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Abstract. Tripod spiders are the simplest examples of arachnoid mechanisms. Their
workspaces and configuration spaces are well known. For Hooke potential, we give a
complete description of the Morse theory and treat the robust control of the spider. For
the Coulomb energy, we use stationary charges and the trapping domain to study the
robust control of spiders. We show that, for a regular triangle and positive charges,
the domain of robust control is non-void. This relates to questions about the Maxwell
conjecture about point charges. We end with several natural problems and research
perspectives suggested by our results.

1. Introduction

The geometry and topology of mechanical linkages play an important and increasing role
in applied problems. Most of the previous studies were concerned with the workspace and
the topology of the configuration space, which is only known in a few cases summarized
in [KM], [Oh], [Mo]. The aim of this paper is to extend the known results to new classes
of linkages and enrich them by considering potential functions on the workspace, with
aplications to control of the linkages considered. Our approach is based on Morse theory
which yields an explicit connection between the topology of configuration space and the
critical points of potential.

We will be basically concerned with the so-called arachnoid mechanisms, the topology
of which is a largely unexplored topic. Nowadays the same type of objects is often called
”spidery linkage”. Detailed information on the topology of arachnoid linkages is important
for the design and control of certain types of spider robots. More concretely, we study the
simplest arachnoid mechanism, the 3-leg spider also known as tripod spider [Oh], [Mo].

In Section 2 we use Hooke energy as a potential function and describe in detail the
workspace and the critical point theory. This implies, in particular, that a weighted
version of Hooke energy can be used to control such a linkage.

In section 3 we study the Coulomb potential of point charges placed at the foots of a 3-
leg spider linkage. We deal with the so-called stationary charges of the spider’s center (the
common point of legs) and the so-called trapping domain of stationary charges determined
in [GK1], [GK2]. This enables us to determine the domain in the workspace of spider,
where the position of spider’s center can be robustly controlled by the values of stationary
charges using the Coulomb control scenario developed in [KPS], [GK1]. For a symmetric
spider based on a regular triangle and having a contractible workspace, we show that the
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domain of robust Coulomb control is a non-void open subset of the workspace containing
the center of the reference triangle.

In the sequel we use Morse theory for manifolds with boundaries and corners. Most
of it is ”folklore” hidden in the literature. We mention here [JJT] and [GM] as the most
general reference. For critical points of functions on manifolds with boundary and corners
we refer to [Si]. For brevity, we refer to criteria of such critical points and corresponding
topological changes in level surfaces as ”standard rules”.

In conclusion we mention several related problems and perspectives suggested by our
results. In general, this paper may be considered as a first step in applying our approach
to spider linkages and creating a paradigm for further research in this direction.

The results of this paper were obtained and written up in the framework of a ”Research
in Residence” project at the ”Centre des Rencontres Mathematiques” (CIRM, Luminy,
France) realized in November of 2022. It is our pleasure to acknowledge the support and
excellent working conditions at CIRM which largely facilitated our research.

2. Hooke Energy as a potential function of tripod spider

We will consider the Hooke potential for three points in several situations. First without
any constraint, next with constraints on maximal an minimal distances, and finally for a
3-leg spider.

2.1. No constraints. We start with the following simplified situation. Given 3 points
A,B,C (in vector notation a, b, c), the foot points of the spider, and its center (joint) the
point X. The legs AX, BX, CX are completely flexible around the foot, their length is
allowed to change.

The Hooke Energy is defined by

H(x) = ||x− a||2 + ||x− b||2 + ||x− c||2

The stationary points are determined by: ∇H = 6x−2(a+b+c) = 0, so x = 1
3
(a+b+c), the

center of gravity. There are no other stationary points. Note that H(X) = ||x− z||2 +K,
where z = 1

3
(a+ b+ c), the center of gravity Z and K = ||a||2 + ||b||2 + ||c||2 − ||z||2. All

level curves are circles.
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2.2. Maximal length constraints. We require

|XA| ≤ RA , |XB| ≤ RB , |XC| ≤ RC .

The configuration space is the intersection of 3 discs DA, DB, DC with centers resp A,B,C
and radii RA, RB, RC . We study the boundary extrema of H.

Lemma 1. The map H restricted to the boundary of DA has an extrema in Y iff AY has
the direction of AB +AC, i.e the two intersection points of the line trough A and Z with
the boundary of DA, a minimum and a maximum.

Proof. Suppose A is the origin. Let RAeφ a point on δDA. Use Lagrange multiplyers:

∇H = 6RAeφ − 2(b+ c) = λeφ

Therefore
(−λ+ 6rA)eφ = 2(b+ c)

�

Proposition 1. Let the workspace W = DA ∩DB ∩DC contain an open neighborhood of
Z then Z is the only stationary point of H, an absolute minimum. There are no boundary
singularities.

Proof. The center of gravity Z is clearly a minimum. Potential other critical points are
the critical points of the restiction of H to the boundary circles (intersections of ZA with
the circle around A, etc) and also the 3 ‘corner points ‘, where 2 boundary circles intersect.
The statement follows now from the standaard rules . For boundary points, they are here
as follows:
type of restriction direction normal type cell attaching
minimum inward no change no
minimum outward minimum 0-cell
maximum inward no change no
maximum outward saddle 1-cell

With no change we mean, that the topological type of the lower level sets don’t change.
For corner points there are similar rules. They give in our case: no change. Due to the
special (circular) form of level curves and boundaries one can obtain the same result by
‘inspection of pictures’. �

2.3. Two sided length constraints. We require

0 < R−A ≤ |XA| ≤ RA , 0 < R−B ≤ |XB| ≤ RB , 0 < R−C ≤ |XC| < RC .

The configuration space is the intersection of 3 discs with centers A,B,C and radii
RA, RB, RC , where some smaller (open) discs have been taken out. From the many dif-
ferent posibilties, we consider here the case that these 3 discs have a relatively small radii
and the workspace W is a disc with 3 holes, containing an open neighborhood of the
gravity center Z.

Proposition 2. In this situation the point Z is an absolute minumum of H on W ,
moreover there are 3 saddle points on the (outer) intersection points of the small discs
with ZA, ZB, ZC.
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Proof. The center of gravity Z is an absolute minimum. Other potential critical points
are the critical points of the restiction of H to the boundary circle, the 3 small circles and
also the 3 ‘corner points ‘, where 2 boundary circles intersect. The statement follows now
from standard rules for boundary and corner singularities as explained above.

�

Remark 1. The phase portrait of the gradient of H consists of straight lines to Z,
except for those lines that intersect one of the small discs. Their trajectories follow from
the moment that they intersect these discs a part of the boundary circle until they become
‘visible’ from Z and then continue as a straight line. There are 3 intervals between the
outer and the inner circles, which are conflict strata for the gradient flow.

Remark 2. The Morse theory in the 3 cases above is as follows:
In 2.1: b0 = 1, bi = 0 (i ≥ 1) and µ1 = 1, µi = 0 (i ≥ 1),
In 2.2: b0 = 1, bi = 0 (i ≥ 1) and µ1 = 1, µi = 0 (i ≥ 1),
In 2.3: b0 = 1, b2 = 3, bi = 0 (i ≥ 2) and µ1 = 1, µ1 = 3, µi = 0 (i ≥ 2).
In these three cases, H is a perfect Morse function.

2.4. Robust control. A similar study can be made for the weighted Hooke Energy:

Hα,β,γ = α||x− a||2 + β||x− b||2 + γ||x− c||2

Assume α > 0, β > 0, γ > 0. This potential function has the point Z = (α : β : γ)
(barycentric coordinates) as an absolute minimum. The level curves are circles with
the center at this point Z. The critical point theory is similar to the case of H, which
corresponds to (α : β : γ) = (1 : 1 : 1).

A proper choice of the controls (α, β, γ) can be used to move the 3-leg spider to any point
in the triangle ABC via minimum points of Hooke energy. This procedure yields a robust
control of the spider.

2.5. The 3-leg spider. In this case the telescopic connections are replaced by 2-arms
with fixed arm lengths and flexible turning point. We assume that the two parts of the
arm have different lengths. So AX is replaced by the arm AP ·PX, BX by BQ ·QX and
CX by CR · RX. The configuration space C is an 8-fold cover of the workspace W with
certain identifications at the boundaries. The topology has been studied in full generality
by P. Mounod [Mo]. He showed that an n-leg spider with generic arm lengths has a smooth
two-dimensional configuration space, and gave a formula for its Euler characteristic. In
his paper he also solved some questions of J. O’hara [Oh].

The configuration space of 3-leg spider projects now clearly to the workspace W from
2.3 (with the 3 small holes). R−A is equal to the difference of arm-lengths in the AP · PX
and RA is equal to their sum. Similar for the points B and C. We assume here that the
arm lengths are such, that they give the workspace mentioned above.

According to the formula of [Mo] the Euler characteristic of C is -22. So we have a smooth
surface with genus 12.

We consider the quadratic distance function H (see above).

Proposition 3. The Hooke energy H on the configuration space C of the 3-leg spider has:

• 8 minima
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• 36 saddles
• 6 maxima

Proof. The potential H is defined on the configuration space via projection to the work
space. We will use the results from Propostion 2 and use (branched) covering arguments.
The covering is 8-fold above the open part of the workspace. The branching takes place
at the boundaries and corners. The potential critical points are just the preimages of the
special points, which have been studied in Proposition 2.

We find in this way 8 critical pre-images of the center of gravity Z, these are all absolute
minima (with the same value). The 36 saddles come from the 9 special points on boundary
circles, where we have covering degree 4. Their types can be deduced by topological study
of the gluing of the two boundary pieces. Finally, we have 6 maxima, which corespond
to the three corner points, where the covering is 2-fold and at each such point such four
pieces are glued together.

There is is a dictionary between the Morse theory on the workspace treated above and
the configuration space. Compare the level curves in both cases via gluing and this results
in the Morse indices mentioned in the proposition. �

3. Coulomb Energy as a potential function of tripod spider

From the viewpoint of control theory, it is also interesting and practically important to
consider the Coulomb potential of point charges which are placed at the fixed foot points
of a spider and can be varied in order to change the position of its body endowed with a
fixed charge. A similar scenario was studied in big detail in the papers [GK1], [GK2] and
our exposition in this section relies on the constructions and results given in those two
papers.

We begin with recalling several concepts and constructions in the form needed in the
sequel. Recall that the Coulomb potential E = E(Q@A) of n point charges of non-zero
magnitudes qi placed at n points Ai is a function of point X in the complement of points
Ai by the formula

E =
∑ qi

di
,

where di = d(X,Ai) is the Euclidean distance between the points P and Ai. As usual a
point X is called a stationary point (or equilibrium point) of potential E if its gradient
∇E vanishes at X. There exists a huge number of results and problems concerned with
the Coulomb potential and equilibrium points of point charges. For us it is important to
mention that, as was proven by M. Morse himself, for a generic configuration and generic
values of point charges Coulomb potential is a Morse function [CM]. This suggests that
Coulomb potential is a reasonable candidate for developing Morse theory for a spider
linkage along the same lines as in the case of Hooke’s energy considered above. The aim
of this section is to present a number of results in this direction and present an application
in the spirit of robust Coulomb control discussed in [KPS], [GK1], [GK2]. Another relevant
topic in our context is the so-called Maxwell’s conjecture on point charges stating that
the number of isolated equilibrium points of n point charges in 2-dimensional Euclidean
space does not exceed (n− 1)2 (see, e.g., a recent review in [GNS]).
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We next focus on the case of 3 point charges. Given a triangle 4 with vertices A,B,C,
referred to as a reference triangle (or base triangle), and a point X in the same plane,
the triple of normalized stationary charges Q(X) = {qi(X;4)} is defined as a triple of
non-zero real numbers qi such that ∇E(X,Q) = 0. As was proven in [GK1] these charges
are uniquely determined by the ratio’s

q1 : q2 : q3 = d31A1 : d32A2 : d23A3,

where A1 is the area of 4BCX, A2 of 4CAX, A3 of 4ABX. We denote the angles at
X of these triangles by α1, α2, α3 respectively.

In [GK1] , [GK2] the Coulomb trapping domain T (4) is defined as the set of minimum
points of the potential induced by the charges Q(X). The trapping domain is given by the
inequality h(X) > 0, where h is the Hessian of E(X,Q(X)), which we call the trapping
Hessian. We have in geometric terms the following formula:

h(X) = −2A+ 9(
3∏
i

sinαi)(
3∑
i=1

d2iAi).

It was conjectured in [GK2] that T (4) is a non-empty subset containing the incenter of
4. This conjecture has been verified in a number of cases, including the regular triangle.

As was mentioned, a complete description of equilibria (stationary points) of E and their
Morse indices is not known even in the case of three charges. However rather complete
results for special configurations of three point charges have been obtained in [Ts]. In
particular, the Maxwell’s conjecture was proven for arbitrary three non-zero point charges
at the vertices of a regular triangle and the Morse indices are computed.

For this reason, in the rest of the text we always assume that the reference triangle is
regular since it is the most important case for applications and, at the same time, in this
case all necessary background results are rigorously proven in [GK2].

Further, given a 3-leg spider S with the center at (moving) point X, (fixed) foot-points
A,B,C and identical legs with the links of lengths a (thigh length) and b (foot length),
we denote by W (S) its workspace considered above. To simplify the discussion we assume
that R > a > b > 0, in which case the whole workspace of the spider is the intersection
of three circular annuli with centers A,B,C.

Proposition 4. The domain of robust Coulomb control of spider S in the above scenario
is equal to the intersection D(S) = W (S) ∩ T (4).

As said before the topology of the workspace depends on the triangle and the arm lengths.
This influences the intersection which could even be void. For the regular triangle, we
make the choice that the workspace becomes a contractible region bounded by three
circular arcs and containing the incenter. Also we assume that all charges are positive.
The trapping domain T (4) is explicitly known as the interior of a compact convex region
bounded by h = 0 and containing the incenter of the triangle. Under these conditions
this yields the following conclusion.

Corollary 1. The domain of robust Coulomb control of spider S based on a regular
triangle is non-void.
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For a spider based on the regular triangle one can also carry out a complete Morse
analysis in a similar way as for the Hooke potential. One knows that for given positive
charges there is a single minimum of E in the trapping area T (4) and 3 saddle points
in 4 ouside T (4). The poles of E are not in the workspace and therefore not in the
configuration space, which is an 8-fold cover of the workspace branched (glued) over
boundary components. After obtaining information about the boundary singularities one
gets a complete Morse analysis.

4. Concluding remarks

There are several natural problems and research perspectives suggested by our results.
We mention some of them which seem most interesting and feasible.

First of all, note that all the concepts used in our paper make sense for n-leg spiders
with arbitrary base n-gon and arbitrary lengths of the links. So a natural next step is to
generalize the above results to Hooke and Coulomb potential of an n-leg spider.

Next, one can also consider other geometrically or physically meaningful potentials of
n-leg spider like Riesz energies or the oriented area of the polygon formed by the moving
joints of spider.

Further, one can formulate several extremal problems related to the design of spider
linkages with desirable properties like the area or shape of the workspace.

Moreover, one can try to extend our results to the case of n-leg spiders with a moving
n-gon platform instead of the center point.

Finally, it is natural to extend our discussion to spatial spiders where the legs can move
in a three-dimensional Euclidean space.

It is also possible to consider ”legs” with more than two links or with flexible non-
extendible tether links. Each of the mentioned possibilities deserves a closer look and
careful exploration which we intend to undertake in the future research.

Returning to 3-leg spiders we add that an urgent topic is to clarify what happens with
the domain of robust Coulomb control for arbitrary configuration of foots. In this case,
there are several feasible problems concerned with the optimization of workspace with
given restrictions on the sum of the lengths of links and circumradius of the base triangle.
For example, there is good evidence that the maximal area of W (S) arises for the most
symmetric spider with equal links and regular configuration of foots.
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