA 
cycle is not essential for intracellular life in macrophages.

In contrast to epithelial cells, Salmonella present in the 
macrophages does not require a functional electron trans-
port chain and ATP synthase. Instead, it depends on sub-
strate level phosphorylation for ATP generation rather 
than proton gradient [86]. Salmonella has been reported 
to use host amino acids for its survival. For example, Sal­
monella upregulates arginine uptake by the host macro-
phage by increasing the cationic amino acid transporter 
mCAT expression [87]. Localization of mCAT to SCV 
results in transport of arginine from cytosol to the vacu-
ole. From the vacuolar pool, bacteria uptake arginine in 
an ArgT-dependent manner [87]. Salmonella also re-
quires a functional purine biosynthesis pathway for suc-
cessful survival inside macrophages. Macrophage ROS 
response results in DNA damage in the bacteria and to 
repair this damage it is crucial to have functional purine 
biosynthesis. This pathway also regulates Sif formation 
and SPI-2 T3SS formation [86].

Macrophage Polarization during Salmonella 
Infection

The initial inflammatory response of the host, upon 
Salmonella infection may prime the differentiation of the 
macrophages into two major types, the classically acti-
vated macrophages (CAMs or M1 type) or the alterna-
tively activated macrophages (AAMs or M2 type). 

The polarization into M1 or M2 phenotypes is majorly 
dictated by the cytokines the macrophages encounter 
[88]. Cytokines like IFNγ or stimulation of TLRs like 
TLR4 by LPS primes the macrophage to develop into an 
M1 phenotype which then secretes proinflammatory cy-
tokines and helps in the activation of Th1 arm of the adap-
tive immune system. This activation of macrophages into 
CAMs is very tightly regulated as they can also induce tis-
sue damage. Stimulation by cytokines like IL-4 results in 
the differentiation of macrophages into M2 phenotype, 
which secrete anti-inflammatory cytokines. These macro-
phages have critical roles in resolving the inflammation 
and wound healing. They have reduced microbicidal ac-
tivity and aid the Th2 arm of the adaptive immune system.

Studies have found that Salmonella prefer inhabiting 
the AAM during the establishment of chronic infections 
[89]. There have been rigorous studies performed to elu-
cidate the reason for which the pathogen tends to “choose” 
one phenotype of the macrophage over another. This can 
happen because either the bacteria can survive or repli-
cate better in these phagocytes or the bacteria actively 
guide the polarization to be shifted towards M2 pheno-
type. The latter seems to be the case with Salmonella.

The nuclear peroxisome proliferator-activated recep-
tors, PPARγ and PPARδ, via their signal transduction are 
pivotal in dictating the gene regulation patterns of the 
AAMs [90]. Drugs that target the activity of these PPARs 
have been known to be effective in a variety of diseases 
including diabetes, cardiac diseases, and also inflamma-
tory bowel disease [91]. Infection of cultured macro-
phages with Salmonella induces the expression of genes 
encoding PPARγ and PPARδ [89]. The same study 
showed that modulation of PPARγ levels in AAMs di-
rectly correlated with the ability of Salmonella to replicate 
inside these macrophages, whereas they did not show any 
effect on the proliferation of bacteria such as Mycobacte­
rium, Francisella, and Listeria. This suggests that the 
pathogen plays an active role in driving the macrophage 
polarization into the AAM or M2 phenotype.

Protein kinase C (PKC) isotypes belong to the family 
of serine/threonine protein kinases and play a vital role 
through signal transduction in the regulation of a variety 
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of cellular functions. One of the isotypes, PKCθ, is known 
to be predominantly expressed in T cells. Recent reports 
suggest a role for PKCθ in cholesterol metabolism in hu-
man macrophages [92]. Other isotypes like PKCα, PKCβ, 
PKCδ, and PKCζ have been shown to have critical roles 
in antimicrobial immune responses of the macrophages. 
In a recent study, it was shown that in mice lacking PKCθ, 
the disease progression and lethality of Salmonella Ty-
phimurium infection was exacerbated [93]. It was found 
that the mRNA levels of PKCθ were strongly upregulated 
in CAMs but not in AAMs. The results were similar both 
in murine macrophages and human monocytes. It is sug-
gested that PKCθ might have a subset selective role as 
signalling intermediate of proinflammatory macro-
phages. This is speculated to be happening by IL-10 re-
pression which affects the microbicidal activity of the 
macrophages and also by the regulation or influencing 

the transcription of certain miRNA clusters [94]. This 
might be another reason for the pathogen to not choose 
CAMs.

Since AAMs have reduced microbicidal activity, Sal­
monella choosing them as a better vehicle than the CAMs 
whose responses are more robust seems logical. However, 
direct evidence of this being the reason has not yet been 
established. It was elegantly suggested by Roop II et al. 
[95] that this bias could be not because of the reduced mi-
crobicidal activity, but something more fundamental. 
The shift in the cellular metabolism is one of the conse-
quences of macrophage polarization. CAMs rely on gly-
colysis for their energy and end up consuming a lot of 
glucose, whereas AAMs degrade fatty acids for acquiring 
energy. Since glucose is more readily available in the 
AAMs, as beautifully suggested, the bacteria might have 
found a “sweet spot” in the AAMs.

Fig. 1. Summary of the Salmonella-macrophage interactions. TLR 
stimulation by the Salmonella PAMPs trigger the burst of ROS 
and RNS. Salmonella tries to avoid the ill effects of RNS by induc-
ing the simultaneous enhancement in the production of arginase 
II, which limits the substrate for iNOS activity. Arginase is also 
recruited into the SCVs. Salmonella actively avoids the SCV fu-
sion with the lysosomes. Macrophages try to establish the balance 
in the level of metal ions in order to limit the comforts extended 
to the pathogen. Salmonella effectors trigger various kinds of cell 

death, like (a) caspase-1-mediated pyroptosis, (b) activation of 
PKR kinase which leads to the phosphorylation of eIF2α, hamper-
ing protein synthesis, leading to apoptosis, (c) activation of IFNR, 
leading to necroptosis, and (d) SipB mediating the autophagy. Sal­
monella infection also leads to the alteration of the levels of certain 
miRNAs. Salmonella prefers the alternatively activated macro-
phages over the classically activated macrophages for its intracel-
lular life.
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Conclusion

Significant advances have been made in understand-
ing the Salmonella pathogenesis in both human and mu-
rine models. In this review, we have tried to summarize 
the complex interaction between Salmonella and macro-
phage (Fig. 1). Among all cells types that serve as a niche 
for Salmonella, epithelial cells and macrophages are most 
studied. However, large gaps still remain to be filled in 
our understanding of the pathogenesis. Specially, the role 
of AMPs, metal availability, and Salmonella metabolism 
in macrophage with respect to acute versus chronic infec-
tion require further attention. We are just beginning to 

understand the role of exosomes, microRNA, and tissue 
resident macrophages in Salmonella pathogenesis and 
they might play a crucial role in determining the disease 
outcome. Further studies are needed to explore these un-
chartered territories to have a better understanding of the 
disease. This can help design a new therapeutic strategy 
against Salmonella infection.
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